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“I believe that nothing happens by chance. Deep down, things have their own 

secret plan, even though we don't understand it” 
― Carlos Ruiz Zafón, The Shadow of the Wind 

 
“Pa’ lante, Pa’ lante como un elefante” 

― Battle cry of my grandma. “Keep going, keep going as an elephant”  
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ABSTRACT 

The conversion of androgens to estrogens is catalyzed by the aromatase enzyme, the 
product of the CYP19A1 gene, in gonads and peripheral tissues. Estrogens produced 
in the white adipose tissue (WAT) are postulated to play a central role in the 
development of postmenopausal breast cancer in women and male obesity-related 
secondary hypogonadism (MOSH). Obesity-related WAT inflammation is 
considered one of the main driving forces of excessive aromatization in WAT. 
Regulation of CYP19A1 gene in WAT involves the activation of the glucocorticoid-
dependent promoter I.4 and the balanced action of local inducers and repressors. This 
process is complex, and the mechanism behind the link between adiposity, WAT 
inflammation and excessive aromatization are not well understood. By using the 
aromatase reporter (hARO-Luc) mouse model and primary adipose stromal cells 
(ASCs) and adipose tissue samples, two factors, interleukin 10 (IL-10), an anti-
inflammatory cytokine, and CC chemokine ligand 2 (CCL2), a proinflammatory 
chemokine, were found to modulate aromatase gene expression. While IL-10 acts as 
a suppressor of CYP19A1 via PI.4, CCL2 stimulates this process in ASCs. This was 
confirmed in vivo in hARO-Luc mouse model, where obesity-related increase in the 
expression of aromatase reporter in WAT associated with lower IL-10 and/or higher 
CCL2 levels. Moreover, subcutaneous fat from obese women expresses significantly 
higher CCL2 and CYP19A1 mRNA levels. As a further proof-of-concept, we showed 
that attenuation of WAT inflammation by anti-oxidative plant polyphenols in diet is 
associated with decrease in aromatase reporter expression in hARO-Luc males. In 
vitro studies confirmed that polyphenols modulate the expression of CYP19A1 in 
stromal cells. Overall, these results may bring valuable insights into the mechanisms 
driving aromatase gene expression in WAT in postmenopausal women and men, as 
well as new approaches for the prevention of breast cancer. 

KEYWORDS: Obesity, CYP19A1, white adipose tissue, inflammation, IL-10, 
CCL2, dietary polyphenols  
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TIIVISTELMÄ 

Aromataasientsyymi katalysoi estrogeenituotannon viimeistä vaihetta, jossa 
androgeenit muuntuvat estrogeeneiksi. Aromataasigeeni (CYP19A1-geeni) ilmentyy 
erityisesti sukupuolirauhasissa, mutta myös lukuisissa muissa kudoksissa, kuten 
rasvassa ja aivoissa. Valkoisessa rasvakudoksessa tuotettujen estrogeenien oletetaan 
vaikuttavan keskeisesti rintasyövän kehitykseen vaihdevuosi-iän ohittaneilla naisilla 
ja miehillä lihavuuteen liittyvän sekundaarisen hypogonadismin kehittymiseen. 
Lihavuuteen liittyvää valkoisen rasvakudoksen tulehdusta pidetään merkittävänä 
paikallista aromatisaatiota lisäävänä tekijänä. Muutokset tulehdusta edistävien ja 
hillitsevien tekijöiden pitoisuuksissa lisäävät aromataasientsyymin tuotantoa 
valkoisessa rasvakudoksessa aktivoimalla CYP19A1-geenin ilmentymistä. Ihmisen 
aromataasigeenin ilmentymistä säätelevät hyvin monet eri tekijät lukuisten 
kudosspesifisten promoottereiden välityksellä. Rasvakudoksessa aromaasigeenin 
ilmentymistä säädellään mm. glukokortikoidiriippuvaisen promotterin I.4 kautta. 
Säätelymekanismi on hyvin monimutkainen ja huonosti tunnettu. 

Tässä työssä käytettiin naisten rinnan rasvan välikudoksesta eristettyjä mesenky-
maalisia soluja, rasvakudosnäytteitä, sekä siirtogeenistä ihmisen aromataasigeenin 
säätelyalueen raportoijahiirimallia (hARO-Luc). Työssä osoitettiin, että tulehdusta 
hillitsevä sytokiini interleukiini 10 (IL-10) sekä tulehdusta edistävä CC kemokiini 
ligandi 2 (CCL2) muokkaavat CYP19A1-geenin ilmentymistä rasvakudoksessa. Rinnan 
välikudoksen soluissa IL-10 vähensi I.4. promoottorin kautta välittyvää CYP19A1-
ilmentymistä kun taas CCL2 lisäsi sitä. Tulos vahvistettiin in vivo hARO-Luc hiirissä 
osoittaen, että lihavuuteen liittyvä lisääntynyt aromataasiraportoijan ilmentyminen 
rasvakudoksessa oli yhteydessä kudoksen vähentyneeseen IL-10-pitoisuuteen ja 
lisääntyneeseen CCL2 pitoisuuteen. Myös lihavien naisten ihonalaisen rasvan näytteissä 
CYP19A1 ja CCL2 ilmentyivät enemmän kuin vastaavissa normaalipainoisten naisten 
näytteissä. Lisäksi osoitimme, että rehun antioksidatiiviset kasvipolyfenolit vähensivät 
valkoisen rasvan matala-asteista tulehdusta ja aromataasiraportoijan ilmentymistä 
hARO-Luc koirashiirissä, mikä vahvistaa havaintoa rasvakudoksen tulehduksen ja 
CYP19A1-ilmentymisen välisestä yhteydestä. In vitro tutkimuksemme osoittivat, että 
kasvien polyphenolit muokkaavat CYP19A1-geenin ilmentymistä rasvan välikudoksen 
soluissa. Tulokset auttavat ymmärtämään aromataasigeenin ilmentymisen 
säätelymekanismeja miesten ja vaihdevuosi-iän ohittaneiden naisten rasvakudoksessa ja 
saattavat tarjota uusia keinoja rintasyövän ehkäisyyn. 

AVAINSANAT: Lihavuus, CYP19A1, valkoinen rasvakudos, tulehdus, IL-10, 
CCL2, ravinnon polyfenolit 
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1 Introduction 

Estrogens are sex steroid hormones that are critical to a wide range of physiological 
functions. Apart from their major role in reproduction, estrogens have also important 
roles in energy metabolism and body fat distribution in females and males 3-6. 
Estrogens have strong positive effects on cell proliferation and differentiation while 
also regulate energy intake, storage, and expenditure, as well as feeding behavior 7,8. 
Excessive estrogen levels associate, however, with malignancy and metabolic 
disorders. The link between obesity and elevated estrogen levels is particularly 
important as it may contribute to the development of postmenopausal breast cancer 
in women and secondary hypogonadism in men 9-14. 

