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Abstract 

 

From sticklebacks to insects to mice, closely related populations encountering similar 

selective pressures tend to evolve parallel phenotypes. The era of genomics has revealed 

that some instances of parallel phenotypes are caused by similar mutations in similar 

genes. Others cases of parallel adaptation are shown to be driven by mutations in distinct 

genes.  These observations spark an open question in evolutionary biology; given 

identical starting points and selective pressures, how repeatable should we expect 

molecular adaptation to be? Laboratory evolution of model organisms presents an ideally 

suitable system for beginning to answer this question. This work uses experimental 

evolution of Saccharomyces cerevisiae combined with genomics and functional genetics 

to ask questions about the repeatability of evolution. We focus on identifying and 

examining the adaptive consequence of molecular events that arise more often than 

expected by chance. We find extensive parallelism in ploidy evolution when genome 

duplication proves adaptive. We use whole genome sequencing to identify loci targeted 

by selection multiple independent times across populations. We use one of these loci, 

STE4, to examine how dominance constrains mutation and adaptation. We then leverage 

the extensive gene-level parallelism we observe to detect genetic interactions and 

measure the effect of epistasis on genotype evolution. 
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Chapter 1 

Introduction 

 

Note- This chapter contains some material drawn from a review paper1 coauthored with 

my advisor, Greg Lang.  

 

A single historical timeline has produced all of the diversity of life we observe today. 

Evolutionary biologists have often inferred evolutionary histories of populations based on 

observations, and hypotheses are generated to explain these inferred histories and provide 

mechanistic insight into the evolutionary process. Yet testing specific hypotheses 

regarding mechanisms of evolution is difficult because we cannot say anything about the 

countless other possible but unrealized evolutionary histories. In his 1989 book, 

Wonderful Life, Stephen Jay Gould proposed the following thought experiment: rewind 

the tape of life and let evolution play out a second time. In doing so, does the replay 

produce anything like what we see today? In other words, is evolution reproducible, or 

would the randomness inherent in evolutionary processes change histories and produce 

wildly different outcomes? The birth of the modern field of experimental evolution 

closely followed Gould’s book and has allowed the pursuit of this central question to 

move from philosophical to empirical.  

																																																								
1 Fisher, K. J., & Lang, G. I. (2016). Experimental evolution in fungi: An untapped 
resource. Fungal Genetics and Biology, 94, 88-94. 
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Another way of asking about the reproducibility of evolution is asking how frequently 

we observe parallel evolution. Parallel evolution describes the biological phenomena by 

which two phylogenetically distinct lineages evolve analogous features in response to 

similar selective pressures. Determining the prevalence of parallelism amongst adapting 

lineages is not trivial. In some fortuitous situations, natural replication allows one to 

follow evolution in several independent replicate populations. These ‘‘natural 

experiments” have been well studied, for example in Galapagos finches (Grant, Grant, 

Markert, Keller, & Petren, 2004), Astyanax cavefish (Protas et al., 2006), and 

sticklebacks (Hohenlohe et al., 2010; Jones et al., 2012).  

Parallelism in “natural replicates” 

 Synthesis of “natural replicate” findings reveals a strong signature of parallelism 

in separately evolving populations facing the same selective pressures. Phenotypic 

parallelism is exceedingly common amongst sister taxa that have repeatedly invaded 

similar but separate habitats. For example, distinct populations of the Mexican cave tetra 

(genus Astynax) that have colonized cave habitats have independently undergone eye and 

pigmentation loss (Protas et al., 2006; Wilkens & Strecker, 2003). Similarly, freshwater 

stickelbacks (genus Gasterosteus) have repeatedly colonized freshwater habitats and 

become geographically isolated from ancestral marine populations. A number of 

morphological differences relative to marine populations are shared among independent 

freshwater populations, including the well-studied reduced gill rakers (Hagen & 

Gilbertson, 1972; Moodie & Reimchen, 1976) and pelvic structures (Bell, 1987). Parallel 

phenotypes can also be seen at the level of gene regulation; parallel changes in gene 

expression in opsin genes have been documented among closely related but genetically 
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isolated cichlid  (family Cichlidae) populations that are adapting to similar depths 

(O'quin, Hofmann, Hofmann, & Carleton, 2010). 

Phenotypic parallelism suggests that there are only so many solutions to a given 

problem and that selection will steer towards one of them. Some cases of remarkably 

parallel phenotypes in “natural replicate” populations are due to causal mutations in 

distinct genes and pathways. Such is the case with convergent pigmentation patterns in 

oldfield mice (Peromyscus polionotus). Populations of mice living in beach habitats on 

the Atlantic and Gulf have independently acquired a lighter, more cryptic coloration. 

Pigmentation adaptation in Gulf populations seems to be mediated by mutations directly 

to the Mc1r gene, while Atlantic populations appear to have adapted via a completely 

different genetic route (Steiner, Römpler, Boettger, Schöneberg, & Hoekstra, 2008). 

Commonly, however, phenotypic convergence amongst closely related taxa is 

attributable to underlying parallelism at the genetic level, such that recurrent phenotypes 

can be attributed to variation in the same gene or group of functionally related genes.  

The best examples of this come from the two teleost species mentioned above, the 

Mexican cave tetra and the freshwater stickleback. In both systems, small populations 

that have repeatedly become isolated in similar new environments display evidence of 

parallel molecular routes to adaptation (Chan et al., 2010; Colosimo et al., 2005; Glazer, 

Cleves, Erickson, Lam, & Miller, 2014; Protas et al., 2006). Molecular convergence is 

also seen across broader taxonomic groups including waterfowl adapted to high altitude 

(McCracken et al., 2009), arthropod herbivores that overcome plant defenses (Zhen, 

Aardema, Medina, Schumer, & Andolfatto, 2012), marine mammals (Foote et al., 2015), 
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cold-hardy conifer species (Yeaman et al., 2016), and mammals that consume bamboo 

(Hu et al., 2017), to name just some examples.  

Experimental evolution is ideally suited to study parallelism 

 Extensive parallelism in natural populations does suggest evolution is highly 

reproducible, but such observations are limited in interpretability. Natural experiments 

are not perfect replicates. Details of the environments will differ and the number of 

replicates is constrained. Field studies are also constrained by incomplete characterization 

of ancestral populations, making it difficult to distinguish between ancestral variation and 

parallel de novo evolution. These limitations of field studies are overcome in laboratory 

evolution experiments. Experimental evolution complements the study of natural 

populations and provides a system in which specific hypotheses can be tested. At its core, 

the field of experimental evolution is the realization of Gould’s thought experiment. An 

evolution experiment involves initiating a few, hundreds, or even thousands, of initially 

identical populations and passaging them forward through time to assess the full 

distribution of evolutionary outcomes given a set of initial conditions. The longest 

running evolution experiment began in 1988, when Richard Lenski initiated 12 replicate 

cultures of E. coli which have been propagated daily for the last 28 years, surpassing 

64,000 generations of growth. The Lenski long-term evolution experiment (LTEE) is the 

iconic example of laboratory experimental evolution. 

Exchanging the complexities of the natural environment for the simplicity of the 

laboratory provides a number of advantages. Most microbes can be cryogenically 

archived to generate ‘‘frozen fossil records” that can be returned to at any time in order to 

identify mutations or measure fitness. Evolutionary parameters that are difficult to 
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quantify in natural populations (such as population size and mutation rate) can be 

precisely measured and controlled. Selection can be tightly controlled by strictly defining 

media, temperature, and other growth conditions. Genetic variation can be defined at the 

onset of any experiment and gene flow can be absent or modulated. Population size and 

bottlenecks can be accurately quantified and kept constant, mitigating the effect of 

genetic drift. Gains in fitness can be tracked experimentally and high throughput next-

generation sequencing can be applied to link changes in phenotype with underlying 

mutations. The large research communities devoted to the study of the model systems 

afford a number of tools for the genetic manipulation and the genetic and genomic 

analyses of evolved populations and provide a meaningful context in which to interpret 

the effects of individual mutations on fitness and other relevant phenotypes.  

Findings from diverse evolution experiments bolster those from “natural replicates” 

and indicate that, in the face of identical selection, marked phenotypic divergence is rare 

while phenotypic parallelism is common. Fitness itself characteristically increases in a 

similar manner across replicate populations (Lenski, 2017), reaches similar peaks (Wiser, 

Ribeck, & Lenski, 2013), and can remain similar across environments (Bailey, Rodrigue, 

& Kassen, 2015). Reproducibility of non-fitness trait evolution is evident in the E. coli 

LTEE; parallel increases in cell size (Lenski, & Travisano, 1994), parallel shifts in 

catabolism (Cooper, Schneider, Blot, & Lenski, 2001), and parallel changes to both gene 

expression and proteomes (Cooper, Rozen, & Lenski, 2003; Pelosi et al., 2006). Shorter-

term studies have also found parallelism in non-fitness traits (Fong, Joyce, & Palsson, 

2005; Van Ditmarsch et al., 2013). Replicate populations do occasionally evolve 
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divergently (Hillesland, Velicer, & Lenski, 2008; Ratcliff et al., 2013), but these cases are 

rare in the absence of environmental heterogeneity.  

Similar to “natural replicate” populations, experimental lineages evolving under 

identical selective pressures commonly adapt via parallel molecular routes. Studies that 

have directly addressed genic parallelism find it to be widespread (Betancourt, 2009; Bull 

et al., 1997; Deatherage, Kepner, Bennett, Lenski, & Barrick, 2017; Lenski, Richard E., 

2017; Tenaillon et al., 2012). Most studies do not directly quantify parallelism per se, but 

still report results indicative of highly repeatable molecular dynamics. Applying high-

throughput sequencing to experimentally evolved populations often identifies the same 

genes accumulating mutations in replicate populations (Kvitek & Sherlock, 2011; Lang et 

al., 2013; Venkataram et al., 2016). Copy number variations (CNVs) containing specific 

genes are reproducible outcomes of nutrient limitation or chemical stress (Adamo, 2012; 

Gresham et al., 2010; Payen et al., 2014). Finally, parallelism in ploidy changes in 

eukaryotic microbes is being increasingly reported (as will be addressed in the first 

chapter of this dissertation) (Gerstein, Chun, Grant, & Otto, 2006; Gorter et al., 2017; 

Hong & Gresham, 2014). 

Interplay of parallelism and constraint 

Extensive parallelism may, in part, indicate a pronounced effect of genetic constraint 

on sequence evolution. Genetic constraint broadly refers to factors that limit the 

mutational trajectories accessible to an evolving genome. Sources of constraint can 

include factors that limit the number of mutations that can produce a given trait value, 

such as low genomic redundancy wherein adaptive traits have few underlying loci 

(Chevin, 2013). Constraint can also be imposed by factors that affect the fitness effects of 
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new mutations as well as those that limit the accessibility of beneficial mutations 

(Connallon & Hall, 2018). Alternatively, constraint can indirectly be imposed by 

mutational bias; the most frequently occurring mutation type that produces an 

advantageous phenotype is most likely to be observed (Stoltzfus & McCandlish, 2017; 

Storz, 2016). Finally, epistatic interactions between genes can constrain sequence 

evolution of interacting genes (Storz, 2016).  

Constraints imposed by low genomic redundancy and those imposed factors affecting 

the fitness effects of new mutations are difficult to disentangle. The same gene may be 

frequently mutated to achieve a given trait value because that is the only gene (or one of 

few) that can produce that trait value. Conversely, many mutations may be able to 

generate a given phenotype, however these mutations are inaccessible for reasons 

unrelated to the adaptive trait space. Modeling of trait evolution under both sources of 

constraint suggests an affect of both in shaping convergence (Yeaman, Sam, Gerstein, 

Hodgins, & Whitlock, 2018). In the case of microbial experimental evolution, wherein 

the reproductive mode is asexual clonal expansion, constraint due to accessibility of 

mutations has a particularly pronounced affect (Gerstein, Kuzmin, & Otto, 2014; Marad, 

Buskirk, & Lang, 2018). This is largely due to constraints imposed by dominance, which 

scale the likelihood of alleles fixing in populations independent of their relative fitness 

effects (Haldane, 1924). Mutations in diploid and polyploid backgrounds should need to 

exhibit at least partial dominance in order to be fixed by selection, while completely 

recessive beneficial mutations rely on instances of loss-of-heterozygosity (Gerstein et al., 

2014; Smukowski Heil et al., 2017). 
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Mutational bias is a source of constraint that has been receiving increasing attention 

in recent years (Stoltzfus & McCandlish, 2017; Storz, 2016). Rather than operating by 

filtering out possible mutational routes (as would be the case with low genomic 

redundancy and limited accessibility), mutational bias operates via distorting the relative 

frequencies of certain adaptive events. Adaptive events that occur at higher rates are more 

likely to be observed than those that are rare. The best examples of this from both 

comparative genomics and experimental evolution are structural rearrangements. 

Amplification and/or deletion events producing copy number variants (CNVs) vary in 

frequency across the genome, with some loci being prone to frequent copy number 

fluctuation (Brewer et al., 2015; Press, Hall, Morton, & Queitsch, 2018). CNVs 

accordingly represent some of the most marked examples of parallel genome evolution in 

experimental evolution (Fisher, Buskirk, Vignogna, Marad, & Lang, 2018; Payen et al., 

2014; Sanchez et al., 2017). Signatures of parallelism in gene amplification and deletion 

are also documented broadly across diversifying clades (Clop, Vidal, & Amills, 2012; 

Stratton, Campbell, & Futreal, 2009; Żmieńko, Samelak, Kozłowski, & Figlerowicz, 

2014). In the case of pelvic reduction in sticklebacks, the causal recurrent deletions are 

found in an enhancer element (Chan et al., 2010) that has recently been shown to exhibit 

increased levels of fragility, leading to high rates of local deletions (Xie et al., 2019).  

The final source of constraint discussed here is epistatic interactions. Epistatic 

constraint can be usefully broken down into two types: intralocus epistasis and interlocus 

epistasis. Intralocus epistasis between sites within a coding sequence has well 

demonstrated effects of constraining protein evolution and entrenching evolved mutations 

(Gong et. al., 2013; Bridgham et al., 2009; Lunzer et al., 2010; Shah et al., 2015). A great 
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deal less is known about how inter locus epistasis – also referred to as genetic 

interactions – influences adaptive trajectories. Genetic interaction is used to describe the 

phenomenon by which the phenotype (or fitness) of a double mutant deviates from what 

is expected given the phenotypes of single mutants (reviewed in Costanzo et al., 2019). 

Given the dense and interconnected yeast interactome (Costanzo et al. 2019, 

Baryshnikova et. al., 2016; Costanzo et al., 2016), interactions between mutations in 

different genes are expected to contribute to, and constrain, adaptation.  

Summary 

Parallelism and homoplasy used to be viewed as exceptional in evolutionary 

theory. In a circular manner, this view, and its application in “maximum parsimony” has 

traditionally shaped phylogenies in such a way that repeated evolution was thought to be 

rare. The genomics era has revealed that evolution may be more reproducible than 

previously thought. Groups that used to be considered monophyletic based on 

morphology have been revealed to be polyphyletic with widespread homoplasy (Chueca, 

Gómez-Moliner, Madeira, & Pfenninger, 2018; Parra-Olea & Wake, 2001; Wu et al., 

2015). In this dissertation, I will directly examine the extent of parallelism of specific 

molecular events, the sources of constraint that produce parallelism, and the 

consequences and applications of molecular parallel evolution. In Chapter 1 I focus on 

parallel ploidy evolution and the consequential constraint imposed by ploidy dynamics on 

sequence evolution.  The extent to which microbes adapt via rapid ploidy fluctuations has 

become appreciated only recently. My work in Chapter 1 suggests that ploidy change is a 

fairly certain outcome when the selective benefit is sufficiently high. In Chapter 2 I focus 

on a single locus that acquires mutations in a specific gene region multiple times across 
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different experimentally evolved populations. I find that a complex interplay of 

underdominance and overdominance explains the observed patterns of parallelism. To 

my knowledge this is the first empirical demonstration of how dominance affects 

sequence evolution in real time. Finally, in chapter 3 I leverage parallelism as a tool to 

examine the pervasiveness of epistasis between experimentally evolved mutations. This 

computational investigation revealed that parallelism can be used to measure signatures 

of epistasis, as well as identify interactions between specific gene pairs. 
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Chapter 2 

Parallelism of adaptive genome duplication 

 

Note - The work described in this chapter has been published1 in collaboration with Sean 

Buskirk. As co-first author, Sean performed most of the bioinformatic analyses for this 

paper. Ryan Vignogna performed the simulation assays described in this chapter. The 

datasets referenced in this chapter have been archived with the publication2.  

 

Abstract 

Genome duplications are important evolutionary events that impact the rate and 

spectrum of beneficial mutations and thus the rate of adaptation. Laboratory evolution 

experiments initiated with haploid Saccharomyces cerevisiae cultures repeatedly 

experience whole-genome duplication (WGD). We report recurrent genome duplication 

in 46 haploid yeast populations evolved for 4,000 generations. We find that WGD 

confers a fitness advantage, and this immediate fitness gain is accompanied by a shift in 

genomic and phenotypic evolution. The presence of ploidy-enriched targets of selection 

and structural variants reveals that autodiploids utilize adaptive paths inaccessible to 

haploids. We find that autodiploids accumulate recessive deleterious mutations, 

indicating an increased susceptibility for nonadaptive evolution. Finally, we report that 

																																																								
1Fisher, K. J., Buskirk, S. W., Vignogna, R. C., Marad, D. A., & Lang, G. I. (2018). 
Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces 
cerevisiae. PLoS genetics, 14(5), e1007396. 
2https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007396#sec023	
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WGD results in a reduced adaptation rate, indicating a trade-off between immediate 

fitness gains and long term adaptability.  

Introduction 

The natural life cycle of budding yeast alternates between haploid and diploid 

phases. Both ploidies can be stably propagated asexually through mitotic division. Both 

theory and experimental work show that haploids adapt faster than diploids, likely due to 

recessive beneficial mutations (Orr & Otto, 1994; Zeyl, Vanderford, & Carter, 2003). 

Curiously, however, repeated attempts at evolving experimental haploid populations have 

resulted in recurrent whole genome duplications yielding populations of autodiploids 

(Gerstein et al., 2006; Hong & Gresham, 2014; Voordeckers et al., 2015) see Table 2-1). 

Proposed explanations of this phenomenon include artifacts of strain construction 

(Venkataram et al., 2016), unintended mating events (Voordeckers et al., 2015), and an 

adaptive advantage of diploidy (Gerstein et al., 2006).  

Whole genome duplication (WGD) in asexual haploid populations could provide 

a fitness advantage in several different ways. Cell size scales with DNA content across 

many taxa including yeast (Beaulieu, Leitch, Patel, Pendharkar, & Knight, 2008; Epstein, 

1967; Gregory, 2001), and increased cell size may facilitate more rapid metabolism and 

increased growth rate. Indeed, increased cell volume has been reported in laboratory-

evolved microbial populations (Lenski, & Travisano, 1994). Gene expression patterns 

also vary with ploidy (Galitski, Saldanha, Styles, Lander, & Fink, 1999), and diploid-

specific gene regulation may be optimal. “Ploidy drive” has been used to describe the 

phenomenon by which ploidy changes in evolving fungi favor restoration of the historical 

ploidy state (Gerstein, Lim, Berman, & Hickman, 2017).  
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Table 2-1. Observations of autodiploidy in experimental studies 

Study Propagation Evolution 
medium 

Strain 
background 

Mating-
type 

Current study Batch culture, unshaken YPD W303 MATa & 
MATα 

Kosheleva and 
Desai 2017 Batch culture, unshaken YPD Sk1-W303 hybrid MATa & 

MATα 

Gorter 2017 Batch culture, shaken YPD with heavy 
metals BY4743 MATa 

Venkataram et 
al. 2016 Batch culture, shaken Carbon limited 

glucose BY4709 MATa 

Voordeckers et 
al. 2015 Turbidostat 6-12% EtOH glucose S288c derivative MATα 

Hong and 
Gresham 2014 Chemostat Nitrogen limited 

glucose S288c derivative MATa 

Oud et al. 2013 Anaerobic batch culture in 
sequential bioreactor 1:1 glucose/galactose CEN.PK113-7D MATa 

Gerstein et al. 
2006 Batch culture, shaken YPD SM2185 MATa 
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Natural Saccharomyces cerevisiae isolates are typically diploid (Liti, 2015) and 

occasionally polyploid (Ezov et al., 2006). If most selection has occurred on these higher 

ploidy states, then gene regulation and cell physiology of diploids should be better 

optimized relative to haploids.  

Despite the recurrence of diploidization events in haploid-founded yeast lineages, 

the nature of the fitness advantage of diploidy remains unclear. Some studies detect a 

fitness benefit (Gorter et al., 2017; Venkataram et al., 2016), while no advantage is 

detected in others (Gerstein & Otto, 2011; Hong & Gresham, 2014). A survey of the 

effect of ploidy on growth rate in otherwise isogenic strains indicates that the benefit of 

ploidy varies across conditions and optimal ploidy states are contingent on environment 

(Zörgö et al., 2013). In environments where duplication does not confer a direct fitness 

advantage, it may afford indirect benefits that are then themselves acted upon by 

selection. Diploidy may transiently protect evolving lineages from purifying selection by 

masking the effects of deleterious recessive mutations over short time scales. Indeed, 

15% of viable single gene deletions in haploids exhibit growth defects in rich media, 

while 97% of heterozygous gene deletions show no detectable phenotype in the absence 

of perturbation (Deutschbauer et al., 2005). This “masking” hypothesis also has 

experimental support from mutagenesis studies (Mable & Otto, 2001), and this effect 

could be advantageous in populations in which the deleterious mutation rate is 

sufficiently high.  

Autodiploids could invade haploid populations due to increased access to 

beneficial mutations. Ploidy-dependent mutations are known to arise in experimental 

evolution (Gerstein et al., 2013; Marad et al., 2018), and a favorable shift in the 



	

	 16	

distribution of fitness effects may follow genome duplication.  Structural variants - 

deletions, amplifications, and translocations - have repeatedly been shown to be adaptive 

in experimentally evolving yeast populations (Dunham et al., 2002; Gresham, David et 

al., 2008). Diploids have a greater tendency to form copy number variants (CNVs), 

especially large deletions (Zhang et al., 2013). Likewise, aneuploidies accumulate at a 

significantly higher rate in diploids in the absence of selection (Sharp, Sandell, James, & 

Otto, 2018). If structural variants are more frequent, more variable, and more tolerable in 

diploids, genome duplication may enable access to novel adaptive paths. Given the 

repeated observation of displacement of haploids by diploids (Table 2-1), and the 

absence of clear evidence for instantaneous fitness advantages of isogenic diploidy that is 

broadly applicable across experiments, it is possible that selection for and maintenance of 

diploidy is a complex process involving both direct selection on ploidy state and second 

order selection, or selection for indirect fitness benefits associated with higher ploidy. 

Here we show recurrent WGD in 46 haploid-founded populations during 4,000 

generations of laboratory evolution in rich media. We track the dynamics of genome 

duplication across the haploid-founded populations, revealing that autodiploids fix by 

generation 1,000 in all 46 populations. Competitive fitness assays show that WGD 

provides a 3.6% fitness benefit in the selective environment. We find that the immediate 

fitness gain is accompanied by a loss of access to recessive beneficial mutations. As a 

consequence, the rate of adaptation of autodiploids slows. Sequencing of the evolved 

genomes indicates that autodiploids have increased access to structural variants and 

largely utilize a different spectrum of mutations to adapt compared to haploids. Finally, 

we show that autodiploids are buffered from the effects of recessive deleterious 
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mutations, consistent with an initial benefit to a newly formed diploid genome and loss of 

redundancy following WGD.  

Results  

Sequenced genomes indicate early and recurrent fixation of autodiploids  

 Two clones were sequenced from each of 46 haploid-founded populations after 

4,000 generations of evolution, revealing over 5,100 de novo mutations distributed 

uniformly across the genome, representing the largest dataset of mutations identified in S. 

cerevisiae experimental evolution to date (Fig. 2-1; Dataset 1). Mutations are normally 

distributed across clones (one-sample Kolmogorov-Smirnov test, α=0.05) with a mean of 

91 ± 20. Most mutations in the sequenced clones were called at ~0.5 (implying 

heterozygosity), a surprising result given that a haploid ancestor founded the populations. 

Recurrent WGD events were suspected given that each clone maintained its ancestral 

mating-type allele. Further, this hypothesis of WGD was supported by the observation 

that clones are not heterozygous at the 6 polymorphic sites that differ between the MATa 

and MATα strains. Finally, evolved autodiploids are mating competent, pointing to 

duplication of haploid genotypes.  

Autodiploids are detected early, sweep quickly, and exhibit a fitness advantage 

We determined the fitness effect of genome duplication by directly competing 

MATa/a autodiploids against an otherwise isogenic haploid MATa reference. To control 

for possible artifacts of construction, we independently constructed and competed 10 

MATa/a diploids. All 10 MATa/a autodiploid reconstructions exhibit a relative fitness 

advantage significantly higher than a control haploid strain (Welch’s t-test, t=16.28 df  
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Figure 2-1. Colored bars denote the genomic positions of all 5,016 evolved mutations 
identified in this experiment across the 16 yeast nuclear chromosomes. Evolved 
mutations are distributed evenly across the genome. Mutations are colored by type: 
nonsynonymous – yellow, synonymous – green, intergenic – blue, tRNA – magenta.    
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=19, p<0.001). Genome duplication alone in the absence of any other variation provides a 

mean fitness benefit of 3.6% in these experimental conditions (Fig. 2-2A). 

To determine the timing of duplication events, we performed time-course DNA 

content staining on cryoarchived samples for 16 randomly selected populations (8 of each 

mating-type). Autodiploids arise quickly in all 16 populations, fixing by generation 1,000 

in all but 2 populations (Fig. 2-2B, Fig. 2-3, Fig. 2-4). Diploids are present at 2% - 11% 

in 11/16 populations at generation 60, the earliest time point available for assay. Some 

populations appear to show clonal interference by fit haploids, with autodiploid fractions 

briefly decreasing between some time points. Aside from such slight variations, patterns 

of emergence and spread of autodiploids display similar dynamics for all 16 populations 

examined.  

We examined whether the degree of parallelism observed in ploidy dynamics can 

be attributed to ancestral ploidy polymorphisms present at the onset of the experiment. 

Four lines of evidence support the independent origin of autodiploidy in this experiment. 

First, the cultures were initiated from two starting strains (MATa and MATα). There is no 

significant difference in autodiploid frequency between mating-types at any generation 

(Fig. 2-3), meaning if autodiploids did, in fact, arise in both independent inoculating 

cultures, they would have had to achieve roughly the same frequency, which is highly 

unlikely. Second, no diploids were detected by DNA content staining in any populations 

at Generation 0, indicating autodiploids were not present in the inocula above our 

detection limit of 1%. Third, computational simulations show that low frequency 

autodiploids are insufficient to explain the recurrent observation of autodiploid fixation 

events in all 46 replicate populations. Autodiploids with a 3.6% fitness advantage starting   
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Figure 2-2. A) MATa/a diploids have a mean relative fitness advantage of 3.6% when 
competed against a haploid reference strain. Ten MATa/a diploids clones were 
constructed independently. Box plots reflect mean fitness of each clone. Autodiploids and 
control haploids were competed against the same haploid reference. * p<0.001 (Welch’s 
t-test) B) Autodiploid frequency (red) and fitness advantage (orange) for focal 
populations (dashed lines). Solid lines indicate mean autodiploid frequency for 16 
populations and mean fitness advantage for 13 populations. C) Haploid-founded 
populations demonstrate significantly higher rates of adaptation until autodiploids fix. 
From that point forward, haploid-founded (autodiploids) and diploid-founded populations 
adapt at the same rate. Lines indicate paired data points from the same population (teal: 
haploid-founded, yellow: diploid-founded). For each haploid-founded population, 
adaptation rate was calculated before and after autodiploid fixation, which occurred on 
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average at generation 600. Adaptation rates for diploid-founded populations (diploid data 
reported in Marad et al. 2018) were calculated from Gen 0–600 and Gen 600–4000.  
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Figure 2-3. Autodiploids were tracked in 16 focal populations via time-course DNA 
content staining. Autodiploid lineages arise quickly in all 16 populations and fix by 
generation 1,000 in all but 2 populations. MATa (n = 8) and MATα (n = 8) are represented 
by red and blue lines, respectively. 
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Figure 2-4. Time-course ploidy (red) and fitness (orange) dynamics across 4,000 
generations for the 13 populations for which both have been measured.  

0 1000 2000 3000 4000

0

20

40

60

80

100

A02

Generation

Au
to

di
pl

oi
d 

(%
)

0

5

10

15

Fi
tn

es
s 

ad
va

nt
ag

e 
(%

)

0 1000 2000 3000 4000

0

20

40

60

80

100

A11

Generation

Au
to

di
pl

oi
d 

(%
)

0

5

10

15

Fi
tn

es
s 

ad
va

nt
ag

e 
(%

)

0 1000 2000 3000 4000

0

20

40

60

80

100

B02

Generation

Au
to

di
pl

oi
d 

(%
)

0

5

10

15

Fi
tn

es
s 

ad
va

nt
ag

e 
(%

)

0 1000 2000 3000 4000

0

20

40

60

80

100

B11

Generation

Au
to

di
pl

oi
d 

(%
)

0

5

10

15
Fi

tn
es

s 
ad

va
nt

ag
e 

(%
)

0 1000 2000 3000 4000

0

20

40

60

80

100

C02

Generation

Au
to

di
pl

oi
d 

(%
)

0

5

10

15

Fi
tn

es
s 

ad
va

nt
ag

e 
(%

)

0 1000 2000 3000 4000

0

20

40

60

80

100

C11

Generation

Au
to

di
pl

oi
d 

(%
)

0

5

10

15

Fi
tn

es
s 

ad
va

nt
ag

e 
(%

)

0 1000 2000 3000 4000

0

20

40

60

80

100

D02

Generation

Au
to

di
pl

oi
d 

(%
)

0

5

10

15
Fi

tn
es

s 
ad

va
nt

ag
e 

(%
)

0 1000 2000 3000 4000

0

20

40

60

80

100

E11

Generation

Au
to

di
pl

oi
d 

(%
)

0

5

10

15

Fi
tn

es
s 

ad
va

nt
ag

e 
(%

)

0 1000 2000 3000 4000

0

20

40

60

80

100

F02

Generation

Au
to

di
pl

oi
d 

(%
)

0

5

10

15

Fi
tn

es
s 

ad
va

nt
ag

e 
(%

)

0 1000 2000 3000 4000

0

20

40

60

80

100

F11

Generation

Au
to

di
pl

oi
d 

(%
)

0

5

10

15

Fi
tn

es
s 

ad
va

nt
ag

e 
(%

)

0 1000 2000 3000 4000

0

20

40

60

80

100

G02

Generation

Au
to

di
pl

oi
d 

(%
)

0

5

10

15

Fi
tn

es
s 

ad
va

nt
ag

e 
(%

)

0 1000 2000 3000 4000

0

20

40

60

80

100

G11

Generation

Au
to

di
pl

oi
d 

(%
)

0

5

10

15

Fi
tn

es
s 

ad
va

nt
ag

e 
(%

)

0 1000 2000 3000 4000

0

20

40

60

80

100

H11

Generation

Au
to

di
pl

oi
d 

(%
)

0

5

10

15

Fi
tn

es
s 

ad
va

nt
ag

e 
(%

)

MATa

MATα



	

	 24	

at a frequency of 0.01, the highest frequency we modeled, have a probability of fixation 

in a given population of 0.88 and therefore the chance of fixation in all 46 populations 

would be 2.5 x 10-3 (Fig. 2-5A-B). A fourth line of evidence is the recent reporting of a 

high rate of autodiploid occurrence in passaged yeast cultures. Harari et al. (2018) report 

a rate ploidy transition on the order of 10-5 per cell division, which corresponds to 

hundreds of WGD events generated during each 24-hour growth cycle. Taken together, 

this argues that, while ancestral autodiploids may have swept in some populations, 

ancestral ploidy variation is insufficient to explain autodiploid fixation in all 46 

populations. Therefore independent, parallel WGD events during the evolution 

experiment are necessary to explain the recurrent fixation reported here.  

Autodiploids adapt more slowly than haploids  

Consistent with previous work (Gerstein, Cleathero, Mandegar, & Otto, 2011; 

Marad et al., 2018), we find that WGD in haploids provides an immediate fitness gain at 

the expense of slowing subsequent adaptation. To examine how the shift to diploidy 

impacted the dynamics of adaptive evolution, we measured population fitness for all 

populations at ~300-generation intervals. Mean time-course fitness estimates show a 

change in slope following 1,000 generations. This corresponds roughly to the time that 

autodiploids have fixed in most focal populations and are high frequency in the 

remaining populations (Fig. 2-2B). We compared the rate of adaptation before and after 

the fixation of diploids in 13 focal populations for which quality fitness data was 

available. Because many factors, including epistasis, could explain a change in adaptation 

rate over time, we used a repeated measures ANOVA to compare the effect of ploidy on 

adaptation rate using time-course fitness data from diploid-founded populations that were 
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Figure 2-5. A) The simulation derived probability of autodiploid fixation at starting 
frequencies ranging from 0.0001 to 0.01. Each data point represents the proportion of 
populations that fix autodiploids in 10,000 simulations. B) Heatmap showing the 
probability distributions of autodiploid fixation at a given starting frequency.  
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evolved in parallel (Marad et al., 2018) (Fig. 2-2C). The interaction of founding ploidy 

and generation has a significant effect (F(1, 49)=78.04, p<0.001, ηp
2 = 0.614). Post hoc 

comparisons using a Bonferroni correction indicate that rates of adaptation are 

significantly higher in haploid-founded populations than diploids (p<0.001), and that 

adaptation rate does not differ once autodiploids fix (p=0.38). Duplication itself is a 

significant component of incipient haploid adaptation, however, diploidy alone is unable 

to account for the range of population fitness values at the time point in which diploids 

fix, which ranges from 1.9% to 8.0%. Therefore, additional beneficial mutations are 

needed to explain high gains in fitness in some populations. 

Autodiploid genomes harbor autodiploid specific mutations 

Duplication of a haploid genome affects both cell physiology and the phenotypic 

consequences of new mutations. Therefore, the selective pressure on a gene may vary 

depending on ploidy state. To understand how genome evolution is driving adaptation in 

the autodiploid populations, we utilize a recurrence approach that accounts for both the 

number of mutations observed in a gene and the expectation that the observed number of 

mutations of a given gene occurred by chance alone controlling for gene length. The 

resulting probabilities were used to identify 20 common genic targets of selection (Fig. 2-

6A, Table 2-2). There is a median of four recurrent targets per clone with only one 

population containing no common target mutations. GO-component term analysis 

indicates common targets are enriched for genes whose protein products localize to the 

cell periphery (p = 0.001). Cell periphery targets include CCW12 and KRE6, which both 

appear to be under extremely strong selective pressure when using the probability metric 

as a proxy for strength of selection. Interestingly, a tRNA gene, tL(GAG)G, was also  
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Figure 2-6. A) The observed number of coding sequence mutations in each of the 5800 
genes in the S288c reference genome plotted against the probability that the observed 
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number of mutations in each gene occurred by chance. Common targets of selection 
(solid red circles) are genes with 5 or more coding sequence mutations and a 
corresponding probability of less than 0.1%. B) Shown are all 188 mutations across the 
20 common targets of selection. Mutations are colored by type: frameshift-purple, 
nonsense-blue, missense-red, synonymous-green, other-black. Both homozygous and 
heterozygous mutations are shown. C) Plotted is the probability that the observed number 
of CDS mutations in a gene occurred by chance in haploid populations (haploid data 
reported in (Lang et al., 2013) versus autodiploid populations. Haploid-enriched genes 
are indicated by solid green circles and autodiploid-enriched genes as solid blue circles.
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Table 2-2. Mutations occurring in common target genes.  

Gene  
Number of Mutations 

(Populations) Evolved Alleles  GO Biological Process Term3  
Hom Het Mixed2 

KRE6 1 19 1 

T311R, A351T, D361H, T376N, R380G, 
S393L, W447L, W447L, C454F, S464Y, 
P487S, G492D, E497D, D499A, S517F, 
N545K, Y579*, G590D, W642C, D654G, 
Q681* 

Fungal-type cell wall organization  

CCW12 1 14 0 
M1Startloss, S39del, C40F, E41*, S50C, 
D62Y, Q67*, Q67*, Y68fs, T70N, E77*, 
E93*, Y110*, L125S, G127S 

Fungal-type cell wall organization  

PTR2 2 12  0 
A43A, G110fs, G128R, M203T, V243F, 
C279F, W313S, P359R, A391P, Y452fs, 
S484Y, A491G, K500E, Y555* 

Peptide transport 

IRA1 21 11 0 
L37F T39fs N137K, Q550*, S622*, T820M, 
L974*, I1437I, F1489F, S1603G, S1753I, 
C1754fs, C2067* 

Negative regulation of Ras protein 
signal  
transduction 

PSE1 0 12 0 
L107*, W137S, Q308fs, W331*, L372V, 
I517L W606*, V697fs , Q739*, E765Q, 
L869*, S1006* 

Protein import into nucleus  

WHI2 61 3 21 Q29*, S72*, L76fs, L76fs, Q81*, E168G, 
Q181*, N275fs, T283fs, A310P, A338* Regulation of growth 

LTE1 0 11 0 
S185*, W380*, E653*, A748S, A748V, 
E865*, Q916K, M1062I, K1138*, A1368fs, 
W1403* 

Regulation of exit from mitosis  

YTA7 0 9 1 S319S, E475*, P564H , P675Q, L803F, 
L965F, I1032S, P1061R, R1120fs, A1203P Negative regulation of transcription  

PHO81 41 6 0 R93*, F96L, N244N, N329fs, A582fs, E621*, 
P699Q, L748fs, PR753*, V1079fs 

Phosphate-containing compound 
metabolic  
process  

ACE2 2 7 1 E213*, R227H, E235*, P288Q, S299*, 
P314fs, N324fs, S473*, S694*, L770fs  

Positive regulation of cell separation 
after  
cytokinesis 

PDR5 2 7 0 T39I, Q56L, S197F, A262S, D1035D, 
N1120K, F1224Y, V1290V, S1331Y Drug transport 

SFL1 31 5 0 E4E, G88R S114R, S213*, S283fs, P432H, 
DY544*, Y545* Negative regulation of invasive growth 

SIM1 0 8 0 A119fs, L132L, G222G, G234C, V235G, 
P344L, L418W, A427T Fungal-type cell wall organization  

IRC8 21 5 0 L262*, Q274*, L310L, N316fs, D474fs, 
Q629E, L649* Mitotic recombination  

LCB2 0 7 0 H44H, F148fs, T149I, G373C S414N, R494T, 
S526* Sphingolipid biosynthetic process  

ANP1 0 7 0 K2*, R82fs, S120C, P195Q, V230L, IQ241*, 
G303W Protein N-linked glycosylation  

CTS1 51 0 0 L69*, L83fs, C96Y, Q234*, E298* Cell separation after cytokinesis 

PSA1 0 5 0 R15K, P24A, G284S, L293S, D330T  Cell wall mannoprotein biosynthetic 
process  

PHO4 0 5 0 F171F, D175fs, L270V, V286M, A298fs Positive regulation of phosphate 
metabolic process 

STE4 0 5 0 G250G, S261fs, A287S, R312Q, E315*, 
Q337* 

Pheromone-dependent signal 
transduction  

 
1Includes mutations putatively homozygous with inconclusive coverage. 2Mixed 
mutations are present as both homozygotes and heterozygotes in the population. 3GO 
terms were manually curated using the Yeast Genome Database (yeastgenome.org).  
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identified as a common target of selection. This is the first evidence of adaptive tRNA 

mutations in laboratory yeast evolution. To better understand the molecular basis of 

adaptation, we examined the distribution of mutations within each gene (Fig. 2-6B). 

Three broad patterns emerge. First, we observe selection for loss-of-function alleles, e.g. 

9 of 11 mutations in WHI2 are high impact (frameshift or nonsense). Adaptive loss-of-

function alleles are common in experimental microbial evolution (Cooper  et al., 2001; 

Kvitek & Sherlock, 2013; Venkataram et al., 2016). We also observe selection for 

change-of-function alleles. For example, only missense and synonymous mutations are 

seen in PDR5. Finally, we observe mutations in common targets that cluster within 

specific domains. This is illustrated by the clustering of mutations in the C-terminus of 

both KRE6 (n=21) and STE4 (n=6).  

We compared the common targets of selection identified in autodiploid clones to 

those identified with the same approach in a comparable haploid dataset (Lang et al., 

2013). We identify several haploid- and autodiploid-enriched targets (Fig. 2-6C). Ploidy-

enriched targets include genes mutated more often in one ploidy (e.g. CCW12 and KRE6 

in autodiploids; YUR1 and ROT2 in haploids) or exclusively in one ploidy (e.g. PHO81, 

YTA7, IRC8 in autodiploids; STE12 in haploids).  

Loss of heterozygosity hotspots occur on Chromosomes XII and XV  

Though most mutations are heterozygous, clones contain up to 17 homozygous 

mutations, with an average of 5.4. Homozygous mutations could either represent 

mutations that arose before duplication events or loss of heterozygosity (LOH) of 

heterozygous mutations. We find that the homozygous mutations are not distributed 

randomly throughout the genome; instead, they tend to cluster in particular regions of the 
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genome (Fig. 2-7). These clusters, located on the right arms of Chr. XII and Chr. XV, 

account for 55% of all homozygous mutations. This clustering implies that most  

homozygous variants result from recombination events. By removing homozygous 

mutations occurring in these regions from analysis, the average number of homozygous 

mutations per clone drops to 2.4. This confirms that only a few mutations arose in a 

haploid background and that most genome evolution occurred post genome duplication.  

Mutations in the common targets of selection are observed as both homozygous 

and heterozygous. Most genes (12/20) are found mutated in both heterozygous and 

homozygous states across clones, indicating partial or full dominance of fitness effects. 