Estrogen biosynthesis from androgens is driven by the action of the aromatase 
enzyme in a process that takes place mostly in the gonads and placenta, but also in 
white adipose tissue (WAT), skin, brain and bone 15-18. In humans, aromatase enzyme 
is encoded by a single gene, CYP19A1. Transcription of CYP19A1 is regulated by 
the use of multiple tissue-specific promoters and the action of distinct transcriptional 
factors, signaling pathways, and cellular mediators, which are also regulated in a 
tissue-specific manner 18. Regulation of CYP19A1 in healthy WAT, including that of 
the breast, involves the alternative use of at least three promoters: promoter I.4, and 
the almost unused I.3 and II 19. Transcriptional activation of PI.4 in cultured adipose 
stromal cells (ASCs) requires the combined effect of glucocorticoids and 
proinflammatory cytokines, including interleukin (IL)-6, IL-1β, IL-8, and tumor 
necrosis factor (TNF)-α. PII and PI.3, in turn, can be stimulated by factors that 
activate the cyclic adenosine monophosphate (cAMP) signaling pathway in the 
tissue, such as prostaglandin E2 (PGE2) 20,21. As such, the use and the activity of 
these promoters are closely depended on the inflammatory status of the WAT. It is 
then logical to assume that in a healthy WAT, the presence of a balanced interplay 
between pro- and anti-inflammatory factors and signaling cascades may be partially 
responsible for the low levels of aromatase and estrogen in the tissue. However, 
although much is known about the factors that induce CYP19A1 transcription in 
WAT, there is almost no information on the possible tissue-derived factors 
suppressing this process. 
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Obesity has been associated with increased CYP19A1 expression and elevated 
estrogen production in WAT 22-25. Excessive fat accumulation and its subsequent 
inflammation are proposed to be the leading causes of this such increase. It is held 
that the high levels of proinflammatory factors, IL-6, TNFα, CCL2, and PGE2, 
secreted by the hypertrophic adipocytes and resident macrophages may upregulate 
all local CYP19A1-related promoters and with this the production of the enzyme 26-

28. After menopause, being obese or overweight is considered the most important 
modifiable risk factor for developing breast cancer 29-31. Studies confirm that in 
morbid obesity and in breast cancer, levels of CYP19A1 expression in the breast 
adipose tissue are often three- to four-fold higher than normal 19,24,26. Increased 
CYP19A1 in these two extreme conditions are thought be partly driven by a shift in 
tissue promoter usage, where the augmented local levels of PGE2  favor the use of 
aberrant and more potent promoters, PII/PI.3, over PI.4. The regulation of CYP19A1 
transcription in WAT is, however, rather complex, and the mechanisms and factors 
underlying the link between obesity and dysregulation of aromatase expression are 
not fully understood. In fact, it is likely that other endogenous inflammatory factors, 
which levels are altered during obesity, may also play a direct role in the local 
regulation of aromatase expression.  

The use of aromatase inhibitors (AI) has been established as more effective 
approach than tamoxifen for the treatment of breast cancer. But despite proven 
efficacy, their long-term use for breast cancer prevention is limited because of the 
significant side effects caused by the systemic depletion of estrogens. Therefore, 
there is a strong need for improving our understanding of the mechanisms and 
molecular players that regulate the production of aromatase in the breast adipose 
tissue as this may facilitate the development of more safe and effective strategies 
aimed at breast cancer prevention and treatment. 

Consumption of seeds, berries, and soy, which contain dietary polyphenols such 
as lignans, stilbenoids, and isoflavones, are associated with reduced risk of breast 
cancer in postmenopausal women 32-34. According to several in vitro studies, the 
chemopreventive effects of polyphenols are mainly attributed to their powerful anti-
inflammatory and antioxidant effects, but also to the downregulation of aromatase 
transcription and activity, which have been proved only in cancer cells 35. However, 
not much is known on the transcriptional mechanisms they exert to modulate 
CYP19A1 expression in primary stromal cells.  

This thesis work focuses on identifying novel obesity-related factors that regulate 
aromatase gene CYP19A1 expression in the WAT of females and males, particularly 
in the mammary/breast adipose tissue. Furthermore, this study provides in vivo 
evidence for the role of obesity and ovariectomy on inflammation and aromatase gene 
expression in different WAT depots, as well as the role of dietary polyphenols on the 
regulation of inflammation and CYP19A1 transcription in WAT and breast ASCs.  



 16 

2 Review of the Literature 

2.1 Estrogen Biosynthesis and Action 
Estrogen actions are not limited to fertility and sexual functions in females; estrogens 
also exert important actions on non-reproductive organs in women and men, 
including brain, liver, adipose tissue, and skin. A substantial amount of evidence 
supports the critical role of estrogen in adipose tissue metabolism and inflammation 
and systemic energy homeostasis 8,17,36. However, questions remain regarding the 
mechanisms by which these metabolic functions are displayed.  

 

Figure 1.  The three estrogens: estradiol, estrone, estriol. Reprinted with permission of 
Creative Commons License (CC BY 4.0). https://www.ebi.ac.uk/chebi/init.do 

Estrogen hormones have a characteristic aromatic A-ring with a phenolic hydroxyl 
at C3, which distinguishes them from other sex steroids, e.g. C19 androgens. Natural 
estrogens (C18 steroids) include estradiol, estrone, and estriol (Fig. 1). 17β-estradiol 
(E2) is the most potent estrogen in this group, followed by estrone (E1), and the 
weaker estriol (E3) 37,38. Although all three estrogens are essential for development 
and reproduction in females, the levels at which they are produced vary according to 
different periods of life. In fertile non-pregnant women, ovarian E2 is the 
predominant bioactive estrogen in the circulation with concentrations ranging 1.5 to 
4 times higher than E1. These concentrations of E2, E1, and E3, however, are highly 
variable among individual women. During pregnancy, E3, synthesized in the fetus 
and placenta, exceeds the production rates of E2, and E3 becomes the dominant 
estrogen. Finally, when ovaries stop functioning after menopause, the E2:E1 ratio 
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reverses and circulating E2 levels become approximately one-tenth of those 
observed in premenopausal women 38-40. 