Seven genes only ever contain heterozygous mutations (ANP1, LCB2, LTE1, PHO4, 

SIM1, STE4, PSE1). These mutations are candidates for overdominant effects (Sellis, 

Callahan, Petrov, & Messer, 2011). Finally, only one gene, CTS1, is never found mutated 

in a heterozygous state. A reasonable hypothesis would be that the cts1 mutations are 

recessive; however, we have previously identified cts1 mutations in evolved diploid 

populations and found it to be close to fully dominant (Marad et al., 2018). Instead, the 

position of CTS1 on the right arm of Chr. XII, a LOH hotspot, could explain why it is 

only observed in a homozygous state (Fig. 2-7). 

Structural variants are common to autodiploids  

 In addition to changing the genetic targets of selection, genome duplication 

permits access to structural variants not accessible to haploid genomes. We analyzed 

aneuploidies and copy number variants (CNVs) in autodiploid genomes as well as 

previously sequenced haploid populations (Lang et al., 2013) (Figs. 2-8; Datasets 2 & 

3). Two types of aneuploidies are observed in autodiploids: trisomy III (which fixes in  
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Figure 2-7. The loci of all homozygous evolved mutations across the 16 yeast nuclear 
chromosomes are indicated with solid lines. Mutations in common targets of selection are 
labeled with gene names. Red squares indicate centromere location. Homozygous 
mutations are not distributed evenly across the genome and cluster on the right arms of 
chromosomes XII and XV.   
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Figure 2-8. Coverage across each chromosome was compared to genome-wide coverage 
for each sequenced clone. Euploidy is indicated by empty circles: haploid—green, 
autodiploids—blue. Aneuploidies are shown as filled circles and labeled by clone.  
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five populations) and trisomy VIII (which fixes in one) (Table 2-3). CNVs are common 

in autodiploid genomes. Of the 46 autodiploid populations, CNVs appear in 19 and fix in 

14. The 19 independently occurring autodiploid CNVs fall into 10 groups based on  

genomic position. Autodiploid CNVs consist of both amplifications (n=4) and deletions 

(n=6). In contrast, no aneuploidies and only two amplifications are detected amongst the 

40 haploid populations. These two amplifications are also observed in autodiploids. 

Autodiploids are buffered from deleterious mutations  

 To determine the extent to which an increase in ploidy buffers diploid lineages 

against the effects of deleterious mutations, we compared the frequency of mutations in 

essential genes in autodiploids with those of MATa haploids described previously (Lang 

et al., 2013). We specifically analyzed frameshift and nonsense mutations that would 

likely phenocopy the null mutants used to characterize genes as essential. Sixty-three of 

66 high impact mutations in essential genes are heterozygous. For the remaining three 

mutations, zygosity is inconclusive due to low coverage. We find high impact mutations 

in essential genes to be exceptionally rare in haploids, with only a single case observed 

(Fig. 2-9A). In contrast, autodiploids contain a significantly higher proportion of high 

impact mutations in essential genes (x2 (1) = 20.32, p <0.0001). As expected, the 

proportion of low impact mutations within essential genes is consistent across ploidies (x2 

(1) = 0.909 , p = 0.339). Essential genes are also present within two of the large deletions 

observed in autodiploids (Table 2-3).  

To experimentally validate that recessive lethal mutations accumulate in 

autodiploids, we sporulated three MATa/a from three different populations and performed 

tetrad dissections. Clones A02a, B01a, and C03b were selected because they contain no  
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Table 2-3. Copy number polymorphisms in evolved clones.  

Chr Start 
(kb) 

End 
(kb) 

Length 
(kb) 

Copy 
Number Class Type Clones* 

I 210 225 15 1N CNV loss B01a, B01b, E11a, 
E11b 

III 85 85 <10  0N CNV loss G01a, G01b, G01c 

III 150 170 20 1N CNV loss 
A02a, A02b, B10a, 
B10b, C11a, C11b, 

C11c, F10a 

IV2 900 1000 100 3N CNV gain B12a, B12b, C03a, 
E12a, E12b 

V3 450 500 50 1N CNV loss B11a, B11b, F10a, 
F10b 

VIII 525 545 20 1N CNV loss E11a, E11b 

XIII3 190 200 10 1N CNV loss C10a, D10a, E10c, 
H12a 

XIII2 190 200 10 3N CNV gain F02a, F02b  

XIV 545 560 15 3N CNV gain A12a, A12b 

XV 900 1100 200 3N CNV gain G02b 

III 0 317 317 3N1 aneuploidy gain 

C01a, C01b, D01a, 
D01b, D03a, D03b, 
E12a, E12b1, H02a, 

H02b, 

VIII 0 924 924 3N aneuploidy gain A11a, A11b 

*Bolded clones indicate the CNV was found in all clones of the population.  1Observed at 
4N in one clone. 2 Also observed in one haploid. 3 Contains essential genes. 
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Figure 2-9. A) Proportions of high impact mutations (frameshift, nonsense) and low 
impact mutations (synonymous, intronic) in essential genes in haploids (green) and 
autodiploids (blue). Above each bar is the ratio of mutations in essential genes to 
mutations in all genes. B) Clones from three evolved diploid populations were sporulated 
and dissected. Spore viability and small colony size reflect recessive lethal and recessive 
deleterious mutations, respectively.  
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identifiable aneuploidies that would complicate measures of spore viability. Out of 20 

total dissected tetrads (80 total spores) per clone, spore viability ranged from 4% to 66% 

in evolved autodiploid clones (Fig. 2-9B). Further, a substantial fraction of germinated 

spores developed morphologically small colony sizes relative to controls. We compared 

observed spore viability to expected viability based on the number of high impact 

mutations in genes annotated as essential. The only clone for which we observed four-

spore viable tetrads, B01a, is also the only clone with no predicted recessive lethal 

mutations. Nonetheless, both A03a and B01a have significantly lower spore viability than 

expected. This in part may be due a genetic load imposed by segregating deleterious 

alleles. Consistent with our sequencing data, these data indicate that diploidy permits the 

accumulation of recessive lethal and deleterious mutations on a relatively short time 

scale.  

Discussion  

Whole genome duplications (WGDs) are significant evolutionary events that have 

profound impacts on genome evolution. Evidence of ancient whole-genome duplication 

events is found within lineages ancestral to most extant eukaryotic taxa (Jaillon et al., 

2004; Meyer & Van de Peer, 2005; Tang et al., 2008), including at least two WGDs in 

the vertebrate lineage (Dehal & Boore, 2005), and a WGD approximately 100 mya in the 

Saccharomyces lineage (Kellis, Birren, & Lander, 2004; Wolfe & Shields, 1997). In 

addition, the existence of numerous contemporary polyploid taxa suggests that genome 

duplication plays a role in short-term adaptive evolution (Van de Peer, Maere, & Meyer, 

2009). Genome duplication and polyploidy are also known to increase virulence and aid 

in stress adaptation in pathogenic fungi (Gerstein et al., 2015). Here, we show that 
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experimental evolution of haploid Saccharomyces cerevisiae results in rapid and 

recurrent WGD. Clones with duplicated genomes arise early in all 46 populations and fix 

rapidly. We show that concurrent fixation of autodiploids can be attributed to a large 

fitness effect. Furthermore, the concurrent population dynamics reported here are 

evidence of a high rate of genome doubling in haploid yeast. 

The invasion and subsequent fixation of autodiploids in haploid-founded lineages 

has been reported before in yeast (see Table 2-1). Some studies report a fitness advantage 

of WGD in haploid yeast (Venkataram et al., 2016), though this is not consistent across 

studies (Gerstein & Otto, 2011). Such inconsistency is possibly because the benefit of 

diploidy is condition-dependent (Zörgö et al., 2013). By employing a competitive growth 

assay, we demonstrate a relatively large fitness effect of a duplicated genome in our 

selective environment. A 3.6% fitness effect is substantial: in a recent study we 

quantified fitness effects of over 116 mutations from 11 evolved lineages in the same 

conditions, and only 9 conferred a fitness benefit greater than 3.6% (Buskirk, Peace, & 

Lang, 2017). The biological basis of this fitness advantage is unclear. However, there are 

several strong possibilities. Increased cell size, differential gene regulation, and a diploid-

specific proteome (De Godoy et al., 2008; Galitski et al., 1999) may all contribute to the 

adaptive advantage of diploidy. More generally, environmental robustness is often 

associated with increases in ploidy (Van de Peer et al., 2009) 

The recurrent and remarkably parallel manner in which autodiploids arise and fix 

points to not only a large fitness effect, but a high rate of occurrence. Our previous work 

has shown that parallel evolution is evident at the level of genetic pathway and even gene 

(Buskirk et al., 2017; Marad et al., 2018). However, the extent of the convergence 
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observed here – where all 46 populations evolve to be autodiploids – is unprecedented in 

our experimental system. While it cannot be dismissed that some autodiploids were 

present in the founding inoculum, they are below our 1% detection limit.  Autodiploids at 

this low of a frequency in the inoculum is not sufficient to explain the extent of fixation 

observed. Simulations indicate the probability of an autodiploid lineage at 1% fixing in 

46 out of 46 replicate populations is 2.5 x 10-3.  Furthermore, given the common 

dynamics observed in populations of both mating types, autodiploids would have to had 

arisen in “jackpot” fashion and reach a similar frequency in the inocula of both mating-

types. These data strongly support independent WGD events in replicate populations, 

suggesting a high background rate of duplication.  This is consistent with the observation 

of frequent WGD in mutation accumulation lines (Lynch et al., 2008) but see conflicting 

findings using a different strain in (Sharp et al., 2018). Using a barcode-enrichment 

assay, Venkataram et al. (2016) found that roughly half of all evolved clones with 

increased fitness that arose in a short-term enrichment experiment possessed no mutation 

apart from a WGD. A recent study found autodiploids to occur in haploid cultures at a 

rate on the order of 10-5 per cell division (Harari, Ram, Rappoport, Hadany, & Kupiec, 

2018), a rate several orders of magnitude higher than the per base pair mutation rate and 

sufficiently high to explain repeated autodiploid appearance in this and other haploid-

founded evolution experiments.  

Given the prevalence of autodiploids in the present evolution experiment, it is 

worth asking why autodiploids were not reported in a previous haploid evolution 

experiment in which ostensibly the identical strain and conditions were used (Lang et al., 

2013). It is possible that in the prior experiment autodiploids did not fix or they could 
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have fixed but were not detected. Despite conscious efforts to maintain identical selective 

environments, subtle differences in the conditions may exist given that evolution 

experiments were conducted years apart in different facilities. Indeed, inconsistency in 

the appearance of WGD across experiments and conditions is common in the field 

(Gorter et al., 2017; Voordeckers et al., 2015). Even subtle differences in the evolution 

conditions could shift the selective benefit of autodiploidy and yield population dynamics 

different from those seen here.  Alternatively, it is possible that autodiploids did fix in the 

previous haploid evolution experiment but went undetected. The populations analyzed in 

the haploid study were part of a larger ~600 population experiment, and the 40 focal 

populations were selected based on the presence of a sterile phenotype.  Mutations 

producing sterile phenotypes are predominantly adaptive and recessive loss-of-function 

(Lang, Murray, & Botstein, 2009). The presence of such beneficial mutations would have 

biased the selection of populations towards those retaining haploidy. We analyzed a 

subset of the remaining ~560 populations by DNA content staining and find that ~30% (3 

of 10) of them appear autodiploid at generation 1,000, though this is still less frequent 

than we report here. Further at least one of the forty sequenced populations (RMS1-E09, 

(Lang et al., 2013) which appeared to be an autodiploid based on the presence of a large 

number of mutations present at a frequency of 0.5, was confirmed as 2N through ploidy-

staining.  

The consequences of WGD are apparent on both the phenotypic and genotypic 

level. One such consequence is the susceptibility of autodiploids to Haldane’s sieve, 

resulting in a “depleted” spectrum of beneficial mutations. We find a decline in 

adaptation rate following WGD, which mirrors findings from studies that directly 
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compare the rates of haploid population adaptation with that of diploids (Gerstein et al., 

2011; Marad et al., 2018). This implies a fitness tradeoff in the shift from 1N to 2N, 

wherein the fixation of a large-effect beneficial genotype comes at the cost of eliminating 

access to future recessive beneficial mutations. This tradeoff associated with genome 

duplication is predicted when population size is large and most beneficial mutations are 

partially or fully recessive (Otto, 2007), conditions that are met in our populations (Lang 

et al., 2013).  

Autodiploids share physiological traits with both haploid and diploid cell types. 

Like their haploid founders, autodiploids possess only a single mating-type allele and will 

readily mate with cells of the opposite mating-type, indicating haploid-specific regulation 

of mating-pathway genes. As with diploids, autodiploids possess a 2N genome and 

exhibit larger cell size (Galitski et al., 1999). Consequently, we observe some overlap in 

the spectrum of beneficial mutations. We have identified targets of selection shared 

between haploids and autodiploids along with targets specific to autodiploids. While 

several targets were mutual to haploids and autodiploids, the extent of recurrence varied 

by gene. For example, IRA1 mutations were common to both ploidies but enriched in 

haploids. In contrast, there were five ploidy-specific genes that were targets in 

autodiploids but never mutated in haploids. These genes (PHO81, YTA7, PHO4, IRC8, 

and PSA1) represent targets of selection that are specifically enriched in autodiploids, 

suggesting that WGD may expose adaptive pathways that are not easily accessible to 

either haploids or diploids. The functional basis of selection on a few common genic 

targets reported here has been investigated (Li et al., 2018; Sezmis, Malerba, Marshall, & 

McDonald, 2018), and many targets have been observed in evolution experiments before. 
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However, little is known about the functional consequences of most mutations identified 

here.   

Genome duplication also has consequences on genome stability and the evolution 

of structural variation. Across our 46 populations we identify 6 independently evolved 

aneuploidies and 20 independently evolved structural variants. Structural variants are 

more frequent in autodiploid genomes than in evolved haploid genomes of the same 

background, even after accounting for length of evolution. Haploids are constrained: 

whereas the structural variants observed in haploids always result in a net gain of genetic 

material, autodiploid structural variants include both amplifications and deletions. The 

ability to generate a greater degree of structural variation could provide a secondary 

advantage to WGD. Aneuploidies, large rearrangements, and CNVs have been shown to 

arise and confer an advantage in experimentally evolving yeast populations (Chang, Lai, 

Tung, & Leu, 2013; Selmecki et al., 2015). Of note, several of the recurrent structural 

arrangements described in the present study, including trisomy III and a 317 kb deletion 

on Chr. III, have previously been described as beneficial (Sunshine et al., 2015). The 

observation of both gain and loss of genetic material from Chr. III may indicate complex 

selection on phenotypes unachievable through point mutations. 

Loss of heterozygosity (LOH) provides a means of overcoming the masking 

effect of ploidy in autodiploids allowing recessive beneficial mutations to become 

homozygous. Analysis of the distribution of homozygous mutations across evolved 

autodiploid genomes reveals LOH frequently occurs in two locations: on the right arm of 

Chr. XII and the right arm of Chr. XV. The right arm of Chr. XII has been characterized 

as a hotspot for LOH in experimental and natural populations (Marad et al., 2018;  
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(Magwene et al., 2011) mediated by a high rate of recombination at the rDNA repeats 

(Keil & Roeder, 1984). To our knowledge, a mitotic recombination hotspot on Chr. XV 

has not been described. Recurrent LOH may have substantial evolutionary implications 

as the affected regions may experience different rates of genome evolution and 

divergence than the rest of the genome.  On the one hand, fitness may decline 

dramatically due to the exposure of deleterious mutations to selection. On the other hand, 

the rate of adaptation may be increased by providing access to recessive beneficial 

mutations that would otherwise be masked by Haldane’s sieve. Theory predicts that 

sufficient mitotic recombination may allow asexual populations to circumvent Haldane’s 

sieve (Mandegar & Otto, 2007). While we only show prevalence of LOH and not 

functional evidence of adaptive LOH, such events have been repeatedly observed in 

adapting yeast populations (Gerstein et al., 2014; Smukowski Heil et al., 2017). Further, 

the LOH on Chr. XV was not detected previously in diploids (Marad., 2018), an 

observation that is more easily explained by selection than a change in the rate of 

occurrence. 

The same masking effect that stifles recessive beneficial mutations is also 

predicted to permit the accumulation of deleterious mutations in diploids (Mable & Otto, 

2001). In evolved haploid populations few if any deleterious mutations fix: previously 

only 1 of 116 evolved mutations was characterized as putatively deleterious (Buskirk et 

al., 2017). We show that, in contrast to haploid genomes, evolved autodiploid genomes 

harbor an abundance of putative recessive lethal mutations. We sporulated autodiploids 

with normal 2N karyotypes by complementing the MATα information on a plasmid. We 

find evidence of the accumulation of both lethal and deleterious mutations as indicated by 
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a large number of inviable and slow-growing haploid spores. Autodiploids are initially 

buffered from the effects of de novo recessive deleterious alleles due to the presence of a 

second, functional allele. With each successive heterozygous recessive deleterious 

mutation that fixes, the reduction of functional ohnologs to one eliminates genetic 

redundancy. Loss of redundancy shifts the distribution of fitness effects (DFE) and an 

increase in the target size for lethal or deleterious mutations. Over evolutionary time the 

collective shift in the DFE would impact rate of adaptation. 

  Interestingly, loss of redundancy occurred rapidly following the historical yeast 

WGD (Scannell, Byrne, Gordon, Wong, & Wolfe, 2006). Here we show that recessive 

deleterious and lethal mutations can accumulate shortly after WGD. On a population 

level, the increased target size for mutations as well as the masking of deleterious 

mutations may increase standing variation between selective sweeps and may explain 

populations with deeply diverging clones. 

Whole genome duplications occur via autoduplication, wherein the two genomes 

arise from the same species, or alloduplication, wherein two divergent genomes are 

brought together through a hybridization event (Madlung, 2013). The WGD events 

observed here are autoduplications analogous to the origin of autopolyploid taxa (Parisod, 

Holderegger, & Brochmann, 2010) and to endoreplication events in somatic eukaryotic 

cells (Fox & Duronio, 2013). The patterns reported here nonetheless inform our 

understanding of post WGD adaptation. The ancient WGD in the Saccharomyces lineage 

is thought to have occurred by alloduplication followed by LOH at the mating-type locus 

to restore fertility (Marcet-Houben & Gabaldón, 2015; Wolfe, 2015), and therefore would 

have gone through an intermediate asexual ‘duplicated’ diploid state, similar to the 
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MATa/a and MATα/α populations investigated here. We demonstrate that this cell type 

has a direct fitness advantage over an isogenic haploid cell type. The immediate fitness 

gain of WGD is accompanied by several evolutionary tradeoffs that impact future 

adaptability including a reduced rate of adaptation, shifted distribution of beneficial 

mutations, karyotype changes, and the accumulation of recessive deleterious and lethal 

mutations that reduce redundancy in the duplicated genome. 

Methods  

Strain construction  

 MATa/a strains were constructed for fitness assays by converting yGIL701, a 

fluorescently labeled MATa/α diploid isogenic to our ancestral haploid background, to 

MATa/a. yGIL701 was struck out and 10 separate clones were selected. Clones were 

transformed with pGIL088, which encodes a gal-inducible HO and a MATa specific HIS3 

marker. 5 ml cultures of YPD were inoculated with a single transformant for each starting 

clone. Cultures were grown for 48 hours, allowing for glucose to be depleted and 

catabolite repression of GAL genes to be lifted. After 48 hours 100 µl of each culture was 

plated to SD –his. Histidine prototrophs were screened in α-Factor (Sigma) for shmoos. 

Confirmed strains were used in competition assays.  

Evolution experiment  

Experimental populations were founded with 130 µl of isogenic W303 ancestral 

culture; 22 with yGIL432 (MATa, ade2-1, CAN1, his3-11, leu2-3,112, trp1-1, URA3, 

bar1Δ::ADE2, hmlαΔ::LEU2, GPA1::NatMX, ura3Δ::PFUS1-yEVenus), and 24 with 

yGIL646, a MATα strain otherwise isogenic to yGIL432. Populations analyzed here were 

evolved in separate wells of a 96-well plate. Ancestral strains were grown as 5 ml 
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overnight cultures from single colonies prior to 96 well plate inoculation. This founding 

plate was propagated forward and then immediately frozen down.  

 All populations analyzed here were evolved in rich glucose (YPD) medium. 

Cultures were grown in unshaken 96-well plates at 30°C and were propagated every 24 

hours via serial dilutions of 1:1024. Approximately every 60 generations, populations 

were cryogenically archived in 15% glycerol.  

Fitness assays 

 Fitness assays were performed as described previously (Buskirk et al. 2017). 

Evolved autodiploid populations were mixed 1:1 with a version of the ancestral strain 

(yGIL432 or yGIL646, genotypes listed above) labeled with ymCitrine at URA3. Cultures 

were propagated in a 96-well plate in an identical fashion to the evolution experiment for 

40 generations. Every 10 generations, saturated cultures were sampled for flow 

cytometry. Analysis of flow cytometry data was done using FlowJo 10.3. Selective 

coefficient was calculated as the slope of the change in the natural log ratio between 

query and reference strains. Assays were performed for all 46 evolved populations at 16 

time points between generations 0 and 4,000.  