During the reproductive years of women, sex steroid hormones are mainly 
produced in the ovaries from cholesterol through a complex chain of reactions 
catalyzed by the enzymes steroid cytochrome P450 (CYP) hydroxylases and 
hydroxysteroid dehydrogenases (HSDs). Aromatase CYP19A1 catalyzes the rate-
limiting step in the estrogen biosynthesis, converting C19 androgens to C18 
estrogens. In the ovary, both C19 substrates, androstenedione (A4) and testosterone 
(T), are converted into E1 and E2, respectively (Fig. 2). 

 

Figure 2.  Aromatization of Testosterone. Modified from 41 

Peripheral tissues, including adipose tissue, brain, bone, and skin, are also capable 
of producing estrogens, specially E1, through local aromatization of C19 sources 
delivered from the circulation 17. Then, E1 can be converted to E2 by the action of 
17β-hydroxysteroid dehydrogenases (17β-HSDs) in the same tissue (Fig. 3A). 
Furthermore, estrogens can be also found as conjugated forms in the circulation. 
Estrone sulfate (E1S) serves as a stable reservoir for the formation of active forms 
E1 and E2 in different peripheral tissues. Estrogen sulfotransferase and steroid 
sulfatase enzymes catalyze the interconversion between E1 and E1S 42,43.  
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2.1.1 Menopause and estrogen production  
Fluctuations in estrogen levels are characteristic in women throughout life and 
delineate the different stages of their reproductive life cycle, from puberty to 
menopause. Whereas in premenopausal women, estrogens act as a circulating 
hormone produced mainly by the ovaries, in postmenopausal women, after cessation 
of ovarian function, estrogens are produced in extragonadal sites restricted to 
paracrine or intracrine functions. Gradual but significant changes in women’s 
metabolism start to manifest as a result of a different regulation in the estrogen 
synthesis at peripheral places, and the subsequent and massive decline in the total 
circulating levels of estrogens. At menopause, ovarian estrogen synthesis ceases and 
circulating E2 levels drop by up to 95% (Fig. 3A).  

Peripheral estrogen production in adipose tissue and skin mesenchymal stromal 
cells, bone osteoblasts and chondrocytes, vascular endothelia, smooth muscle, and 
brain, are the most important sources of estrogens in postmenopausal women and 
men 44,45. Unlike the ovaries, peripheral tissues are unable to synthesize C19 
precursors from cholesterol, but, instead, circulating A4 and dehydroepiandrosterone 
sulfate (DHEA) of adrenals and/or ovarian origins are locally aromatized to E1 (Fig. 
3B). To reach full biological activity, E1 is further converted to E2 within the same 
tissue in a reaction catalyzed by the 17β-HSDS 18. It is known that the majority of 
the peripheral estrogen production acts in an intracrine or paracrine manner 46. 
Maintaining the production of estrogens in these tissues is important after 
menopause. For instance, in bone, estrogens drive growth and maintain proper 
mineralization, thus preventing osteoporosis and fractures, while in the brain, 
estrogens influence sexual behavior, maintain normal cognitive function, and control 
appetite 17,47.  

Peripheral conversion of adrenal androgens into E1, particularly in the white 
adipose tissue (WAT), becomes the primary source of estrogens after menopause8,48. 
Both E1 and E2 levels in WAT are several folds higher than in the circulation 49,50. 
Although the amount of E2 in peripheral sites is low compared to that in blood before 
menopause, it is enough for the hormone to exert its biological functions within the 
tissues. Because of this, it is thought that circulating levels of estrogens in 
postmenopausal women reflect only the metabolism of estrogens in peripheral sites.  
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Figure 3.  Menopausal changes in estrogen synthesis and activity. A. Natural decline in 
circulating estradiol levels and activity in postmenopausal women. On the left, the 
dramatic fall (~95%) in E2 circulating levels between pre- and post-menopausal women. 
On the right, E2 circulating levels in postmenopausal women. Levels are often under 
the 95th centile among normal postmenopausal women. B. WAT becomes the major 
estrogen-producing site after menopause. Estrogen synthesis in extragonadal sites is 
dependent on circulating C19 precursors, dehydroepiandrostenedione (DHEA) and 
dehydroepiandrostenedione sulfate (DHEA-S). Only 20% of the total circulating DHEA 
has an ovarian origin, the remainder is secreted by the adrenal glands. The predominant 
estrogen produced in extragonadal sites is estrone (E1), which is converted into E2 in 
the same tissue or inactivated to estrone sulfate before being released in the circulation. 
Modified from 51 

Ovaries of postmenopausal women maintain the production of T, which means that 
after menopause levels of T are around one-fold higher than E2 in the circulation 52. 
Ovarian production of T, however, only represents about 25% of the total circulating 
levels. The other 75% is originated from circulating precursors, DHEA, secreted by 
both the ovaries and adrenals, and DHEA-S, which is released exclusively from 
adrenals. Moreover, DHEA and DHEA-S are present in the circulation of 
postmenopausal women at concentrations far above those of A4 and T 52,53. It is 
important to note that sex steroids produced in tissue are rapidly inactivated into their 
conjugated forms before being released in the circulation 46.  
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Due to the fact that WAT becomes the principal site of estrogen biosynthesis 
after menopause, estrogen production rates in elderly women positively correlates 
with their weight and adiposity 54. Furthermore, the peripheral aromatization of 
androgens gradually increases with age. WAT expression of CYP19A1 increases at 
rates that can even quadruple by the age of 60 55. These changes in estrogen 
production and aromatase expression after menopause may explain the increased 
susceptibility of elderly women to develop obesity and breast cancer. 

2.1.2 CYP19A1 (Aromatase) 
CYP19A1 is a member of the cytochrome (CYP) P450 superfamily, heme-
containing mono-oxygenase enzymes widely found across nature 56. With more than 
74 families and 504 individual members, these proteins catalyze a large array of 
reactions, including steroid synthesis and metabolism 57. Overall, the CYP450 family 
is associated with phase 1 reactions, hydrolysis, oxidation, and reduction of organic 
compounds, both endogenous and exogenous (e.g. sex steroids, eicosanoids, fatty 
acids, and drug compounds) 58,59. Most of these reactions are originated by both the 
insertion of one atom of oxygen into the substrate bound close to the heme group 
and electron transfer from nicotinamide adenine dinucleotide phosphate (NADPH) 
to the heme catalytic site by NADPH-cytochrome P450 reductase 59. With some 
exceptions, each member can metabolize several substrates due to the low specificity 
of their substrate-binding sites. However, CYP19A1 has a high specificity for its 
substrate, C19 androgens 60.  