 To measure the fitness effect of autodiploidy, fitness assays were performed as 

described above, using instead a non-labeled version of yGIL432 as a reference. This 

strain was mixed 1:1 with either a fluorescently-labeled version of the same strain or one 

of ten biological replicate fluorescently labeled diploid strains. The fitness of each 

autodiploid reconstruction was calculated as the mean fitness across 12 replicate 

competitions.  
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 Adaptation rates for each autodiploidized lineage were calculated as the rate of 

change in relative fitness between generation 0 and the time point at which diploids were 

present at over 98%. For comparison, rate of adaptation was also calculated for diploid-

founded populations evolved in parallel (Marad et al., 2018). The median time point of 

autodiploid fixation was generation 600 for the haploid-founded dataset. To generate a 

comparable dataset, rates of adaptation for diploids were calculated from generations 0-

600 and 600-4000. Rates were compared in SPSS using a repeated measures ANOVA 

with two within subject factors (time) and two between subject factors (haploid-founded 

and diploid-founded). Because some groups violated homogeneity assumptions, post-hoc 

analysis was done using a Bonferroni correction. 

DNA content analysis  

 Focal populations for DNA content analysis were objectively chosen by randomly 

selecting one 8-well column per mating-type from the 96-well plate. Time-course ploidy 

states of 16 focal evolved populations were assayed through flow cytometry analysis of 

DNA content as described in Gerstein & Otto (2011). Briefly, 10 µl of each sample were 

inoculated in 3 ml YPD and grown overnight. 100 µl of saturated cultures were then 

diluted 1:50 into YPD and grown to mid-log. To arrest in G1, 1 ml mid-log culture was 

transferred into 200 µl 1M hydroxyurea and incubated on a 30°C roller drum for 3 hours. 

Cultures were then fixed with 70% ethanol, treated with RNAse and proteinase K, stained 

with Cytox green (Molecular Probes), and analyzed on a BD FACSCanto. Haploid and 

diploid frequencies were estimated using FlowJo v10.3 by fitting data to Watson-

Pragmatic cell cycle models. This method of estimation was validated with a series of 

known ploidy mixtures (Fig. 2-10).  
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Figure 2-10. The hydroxyurea (HU) arrest assay and data analysis approach was 
validated by preforming FACS analysis on prefixed control cultures. Measures for ploidy 
frequency using the assay and analysis were largely accurate when compared to actual 
measured frequencies.spectrum available to autodiploids.  
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Simulations 

 Simulations of lineage trajectories were performed using a forward-time 

algorithm designed to imitate the conditions in the evolution experiment reported here. 

Simulation code, which is described in (Frenkel, Good, & Desai, 2014), was provided by 

E. M. Frenkel and can be accessed at https://github.com/genya/asexual-lineage-

adaptation. Estimates for the distribution of fitness effects (an exponential distribution 

with mean s =0.85%) and beneficial mutation rate (µb=1.0 x 10-4) were kept as described 

previously (Frenkel et al. 2014). This model assumes the spectrum of mutations available 

to haploids is the same as the spectrum available to autodiploids. Simulations were 

performed with constant inputs for DFE parameters, beneficial mutation rate, inoculation 

time of the focal lineage (generation t =0), and fitness advantage of the focal lineage (s0 

=3.6%). The initial frequency of the focal lineage was varied (f0 = 0.01%-1.0%) for each 

set of simulations, and a total of ten thousand simulations were performed for each f0. 

Sequencing  

 Evolved clones were obtained by streaking evolved populations to singles on 

YPD and selecting two clones per population. These clones were grown to saturation in 5 

ml YPD and then spun down to cell pellets and frozen at -20°C. Genomic DNA was 

harvested from frozen pellets via phenol-chloroform extraction and precipitated in 

ethanol. Total genomic DNA was used in a Nextera library preparation. The Nextera 

protocol was followed as described previously (Buskirk et al., 2017). All individually 

barcoded clones were pooled and sequenced on 2 lanes of an Illumina HiSeq 2500 

sequencer by the Sequencing Core Facility at the Lewis-Sigler Institute for Integrative 

Genomics at Princeton.  
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Sequencing analysis  

 Two lanes of raw sequence data were concatenated and then demultiplexed using 

a custom python script (barcodesplitter.py) from L. Parsons (Princeton University). 

Adapter sequences were trimmed using the fastx_clipper from the FASTX Toolkit. 

Trimmed reads were aligned to an S288c reference genome version R64-2-1 using BWA 

v0.7.12 and variants were called using FreeBayes v0.9.21-24-381 g840b412 (Engel & 

Cherry, 2013; Garrison & Marth, 2012). Roughly 10,000 polymorphisms were detected 

between our ancestral W303 background and the S288c reference, and the corresponding 

genomic positions were removed from analysis. All remaining calls were confirmed 

manually by viewing BAM files in IGV (Thorvaldsdóttir, Robinson, & Mesirov, 2013). 

Zygosity was determined based on read depth and allele frequency (Fig. S2B). Mutations 

were classified as fixed if present in all clones from a population. Clones were genotyped 

for MAT alleles by identifying mating-type specific sequences within the demultiplexed 

FASTQ files. Ancestral polymorphisms were inferred using VCFTools (Danecek et al., 

2011) to identify homozygosities shared by all clones of the same mating-type. Six 

mating-type specific SNPs were removed from downstream analysis following 

verification of homozygosity. 

 Clone genomes were each independently queried for structural variants. 

Following BWA alignment, coverage at each position across the genome was calculated. 

Aneuploidies were detected by calculating median chromosome coverage and dividing 

this by median genome-wide coverage for each chromosome, producing an approximate 

chromosome copy number relative to the duplicated genome. CNVs were detected by 

visual inspection of chromosome coverage plots created in R.  
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Phylogenetic analysis  

 Variants identified by SNPeff were used to infer a phylogeny based on 7,932 sites 

containing 4,742 variable sites, either SNPs or small indels (Fig. S8). Evolved and 

ancestral sequences (n=93) were aligned with MUSCLE. A general time reversible 

substitution model with uniform rates (-lnL= 44803.45) was selected based on 

jModelTest. A maximum likelihood tree was then constructed and rooted by the ancestor 

in MEGA. Subclades were found to be due to incomplete linage sorting of mitochondrial 

polymorphisms. After phylogenetic analysis it was evident that four clones were 

originally attributed to incorrect populations. Tight clustering and short branch lengths 

suggests either very recent contamination or an issue during colony isolation (populations 

were struck out two to a plate on bisected YPD plates). In the text, these clones are 

identified by the suffix “c” and are attributed to the population to which they are most 

phylogenetically similar.  

Identification of common targets and ploidy-enriched targets 

A recurrence approach was utilized to identify common targets of selection (See 

Appendix B). A random distribution of the 3,431 coding sequence (CDS) mutations 

across all 5,800 genes predicts only two genes to be mutated more than five times by 

chance alone. We determined the probability that chance alone explains the observed 

number of mutations of each gene by assuming a random distribution of the 3,431 

mutations across the 8,527,393 bp genome-wide CDS. Common targets of selection were 

defined as genes with five or more CDS mutations and a corresponding probability of 

less than 0.1%. Notably, analysis using only nonsynonymous mutations identified largely 

the same set of common targets of selection as did analysis using all CDS mutations. To 
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determine which targets of selection are impacted by ploidy, our recurrence approach was 

used to analyze mutations in a previously published MATa haploid dataset (Lang et al. 

2013; Buskirk et al., 2017). We compared the probability of the observed number of CDS 

mutations in each gene between ploidies. A gene was considered ploidy-enriched if the 

ratio of probabilities was at least 105. 

Evolved clone sporulation and tetrad dissection  

 Three clones (A02a, B01a, C03b) for which genome sequence data revealed no 

aneuploidies were selected for sporulation. Evolved MATa/a clones were transformed 

with pGIL071 which encodes the α2 gene necessary for sporulation and a URA3 marker 

for selection. Transformants were sporulated in Spo++ -ura media. Following 72 hours, 

sporulation efficiency was calculated via hemocytometer, cultures were digested with 

zymolyase, and tetrads were dissected on YPD agar plates. Spores were incubated 48 

hours and then assayed for germination. Control strain yGIL1039, made by crossing 

yGIL432 to yGIL646 and converting the resulting diploid to MATa/a as described above, 

was transformed and dissected in parallel.  

Data Deposition 

The short-read sequencing data reported in this paper have been deposited in the NCBI 

BioProject database (accession no. PRJNA422100).   
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Chapter 3 

Constraints imposed by dominance underlie parallelism in 

experimental evolution.  

 

Note - This chapter has been written as a manuscript that we intend to submit within the 

year. 

 

Abstract 

 Factors that limit the traversable sequence space for evolving genes, such as 

substitution bias, epistasis, and pleiotropy, are broadly referred to as genetic constraints. 

In an evolving diploid genome the accessibility of beneficial genotypes is additionally 

constrained by the dominance of underlying mutations. We recently reported an evolution 

experiment using diploid yeast populations in which some genes under selection show 

evidence of genetic constraint. Here, we used gene deletions and evolved mutation 

construction to explore how dominance influences the mutations accumulated in one such 

gene, STE4. We find that complex patterns of dominance, including both 

underdominance and overdominance, constrain sequence evolution at STE4. 

Furthermore, we show that overdominance can in turn constrain adaptive loss-of-

heterozygosity at linked loci.  

Introduction 

Convergent molecular adaptation is emerging as a frequent pattern observed in 

comparative genomics (Foote et al., 2015; Hu et al., 2017; Yeaman et al., 2016). 
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Convergence (or parallelism – depending on the relatedness of the taxa being compared) 

can be produced by genetic constraints that influence the accessibility of mutational 

trajectories. Sources of constraint can include limited underlying loci where adaptive 

mutations can arise (Arendt & Reznick, 2008; Chevin, 2013), factors that mediate the 

fitness effects of new mutations, and limits to the accessibility of beneficial mutations 

(Connallon & Hall, 2018). 

Constraints operating on the sequence evolution of adapting genes are beginning 

to be well understood. Empirical work measuring the functionality of possible 

intermediates between ancestral and evolved protein-coding sequences has shown that, in 

most cases, only a subset of all possible mutational paths are accessible and the rest are 

deemed inaccessible because they require an intermediate that is deleterious or unstable 

(Bridgham, Ortlund, & Thornton, 2009; Gong, Suchard, & Bloom, 2013; Lunzer, 

Golding, & Dean, 2010; Shah, McCandlish, & Plotkin, 2015; Weinreich, Delaney, 

Depristo, & Hartl, 2006). These mutation order constraints are largely due to 

intramolecular epistatic interactions that modify the effects of new mutations (Starr & 

Thornton, 2016). Similarly, comparative genomic work has shown that pleiotropy may 

constrain protein sequence evolution, shunting adaptive mutations repeatedly to cis-

regulatory elements (Wray, 2007).  

Dominance is a source of constraint on molecular evolution in diploid organisms 

that has received little experimental attention. The degree of dominance of de novo 

mutations has the potential to constrain mutational trajectories in a similar manner to 

epistasis by making some routes improbable or even selectively inaccessible. The 

probability of a given beneficial mutation fixing in a population is theoretically 
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determined as a product of its coefficient of selection and its dominance; therefore 

dominant beneficial alleles have a greater probability of fixation than recessive ones 

(Haldane, 1924). This constrains evolution by making recessive beneficial mutations less 

accessible, a phenomenon coined “Haldane’s sieve”. 

Attenuated access to beneficial mutations due to low degrees of dominance has an 

overt affect when comparing haploid and diploid asexual yeast adaptation in the 

laboratory. Haploid populations adapt more quickly than diploids (Fisher et al., 2018; 

Gerstein et al., 2011; Marad et al., 2018) and haploids and diploids differ in the identities 

of beneficial mutations (Fisher et al., 2018). The constraints of recessive or partially 

beneficial mutations can be overcome in asexual populations through loss-of-

heterozygosity (LOH) whereby a beneficial mutation becomes homozygous as a result of 

mitotic recombination (Gerstein et al., 2014; Smukowski Heil et al., 2017). However, the 

likelihood of overcoming Hadlane’s sieve is also constrained by rates of LOH, which 

vary markedly in frequency across the genome (Fisher et al., 2018). 

Certain types of dominance change the sign of a mutation’s fitness effect 

depending on its zygosity – namely underdominance and overdominance (when the 

heterozygote is the least or most fit genotype, respectively). In asexual populations 

underdominance should constrain locus-specific adaptation by impeding access to a 

potentially adaptive homozygous genotype. Inversely, overdominant mutations should be 

able to establish in populations and promote the maintenance of variation (Fisher, 1928). 

The frequency and significance of overdominant mutations, however, remains a matter of 

debate. While genome scans have turned up little evidence of overdominance (Goudie, 

Allsopp, & Oldroyd, 2014; Hedrick, 2012; Szulkin, Bierne, & David, 2010), recent 
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theory suggests overdominance may be a frequent, if transient, outcome of diploid 

evolution (Manna, Martin, & Lenormand, 2011; Sellis et al., 2011). Studies of laboratory-

evolved populations have found evidence of overdominant effects of both de novo 

mutations (Sellis, Kvitek, Dunn, Sherlock, & Petrov, 2016) and standing variation (Chelo 

& Teotónio, 2013) during short-term adaptation in diploid populations, however it 

remains unclear whether these are rare examples or represent a common mode of 

adaptation.  

Experimental evolution tests evolutionary hypotheses by determining the 

distribution of evolutionary outcomes across a large numbers of replicate populations. It 

is then possible to interrogate sources of constraint on sequence evolution by testing the 

fitness consequences of genetic routes not observed. In other words, we can examine why 

certain evolutionary paths were not realized. We recently reported 20 genes mutated with 

a significant degree of parallelism across 46 populations of 4,000-generation laboratory-

evolved autodiploid yeast (Fisher et al., 2018). Among the genes identified as parallel 

targets of selection is STE4, which encodes the highly conserved beta subunit of the 

heterotrimeric G protein complex along with STE18 and GPA1 (Whiteway et al., 1989). 

In yeast, binding of mating pheromone to the Ste2 (or Ste3) receptor releases Ste4/Ste18, 

which activate a MAP-kinase cascade ultimately eliciting a cell-cycle arrest and a 

transcriptional response. In the absence of pheromone binding, the mating pathway is on 

at a basal level. For asexually dividing cells, elimination of costly basal signaling through 

the mating pathway has been shown to have a fitness benefit (Lang et al., 2009), and 

correspondingly STE4 loss of function has previously been identified as adaptive in 

evolving haploid yeast populations (Lang et al., 2013). However, in autodiploids – 
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diploid yeast that are homozygous at the mating-type locus and thus mating-competent – 

evolved mutations in STE4 are heterozygous and they cluster in a small region of the 

coding sequence.  

We hypothesized that the discrepancy between patterns of sequence evolution in 

haploids and autodiploids is due to constraints imposed by dominance. Here, we use 

STE4 as a case study to explore how dominance constrains sequence evolution and 

produces patterns of parallelism in the locations of evolved mutations. We find complex 

dynamics of dominance governing STE4, with both underdominance and overdominance 

operating to constrain sequence evolution. We then investigate how constraints operating 

at a single locus can affect gross chromosomal sequence evolution. We find that 

overdominance at a single locus can restrict LOH of linked adaptive mutations. 

Methods  

Evolved alleles 

 Evolved STE4 mutations were identified in sequencing data reported in Fisher et 

al. (2018). The probability that all mutations occurred in the observed region was 

calculated using a one-sample proportions test.  

Construction of evolved mutation and STE4 deletion strains 

 We constructed strains in order to assay the effects of complete gene deletions 

and evolved STE4 mutations on fitness (Appendix B, table B-1). All strains were 

constructed in the same W303 ancestral background (yGIL121; MATa, URA3, ade2-1, 

his3-11,15, leu2-3,112, trp1-1, CAN1, bar1Δ::ADE2, hmlαΔ::LEU2). Briefly, deletion 

strains were generated by integrating the ste4Δ::KanMX locus from the deletion 

collection. Evolved mutants were generated via CRISPR/Cas9 allele swaps as described 
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in (Fisher, Kryazhimskiy & Lang et al., 2019). A synonymous mutation, Thr326Thr, was 

introduced along with each evolved mutation to ablate the gRNA recognition site, and 

mutants carrying this mutation in isolation were assayed alongside double mutants to 

verify neutrality. Because ste4 mutations arose in the context of autodiploid evolution, all 

diploid genotypes were converted to MATa/a by transforming MATa/α diploids with 

pGIL088, which contains a galactose-inducible HO homing endonuclease, as reported in 

(Fisher et al., 2018). For fitness assays and cytometry analysis, eight replicate MATa/a 

colonies were picked for each mating-type conversion.  Full details on strain construction 

are provided in Appendix B. 

Fitness assays  

 We measured the effects of complete gene deletions and evolved STE4 mutations 

on fitness using competitive fitness assays as previously reported (Buskirk et al., 2017). 

Briefly, query cultures were mixed 1:1 with a ploidy and MAT genotype-matched 

fluorescently labeled ancestral strain. Co-cultures in a 96-well plate were propagated for 

50 generations in a manner identical to the evolution experiment in the variants arose. 

Saturated cultures were sampled for flow-cytometry at 10-generation intervals. Flow 

cytometry data were analyzed with FlowJo 10.3. Selective coefficients were calculated as 

the slope of the best-fit line of the natural log of the ratio between query and reference 

strains against time using custom R scripts. 

 Two technical replicates of eight biological replicates were averaged for analysis 

of all MATa/a genotypes and all deletion mutants. Evolved mutations in a haploid 

background were estimated from four replicates of a single correct clone. Fitness data for 

haploid and diploid genotypes were analyzed independently using a one-way analysis of 
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variance (ANOVA). Post hoc comparisons using the Tukey test were carried out to 

identify genotypes with significantly different fitness than wild type controls.  

Short-term evolution experiment 

We investigated the effect of evolved ste4 alleles on likelihood of loss-of-

heterozygosity (LOH) at linked locus, WHI2. We first validated the fitness benefits of 

homozygotes and heterozygotes for an evolved whi2C85T (Q29*) allele via mutant 

reconstruction and fitness assays as described above. We then generated strains 

containing dominant drug cassettes tightly linked to the WHI2 locus to investigate the 

effect of STE4 linkage on loss of heterozygosity along the right arm of Chr. XV 

(Appendix B – supplementary methods). 

 Three strains (WHI2::HphMX-STE4/WHI2::KanMX-STE4, WHI2::Hph-

STE4/whi2Q29*::KanMX-STE4, and WHI2::Hph- STE4/whi2Q29*::KanMX-

ste4Glu315*) were grown in 10ml overnight cultures in YPD +2x G418 & 2x 

Hygromycin. Saturated cultures were diluted 1:1,000 to initiate 96 128 µl cultures across 

three 96-well plates. 96-well plates were incubated unshaken at 30°C and propagated 

daily in an identical fashion to the original evolution experiment in which the mutations 

arose (Fisher et al. 2018). After 500 generations of evolution heterozygosity was assayed 

by automated spotting of a 2µl volume containing ~5,000 cells per population to 2x 

double drug and 2x single drug YPD agar plates. Plates were inspected for speckled spots 

(indicating polymorphisms) and absence of growth (indicating sweeps of homozygous 

genotypes). We compared the number of populations with evidence of LOH 

polymorphism or sweeps between genotypes using a Fisher’s exact test with a Bonferroni 

correction for multiple comparisons.  
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Analyses  

 All statistical analyses reported were performed using tools in the R Stats package 

in R v. 3.4.0. Data plots were produced in R using the ggplot2 package (Wickham, 2016).  

Results 

A one-sample proportions test shows that mutations accumulated nonrandomly 

across the linear 1,276 bp sequence of the STE4 gene, (X2 (1, N=6) = 18.76, p<10-4). Six 

evolved mutations cluster in a 260 base pair window that encompasses only 20% of the 

coding sequence (figure 3-1a, table 3-1). Three mutations likely result in a truncation of 

the C-terminus. Two missense mutations were observed, Ala287Ser and Arg312Gln, 

along with one synonymous mutation.  

STE4 loss-of-function is underdominant 

 We first tested the extent to which complete loss of function of one or both copies 

of STE4 impacts fitness. We generated STE4 deletion (ste4Δ) strains as haploids, as 

heterozygous MATa/a diploids, and as homozygous MATa/a diploids. As reported 

previously we find that ste4Δ is beneficial in a haploid (figure 3-2). Similarly, 

homozygous deletion mutants are beneficial in MATa/a diploids. Surprisingly, however, 

heterozygous ste4 deletion mutants are substantially less fit than wild type (figure 3-1b). 

STE4 loss-of-function (LOF) alleles, therefore, are underdominant — less fit than either 

homozygous wild type or homozygous LOF. 