CYP19A1 (CYP450 family 19, subfamily A, member 1) is a membrane protein 
localized in the endoplasmic reticulum of estrogen-producing cells 57,60. It is the only 
known enzyme that catalyzes the rate-limiting and irreversible conversion of C19 
androgens into C18 estrogen. The general pathway of estrogen biosynthesis 
originates from cholesterol in the gonads, followed by a series of successive 
enzymatic reactions that end in the conversion of C19 precursors into C18 steroids 
by the CYP19A1 enzyme, e.g. E1 and E2 are synthesized by aromatization of C19 
androgens, A4, and T, respectively 61,62 (Fig. 2). This last step is unique and rate-
limiting for the estrogen biosynthesis so that its blockade fully inhibits estrogen 
production without affecting other steroids 63,64. The enzymatic biosynthesis of 
estrogens involves the CYP19A1 and one of the cofactors, flavoprotein nicotinamide 
adenine dinucleotide (NADH) or NADPH (used to deliver electrons). However, 
NADPH is the most preferred cofactor. Together, CYP19A1 and NAPDH catalyze 
three consecutive hydroxylation reactions, each requiring one mole of oxygen and 
one mole of the cofactor. The first two steps entail the insertion of two hydroxyl 
groups at methyl groups at C-191 and C-192, with the second position dehydrated to 
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aldehyde. The last oxidative step leads to the phenolization of the steroid A-ring by 
the loss of one molecule of formic acid 42,65 (Fig. 2).  

In humans, CYP19A1 is encoded by the CYP19A1 gene (Fig. 4). This gene 
located on chromosome 15q 21.2, spans over 123 kb of DNA and produces tissue-
specific transcripts from different promoters through alternative splicing. It is 
composed of 10 exons (I-X) and 9 introns, but only 30 kb of the 3'-end, containing 
exons II-X, encodes the actual protein. The remaining 93kb upstream of the gene 
(5’-flanking end), contains multiple exons I or alternative untranslated promoters 
that differently regulate aromatase expression in target tissues 66,67. Currently, at least 
nine tissue-specific promoters have been recognized in humans: promoter/exon I.1 
(placenta major), 2.a (placenta minor), I.8 (placenta, brain and prostate), I.4 (adipose 
tissue and skin), I.5 (fetal tissues), I.7 (endothelium), I.f (brain), I.2 (placenta and 
testis), I.6 (bone), I.3 (adipose tissue) and promoter/exon II (PII, gonads and adipose 
tissue) 68-77. In other mammalian species, the aromatase gene also contains several 
tissue specific promoters in the first exon. However, there are significant differences 
between species regarding the number and localization of these promoters 15,78. This 
issue is described in greater detail in section 2.4. 

 

Figure 4.  Structure of the human aromatase CYP19A1 gene. The CYP19A1 gene is located 
on chromosome 15 from where it is transcribed from telomere to centromere. Through 
123 kb of length, the human aromatase gene is composed of a coding region of nine 
exons (exon II-X, approximately 30 kb) followed by two polyadenylation sites at the 
3’end, and a noncoding region at the 5’ with several tissue-specific promoters (exon I, 
about 93 kb). This upstream region regulates the transcription of the gene in a tissue-
specific manner through the use of alternative promoters and generates unique 
5’uncoding-exon-I transcripts in each aromatase expressing tissue. Each promoter 
transcript is then spliced alternatively onto a common splice acceptor site at exon II; 
thus, the final mature RNA only contains the coding region of the gene. This results in 
the translation of the same aromatase protein independently of the tissue promoter 
used. Modified from 79. 
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Transcription of CYP19A1 proceeds from telomere (5’) to centromere (3’), starting 
with the activation of any particular promoter and the following generation of unique 
transcripts carrying the 5’-untranslated region of the activated promoter and the 
protein encoding sequence. Each promoter transcript is then spliced onto a common 
junction 38 bp upstream the ATG translational start site at exon II. Thus, the reading 
frame to translate the protein is always the same regardless of the promoter being 
used, giving rise to an identical protein in all expressing tissues 18,72. Furthermore, 
aromatase expression in every tissue is not only regulated by a specific promoter 
usage, but transcriptional activity of each promoter is also regulated by an interplay 
of transcription factors, signaling pathways, inducers, and repressors, in a tissue 
specific fashion. Each promoter region also contains specific initiation sites and 
protein complexes mediating transcription. For example, with the exception of PI.4 
and PI.7, most I exon sequences have a TATA box, which requires a pre-initiation 
complex binding with the TATA box-binding protein. Instead, PI.4 has a GC box, a 
classic binding site for members of the specificity protein 1 (Sp1), and PI.7 contains 
a GATA box, a binding site of hematopoietic transcription factors 18,80. This complex 
regulation makes the expression of aromatase a unique process in each tissue, as 
clearly proven by different transcriptional rates of CYP19A1 depending on the tissue 
and its specific requirements.   

2.1.2.1 Expression of aromatase CYP19A1 gene in adipose tissue  

In adipose tissue, including that from the breast, CYP19A1 expression occurs 
primarily in adipose stromal cells (ASCs) or breast adipose fibroblasts (BAFs), 
accounting for more than 85% of the total local production. The rest is thought to be 
produced by the mature adipocytes 81,82. Transcripts from three different aromatase 
promoters, promoter I.4 (PI.4), PII, and PI.3, are known to be expressed in ASCs 
72,83. Of all three, transcription depends almost exclusively on the use of PI.4 in 
disease-free breast adipose tissue, while the other two, PII and PI.3, remain 
practically inactive 72,84,85. This particular order in promoter usage, combined with 
the balance between transcriptional inducers and repressors in tissue, maintains a 
low level of CYP19A1 expression in the breast, whilst ensuring adequate/basal levels 
of aromatase production and activity 18,83. 

The 5′-region of exon PI.4 contains a putative silencer and several transcriptional 
element sites, including an AP1 site, an interferon-γ element (GAS) responsive site, 
a glucocorticoid-responsive site (GRE), and a Sp1-binding site (Fig. 5). 
Transcription of CYP19A1 via PI.4 requires the strict activation of both the GRE 
responsive site by the glucocorticoid receptor (GR) and the Sp1 site by the Sp1 
protein86,87. In cultured ASCs, cortisol and its synthetic analog, dexamethasone 
(DEX), stimulate PI.4-related transcription in a dose-dependent effect 86. Such effect 
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is potentiated by the addition of serum 20,88. Sources of glucocorticoids for adipose 
tissue are primarily circulating cortisol and cortisone with the latter being converted 
to the more potent cortisol by the action of 11β-HSD1within the adipose tissue 89,90. 
Furthermore, in serum-free conditions, activation of PI.4 can be enhanced by the 
synergistic action of glucocorticoids and type I cytokines, oncostatin M (OSM) and 
TNFα 84. Thus far, type I cytokines, including IL-6, IL-8, IL-11, IL-1β, and OSM, 
are known to activate the GAS transcriptional site of PI.4 via the JAK1/STAT3 
signaling pathway. TNFα, on the other hand, is the only known factor able to induce 
the AP-1 responsive site via nuclear factor-κB (NFκB) and mitogen-activated protein 
kinase (MAPK) signaling pathways 20,84,91-93. 

 

Figure 5.  Factors involved in the activation of PI.4. In cultured adipose stromal cells, the activity 
of PI.4 is strictly dependent upon the activation of its GRE responsive site by activated 
glucocorticoid receptor complex. Glucocorticoids and serum-containing medium are 
usually enough to stimulate transcription via PI.4. Without serum, PI.4 can be activated 
by the combined action of glucocorticoids and class I cytokines, oncostatin M (OSM) or 
TNFα. Class I cytokines and OSM selectively activate receptor tyrosine kinases and 
JAK/STAT3 intracellular signaling cascade, resulting in the phosphorylation of STAT3 
and its interaction with the GAS responsive site at PI.4. On the other hand, TNFα 
activates tumor necrosis-receptors, triggering both IKK/NFκB and MAPK/ERK1/2 
pathways while stimulating the expression of c-Jun and c-Fos, which then form a 
complex that binds the AP-1 site within the promoter. Activation of the Sp1 responsive 
site is also required for aromatase PI.4 transcription. Modified from 15  

In addition to I.4 transcripts, CYP19A1 in adipose tissue is also transcribed by the 
gonadal promoters I.3 and II. These are the two most proximal promoters to the ATG 
common splice site, and because they are only separated by 215 bp, both promoters 
share response element sites and regulatory mechanisms 20. As in the gonads, the 
transcriptional activity of these two promoters is stimulated by cyclic adenosine 
monophosphate (cAMP) in the adipose tissue 94 (Fig. 6).  
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Figure 6.  Proposed regulation of promoter I.3/II in adipose tissue. Treatment of cultured 
adipose stromal cells with PGE2 activates promoter I.3 and II via any of its four EP-
GPCR receptors on the cellular membrane. Due to the close proximity to each other, 
and also to the common splicing site, these two promoters share similar regulatory 
mechanisms and responsive elements. EP receptors stimulate the cAMP signaling 
pathway and related mediators, including PKC, PKA, and P38/JNK1. PKC/PKA 
activates CREB and the nuclear receptor LRH-1 with its coactivator PGC1-α, which then 
activates CRE and SF-1 responsive elements, respectively. In addition, increased levels 
of cAMP lead to the inhibition of CRCT coactivators by the LKB1/AMPK cascade, 
allowing them to interact with CREB and enhance its stimulatory effect on aromatase 
transcription. PGE2 also activates p38 and JNK signaling pathways related to AP1 and 
CRE activity on both promoters. Modified from 79.  

Transcriptional activation of PII/PI.3 requires stimulation by the cAMP-response 
element-binding protein (CREB) and the activity of an orphan nuclear receptor, 
either the NR5A subfamily liver receptor homolog 1 (LRH-1/NR5A2) or the 
steroidogenic factor 1 (SF-1/NR5A1), on the SF-1 responsive site along the 
promoter’s 5’- region 95-97.  

Transcription via PII in adipose tissue involves protein kinase C (PKC) and 
protein kinase A (PKA) activation of two MAPK family members, p38 and JNK, 
and their related transcription factors ATF-2 and c-Jun 79,98-100. Once activated, these 
two transcription factors bind and activate CREB at the responsive site 94,101. In 
addition, activation of the CREB-regulated transcription co-activators (CRCT)-1, 2, 
and 3 proteins and the hypoxia-inducible factor (HIF)-1α, further stimulate PII 
activity102. CRCT proteins stimulate CREB following PKA activation, but without 
stimulation, the action of the serine–threonine liver kinase B1/AMP-activated 
protein kinase complex (LKB1/AMPK) on CRCT proteins keep these neutralized 
103. Additionally, LKB1/AMPK induces P53 transcriptional activity, which in turn 
inhibits PII activation at the transcriptional site. PGE2 and leptin stimulation of 
ASCs has been shown to downregulate P53104,105.  
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Furthermore, PI.3 and PII transcription are thought to be suppressed by an 
inhibitory transcriptional complex made of non-phosphorylated ATF-2 and zinc-
finger DNA-binding, SnaH, and Slug proteins. This complex binds near the CREB 
transcriptional site, and it is highly active in non-cancerous conditions, limiting 
CYP19A1 transcription via PII/PI.3106. Moreover, it was found that the silencer S1 
blocks the SF-1 responsive site at the PI.3 transcriptional site in normal breast 
epithelial cells and adipose fibroblasts, thus further repressing the activation of these 
two gonadal promoters 107,108. 

PI.3/II transcriptional activity in breast ASCs can be efficiently induced in vitro by 
phorbol esters (PMA) and forskolin (FSK), activators of PKC and adenylate cyclase, 
respectively 109. In cultured breast ASCs exposed to breast-cancer-cells conditioned 
media or in direct co-culture with breast cancer cells, CYP19A1 expression via PII 
activity is increased; however, the factors and mechanisms behind this aberrant activity 
are still unclear 110,111. Several studies suggest that prostaglandin E2 (PGE2) is the key 
endogenous regulator of PII in the adipose tissue since it is known to be a strong 
inducer of cAMP 92,110,112,113. PGE2 induction of aromatase in ASCs is initiated by the 
stimulation of any of its G-protein receptors EP-1, EP-2, EP-3 or EP-4, followed by 
the activation of PKA and PKC signaling pathways 114-117. Additionally, the PGE2 
effect on cAMP mediates the inhibition of LKB1 activity so that CRCT proteins can 
translocate to the nucleus and stimulate aromatase transcription via PII 19,102,118.  

Interestingly, CYP19A1 expression and activity in subcutaneous WAT depots 
appears to be different from that in visceral depots. In women, the activity of 
aromatase is found to be higher in the fat around the hips, followed by that in the 
thigh and abdomen 55,85,119,120.  

2.1.3 Estrogens mediate gender differences in body 
composition and energy metabolism 

Numerous studies provide evidence on the role of estrogens in regulating energy 
intake, expenditure, and storage in women and men, and it is particularly important 
in controlling body fat distribution and body composition changes during aging. 
These actions are considered to be driven by both central and systemic mechanisms 
36,121-124.  