Evolved STE4 alleles are overdominant 

 We next examined the fitness effects of three evolved ste4 alleles: one frameshift, 

one nonsense, and one missense mutation (figure 3-1a, table 3-1). Alleles were assayed 

in haploids and in both homozygous and heterozygous state in MATa/a diploids. Because 
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there is an effect of ploidy on fitness (Fisher et al., 2018), haploid and diploid fitness data 

were analyzed separately. A one-way ANOVA confirmed a significant interaction of 

genotype and fitness amongst haploid genotypes (F(5, 26)=21.2, p< 10-3), and diploid 

genotypes (F(8, 47)=73.63, p < 10-3). Post-hoc comparisons were used to identify non-

neutral genotypes that differed significantly from wild type. Alleles containing only the 

synonymous Thr326Thr substitution, introduced as part of Cas9-mediated allele swaps 

(see methods), did not significantly differ from wild type in any context (figure 3-3). 

In a haploid background the evolved frameshift and nonsense alleles had a 

substantial fitness benefit (p<10-4 both genotypes) that surpassed the deletion (p=0.046, 

p=0.026, respectively) while the missense allele appears neutral (p=0.995) (figure 3-2, 

table 3-1). Because all evolved mutations are maintained as heterozygous in the 

evolution experiment in which they were identified, we predicted that the fitness effects 

of evolved alleles would exhibit some degree of dominance. Indeed, heterozygous 

evolved alleles showed positive dominance and conferred ~40-50% of the haploid fitness 

advantage (figure 1b, table 3-1). Again, the frameshift and nonsense mutations appear 

beneficial (p=0.02, p<10-4, respectively) while the missense appears neutral (p=0.49). 

Fitness advantages of homozygous Ser261fs and Glu315* mutants are significantly 

different than that of heterozygous mutants (p<10-3 for both comparisons). However, 

rather than showing an additive fitness effect, homozygous mutants of both mutations 

have a strong fitness defect of ~2.4%. Evolved ste4 alleles therefore are overdominant — 

most beneficial as a heterozygote.  
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Figure 3-1. a) The positions of 6 mutations that independently arose in STE4 in Fisher et 
al. (2018) positioned along the coding sequence. Bolded mutations were reconstructed for 
fitness assays. b) Heterozygous deletion (ste4Δ/WT) clones exhibited a decrease in 
relative fitness while homozygous deletions (ste4Δ/ste4Δ) have a large fitness benefit. c) 
The evolved frameshift and nonsense alleles have slight fitness benefits as heterozygotes 
and are strongly deleterious when homozygous. The evolved missense mutation appears 
neutral. Open points in b-c represent selection coefficients from eight technical replicates. 
Bold point is the mean ± standard error.  
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Table 3-1. Evolved STE4 mutations. 
Nuclear mutation Protein 

effect 
Fitness effect 

Haploid Heterozygous Homozygous 
G750C- heterozygous Gly250Gly NA NA NA 
*T781Δ- heterozygous Ser261fs +2.6% +0.92% -2.4% 

G859T- heterozygous Ala287Ser NA NA NA 
*G935A- heterozygous Arg312Gln -0.2% (neutral) +0.5%(neutral) +0.5%(neutral) 

*G943T- heterozygous Glu315* +2.7% +1.4% -2.3% 
C1009T- heterozygous Gln337* NA NA NA 

*Mutations that were reconstructed as part of this study. 
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Figure 3-2. Fitness effects of ste4Δ and evolved mutations in a haploid background. The 
data confirm a previously reported benefit of the knockout (Lang et al., 2009). Two of the 
three evolved mutations have a significant fitness benefit while one, the only non-
truncation allele, appears neutral. Open points represent selection coefficients from eight 
technical replicates for ste4Δ and four replicates of each evolved genotype. Bold point is 
the mean ± standard error.
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Figure 3-3. A synonymous Thr326Thr STE4 mutation was introduced along with each 
evolved mutation during Cas9-mediated allele swaps in order to ablate the PAM site of 
the gRNA target sequence. Single mutants for the synonymous mutation were isolated 
and assayed along with double mutants carrying evolved mutations. WT Synonymous 
mutant fitness did not differ from wild type in a haploid background (p=0.93), a 
heterozygous diploid background (p=0.24), or a homozygous diploid background 
(p=1.0). Open points represent selection coefficients from eight technical replicates for 
the mutation in a haploid background and four replicates of each diploid genotype. Bold 
point is the mean ± standard error.
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Overdominant STE4 alleles impede adaptive LOH of linked beneficial mutations 

 Overdominance of evolved mutations at the STE4 locus explains why these 

mutations are only ever observed in heterozygous state. This is initially unsurprising, as 

these mutations arose during the asexual propagation of autodiploids and most other 

mutations identified are heterozygous. There are, however, two large genomic regions 

prone to high rates of loss-of-heterozygosity (LOH) as indicated by the clustering of 

homozygous mutations (Fisher et al., 2018). The STE4 locus is contained within one of 

these regions on the right arm of Chr. XV. Three loci centromeric to STE4 (WHI2, SFL1, 

& PDR5) are identified as parallel targets of selection in the preceding evolution 

experiment and evolved alleles of all three genes are commonly observed as 

homozygous. 

 We considered whether the overdominance of evolved ste4 mutations could 

constrain adaptive LOH at linked loci. Where we can resolve the timing of events, we 

find that LOH events do not occur after a STE4 mutation arises on the right arm of Chr. 

XV (figure 3-4). We hypothesize that once they arise, overdominant STE4 alleles prevent 

adaptive LOH at a linked locus, WHI2. We chose an evolved nonsense WHI2 allele to 

reconstruct and confirmed that LOH of this mutation would be beneficial (figure 3-5b). 

We then conducted a 500-generation evolution experiment to determine whether a WHI2 

mutation is less likely to lose heterozygosity when linked to an evolved STE4 allele. 

Heterozygosity was tracked via dominant drug markers tightly linked to the WHI2 locus 

(figure 3-5a). After 500 generations we find a significantly higher rate of LOH in 

populations where the adaptive WHI2 allele is unlinked to an overdominant STE4 

mutation compared to populations carrying a distal STE4 mutation (17/96 to 4/96,  
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Figure 3-4. Multiple clones were sequenced for most populations reported in Fisher et al. 
(2018). We used these data to look for indirect evidence of STE4 mutations influencing 
rates of loss-of-heterozygosity along the right arm of Chr. XII.  In particular, populations 
polymorphic for evolved mutations were used to look for LOH events that occurred 
before the emergence of STE4 mutations, and populations in which evolved ste4 alleles 
are fixed were used to look for evidence of LOH events that occurred after STE4 
mutations. There was no evidence of LOH occurring after STE4 mutations (purple lines), 
while there was ample evidence of such events preceding STE4 mutations (blue lines). 
Driver loci (circles) are those genes identified as common targets of selection in the prior 
evolution experiment.  
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Figure 3-5. a) Dominant drug markers were tightly linked to the WHI2 locus to track 
heterozygosity of wild type and whi2Q29* alleles. b) Loss of whi2Q29* heterozygosity is 
adaptive. Open points represent selection coefficients from eight technical replicates. 
Bold point is the mean ± standard error. c) The number of populations that experienced 
LOH at WHI2 as measured by loss of double drug resistance, *p=0.013.
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p=0.013). Rates of heterozygosity loss in populations with linked WHI2 STE4 mutations 

are not different from populations initially wild-type at all loci (4/96 to 1/95, p=1) (figure 

3-5c).  

Discussion 

 This case study finds an unexpected level of mechanistic complexity underlying 

the constraints of dominance at a single experimentally evolved locus. We report here 

that the collective effects of underdominance and overdominance direct molecular 

parallelism at a single adapting locus and that these factors in turn constrain adaptation at 

linked loci. Constraints on sequence trajectories imposed by dominance within a single 

gene have not previously been explored in detail, so it is difficult to know whether a 

ruggedness produced by dominance is a common feature of the fitness landscape of 

evolving genes. Such ruggedness is, however, similar to studies showing that epistasis 

restricts accessible routes from ancestral to derived protein sequences (Ferretti, 

Weinreich, Tajima, & Achaz, 2018). 

 We show here that underdominance of loss-of-function mutations shunts adaptive 

mutations to a predictable region of STE4. Most theory addressing mutational dominance 

and constraint focuses on the consequences of recessivness, namely the constraints 

imposed by Haldane’s sieve (Charlesworth, 1998; Orr & Betancourt, 2001) and the load 

imposed by recessive deleterious mutations (Charlesworth & Charlesworth, 1999; 

Chasnov, 2000). Underdominance is most frequently invoked as a cause of reproductive 

isolation (Barton & De Cara, Maria Angeles Rodriguez, 2009), but our findings suggest 

an underappreciated role in evolutionary constraint. Underdominant variants are 

theorized to be able to fix only in extremely small or fragmented populations (Newberry, 
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McCandlish, & Plotkin, 2016) and thus would efficiently block access to fitness optima 

of homozygous genotypes. For example, modeling done by Stewart et al. (2013) 

suggested mutational inaccessibility due to underdominance might underlie why negative 

autoregulation is a common property of bacterial transcription factors but is rare in 

diploid organisms. How pervasively restrictive underdominance may be depends on the 

distribution of dominance among mutations. Comprehensive analyses of the gene 

deletions in yeast reveal few underdominant deletions (Agrawal & Whitlock, 2011), 

however, this may not be indicative of the distribution of single nucleotide polymorphism 

dominance. 

 The evolved mutations assayed here demonstrate a strong degree of 

overdominance. Recent theoretical examination of adaptation in diploids has renewed 

interest in the significance of overdominant mutations in adaptation and suggested 

overdominant polymorphisms may be a frequent mode of adaptation (Manna et al., 2011; 

Sellis et al., 2011). These models find that when selection on a trait is stabilizing, strong 

effect heterozygous mutations that overshoot the fitness optimum as homozygotes should 

be somewhat common. Experimental evolution remains the best way to test this 

prediction. Previously, the only examples of overdominance arising de novo in laboratory 

evolution were amplifications of glucose transporter genes in glucose-limited media 

(Sellis et al., 2016). Overdominance of a copy number variant is well explained by an 

“overshoot” of an optimal gene copy number. The STE4 truncations reported here 

represent the first evidence of experimentally evolved overdominant point mutations. The 

mechanism(s) underlying underdominance of STE4 deletions and overdominance of 

evolved STE4 alleles are not clear. It is also not clear that the low fitness of the 
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hemizygote and the low fitness of the homozygous evolve mutations share the same 

molecular underpinning. Future work is needed to determine if these mutations also push 

a trait of an optimum maintained by stabilizing selection.  

 The experiments reported here begin to address the conflict between two modes 

of adaptation in asexual diploids – overdominant mutations and loss-of-heterozygosity. 

Mitotic recombination resulting in loss-of-heterozygosity (LOH) is a common 

mechanism of adaptation in laboratory evolving diploid yeast (Fisher et al., 2018; 

Gerstein et al., 2014; Smukowski Heil et al., 2017). Despite its prevalence, we do not 

know the specific mechanism(s) by which LOH occurs in this or previous studies. Most 

evidence suggests that the repair of DNA lesions that occur in G1 or S phase results in 

reciprocal crossovers and directional gene conversions, each of which can be mediated by 

different mechanisms of break repair (Charles & Petes, 2013; Prado, Cortes-Ledesma, 

Huertas, & Aguilera, 2003). Most reported instances of LOH in asexual yeast adaptation 

involve a conversion tract that runs from the break point to the telomere. This means that 

there is effective linkage between loci that are kilobases apart. In this study we report an 

effect of this linkage and a difference in the rates of LOH depending on the tract length. 

The difference in rates between conversion tracts that run breakpoint to telomere and 

shorter conversion tracts is consistent with studies suggesting these occur by different 

mechanisms and that the former is more frequent than the latter (LaFave & Sekelsky, 

2009; Lee et al., 2009). This is the first evolution experiment to directly measure rates of 

LOH when distal conversion is unfavorable. Our findings indicate adaptation via mitotic 

recombination can be constrained by distal heterozygosity. 
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 To our knowledge, this is the first functional characterization of how dominance 

constrains adaptation at a single locus. We find that mutations at STE4 do not follow a 

simple spectrum from recessive to dominant. Future work to examine the biological basis 

of idiosyncratic dominance at STE4, as well as how dominance operates at other loci 

under selection, will shed light on the pervasiveness of the patterns reported here.  
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Chapter 4 

Leveraging parallelism to detect genetic interactions 

between evolved mutations.  

 

Note- The work described in this chapter will be published in a theme issue on 

convergent evolution in Philosophical Transactions B1.  This work was performed in 

collaboration with Sergey Kryazhimskiy of the Division of Biological Sciences at the 

University of California, San Diego. As a co-senior author, Sergey co-led the design of 

the study, the analysis of the data, and the writing of the paper.  

 

Abstract 

Eukaryotic genomes contain thousands of genes organized into complex and 

interconnected genetic-interaction networks. Most of our understanding of how genetic 

variation affects these networks comes from quantitative-trait loci (QTL) mapping and 

from the systematic analysis of double deletion (or knockdown) mutants, primarily in the 

yeast Saccharomyces cerevisiae. Evolve and re-sequence experiments are an alternative 

approach for identifying novel functional variants and genetic interactions, particularly 

between non-loss of function mutations. These experiments leverage natural selection to 

obtain genotypes with functionally important variants and positive genetic interactions. 

																																																								
1	Fisher, K. J., Kryazhimskiy, S., Lang, G.I. (2019). Detecting genetic interactions using 
parallel evolution in experimental populations. Philosophical Transactions of the Royal 
Society B, 10.1098/rstb.2018.0237	
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However, no systematic methods for detecting genetic interactions in these data are yet 

available. Here, we introduce a computational method based on the idea that variants in 

genes that interact will co-occur in evolved genotypes more often than expected by 

chance. We apply this method to a previously published yeast experimental evolution 

data set. We find that genetic targets of selection are distributed non-uniformly among 

evolved genotypes, indicating that genetic interactions had a significant effect on 

evolutionary trajectories. We identify individual gene pairs with a statistically significant 

genetic interaction score. The strongest interaction is between genes TRK1 and PHO84, 

genes that have not been reported to interact in previous systematic studies. Our work 

demonstrates that leveraging parallelism in experimental evolution is useful for 

identifying genetic interactions that have escaped detection by other methods. 

Introduction 

Determining the extent to which genetic variants interact to affect phenotypes is a 

central challenge in biology. Traditional methods such as QTL mapping and double 

deletion analysis have proven useful for identifying functional variants and genetic 

interactions in laboratory model systems such as the yeast Saccharomyces cerevisiae. 

However, both of these methods have limitations. QTL mapping provides a robust 

approach to identifying natural genetic variants that contribute to complex traits, but most 

studies are underpowered to detect genetic interactions. Large studies (with on the order 

of 103 segregants) have shown that QTL-QTL interactions contribute to a wide array of 

complex traits (Bloom, Ehrenreich, Loo, Lite, & Kruglyak, 2013; Bloom et al., 2015; 

Huang et al., 2012; Wilkening et al., 2014) but even the largest study to date did not have 

the statistical power to identify small-effect interactions (Bloom et al., 2015). In addition, 
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genetic linkage makes it difficult in many cases to identify the causal variants underlying 

most QTLs. 

Systematic phenotypic screens of double deletions/knockdowns in yeast and other 

organisms avoid these problems (Babu et al., 2014; Costanzo et al., 2016; Lehner, 

Crombie, Tischler, Fortunato, & Fraser, 2006; Tong et al., 2004). These types of studies 

have successfully identified a large number of genetic interactions, particularly within 

protein complexes (Baryshnikova et al., 2010). By design, this approach is limited to 

detecting only strong pairwise interactions between loss-of-function variants. Most 

natural variation, however, is not loss-of-function (Bergström et al., 2014; Saleheen et al., 

2017), and thus a comprehensive picture of genetic interactions will require tests of 

interactions between functional variants. 

An alternative approach to identifying functionally important variants and 

interactions between them is to leverage the power of natural selection. When different 

populations of the same or different species face the same environmental challenge, 

natural selection often finds the same phenotypic (Hagen & Gilbertson, 1972; O'quin et 

al., 2010; Protas et al., 2006) or even genetic (Glazer et al., 2014; McCracken et al., 2009; 

Zhen et al., 2012) solution to this challenge. This phenomenon is referred to as 

convergent or parallel evolution. Thus, the observation of parallel genetic changes in 

multiple independent lineages can be used to identify variants that contribute to 

functionally important traits. This approach has been successful in identifying key 

mutations in pathogen and tumor evolution (Carroll et al., 2015; Gerlinger et al., 2014; 

Kryazhimskiy, Sergey, Bazykin, Plotkin, & Dushoff, 2008; Lieberman et al., 2011). The 

idea of convergence or parallelism has also been used to detect epistasis within genes 
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(Codoñer & Fares, 2008; Korber, Farber, Wolpert, & Lapedes, 1993; Kryazhimskiy, 

Sergey, Dushoff, Bazykin, & Plotkin, 2011; Lockless & Ranganathan, 1999; Shapiro, 

Rambaut, Pybus, & Holmes, 2006) and more recently also between genes (Neverov, 

Kryazhimskiy, Plotkin, & Bazykin, 2015) in natural populations. In this type of analysis, 

pairs of variants are identified as genetically interacting if they co-occur in the same 

genotype more often than expected by chance. There are three challenges in using 

parallelism to detect functional variants and genetic interactions in natural populations. 

First, true functional parallelism is confounded by common ancestry. Second, because we 

rarely know what selection pressures drove the evolution of the functional variants, it is 

difficult to connect genotype with phenotype. Third, detecting epistasis requires many 

variants to accumulate and is therefore only feasible in either fast evolving populations or 

over very long time-scales. 

Evolve and re-sequence experiments offer a complementary approach for 

detecting functional variants and genetic interactions. Like inferences from natural 

populations, this approach also relies on selection to find functional variants and genetic 

interactions between them. This approach, however, overcomes problems arising in 

studies of naturally evolving populations. Hundreds of replicate microbial populations 

can be propagated in identical conditions such that the selected phenotypes are either 

known or can be measured (Long, Liti, Luptak, & Tenaillon, 2015). After hundreds or 

thousands of generations, entire populations or individual isolated clones are sequenced, 

and adaptive variants are identified by their parallel occurrence in replicate lines (e.g. 

(Barrick et al., 2009; Fisher et al., 2018; Good, McDonald, Barrick, Lenski, & Desai, 

2017; Lang et al., 2013; Tenaillon et al., 2012). Since replicate populations evolve 
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independently, overabundance of parallel variants is a signal of positive selection, which 

is not confounded by common ancestry. Genetic interactions are known to contribute to 

adaptive evolution (Phillips, 2008), and the data from evolve and re-sequence 

experiments must contain information about these genetic interactions. To the best of our 

knowledge, only one study so far has leveraged this type of data to detect epistasis and 

demonstrate how it affected evolutionary trajectories (Tenaillon et al., 2012). The 

challenge is that large data sets are required to detect overrepresented pairs of genes that 

contain interacting variants. However, unlike in QTL mapping approaches, the number of 

variants in experimentally evolved populations can be controlled to increase statistical 

power to reveal genetic interactions. At the same time, evolution in the lab, just like 

evolution in nature, assesses all types of variants, which in principle allows us to detect 

genetic interactions that may not be revealed in gene-deletion studies. 

Here, we present an approach that leverages parallelism in experimental evolution 

to detect genetic interactions between genes that acquire mutations independently across 

populations. We detect genetic interactions between pairs of genes using mutual 

information (Bindewald & Shapiro, 2006; Gloor, Martin, Wahl, & Dunn, 2005; Kim, 

Koyutürk, Topkara, Grama, & Subramaniam, 2005). This quantity captures the statistical 

dependence between the occurrences of mutations at two specific loci in the same 

genotype. We use this approach to analyze a recently published whole-genome dataset 

derived from experimentally evolved asexual populations of yeast. We find that the 

accumulated mutations are distributed between genotypes non-uniformly, indicating that 

genetic interactions have contributed to adaptive evolution in these laboratory 

populations. We identify specific pairs of genes that have acquired mutations in parallel 
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more often than expected by chance, indicating putative genetic interactions. We 

experimentally verify that our top-hit pair, TRK1 and PHO84, shows a positive genetic 

interaction when reconstructed in the ancestral background.  

Materials and Methods 

Sequencing data re-analysis  

Evolved mutations used for this analysis were obtained from 92 endpoint clones 

isolated from 42 populations of 4,000 generation evolved autodiploids, previously 

reported in Fisher et al. (2018). Populations were grown in rich media in individual wells 

of unshaken 96-well plates at 30°C and diluted 1:1024 every 24 hours. At approximately 

60 generation intervals populations were cryoarchived in 15% glycerol. We reanalyzed 

the raw sequencing data to improve annotation quality. All raw data files were 

demultiplexed using a custom python script (barcodesplitter.py) from L. Parsons 

(Princeton University).  Adapter sequences were trimmed using fastx_clipper (FASTX 

Toolkit). Reads were then aligned to a customized W303 genome using BWA v0.7.12 (Li 

& Durbin, 2009).  VCFtools was used to filter variants common to all samples and 

mating-type specific polymorphisms (see Fisher et al., 2018)).  Remaining 

polymorphisms were then annotated using a strain-background customized annotation 

file (Matheson et al., 2017). 