Overall, estrogen effects are mediated by activation of the estrogen receptors (ER)-
α and -β in responsive organs. Although both isoforms have a similar binding affinity 
for E2, they are functionally different, having a distinct pattern of expression and tissue 
distribution as well as a different ligand activation. ERα and ERβ often behave 
differently when interacting with the same estrogen ligand, sometimes triggering 
opposite effects 125-127. Estrogen signaling, therefore, is selectively modulated 
depending on the balance between ERα and ERβ actions in each target tissue.  
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Central actions of estrogens are mediated via ERα and ERβ within the 
hypothalamus, ventromedial nucleus, arcuate nucleus, medial preoptic area, and 
paraventricular nuclei of the brain 123,128. E2 actions in the brain regulate food intake 
and satiety by complex and less well-defined mechanisms that include the 
stimulation of neuropeptide-Y (NPY) and agouti-related protein, the excitation of 
anorexigenic neurons, and the inhibition of orexigenic factors, such as leptin. At the 
same time, E2 modulates energy expenditure by central action at the ventricular 
nucleus, from where it induces thermogenesis in brown adipose tissue 123,129,130. One 
of the most interesting metabolic effects of estrogens is their potential to decrease 
food intake and to favor energy expenditure in animal models 36,131,132.  

On average, males have less total body fat with more central or abdominal fat 
deposition (apple shape), whereas females, commonly with higher body fat content, 
have prominent subcutaneous deposition, especially in the gluteal/femoral area, 
pelvis, buttocks, and thighs (pear shape). Higher levels of estrogens in females confer 
them with a greater capacity for storing energy as fat, but also with a more efficient 
way to utilize, transport, and expand it where necessary 122,123. Consequently, women 
are less prone to develop cardiovascular or metabolic diseases during reproductive 
age 133,134.   

Estrogens coordinate sex-specific actions in peripheral organs that regulate fat 
storage and distribution, insulin sensitivity, and immune response 5,135,136. Adipose 
tissue distribution in females and males are differently mediated by estrogens 
through a sex and adipose tissue depot-specific expression of ERα and ERβ. 
Compared to males, females exhibit a lower ratio ERα/ERβ in subcutaneous fat 
depots, which tilts the balance in favor of greater accumulation of fat within gluteal 
and femoral areas. Conversely, a visceral fat deposition is favoured in males due to 
a lower ratio ERα/ERβ in the abdominal area and by higher levels of testosterone 
and reduced LPL activity in subcutaneous depots 137-139.  

As women enter menopause, circulating levels of E2 decline, and with this, 
metabolic and histological changes begin to occur. Adipose tissue distribution in 
postmenopausal women changes towards a more androgenic pattern, favouring the 
abdominal or visceral deposition of excessive fat over subcutaneous sites. In addition, 
low estrogen levels affect the central control of appetite and satiety, predisposing 
women to weight gain 140-142. Therefore, the risk of developing obesity dramatically 
increases in elderly women, reaching around 65-70% in women over 50 141,143. 
Accordingly, menopause is associated with a higher incidence of metabolic-related 
diseases, including metabolic syndrome, type II diabetes, cardiovascular diseases, and 
cancer; reaching the men's incidence rates at same age 144-147. In parallel, fluctuations 
in ovarian hormones during the menopausal transition lead to a gradual involution of 
the breast parenchymal tissue 148. At this stage, the glandular tissue reduces from 35% 
in a premenopausal stage to less than 5% after menopause. Following this, the 
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proportion of subcutaneous fat within the breast increases making fat the most 
abundant component inside the postmenopausal breast. While the specific mechanisms 
by which this occurs are not yet well recognized, it is known that involution of the 
breast parenchyma occurs gradually as ovarian estrogen production declines and the 
endocrine stimulation of the tissue ceases. 

Ovariectomized (OVX) rodents exhibit greater body weight and fat 
accumulation as well as increased food intake and lower physical activity. Estrogen 
replacement therapy in these animals successfully attenuates some of the metabolic 
impairments, decreases body weight and visceral fat, and improves their insulin 
sensitivity 129,149,150. In women, however, the efficacy of hormone replacement 
therapy (HRT) to lower the metabolic consequences of menopause is still 
controversial. Numerous randomized trials have failed to find evidence to support 
the claim that HRT reduces energy intake. Nevertheless, in some cases, HRT in 
postmenopausal women has shown to diminish weight gain and body fat while 
reducing abdominal fat and enhancing systemic insulin actions 130,151. Regarding the 
glandular involution, although some studies have reported a small increase in breast 
density in women taking HRT, several more have shown no significant differences 
in breast morphology 63,152,153. Despite the potential benefits of HRT in reducing the 
burden of menopause-associated changes and symptoms 154, the use of HRT after 
menopause is linked to the increased risk of breast and endometrial cancer 155. 
Postmenopausal women who use the combined HRT with estrogen and progestin 
face a greater risk of breast cancer than those taking estrogen alone 156,157. However, 
women who use only estrogen have a greater risk of endometrial cancer 158.  

2.1.4 Gut microbiota and estrogens, a link regulating energy 
homeostasis 

E2 displays both central and peripheral signals to drive metabolic changes and to 
control weight gain159. However, the interrelationships between sex steroid balance 
and body metabolism are complex, and the exact mechanisms underlying sex 
steroid–associated obesity and/or metabolic dysregulation in women and men are 
still unclear. 

Gut microbiota is now considered a major factor in health and disease, as changes in 
gut bacterial composition and diversity are associated with certain metabolic, immune, and 
behavioral states 160-163. It is generally recognized that gut microbiota regulates important 
metabolic functions related mostly with energy homeostasis, activating local and systemic 
molecular responses affecting appetite, body weight, and adipose tissue functioning 
160,164,165. As mentioned in the previous sections, low levels of E2 after menopause 
predispose women to obesity. We propose here that the sex steroid balance may mediate 
obesity and WAT inflammation through changes in the gut microbiota (Fig.7). 
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In humans, gut microbiota consists of about 100 trillion microbes, mostly bacteria, 
but it is also composed of viruses, fungi, and protozoa. A range of 1000 bacterial 
species is thought to live in the human intestine, encoding over three million genes and 
producing, in turn, thousands of essential metabolites 162,166. The composition of the 
gut bacterial ecology coevolves with its host throughout life, reaching its highest 
complexity at adulthood. At this age, around 50 different bacterial phyla are known to 
live in the human intestine, of which some 80% belong to only three phylum, listed 
according to their abundance: Bacteroidetes → Firmicutes → Actinobacteria 167,168. 
Although these taxonomic features of gut bacteria apply to most humans, substantial 
individual variability is noted in terms of abundance and diversity of species, making 
our gut microbiome a unique fingerprint. Many studies support a tight and bilateral 
partnership between the gut microbiota and the human host. The gut microbial 
composition is specific to individuals, but it can be affected by host factors, such as 
age, gender, and ethnicity, as well as by diet, antibiotics, and physical activity 169-172. 
Common physiological and pathological conditions also play roles in shaping the 
composition of this bacterial ecology. Importantly, changes in the abundance of 
specific taxa of bacteria could be relevant in the pathogenesis of several chronic 
diseases. These include autoimmune diseases, asthma, obesity, type 1 and 2 diabetes, 
inflammatory bowel disease, and colorectal cancer 173-175.  