Calculating mutual information 

We used the evolved mutations generated by reprocessed sequence data to look 

for evidence of genetic interactions. To prevent false positives due to common ancestry, 

only one clone with the most mutations from each population was included in the 

analysis. We then excluded all intergenic and synonymous mutations. Lastly, to reduce 
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the number of statistical tests, we looked for genetic interactions only among “multi-hit” 

genes, i.e., those in which at least three mutations in independent populations were 

detected in the data set. This was done to reduce noise by enriching for beneficial 

mutations. Nevertheless, we estimate, by simulation controlling for gene length, that 12% 

of genes receive three or more mutations by chance alone and are likely neutral. This 

reduced data set includes 113 “multi-hit” genes from 46 independently evolved 

genotypes. 

 For all 6,328 pairwise combinations of multi-hit genes we calculated the mutual 

information statistic. To do so, we model an evolved genotype with a series of (possibly 

non-independent) Bernoulli random variables 𝜎! with i = 1,2,…,K, where K = 113, the 

total number of genes where mutations can possibly occur. 𝜎! takes value 1 if a mutation 

occurs (in the data) in gene i and it takes values 0 if it does not occur. We first estimate 

the marginal probability of a mutation occurring in gene i as  

3    𝑃 𝜎! = 1 = 𝐶M 𝑀!"

!

!!!

. 

Here, 𝑀!" =  𝑀!" +  ε and 𝑀!" = 1 if mutation in gene i is present in genotype g in the 

data. We regularize our estimates by adding a pseudocount ε = !
!

, where M is equal to 

the total number of mutations in the dataset (Schürmann & Grassberger, 1996). Our 

results are robust with respect to the choice of ε (see below). The sum is taken over all N 

= 46 genotypes and 𝐶M =  !
!(!!!) 

 is the normalization constant. The probability of a 

mutation not occurring in gene i is then 𝑃 𝜎! = 0 = 1− 𝑃 𝜎! = 1 . We also estimate 

the joint probability distribution 𝑃 𝜎! ,𝜎!  for each gene pair (i, j) as follows.  
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4     𝑃 𝜎! = 1,𝜎! = 1 =  𝐶J 𝑀!"𝑀!"

!

!!!

  

5     𝑃 𝜎! = 0,𝜎! = 1 =  𝐶J 1+ 𝜀 −𝑀!" 𝑀!"

!

!!!

 

6     𝑃 𝜎! = 1,𝜎! = 0 =  𝐶J 𝑀!" 1+ 𝜀 −𝑀!"

!

!!!

 

7     𝑃 𝜎! = 0,𝜎! = 0 =  𝐶J 1+ 𝜀 −𝑀!" 1+ 𝜀 −𝑀!"

!

!!!

 

where 𝐶J =  !
!(!! !)! 

 . We use these estimates of joint probabilities to estimate the mutual 

information statistic MIij between random variables 𝜎! and 𝜎! as 

8     𝑀𝐼!" = 𝑃 𝜎! = 𝑥,𝜎! = 𝑦 log!
𝑃 𝜎! = 𝑥,𝜎! = 𝑦
𝑃 𝜎! = 𝑥 𝑃 𝜎! = 𝑦

!,!∈ !,!

 

The aggregate mutual information statistic MItot for the full dataset is then calculated as 

9      𝑀𝐼tot =   𝑀𝐼!"

!

!!!!!

!!!

!!!

. 

Generating null datasets 

 To obtain the null distributions for the individual MIij statistics and for the 

aggregate MItot statistic we generated “null” datasets that are structurally identical to our 

real data set, but in which the mutations are distributed randomly and independently 

across genotypes with the same marginal probabilities as in the real data. Specifically, in 

each “null” dataset, we generated N = 46 genotypes by randomly and independently 

drawing each value 𝑀!" ,𝑔 = 1,…𝑁, 𝑖 = 1,… ,𝐾 from the Bernoulli distribution with 
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estimated marginal success probability 𝑃 𝜎! = 1  for each gene i. This method preserves 

the average numbers of mutations per gene and per clone.  

To obtain the null distributions for each MIij and MItot, we generated 100,000 

“null” data sets, and calculated all MIij and MItot statistics for each “null” dataset as 

described above. We then estimated the p-value for all MIij and MItot and obtained 

nominally significant pairs of genes at different significance thresholds. Since the MIij 

statistics are not independent, we estimated the false discovery rate and the p-values for 

the observed number of nominally significant pairs from our “null” data sets 

(Kryazhimskiy, Sergey et al., 2011). 

Strain construction 

Evolved alleles of the most significant gene pair, PHO84 and TRK1, were 

reconstructed into the ancestral background using CRISPR-Cas9 allele swaps. We first 

constructed plasmids starting from pML104 (Addgene 67638), which constitutively 

expresses Cas9 and a guide RNA (gRNA). We designed gRNAs to target one site in 

PHO84 (5’ CCCGTAGAAAGCAACATCTAA 3’) and two sites in TRK1 (5’ 

TTTTGGGTTCAAATCATCGAA 3’ and 5’ GGAGAACAACTCCTACTCGAC 3’). 

Plasmids were transformed into our ancestral background (yGIL1298: MATα, ade2-1, 

CAN1, his3-11, leu2-3, 112, trp1-1, URA3, bar1Δ::ADE2, hmlαΔ::LEU2, 

GPA1::KanMX, ura3Δ::PFUS1-yEVenus ) along with a 500 bp linear repair template 

(gBlock, IDT) encoding the appropriate evolved allele (pho84-A1071C, trk1-A733G, and 

trk1-C1353G) as well as a synonymous PAM site change. Transformants were genotyped 

to confirm successful integration of each mutant allele. The pho84-A1071C mutant strain 

was backcrossed to yGIL432 (MATa, GPA1::NatMX, otherwise isogenic to yGIL1298) 
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to move the pho84-A1071C allele to the MATa background. This pho84-A1071C MATa 

strain was crossed to yGIL1298 to generate heterozygous pho84-A1071C mutants, and to 

each of two trk1 mutants to generate heterozygous double mutants. Heterozygous single 

trk1 mutants were created by crossing correct transformants to yGIL432. All MATa/α 

diploids were then converted to MATa/a to correspond with the autodiploid background 

in which the mutations arose by transforming diploids with pGIL088, which contains a 

galactose-inducible HO homing endonuclease, as reported in (Fisher et al., 2018). 

Fitness assay and interaction analysis 

Fitness assays were performed as described previously (Fisher et al., 2018). 

Briefly, mutant cultures were mixed 1:1 with an autodiploid version of the ancestral 

strain (yGIL1064) labeled with ymCitrine at URA3. Cultures were propagated in a 96-

well plate in an identical fashion to the evolution experiment for 50 generations. At 10-

generation intervals saturated cultures were sampled for flow cytometry. Analysis of flow 

cytometry data was performed with FlowJo 10.3. Selective coefficient was calculated as 

the slope of the best-fit line of the natural log of the ratio between query and reference 

strains against time.  

Selection coefficients were measured for two technical replicates each of four 

biological replicates of pho84-A1071C and eight biological replicates of the remaining 

four query genotypes (trk1-A733G, trk1-C1353G, pho84-A1071C/trk1-A733G, and 

pho84-A1071C/trk1-A1353G). One reconstructed clone had an abnormally high fitness, 

likely due to secondary mutations introduced during transformation, and was removed 

from the analysis. There was no significant difference in fitness between two trk1 alleles 

(t(28)=0.95, p =0.35) or two double mutants (t(28)=-1.087, p= 0.29), so data for these 
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genotypes were pooled. The expected additive fitness distribution of the double mutant 

was calculated by adding the mean selection coefficients and propagating the standard 

deviation of trk1 and pho84 single mutants. A one-tailed two-sample t-test was used to 

test for deviation from additive expectation. 

Network and clustering analysis 

 Hierarchical clustering and heatmap generation were done using the pheatmap R 

package (Kolde., 2015). Mutual information matrices were clustered by rows and 

columns using a Euclidean distance matrix. Sub-clusters shown were identified by 

trimming row and column dendrograms to 5 groups and identifying the 4 sub-clusters 

containing less than 20 genes. The significant pair network was generated via using the R 

igraph package (Csardi & Nepusz, 2006). 

Results 

Identifying putative genetic interactions 

We set out to look for genetic interactions between beneficial mutations that arose 

in a previously published yeast evolution experiment for which whole-genome 

sequencing data are publicly available (Fisher et al., 2018). In this experiment, 46 

replicate autodiploid yeast populations evolved in the same laboratory environment for 

4,000 generations (Fisher et al., 2018). Using a custom bioinformatics pipeline 

(Methods), we identified 3,835 unique new mutations that arose during evolution. We 

found 113 “multi-hit” genes, i.e., genes in which a non-synonymous or a nonsense 

mutation was discovered in at least three independent populations. Since we expect to 

find only 13.5 of such genes by chance if mutations were distributed randomly across the 

genome, multi-hit genes must be highly enriched for targets of selection. 
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We asked whether any pairs of multi-hit genes occurred in our data more or less 

often than expected by chance. Such over- or underrepresentation would indicate parallel 

evolution driven by genetic interactions. We calculated the aggregate mutual information 

statistic, MItot (Methods), which serves as an overall measure of mutational non-

independence in our dataset, and found that MItot = 87.7 bits. We compared this value to 

the null distribution generated by randomly and independently distributing mutations 

among evolved genotypes 105 times (see Methods) and found that the observed value was 

significantly larger than expected by chance (p < 10–3; Fig. 4-1, 4-2). On average, the 

knowledge that a mutation in one gene is present in a given genotype provides a very 

small amount (87.7/6,328 = 0.014 bits) of information about the presence of a mutation in 

any other specific gene. Nevertheless, the fact that mutated genes are distributed non-

uniformly across evolved genotypes indicates that genetic networks subtly but 

significantly affected the mutational trajectories in our evolving populations. 

Our estimates of mutual information depend on the value of the pseudocount 

parameter ε (see Methods). We re-ran our analysis (albeit with 10 simulations instead of 

105) at varying values of ε between 0.0002 (ε = !.!
!

 ) and 0.004 (ε = !
!

 ) and found that 

our main result is robust with respect to the choice of ε (Fig. 4-3).   

Next, we compared the mutual information statistic MIij for each gene pair (i,j) in 

the dataset to its respective null distribution (see Methods, Fig. 4-4). We identified a 

significant genetic interaction between two genes if the p-value for their MIij was less 

than 0.003. At this cutoff, we expect to observe 18.8 interacting gene pairs under our null 
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Figure 4-1. Observed MIij values (top) visualized with a histogram and compared to a 
single randomly chosen simulation (bottom). Simulation histograms exhibit shifted 
distributions and reduced kurtosis. 
  

0

1000

2000

3000

0.000 0.025 0.050 0.075 0.100>

Observed MIij

N
u
m

b
e
r

0

1000

2000

3000

0.000 0.025 0.050 0.075 0.100

Simulated MIij

N
u
m

b
e
r

>



	

	 86	

 
Figure 4-2. Histogram showing the null distribution of the aggregated MItot statistic 
based on 100,000 simulations (see Methods). The MItot observed in the real data is 
indicated by the black triangle. Observed genotypes contain significantly more 
information than expected by chance (p=0.00054), indicating that interactions between 
mutations affect which de novo mutations accumulate in genotypes. 
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Figure 4-3. Our mathematical approach to calculating MIij in simulations necessitates a 
way to circumvent simulations in which gene i, gene j, or the double mutant (ij) does not 
appear. We solved this by regularizing counts of Mi with a pseudocount parameter (ε). 
We measured observed and simulated MItot with ε set to a range of values. Observed 
values are filled red dots and box and each box and whisker plot represents 10 
simulations. The statistical difference between observed and simulated data is robust 
across this range of ε. 
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 Figure 4-4.  Examples of individual gene-pair MIij compared to respective simulated 
null distributions. Gene pairs in the top row are the five most highly significant 
interactions. Gene pairs in the bottom row are five randomly chosen non-significant pairs. 
Observed MI statistics are indicated with a red line and distributions based on a 
subsample of 10,000 simulations are plotted in grey.  
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model, but in fact we observe 33 (false discovery rate of 0.57) and this excess is highly 

significant (p < 0.005, Fig. 4-5). Thirty-three significant gene pairs are comprised of 42 

unique genes (Table 4-1).  

Interactions between functional variants might be expected to exhibit allele-

specificity. We examined the identity of independently derived mutations in the top five 

most significant putative interactions. Table 4-2 shows every incidence of an evolved 

mutation in the nine genes that participate in the top five most significant pairs identified 

above. Three of the nine genes in the top five pairs showed evidence of repeated loss of 

function as indicated by PROVEAN score (IRA2, LTE1, WHI2) (Choi & Chan, 2015). 

Mutations in the remaining six genes show a mix of predicted effects. We examined the 

positions of mutations within each gene to look for patterns of site-specific variation. We 

found that the distribution of mutations across coding sequences was consistent with 

uniform null hypothesis.  

Experimental verification of genetic interaction between mutations in PHO84 and 

TRK1 

Despite the high false discovery rate, our epistasis analysis suggests that 

mutations in the top significant pair of genes, PHO84 and TRK1 (nominal p < 10–5) 

exhibit a true genetic interaction. Mutations in these two genes co-occurred in the same 

genotype in our data three times and never exhibited a higher value of mutual information 

in any of the 100,000 simulations. When examining the complete dataset, including all 

clones descending from each population, we found that a mutation in the PHO84 gene 

precedes a mutation in TRK1 in at least one population and that all populations with a 

non-synonymous mutation in PHO84 allele acquire a TRK1 mutation (Fig 4-6). 
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Figure 4-5. False discovery rate was estimated by sampling nominally significant pairs in 
a subset of 10,000 simulated datasets (blue violin plots). Observed significant pairs are 
plotted on top null distributions (purple). At p < 0.003, there are more significant pairs 
than expected by chance (p < 0.005). An FDR of 0.57 was estimated by the dividing the 
mean number of nominally significant pairs by the number of observed significant pairs.   
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Table 4-1. Thirty-three nominally significant gene pairs.  

  Gene1 Gene2 Observed I Mean Simulated I p Value 

PHO84 TRK1 0.321636423 0.009910122 <0.00001 
IRA2 SYP1 0.20388364 0.013394146 0.000060 

CYM1 LTE1 0.156670832 0.015274865 0.000860 
BCK2 WHI2 0.145261454 0.015613055 0.000920 

CWC22 WHI2 0.145261454 0.015672584 0.000980 
NOC2 YBT1 0.133466802 0.009807874 0.001520 
DTR1 TOM1 0.133466802 0.009775809 0.001590 
KEL1 YBT1 0.133466802 0.009800946 0.001750 
GRR1 SIN4 0.133466802 0.009904341 0.001760 
HIS4 TRK1 0.133466802 0.009849421 0.001760 
RSE1 YLR089C 0.133466802 0.009841149 0.001780 

MAK21 SIN4 0.133466802 0.00997965 0.001820 
MNN9 SRS2 0.133466802 0.00996807 0.001820 
NOC2 URA2 0.133466802 0.009847824 0.001840 
SIN3 tL(GAG)G 0.133466802 0.00987234 0.001880 

PHO84 SIN3 0.133466802 0.009921999 0.001910 
MNN9 SOG2 0.133466802 0.00984068 0.001920 
PMD1 TPS2 0.133466802 0.009930568 0.001950 
BST1 TRA1 0.133466802 0.009838169 0.001960 
SIN3 TRK1 0.133466802 0.00983419 0.001960 
AVO1 PHO4 0.133466802 0.009952229 0.001970 
SMI1 TRA1 0.133466802 0.009881812 0.001990 
JSN1 YMR144W 0.133466802 0.009930848 0.002000 
NOC2 PCA1 0.133466802 0.009875012 0.002040 
PCA1 YBT1 0.133466802 0.009869169 0.002050 
HIS4 PHO84 0.133466802 0.009950975 0.002100 
SOG2 SRS2 0.133466802 0.009866437 0.002100 
ACC1 SYP1 0.133466802 0.009878601 0.002120 
AVO1 RTF1 0.133466802 0.009929195 0.002130 
KRR1 MNN9 0.133466802 0.009938925 0.002130 
PCA1 YMR144W 0.133466802 0.009969454 0.002190 
SRS2 YDR119W 0.133466802 0.009908157 0.002240 
CSF1 IRA1 0.126589134 0.015444545 0.002670 
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Table 4-2. Evolved alleles of genes in top 5 putative interactions. 

Population/Clone PHO84 
 

 TRK1 
pop C12 Ser67Cys (N)    Phe451Leu (N) 
pop D01 Leu357Phe (D)    Glu1011fs (D) 
pop E03 Leu387Leu (N)    wt 

clone H03a Val144Ile (N)    wt 
clone H03b Val144Ile (N)    Asn245Asp (N) 

  IRA2    SYP1 
clone A03b Phe2557fs (D)    Gln180Glu (N) 

pop B01 Glu2774* (D)    wt 
pop C11 Ile1463fs (D)    Gly300fs (D) 
pop D01 wt    Ile753Ile (N) 

clone D10a Glu2440* (D)    wt 
clone D12a Ser1292Phe (D)    wt 
clone D12b Ser1292Phe (D)     Val126Leu (N) 

pop H03 Lys2651Asn (N)     wt 
  CYM1    LTE1 

pop B03 wt    Ser185* (D) 
pop C02 wt    Lys1138* (D) 
pop C03 wt    Ala1368fs, Ala748Ser (D) 
pop C11 His700Asp (N)    Ala748Val (N) 
pop D12 wt    Glu653* (D) 
pop F02 Asp145Val (D)    Glu865* (D) 
pop F03 wt    Met1062Ile, Gln916Lys (D) 

clone F10a wt    Trp380* (D) 
clone F10b Leu274Ser (N)    Trp380* (D) 
clone G02a wt    Trp380* (D) 
clone G12b wt    Trp1403* (D) 

  BCK2 WHI2 $ CWC22 
pop C12 Asp452His(N) Thr283fs†(D) wt 
pop D03 wt Ala338* (D) wt 
pop E03 Asn217fs (D) Leu76fs† (D) wt 
pop E11 wt Gln81* (D) Val60Val (N) 

clone E12a wt Gln181*† (D) Wt 
clone E12b wt Gln181*(D) wt 
clone F11a wt Gln29*† (D) Leu526Phe (N) 
clone F11b wt Gln29*† (D) wt 

pop G01 wt Glu168Gly (D) wt 
clone G02a Arg370*, Pro57Leu (D) Ser72*† (D) wt 
clone G02b Arg370* (D) Ser72*(D) wt 

pop G11 wt Asn275fs(D) Cys245Gly (N) 
clone H11a wt Leu76fs†, Ala310Pro (D) Thr183Pro (N) 
clone H11b wt Leu76fs, Ala310Pro (D) Thr183Pro (N) 

 
All mutations to genes in the top 5 significant pairs are listed along with their PROVEAN 
predicted effect (cutoff = -2.5) ; (N) neutral, (D) deleterious. $WHI2 putatively interacts 
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with both CWC22 and BCK2. † Mutations are homozygous. Fixed alleles are identified 
by population and non-fixed alleles are identified by clone. All genotype data published 
previously in Fisher et al. (2018). 
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Figure 4-6. All autodiploid isolates containing a TRK1 or a PHO84 mutation. Phylogeny 
is a ML tree based on 3,835 variable sites. Sequence data was obtained for 2 clones in all 
populations except C12. The only population in which a pho84 mutation is not 
accompanied by a mutant trk1, E03, also contains the only synonymous pho84 allele. The 
only population polymorphic for TRK1, H03, indicates that the PHO84 mutation arose 
first.  
  

D01a

D01b

E03a

E03b

H03a

H03b

C12b

Ancestor 0.002

Glu1011fs

Asn245Asp

 Phe451Leu

Val144Ile

Leu387Leu

 Leu357Phe

Ser67Cys

TRK1 PHO84

Val144Ile

Leu387Leu

Glu1011fs  Leu357Phe



	

	 95	

To experimentally validate this positive genetic interaction, we reconstructed one 

allele of pho84 and two alleles of trk1 in the ancestral background both as single mutants 

and as double pho84/trk1 mutants. All mutations were constructed as heterozygotes—the 

state in which they are maintained in the evolution experiment—and assayed for fitness. 

The mutant pho84 and trk1 alleles conferred small, but measurable fitness benefits (0.009 

± 0.002 s.d. for pho84 and 0.003 ± 0.005 s.d. for trk1). We found that the fitness of the 

pho84/trk1 double mutant (0.015 ± 0.003 s.d.) was higher than the expectation based on 

the sum of fitnesses of single mutants (0.013 ± 0.005 s.d., Fig. 4-7), although the 

difference was only marginally significant (t(58)=1.74, p=0.043). 

Structure of genetic-interaction networks 

We found that the set of putatively interacting genes is highly interconnected. The 

most significant 33 gene pairs consist of 8 modules that contain at least three genes each 

and five isolated gene-gene interaction pairs (Fig. 4-8). The three largest modules 

encompass 42% of all candidate significant interactions. We performed hierarchical 

clustering on MIij and found that this matrix contains multiple small but tightly connected 

blocks (Fig. 4-9). On average, mutual information between any two genes within a block 

was 8 times higher than between a random pair of genes (0.098 bits vs 0.012 bits). 

Notably, these blocks largely overlapped with the modules observed among putatively 

interacting pairs. This suggests that genetic interactions, rather than being exclusively 

strong pairwise interactions, are often dispersed among small networks of interacting 

genes. 
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Figure 4-7. Fitness advantage of the single TRK1 and PHO84 mutations and of the 
double mutant. Fitness measurements for two TRK1 alleles are combined. Replicate 
measurements are plotted as grey circles. Mean estimates are plotted as bold circles ± 
standard error. The red square indicates the additive expectation for the double mutant. 
Additive fitness expectation is the sum of the mean fitness measurements for both single 
mutants. Standard error for the double mutant is propagated SE from single mutant 
replicates. 
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Figure 4-8. Network of all genes identified in significant gene pairs. Edges are scaled by 
MIij and connect all genes that co-occur in the same background at least once. Bolded 
lines represent significant pairwise MIij. Colors correspond to interconnected significant 
pairs. White circles indicate isolated gene pairs. Modules are labeled by size.  
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Figure 4-9. Hierarchical clustering of genes by pairwise mutual information captures the 
most significant pairs and networks among significant pairs. Sub-clusters shown were 
identified by trimming row and column dendrograms to 5 groups and identifying the 4 
sub-clusters containing less than 20 genes.  
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 Discussion 
Even the simplest free-living microorganisms encode thousands of genes 

organized into complex and interconnected networks that collectively determine the 

organism’s fitness. These genetic interaction networks constrain evolution such that 

populations evolving in identical conditions often find similar genetic solutions, both in 

nature and in the laboratory (e.g. (Kvitek & Sherlock, 2013; Protas et al., 2006; Tenaillon 

et al., 2012). Here we developed a method, based on mutual information, that exploits 

genetic parallelism observed in microbial evolution experiments to infer genetic 

interactions between loci that acquired mutations in independent populations. With this 

method, we found that genetic interactions had an overall significant effect on mutational 

trajectories of evolved populations. We also identified 33 gene pairs (at FDR of 0.57) that 

exhibit the strongest genetic interactions in our data set. We provide experimental support 

for one of these interactions, between genes PHO84 and TRK1. 

Our method for detecting genetic interactions complements existing approaches. 

Most of our understanding of genetic interactions comes from the systematic analysis of 

double deletion/knockdown mutations (Babu et al., 2014; Baryshnikova et al., 2010; 

Breslow et al., 2008; Costanzo et al., 2010; Costanzo et al., 2016; Jasnos & Korona, 

2007; Szappanos et al., 2011; Tong et al., 2004; Van Opijnen, Bodi, & Camilli, 2009). By 

design, these approaches query only loss-of-function mutations, which represent less than 

5% of natural variation in both yeast and humans (Bergström et al., 2014; Saleheen et al., 

2017). In contrast, our approach can detect pairwise epistasis between all classes of 

beneficial variants, including gain-of-function mutations, mutations in essential genes, 

and regulatory mutations, that would be missed in gene-deletion studies. Indeed, out of 

the 33 most significant gene pairs only one genetic interaction (between SIN3 and TRK1) 
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was known previously (Costanzo et al., 2016). The most significant interaction 

discovered here is between genes TRK1 and PHO84. TRK1 encodes a high-affinity 

potassium transporter and PHO84 encodes a high-affinity phosphate transporter. The 

biological cause of their interaction is unclear, although there is evidence of crosstalk 

between potassium and phosphate import (Canadell, González, Casado, & Ariño, 2015; 

Rosenfeld et al., 2010). 

While gene-deletion studies are particularly good at detecting strong negative 

pairwise interactions between deleterious mutations, such as synthetic lethality (reviewed 

in (Baryshnikova et al., 2010), our method identifies primarily positive interactions 

between pairs of selectively accessible mutations. In theory, our approach could also 

capture negative interactions, but this would require observing an absence of certain 

mutational combinations more often than expected by chance. Such mutational 

incompatibilities have been observed in evolution experiments (Kvitek & Sherlock, 2013; 

Tenaillon et al., 2012); for example mutations in a HXT6/7 hexose transporter and its 

negative regulator, MTH1, in glucose-limited yeast chemostat populations are 

incompatible (Kvitek & Sherlock, 2011). The absence of negative interactions in our list 

of significant pairs suggests that we are underpowered to detect them. 

Several recent experimental evolution studies have found that adaptive mutations 

often exhibit a global (i.e. not specific to a particular gene pair) type of negative epistasis, 

which is referred to as “diminishing returns epistasis” (Chou, Chiu, Delaney, Segre, & 

Marx, 2011; Echenique, Kryazhimskiy, Ba, & Desai, 2019; Khan, Dinh, Schneider, 

Lenski, & Cooper, 2011; Kryazhimskiy, S., Rice, Jerison, & Desai, 2014). For example, 

we previously demonstrated that beneficial alleles in gas1 and ste12, both ~3% fitness 
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effect mutations, yield only a net ~5% benefit when combined (Lang et al., 2013). If 

diminishing returns epistasis is indeed widespread, then pairwise interactions between 

specific mutations should be detected as deviations of the double-mutant fitness from the 

appropriate diminishing returns null model rather than from a naïve additive model. 

Then, observing a double-mutant with higher-than-additive fitness, such as the TRK1/ 

PHO84 double mutant (Fig. 4-7), would be even more surprising compared to the 

diminishing returns null than to the additive null, and would provide even stronger 

evidence for a gene-specific positive genetic interaction. 

Our approach has several important limitations. It suffers from a high rate of false 

discoveries (about 60%), at least for the dataset that we have analyzed here. There are at 

least two reasons for such high FDR. First, we looked for signatures of epistasis among 

pairs of genes in which we observed three or more independent mutations. We assumed 

that all observed mutations in these “multi-hit” genes are beneficial. However, this may 

not be the case. We estimate around 12% of the genes included in this analysis to have 

been mutated three or more times simply by chance. These mutations are distributed 

uniformly among genotypes and therefore decrease the signal to noise ratio in our data. 

One way to decrease FDR is to consider genes with an even higher degree of parallelism. 

Of course, this would come at a cost of potentially missing interesting genetic 

interactions among less frequently mutated genes. 

Second, high FDR may in fact reflect a real biological phenomenon. Gene 

deletion studies have shown that strong pairwise epistasis is relatively rare, around 4% if 

both positive and negative interactions are counted (Costanzo et al., 2016). Thus, strong 

pairwise genetic interactions among beneficial mutation might also be rare. Weak 
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epistasis might be more common, but it is also harder to detect. The highly significant 

value of the aggregate MItot statistic in our study suggest that genetic interactions jointly 

have affected the outcome of the evolutionary process at the genetic level. At the same 

time, the difficulty of reliably identifying individual interacting gene pairs suggests that 

genetic interactions, rather than being strong and concentrated in a small number of gene 

pairs, are weak and relatively dispersed. The power of our approach to detect weaker 

genetic interactions could be improved with more replicate populations. In our null 

model, co-occurrence of two mutations in the same genotype happens with probability on 

the order N–1, where N is the number of independently evolved genotypes. For example, 

the p-value for two genes with three mutations each where all mutations co-occur in the 

same three genotypes scales as N–3. 

As mentioned above, our method is designed to detect pairwise genetic 

interactions. However, we observe that putative genetic interactions that we identify are 

clustered in groups that contain two to seven genes. It is tempting to conclude that such 

clustering is caused by real biological modules corresponding to physiologically distinct 

routes of adaptation. However, some degree of clustering is expected even if all of 

epistasis were pairwise and uniformly distributed among genes. The amount of such 

spurious clustering would depend on the strength and prevalence of epistasis and is hard 

to estimate. Increasing the number of replicate populations and reducing the duration of 

evolution experiments is likely to alleviate this problem. 

Our approach does not eliminate the need for experimental validation of putative 

genetic interactions. However, current molecular techniques make genetic reconstructions 

feasible only for a relatively small number of mutations. Thus, our approach could serve 
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as an initial filter for narrowing down the set of potentially interesting pairs of mutations 

for further experimental validation and investigation. 

Our results demonstrate the feasibility of using experimental evolution and 

genetic parallelism to identify biologically interesting genetic interactions that might 

otherwise be difficult to uncover. In combination with other approaches, it will facilitate 

characterization of epistasis and, more broadly, help us understand the factors driving 

patterns of parallelism, diversification, and genomic constraint in evolution.  
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Appendix A 

 

Statistical method for detection of genes harboring 

beneficial mutations 

 

Summary 

 Many findings from chapters one and two of this dissertation rely on the ability to 

detect genes that are parallel targets of selection in yeast evolution experiments. This is 

accomplished by identifying those genes in the yeast genome that receive more mutations 

during an evolution experiment than expected by chance. This is not a statistically trivial 

problem given that most genome evolution is neutral (Buskirk et. al 2017). To solve this 

problem, we developed a model to determine the probability that observed number of 

mutations in each specific gene occurred by chance. This model was used in Fisher & 

Buskirk et al. (2018) to identify genes harboring beneficial mutations. I then used this 

model in unpublished work to compare common targets of selection between three 

different evolution experiments, as well as look for beneficial intergenic mutations. In 

this appendix I will introduce the model and describe the latter two analyses. 

Materials and Methods 

Genomic datasets  
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 We identify beneficial variants and pairwise interactions in three previously 

published datasets of experimentally evolved S. cerevisiae: 1,000-generation evolved 

haploid (Lang et al., 2013), 2,000-generation evolved diploids (Marad et al., 2018), and 

4,000-generation evolved autodiploid (Fisher et al., 2018). These three yeast lines were 

all evolved with different genomic backgrounds; haploids of mating-type a (MATa), 

autodiploids homozygous for mating type (MATα/α & MATa/a), and true diploids 

heterozygous for mating type (MATa/α), thus the three sets of populations all exhibit 

different combinations of mating-type and ploidy. Both mating-type and ploidy 

contribute to differences in gene regulation, therefore these three experimental lines have 

appreciable differences in genomic background. 

Sequencing data re-analysis  

All sequencing data used here were previously reported (Lang et al., 2013; Marad 

et al., 2018; Fisher et al., 2018). However, because datasets were analyzed years apart, all 

data was reanalyzed with a common pipeline to ensure comparability. All raw data files 

were demultiplexed using a custom python script (barcodesplitter.py) from L. Parsons 

(Princeton University).  Adapter sequences were trimmed using fastx_clipper (FASTX 

Toolkit). Reads were then aligned to a customized W303 genome using BWA v0.7.12 (Li 

et al., 2009).  VCFtools was used to filter variants common to all samples and mating-

type specific polymorphisms.  Remaining polymorphisms were then annotated using a 

strain-background customized annotation file (Matheson et al. 2017). Intergenic variants 

were further annotated based on flanking genes using in-house scripts. The data 

generated in Lang et al. (2013) are from whole population sequencing while the other two 

datasets are from clone sequences. To generate comparable genotype data for common 
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target detection, we identified dominant lineages in each population. Each lineage 

consists of variants in the same clonal background, and is therefore equivalent to clone 

genotypes. 

Identification of parallel targets of selection  

 We identify putative genetic targets of selection by identifying genes in which we 

observe more mutations than we expect by chance. Assuming that mutation events occur 

independently and at a constant rate, the number of mutations in a defined stretch of the 

genome will follow the Poisson distribution.  We calculate the expected number of 

mutations for each gene or intergenic region, σ, using the Poisson distribution weighted 

for the length, L, of each region:  

1      𝜆! =
𝐿!
𝐿!!

!
𝑀 

where M is the total number of mutations in the dataset. The probability of observing k 

mutations in gene σ is therefore  

2      𝑃 𝑜𝑏𝑠 = 𝑘 =  
𝜆!

!

𝑘!  𝑒!!!  

We divided the entire yeast genome into 6,264 genic and 6,243 intergenic windows by 

length in base pairs. We use expression (2) to calculate the p-value for the observed 

number of mutations in each genomic window. We then applied the Benjamin-Hochberg 

post hoc adjustment to correct for multiple hypothesis testing.  

Results 

Identifying putative genic and intergenic targets of selection  

 Each set of mutations was independently surveyed for overrepresented gene and 

intergenic targets (Fig. A-1). Thirty targets comprised of twenty-five unique genes or  
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Figure A-1.  Loci with parallel mutations in three datasets. Twenty-four unique genes 
and one intergenic region were identified as overrepresented in whole-genome sequence 
data with a significance threshold of p<0.02. Parallelism is seen both within and between 
evolution experiments with different genetic backgrounds. (A) Autodiploid populations; 
blue, (B) haploid populations; green, (C) diploid populations; pink.   
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intergenic regions were identified as overrepresented in whole-genome sequence data 

with a significance threshold of p<0.02. Most genes identified here have been previously 

reported to contain beneficial variants. The inclusion of intergenic units in this analysis 

yielded one overrepresented non-coding region, the intergenic stretch 

between HXK1 and IRC7. Although de novo adaptive non-coding variants have been 

described in bacterial systems (Solopova et al., 2012; Toprak et al., 2012), none have 

been identified in experimentally evolved yeast populations. HXK1 and IRC7 are 

divergently transcribed, thus variants in this region are upstream of both genes. It is 

unlikely, however, that these variants affect regulation since the 13 observed variants are 

distributed throughout this 10 kb region.  

Discussion 

Most experimental evolution studies identify genes that receive mutations in more 

than one replicate population and interpret this as evidence of selection at those loci 

(Lang et al, 2013; Gorter et al., 2017; Behringer et al., 2018; Marad et al., 2018). 

Parallelism is an effective way to identify beneficial mutations, however, simply 

identifying genes that receive mutations in more than one independent line is a less than 

ideal means of identifying targets of selection, and is likely to generate many false 

positives due to widespread hitchhiking in clonally propagated experimental populations 

(Lang et al., 2013, Buskirk et al, 2017). We created a simple statistical method to 

calculate the probability that each gene in the genome received an observed number of 

mutations during a given experiment. This is a much more rigorous means of identifying 

loci harboring beneficial mutations.  
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A strength of this approach is the ability to compare commonly mutated genes 

across experiments using different genomic backgrounds. We reanalyzed three published 

datasets of yeast experimental evolution: haploids, diploids, and autodiploids, cells that 

have two copies of the genome but are physiologically haploid because they are 

homozygous at the mating-type locus. These three datasets have previously not been 

compared in a systematic way, nor have intergenic variants been included in 

overrepresentation analyses. Although the experimental populations here originate from 

the same laboratory strain, background dependence with regards to ploidy and the 

mating-type (MAT) locus can still clearly be seen. Some genes appear enriched in specific 

datasets, such as ROT2 and STE12 in haploids. Other genes, such as ACE2, are 

ubiquitously accessible targets for beneficial variants. 

Although regulatory variation is expected to play a role in adaptation, particularly 

in diploid populations (Wray, 2007), no individual intergenic sequence has previously 

been found to significantly accumulate variants in yeast experimental evolution. Across 

the three datasets, we find only a single intergenic region, a 10 kb region upstream of 

both HXK1 and IRC7, to be overrepresented. Unlike genes, where it is straightforward to 

define a functional unit, promoters are often small and poorly defined. It is likely; 

therefore, that examining overrepresentation in entire intergenic units could obscure 

adaptive regulatory variants due to the small functional target size. The 13 observed 

variants are distributed throughout this 10 kb region upstream of both HXK1 and IRC7. 

The weakness of this approach is that it is dependent on the total number of 

variants observed in an experiment. The total number of mutations identified in an 

experiment will depend on the number of replicate populations, the population size, the 
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duration of the experiment, and the strength of selection. This method is most effective 

for experimental conditions in which beneficial mutations saturate. This does not appear 

to happen in yeast evolution experiments and therefore the list of genic targets of 

selection identified by recurrence alone is likely incomplete.  

Code availability 

The code to run the statistics described above is archived in the Lang Lab github 

at github.com/LangYeastEvoLab/Useful_Scripts.  
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Appendix B 

 

Supporting material for chapter 2 

 

Supplemental Methods 

Strain construction  

To generate deletion strains, a linear hygromycin-resistance cassette was 

amplified with overhanging 40 bp of STE4 homology on both ends and transformed into 

yGIL1113 (MATα, ura3Δ::PFus1-yEVenus; Lang et al. 2011). The resulting deletion 

mutant was converted to MATa by transforming with a gal-inducible HO (as described 

below) and used as the haploid deletion strain in competitions. The same deletion mutant 

was also crossed to yGIL121 (STE4, ura3) and yGIL128 (ste4Δ::KanMX, ura3; reported 

as DBY15087 in Lang et al. 2009) to generate heterozygous and homozygous deletions. 

A cross of yGIL1113 to yGIL121 was used as a wild type control. Crosses of strains 

carrying null alleles were performed by first transforming with a STE4-expressing 

plasmid from the MoBY ORF plasmid collection to compliment ste4Δ. All diploid 

genotypes were then converted from MATa/α to MATa/a via transforming with pGIL088, 

a plasmid encoding a gal-inducible HO and a PSTE2HIS3 marker, and selecting his+ 

transformants.   

Three evolved STE4 alleles were selected for reconstruction, 81ΔT (Ser261fs), 

G943T (Glu315*), and G935A (Arg312Gln). Alleles were reconstructed in yGIL432 (a 

yGIL121 derivative) using CRISPR-Cas9 alleles swaps. We constructed constitutive 



	

	 112	

Cas9-expressing plasmids starting from pML104 (Addgene 67638) expressing a STE4-

specific guide RNAs (5’ CTACCCCTACTTATATGGCA 3’) and co-transformed the 

plasmid along with a 500 bp linear repair template (gBlock, IDT) encoding the one of 

three evolved alleles as well as a synonymous C954A PAM site substitution. A strain 

containing just the synonymous PAM site was also isolated and used as the wild-type 

control allele. To minimize variation due to transformation and Cas9 activity, one 

successful transformant per allele was backcrossed twice and the resulting diploid was 

sporulated and tetrad dissected. For each allele, spores were genotyped at STE4 and 

intercrossed to generate heterozygous and homozygous mutants. Crosses of strains 

carrying evolved ste4 alleles were performed by first transforming with a plasmid from 

the MoBY ORF plasmid collection to compliment STE4. Mutants carrying an evolved 

WHI2 C85T (Q29*) allele were generated in identical fashion with two exceptions. The 

evolved substitution is within the WHI2 gRNA used (5’ 

ACAGTACGAAGGTAACGAGG 3’), and therefore no synonymous mutation was 

needed to eliminate Cas9 activity. A correct whi2Q29* was backcrossed once and 

intercrossed to produce homozygotes and heterozygotes. All diploid genotypes were 

converted to MATa/a as described above. 