 

Figure. 7.  Potential interrelationship between sex steroids, obesity, and gut microbiota.  

Numerous animal and human studies have demonstrated that an increased Firmicutes-
Bacteroidetes ratio influences weight gain and obesity 170,172,176,177. While in humans the 
evidence supporting these observations remains controversial, by using germ-free and 
obese animal models researchers have consistently identified this particular bacterial 
shift as the initial trigger of local and systemic metabolic alterations linked to higher 
energy intake, impaired insulin sensitivity, and greater fat accumulation. As shown in 



Review of the Literature 

 29 

figure 8, the “obese-type gut microbiota”, as it is usually called, is associated with 
several detrimental local responses, particularly intestinal inflammation, enhanced food 
energy extraction, gut barrier dysfunction, and altered secretion of gut hormones and 
factors involved in metabolism, including peptide YY (PYY), glucagon-like peptide 
(GLP), angiopoietin-like protein 4/fasting-induced adipose factor (FIAF) and short-
chain fatty acids (SCFA) 165,176,178. Moreover, these local bacterial and metabolic 
changes correlate with higher body weight and adiposity, liver fat accumulation, and 
hyperphagia, suggesting these local changes may stimulate further systemic alterations 
on distant metabolic organs, which induce an obesogenic metabolic state 178,179.  

  

Figure 8.  Gut microbiota regulates energy balance. Obese subjects are associated with less 
diverse gut bacterial ecology and an increased Firmicutes / Bacteroidetes ratio. The 
obese bacterial profile promotes functional alterations in the intestine towards improving 
its capacity to harvest calories from food by altering the expression of gut hormones and 
factors regulating gut motility and glucose and lipid metabolism. Moreover, it also 
associates with a local low-grade inflammatory state and impaired gut permeability, 
leading to an increased release of pro-inflammatory factors and free fatty acids into the 
circulation. Obese gut microbiota produces more short-chain fatty acids (SCFA) that can 
induce lipogenesis and increase triglyceride deposition. In addition to these local 
disturbances, gut microbiota appears to affect whole-body metabolism by inducing 
responses via other endocrine organs, including the brain, adipose tissue, and liver.  
Bacterial metabolites appear to exert their metabolic effects by interacting with 
enteroendocrine L cells in the intestine, altering the secretion of anorexigenic and 
hunger hormones and affecting central appetite pathways (gut-brain axis). Furthermore, 
increased pro-inflammatory factors and SCFA in circulation may stimulate triglyceride 
accumulation and adipogenesis in fat adipose tissue depots and the liver, thereby 
reducing the insulin sensitivity in these organs.  
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It is already recognized that gut microbiota plays an important role in women’s 
estrogen metabolism 161. Estrogens are metabolized in the intestine by the bacterial 
secretion of β-glucuronidase, an enzyme that deconjugates estrogens into their active 
forms 180. It was known already in 1970 that gut bacterial ablation induced by broad-
spectrum antibiotics is associated with reduced deconjugation of estrogens and 
increased excretion of conjugated forms in women, which suggested protection 
against breast cancer 180,181. Current epidemiological studies, however, demonstrate 
a positive association between antibiotic intake and breast cancer risk 182. Although 
the mechanisms of these associations are unclear, the studies prove that gut dysbiosis 
could have a direct or indirect impact on circulating estrogen levels. On the other 
hand, Bertozzini and coworkers reported that in healthy women, the fecal bacterial 
composition remains relatively stable throughout life but tends to change after 
menopause 183. They also reported important differences in gut bacterial composition 
between genders, which they suggested is caused by the different levels of sex 
steroids in females and males. 

Furthermore, the recently introduced sequencing technologies have provided 
more detailed and consistent evidence that support a dynamic link between estrogen 
and gut microbiota regarding regulation of body weight, metabolism and immunity. 
While a significant portion of these data is derived from animal models, several in 
vivo studies have demonstrated that gut microbiota composition is, indeed, different 
between females and males, which may explain why females and males show distinct 
susceptibilities to infections and autoimmune diseases. Compared to male mice, 
females have a more diverse gut bacterial ecology and a greater tendency to 
fluctuations in terms of abundance, which coincide with the pulsatile secretion of 
sex steroids during the estrous cycle 184-187. Moreover, by using OVX mice, 
researchers have been able to assess the impact of sex hormone levels on the 
composition of the gut microbiome and to partly restore and prevent the gut 
disturbances and metabolic consequences by using HRT 187-189. However, it is still 
not clear from these animal studies whether a mechanistic link exist between sex 
steroid imbalance, gut dysbiosis, and metabolic disorders.  

In humans, on the other hand, gut microbiota studies are extremely challenging 
because of the significant variability in composition between subjects, the numerous 
external modifiers, and the different laboratory techniques used during the 
collection, storage, and analysis of stool samples190. Although the data remains 
inconclusive, it still supports important differences in the bacterial gut composition 
between women and men 191-193. Moreover, according to intervention studies in 
postmenopausal women, adopting a diet rich in fruits, vegetables, and seeds may 
increase the abundance of beneficial bacteria while reducing the levels of certain 
communities of bacteria associated with inflammation 194-196. Recent studies on the 
gut estrobolome (bacterial genes metabolizing estrogens in the gut) also confirm the 
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role of gut microbiota in controlling the systemic levels of estrogens in women 
161,186,197. The most interesting result in this regard is perhaps that changes in the 
estrobolome during obesity and menopause may contribute to breast carcinogenesis, 
altering the levels of circulating estrogens 9,198. Overall, despite the limitations, the 
current evidence may support the existence of a reciprocal interaction between 
estrogens and the gut microbiota regulating energy metabolism.  

2.2 Postmenopausal Breast Cancer and 
Aromatase 

Breast cancer is the most common cancer in women worldwide with over two million 
new diagnoses in 2018 199. Almost 8 out of 10 breast cancer cases occur around the 
age of 50, when women are likely to be at menopause 200. Based on current estimates, 
breast cancer is still the leading cause of cancer-related deaths among women in 
developed and developing countries, while it is ranked as the second cause of cancer-
related deaths in the USA and the EU, after lung cancer 201. Despite the marked 
improvement in survival rates (up to almost 90%) in many developed countries since 
the nineties, it is estimated that 627000 women died in 2018 from breast cancer 
around the world 199,202. Worldwide incidence rates of breast cancer have continued 
increasing over the last years parallel to the population aging, increased 
industrialization, and adoption of unhealthy lifestyles 199,202-204. These trends have 
forced a rethink of the current approaches among the medical and scientific 
community and a closer examination of preventive strategies to reduce breast cancer 
incidence. 