We generated strains containing dominant drug cassettes tightly linked to the 

WHI2 locus using a similar CRISPR-based approach. We inserted either HphMX or 

KanMX 220 bp downstream of WHI2 or whi2C85T by transforming with the same 

gRNA (5’ ATCCCCTTCTGCAAATAACG 3’) and Cas9- expressing plasmid and co-

transforming with linear drug cassettes flanked by 40 bp of homology to the targeted 

region. Successful transformants were then backcrossed to either a wild type background 
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or a ste4G943T (described above) mutant. Crosses were sporulated and spores were 

selected in which drug-marker tagged mutant and wild-type WHI2 alleles are present on 

the same chromosome as both mutant and wild type STE4. Correct spores were crossed to 

generate three genotypes; WHI2::HphMX-STE4/ WHI2::KanMX-STE4, WHI2::Hph-

STE4/whi2C85T::KanMX-STE4, and WHI2::Hph- STE4/whi2C85T::KanMX-

ste4G943T. All three genotypes were converted to MATa/a as described above.   
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Table B-1. Strains generated for this study.  
Ploidy Assay Genotype*† 
MATa Competitive fitness  STE4, ade2–1, his3–11, leu2–3,112, trp1–1, 

ura3Δ::PFus1-yEVenus, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX 

MATa Competitive fitness ste4 Δ::KanMX, ade2–1, his3–11, leu2–3,112, trp1–
1, ura3Δ::PFus1-yEVenus, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX 

MATa/a Competitive fitness  STE4, ade2–1, his3–11, leu2–3,112, trp1–1, 
ura3Δ::PFus1-yEVenus/ura3, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX 

MATa/a Competitive fitness  STE4/ ste4 Δ::KanMX, ade2–1, his3–11, leu2–
3,112, trp1–1, ura3Δ::PFus1-yEVenus/ura3, 
bar1Δ::ADE2, hmlαΔ::LEU2, GPA1::NatMX 

 MATa/a Competitive fitness  ste4 Δ::KanMX, ade2–1, his3–11, leu2–3,112, trp1–
1, ura3Δ::PFus1-yEVenus/ura3, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX 

MATa/a Competitive fitness  ste4 Δ::KanMX, ade2–1, his3–11, leu2–3,112, trp1–
1, ura3Δ::PFus1-yEVenus/ura3, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX 

MATa/a Competitive fitness  ste4 Δ::KanMX, ade2–1, his3–11, leu2–3,112, trp1–
1, ura3Δ::PFus1-yEVenus/ura3, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX 

MATa Competitive fitness  ste4C958A‡, ade2–1, his3–11, leu2–3,112, trp1–1, 
ura3Δ::PFus1-yEVenus, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX 

MATa/a Competitive fitness  ste4C958A‡/STE4, ade2–1, his3–11, leu2–3,112, 
trp1–1, ura3Δ::PFus1-yEVenus/ura3, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX/ GPA1::KanMX 

MATa/a Competitive fitness  ste4C958A‡/ ste4C958A‡, ade2–1, his3–11, leu2–
3,112, trp1–1, ura3Δ::PFus1-yEVenus/ura3, 
bar1Δ::ADE2, hmlαΔ::LEU2, GPA1::NatMX/ 
GPA1::KanMX 

MATa Competitive fitness  ste4T81Δ, ade2–1, his3–11, leu2–3,112, trp1–1, 
ura3Δ::PFus1-yEVenus, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX 

MATa/a Competitive fitness  ste4T81Δ/STE4, ade2–1, his3–11, leu2–3,112, trp1–
1, ura3Δ::PFus1-yEVenus/ura3, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX/GPA1::KanMX 

MATa/a Competitive fitness  ste4T81Δ, ade2–1, his3–11, leu2–3,112, trp1–1, 
ura3Δ::PFus1-yEVenus/ura3, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX/GPA1::KanMX 

MATa Competitive fitness  ste4G943T, ade2–1, his3–11, leu2–3,112, trp1–1, 
ura3Δ::PFus1-yEVenus, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX 

MATa/a Competitive fitness  ste4G943T /STE4, ade2–1, his3–11, leu2–3,112, 
trp1–1, ura3Δ::PFus1-yEVenus/ura3, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX/GPA1::KanMX 

MATa/a Competitive fitness  ste4G943T, ade2–1, his3–11, leu2–3,112, trp1–1, 
ura3Δ::PFus1-yEVenus/ura3, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX/GPA1::KanMX 

MATa Competitive fitness  ste4G935A, ade2–1, his3–11, leu2–3,112, trp1–1, 
ura3Δ::PFus1-yEVenus, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX 

MATa/a Competitive fitness  ste4G935A /STE4, ade2–1, his3–11, leu2–3,112, 
trp1–1, ura3Δ::PFus1-yEVenus/ura3, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX/GPA1::KanMX 

MATa/a Competitive fitness  ste4G935A, ade2–1, his3–11, leu2–3,112, trp1–1, 
ura3Δ::PFus1-yEVenus/ura3, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX/GPA1::KanMX 

MATa/a Short-term-evolution STE4-WHI2::HphMX/ STE4-WHI2::KanMX, 
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ade2–1, his3–11, leu2–3,112, trp1–1, ura3Δ::PFus1-
yEVenus, bar1Δ::ADE2, hmlαΔ::LEU2, 
GPA1::NatMX 

MATa/a Short-term-evolution WHI2::HphMX- STE4/whi2C85T::KanMX-STE4, 
ade2–1, his3–11, leu2–3,112, trp1–1, ura3Δ::PFus1-
yEVenus, bar1Δ::ADE2, hmlαΔ::LEU2, 
GPA1::NatMX 

MATa/a Short-term-evolution WHI2::HphMX-STE4/whi2C85T::KanMX-
ste4G943T, ade2–1, his3–11, leu2–3,112, trp1–1, 
ura3Δ::PFus1-yEVenus, bar1Δ::ADE2, 
hmlαΔ::LEU2, GPA1::NatMX 

*Two alleles provided only for heterozygous loci in diploid genotypes.  
†ura3 alleles harbor spontaneous LOF mutations isolated from 5FOA.  
‡ ste4C958A control allele to ensure there is no fitness effect of a synonymous 
PAM site substitution used in strain construction. 
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Appendix C 
 
 
Preliminary findings on the evolutionary dynamics of gene-

drives 

 

 I originally proposed a research direction very different from that contained in this 

dissertation. I intended to build CRISPR-based gene drives and use experimental 

evolution to characterize co-evolutionary dynamics of drive genes and host genomes. 

Although a simplified pilot experiment had indicated this direction would be possible at 

the time of my proposal, the experiments ultimately became untenable. In this appendix I 

have included a brief introduction to this work, the small amount of data derived from a 

pilot experiment, and a summary of the barriers I encountered that forced me to change 

research directions.  

 Introduction  
 

Controlling disease vector populations is a major global challenge. Reduction and 

chemical destruction of breeding habitat, use of repellents, and distribution of mosquito 

nets have all helped lower malaria transmission. Genetic modification is a promising 

control strategy that has been shown to be effective at suppressing vector populations 

(Harris et al., 2012). An approach that takes advantage of the non-Mendellian inheritance 

of selfish genetic elements to drive beneficial transgenes through populations has seen a 

resurgence of interest due to the discovery and applications of CRISPR-Cas genes.  
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The description of CRISPR-Cas, or clustered regularly interspaced palindromic 

repeats and CRISPR-associated sequences(Doudna & Charpentier, 2014) has 

fundamentally changed the field of genetic engineering. Cas9 is a RNA-guided 

endonuclease whose target sequence is specified by a 20 base pair guide RNA. Because 

of its lengthy target sequence requirement (20bp) and its ability to generate double strand 

breaks in targeted sequences, Cas9 was quickly recognized for its potential as a drive 

element (DiCarlo, Chavez, Dietz, Esvelt, & Church, 2015; Gantz, Valentino & Bier, 

2015). The idea is a simple adaptation of more traditional homing endonuclease drive; 

Cas9 would be integrated into the genome at a locus homologous to whatever site is 

being targeted, and when Cas9 is expressed, the resulting double strand break would be 

repaired through homologous repair. The advantage is that Cas9 does not need to be 

engineered or modified to recognize this target. It only needs to be co-expressed with a 

gRNA containing the target sequence motif. In such a way, Cas9 could be targeted 

anywhere in the genome and gene drives could be engineered with much less effort.  

Recent development of Cas9 Based Gene Drives  

 Functional RNA-guided gene drives have been demonstrated in S. cerevisiae 

(DiCarlo et al., 2015), Drosophila (Gantz, Valentino & Bier, 2015), and Anopheles 

mosquitos (Gantzet al., 2015; Hammond et al., 2016). These studies demonstrated that 

Cas9 drive is highly efficient with 97-99% efficiencies(DiCarlo et al., 2015; Gantz, V. & 

Bier, 2015), and that Cas9 can drive the inheritance of refractory genes in a vector 

species (Gantzet al., 2015). Now that the last barriers to developing synthetic gene drives 

have seemingly been overcome, attention is called to large gaps in knowledge regarding 

the long-term behavior of gene drives. How do host genomes respond to drive? How 
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likely is it for host mutations to create an escape from drive? Is the mechanism of drive 

likely to be a dynamic trait subject to selection? We seek to begin addressing these 

questions empirically using experimental evolution in laboratory populations of S. 

cerevisiae.  

Models of Gene Drive  

Most models of gene drive are determinate and derive predictions from 

evolutionary population genetics. A set of equations were introduced by Deredec (2008) 

and expanded by Unckless et al. (2015) to model the dynamics of endonuclease-based 

drive elements in evolving populations.  In distilled form, this model derives drive allele 

frequency from inputs of starting frequency (q), degree of dominance of drive alleles (h), 

and conversion rate of drive alleles (c), and the selective cost of the drive allele (s).  

𝑞′ =  
𝑞! 1− 𝑠 + 𝑞𝑝[ 1− 𝑐 1− ℎ𝑠 + 2𝑐 1− 𝑠 ]

𝑤  

This model predicts that drive alleles will fix when conversion rates are high and fitness 

costs are low. Conversely, drive alleles will be purged when conversion is weak and 

selection is strong. Here, we directly test both the underlying assumptions of gene drive 

models as well as their power to predict population dynamics over time.  

Experimental Evolution and Sexual Reproduction 

 Experimental evolution is an empirical approach to the study of evolution wherein 

populations are evolved in controlled environments in the laboratory. In our laboratory 

we use the budding yeast, Saccharomyces cerevisiae as a model due to it’s rapid life 

cycle, genomic simplicity, and amenability for genetic analysis. The automation we 

integrate into our approach allows for the high throughput evolution of hundreds of 

populations for thousands of generations period of months. Our experimental approach 
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also includes tracking changes in fitness and genotype over the course of adaptive 

evolution. We are able to use flow cytometry assays to quantify changes in fitness and 

employ whole genome sequencing to gain high-resolution insights into genetic changes 

underlying fitness gains. 

Experimental evolution of yeast populations is an ideal approach to the study of 

gene drive. Quantification of selective costs and population size throughout experiments, 

along with precise tracking of allele frequencies will allow us to robustly test the 

predictions of gene drive models. Yeast cells are capable of sexual cycles, which is 

necessary for any gene drive element to spread. We have adapted a method first 

published in Burke et al. (2014) to force evolving yeast populations through cycles of 

meiosis and outcrossing in such a way as to maintain the high-throughput nature of our 

experimental approach while integrating sexual reproduction (Fig.2).  

Experimental Approach & Preliminary Data  

 Our experimental approach is to construct a synthetic gene drive and introduce it 

into laboratory populations. This approach presents two major challenges: (1) sexual 

cycles must be introduced into a high-throughput experimental evolution protocol that 

previously propagated asexual cultures and (2) a synthetic gene drive system with 

reporters that allow precise quantification in populations must be built. We have designed 

a protocol for the evolution of yeast with sexual cycles. We have engineered synthetic 

RNA guided gene drives in S. cerevisiae. We have piloted our experimental approach 

using low-resolution techniques and are now initiating a more robust evolution 

experiment complete with high-resolution analysis methods.  

Construction and validation of ADE2- and HIS3- targeted drive alleles 
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We have designed a simple RNA-guided gene drive based on both current 

literature and preliminary results in our lab. The gene drive we have built is a knockout 

driver, in which the Cas9 drive allele fully replaces the allelic wild-type gene. This is 

opposed to generating an insertion of the drive element or acting in trans (Noble et al., 

2016). The initial drive construct we designed was targeted to ADE2, a gene involved in 

adenine biosynthesis. We selected ADE2 to enable red/white colony screening (ade2 

mutants accumulate a red pigment). We were able to successfully build and induce gene 

drive (Fig. C-1), however the ade2 mutation imposed too high a fitness cost to be of 

experimental use, even when supplemented with excess adenine. We redesigned our 

drive construct to target HIS3, a gene involved in histidine biosynthesis. A his3 knockout 

is completely recessive in a diploid, but a double knockout requires histidine 

supplementation in order to be viable. By titrating the amount of histidine available in 

experimental media, we can impose a gradient of fitness costs across experimental   
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Figure C-1. ADE2 construct used in pilot experiment. A CRISPR-based drive allele was 
assembled at ADE2 for use in preliminary experiments. a. Cas9 under the control of a 
galactose inducible promoter at the ade2 locus targeted to WT ADE2. b. Meiotic 
products of hemizogotes segregate 2:2 pre-induction and 4:0 post induction. ade2 mutants 
are characterized by the accumulation of a metabolite that turns colonies pink and 
imposes a strong fitness defect (evidenced by small colony size).  
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populations. We first built our HIS3-targetted drive allele by linking Cas9-gRNA to a 

heterologous Candida albicans URA3 marker (allele confers viability in media lacking 

uracil). Fig. C-2 shows this allele segregating in meiotic divisions in pre-induction and 

post-induction diploids.  

Our drive construct consists of a gal-inducible Cas9 linked to a HIS3-targetted 

gRNA regulated by a pol III (SNR52) promoter. Cas9-gRNA is further linked to a 

constitutive mCherry fluorescent protein sequence that labels all cells containing at least 

one copy. This entire construct replaces HIS3 coding sequence along with ~250 bp 

flanking sequence in both directions. To differentially label WT cells, we integrated a 

ymCitrine tag 250 bp downstream of the WT HIS3 allele. When Cas9p cleaves the target 

sequence in HIS3, homology directed repair will copy the entire Cas9-gRNA-mCherry 

allele into the HIS3 locus and fully replace HIS3 and ymCitrine. Our fluorophore scheme 

will allow us to precisely quantify the frequency of drive homozygotes, WT 

homozygotes, and heterozygotes via flow cytometry and fluorescence-activated cells 

sorting (FACS) (Fig. C-3). Because Cas9 is inducible, a FACS assay on a culture before 

and after induction will yield data on conversion frequency, or drive efficiency.  

Drive allele introduced into outcrossing cycles  

 We will make use of the galactose induction system endogenous to S. cerevisiae 

to confine drive events to once per outcrossing cycle. When cells are exposed to media 

that is devoid of glucose and rich in galactose, a signaling cascade results in the 

activation of the transcription factor Gal4, which will bind to the Gal4 promoter upstream 

of Cas9.  Our preliminary data indicate an induction time of 6 hours is sufficient to 

maximize conversion without effecting cell viability. Following induction, cultures are  
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Figure C-2. HIS3 drive. A Cas9-based drive allele was assembled at HIS3. Prior to 
induction, meiotic products of heterozygotes segregate 2:2 for histidine prototropy (WT 
HIS3) and uracil prototrophy (his3Δ::PGALCas9-gRNA-CaURA3). Induction of the 
drive allele results in 4:0 segregation of histidine auxotrophy and uracil prototrophy.  
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Figure C-3. Gene constructs and fluorescent phenotypes. Fluorescent reporters will be 
utilized to distinguish genotypes. a. Dr and WT HIS3 alleles are linked to an mCherry 
and ymCitrine cassette, respectively. Drive results from successful gene conversion 
following galactose induction. b. A two-color FACS assay will be used to distinguish 
genotypes throughout the experiment. p and q will calculated to follow allele frequencies 
and conversion rate (c) will be estimated by subtracting post-induction heterozygote 
frequency (2pqt) from pre-induction frequency (2pq0).  
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 immediately diluted into rich glucose media, which will instantly repress the galactose 

signaling pathway and turn Cas9 expression off.  

 It is widely acknowledged that constitutive expression of an endonuclease, even 

one with specificity, will likely be deleterious to the transgenic organism. Most gene 

drives being designed seek to limit Cas9 endonuclease activity to one point in the life 

cycle of the target organism. In mosquitoes, this is usually during spermatogenesis 

(Gantzet al., 2015; Hammond et al., 2016). For this experiment, we have chosen to 

induce Cas9 expression following mating. This approach is akin to drive upon zygote 

formation, as opposed to gametogenesis. The reason for this is two-fold; 1) this is the 

assumption of the mathematical model we are directly testing (Unckless, Messer, & 

Clark, 2015), and 2) drive upon zygote formation represents the selective extreme that 

gene drives will likely face. It may be that confining drive to gametogenesis is a practical 

impossibility. The most recent CRISPR-based Plasmodium resistance construct designed 

in Anopheles mosquitos drives upon gametogenesis and zygote formation, depending on 

whether the transgene is maternally or paternally inherited. Gantz et al. (2015) generated 

a somatically integrated drive locus that is driven by a germ line promoter. When a 

heterozygous male is mated to a wild type female all progeny are heterozygous, 

indicative of germ line drive in the male. When a heterozygous female is mated to a wild 

type male all progeny are mutant for the WT allele (either due to conversion itself, or 

NHEJ following endonuclease activity at the target site), indicating drive both in the 

female germ line and somatically in the zygote. Somatic drive is likely due to perdurance 

of Cas9p and gRNA molecules in the egg, which target the paternally inherited wild type 
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allele. Any construct that relies upon conversion in female germ line cells will likely 

encounter this issue, as no endogenous mechanism exists for clearing Cas9 complexes.  

Lethal costs are associated with drive schemes that seek to impart a genetic load 

on populations in order to suppress population size through the targeted knockout of 

essential genes (Burt, 2003; Deredec, Burt, & Godfray, 2008). Conversely, the goal of 

those designing refractory gene drive systems is to achieve as low a selective cost as 

possible. Despite efforts to achieve this, most constructs exhibit some fitness effect or 

transgene instability over time (Franz et al., 2014; Moreira, Wang, Collins, & Jacobs-

Lorena, 2004). These effects may be compounded in a CRISPR-drive system by the cost 

of Cas9 expression and off-target effects. In our experiment we will vary the selective 

cost of homozygous drive mutants from neutral to lethal through histidine 

supplementation. Through this dynamic range we can assess the success different drive 

strategies without having to design complex drive alleles.  

Pilot Experiment 

Because we are proposing both a novel experimental evolution approach through 

the incorporation of sexual cycles, as well as a novel selective regime in the form of a 

drive allele, we first piloted the feasibility of this experiment using our original drive 

construct targeted to ADE2. This drive allele (ade2Δ::Cas9-gRNA-CaURA3, hereafter, 

ade2Δ::DR) is galactose inducible in the same manner of the HIS3-targeted drive allele. 

Successful drive was confirmed for post-induction cells that phenotyped as auxotrophs 

via tetrad dissections of meiotic products (Fig. C-1a). We then used competitive fitness 

assays versus a wild type reference to determine the selective cost of ade2 Δ::DR alleles 

(Fig. C-4). No fluorescent markers were incorporated into the genotypes used in this first   
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Figure C-4. Pilot experiment results. Four populations for each selection treatment were 
assayed for allele and genotype frequencies intermittently over 6 outcrossing cycles. a. 
Two different adenine supplementation treatments imposed a moderate and severe fitness 
cost for homozygous DR cells relative to WT. Black denotes s=0.06 and grey denotes 
s=0.15. b. Allele frequencies were assayed every other cycle. Black lines, s=0.06; grey 
lines, s=0.15, dashed lines, model-predicted frequencies. c. Black bar height represents 
Dr/Dr frequency at each cycle. *Fewer (Dr/Dr) than expected based on Hardy-Weinberg. 
(A; x2= 38.7, p<0.001; B; x2=3.84, p<0.05). ** More (Dr/Dr) than expected (A; x2 =4.17, 
p<0.05; H; x2= 24.23, p<0.001).  



	

	 128	

 

experiment; therefore all allele and genotype frequencies were followed via plating 

assays for adenine auxotrophy.  

 The pilot evolution experiment was initiated by seeding 84 experimental 

populations with ade2Δ::DR at a frequency of 0.5. Experimental populations were 

subjected to two selective environments (s=0.06, n=42; s=0.15, n=42). Four populations 

from each treatment were assayed for allele frequencies every other outcrossing and for 

genotype frequencies every outcrossing using plating assays .  The expectation of a 

moderate fitness cost allowing ade2Δ::DR allele increase and a severe fitness cost 

resulting in ade2Δ::DR allele loss was met by our preliminary analysis (Fig. C-4b). 

Furthermore, comparison to Hardy-Weinberg predictions at cycles for which both allele 

and genotype frequency data are available indicates that drive is overcoming selection in 

moderate-cost treatments while selection is overpowering drive in high-cost populations 

(Fig. C-4c). The low resolution of the data presented here was a result of the high percent 

error of plating assays (≈20%) along with low efficiency outcrossing. Despite the high 

error and noise in our preliminary data, it seems as though experimental populations 

differ markedly from model-predicted frequencies (dashed lines, Fig. C-4b). 

Additionally, the degree of inter-population variability suggests the predictive power of 

models may be lower than expected.   

 The described pilot experiment served as proof of principle that we can 

incorporate gene drive into high-throughput experimental evolution in sexual 

populations. However, these data also highlight the lack of quantitative power in our 

original experimental design. Only two selective treatments were possible due to the high 
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cost of ade2 mutation.  We anticipate that our his3 selection will be more amenable to 

fitness-cost titration.  Lack of resolution for measures of allele frequencies and genotype 

frequencies is overcome in the proposed experiment by the incorporation of fluorescent 

markers, which will provide high-resolution tracking of both variables and allow us to 

distinguish heterozygotes (Fig. C-3). Low outcrossing efficiency was due to the initial 

strategy of mating in liquid media. We have since optimized this step by switching to 

mating on filters, which concentrates cells in 2-dimensional space to facilitate efficient 

pheromone signaling and response. Despite these shortcomings, the trends gleaned from 

this experiment point to an interesting variability in drive allele dynamics that warrant 

further investigation. Here I propose to use the synthetic gene drive targeted to the HIS3 

locus to track the dynamics of this gene drive in real-time in evolving populations and to 

determine the extent to which the host genome resists the spread of the gene drive as a 

function of it’s selective cost. 

Obstacles to completion of proposed work 

 The project I proposed involved the construction of a gene drive allele at a new 

locus, HIS3, as well as the implementation of 2-color flow cytometry assays. While we 

were successful at constructing a gene drive at HIS3, we were ultimately unsuccessful in 

generating a construct for 2-color assays. My leading hypothesis for our inability to 

recover any mutants containing fluorescently labeled drive alleles is that we were 

unwittingly perturbing an essential intergenic region. Had we known this at the time, we 

may have tried to move the allele or create a completely synthetic transgene instead. 

However, we tried unsuccessfully to build our system for over a year. 
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As I moved into my fourth year it became obvious that the up-front investment in 

our gene-drive experiment was increasing while the payoff in terms of novelty was 

decreasing. Strain construction remained a seemingly insurmountable barrier. 

Additionally, other laboratories were beginning to do similar experiments with more 

extensive resources. It was at this point that I began focusing on several developing side 

projects, some of which have turned into the work presented in this dissertation.  
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