Breast cancer is a complex and heterogeneous disease that is composed of a 
spectrum of many subtypes, each of which expresses different pathologic and 
histological features, and different clinical outcomes, treatment responses, and 
prognoses 205-209. Invasive ductal carcinoma (IDC), the most common form of breast 
cancer, commonly arises within the glandular tissue, adjacent to or from the terminal 
duct or lobular units of the mammary gland. Based on the cellular features, most 
breast cancers are adenocarcinomas and are generally classified as ductal or lobular 
carcinomas. Invasive ductal carcinoma accounts for 70-80% of all breast cancer 
cases, followed by the less aggressive lobular carcinoma 206,210. Moreover, five main 
molecular subtypes of breast cancer have been identified and characterized by the 
pattern of expression of various biomarkers, including the status of steroid hormone 
receptors and human epidermal growth factor receptor (HER)-2 and proliferation: 
Luminal A, Luminal B, HER-2 enriched, and triple-negative/basal-like breast 
cancers 205,206,210. More than 80% of diagnosed breast cancers in postmenopausal 
women are estrogen receptor positive (ER+), highlighting the importance of 
estrogens in the development and progression of these tumors 211. Compared with 
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other subtypes, ER+ tumors are better differentiated, less aggressive, and are 
associated with lower mortality rates. Although primary ER+ tumors are highly 
responsive to estrogen ablation therapy, it has been reported that one-third of these 
breast cancer patients become resistant to treatment 205,211,212. 

Many important risk factors for postmenopausal breast cancer have been 
identified through years of epidemiological studies. The most important risk factors 
for breast cancer are factors and conditions that increase tissue- or circulating-
estrogen levels 198,213. Some of these are well defined as non-modifiable factors, 
including family history, age at menarche, and menopause. However, many other 
factors related to lifestyle can certainly be modified 214,215. Indeed, it has been 
estimated that over 40% of the total breast cancer cases in the USA 216,217, UK 218,219, 
and Australia 220 could be prevented by addressing the most important modifiable 
risk factors for postmenopausal breast cancer: obesity, physical inactivity, and 
alcohol consumption 221. It has been proposed that obesity-related increased 
aromatization of androgens in breast adipose tissue is a key driver of breast 
carcinogenesis after menopause. 

2.2.1 The role of estrogens in breast carcinogenesis 
At least three distinct mechanisms have been proposed to explain the role of E2 in 
carcinogenesis: stimulation of cell proliferation via activation of its receptor, DNA 
damage through production of estrogen metabolites, and neoplastic transformation 
via aneuploidy (Fig. 9) 222,223.  

Supported by a substantial amount of experimental and epidemiological 
evidence, E2 stimulation of cellular proliferation through ERα is the most widely 
acknowledged E2-mediated mechanism for carcinogenesis 10,223-225. It is thought that 
increased frequency of cell division rises the chance of DNA copying errors or 
mutations, leading to genetic and/or epigenetic aberrations, which in turn, 
accumulate and suddenly initiate neoplastic transformation 63.  

As proliferating cells need substantial energy resources, they often exhibit an 
increased mitochondrial activity that associates with elevated production of reactive 
oxygen species (ROS). Increased ROS has been reported in breast tumors and 
different cancer cell lines 226,227. These secondary messengers are known to exert 
deleterious effects on the DNA (genotoxicity), increasing genomic instability, and 
to mediate cell proliferation via redox-associated signaling pathways 213. Estrogens 
can be metabolized within tissues to catechol estrogen metabolites, followed by the 
subsequent formation of ROS and unstable secondary intermediates, such as 
semiquinones and quinones. When combined, these two sub-products may influence 
genotoxicity by promoting the formation of covalent adducts with DNA 228-231.  



Review of the Literature 

 33 

 

Figure 9.  Mechanisms of estrogen-induced carcinogesis. The role of estrogens in the 
initiation, growth, and maintenance of breast cancer is well established through 
preclinical data, epidemiological studies, and clinical trials. Thus far, three different 
mechanisms are thought to be responsible for the malignant actions. The first, and most 
widely documented, involves the activation of both estrogen receptors α and β, and their 
subsequent transcriptional activity or related signaling pathways, which induce aberrant 
cell proliferation and mutagenesis. The second involves the oxidative metabolism of 
estrogens, the formation of quinones and ROS, and the potential oxidative damage 
these estrogen metabolites can initiate on the DNA. The third mechanism entails altered 
estrogen levels that may lead to a deficient DNA repair control through progressive 
disruption of elements implicated in the cell cycle and epigenetic regulation, thus 
increasing the chance of mutagenesis. Modified from 228 

A third mechanism is that of E2 functioning as an inducer of aneuploidy (gain or loss 
of chromosomes). In vitro, E2 has been shown to disrupt microtubule organization 
in epithelial cells, which affects cell shape and polarity while promoting the 
formation of abnormal centrosomes during cell division 222,232. Consequently, these 
changes may facilitate the amplification of aberrant chromosomes and alter cell cycle 
progression and checkpoints, thus promoting the proper genetic instability that 
enables carcinogenesis 233.  

Over the years, several studies in postmenopausal women demonstrated that 
women in the highest quintile of plasma free E2 have almost a three-fold higher risk 
for breast cancer 234,235. Given that estrogen formation after menopause takes place 
in extragonadal tissues, such as the skin and subcutaneous adipose tissue, it is not 
surprising that adiposity and BMI correlate positively with levels of circulating 
estrogens E1 and E2 in these women 234,236-238. However, circulating levels of 
estrogens often do not reflect the levels in peripheral tissues 239. In breast tumors, 
levels of E1, E1-S, and E2 are shown to be up to 10-50-fold higher than those in 
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blood 240-242. This highlights the importance of both the local aromatization and the 
paracrine action of estrogens as the major endocrine mechanisms that stimulates 
cancer development in the breast adipose tissue. 

2.2.2 Aromatase expression and regulation in breast cancer 
Postmenopausal breast tumors are characterized by elevated estrogen production due 
to the increased aromatase expression and activity levels within the tumor itself, but 
mostly on the surrounding breast stroma 18,113,243,244. The so-called desmoplastic 
reaction in breast tumors involves a dense layer of undifferentiated adipose 
fibroblasts that encapsulate the malignant cells, giving them the perfect niche to 
support cancer cell growth 245. Essentially, a dynamic interaction takes place between 
cancer cells and their surrounding stroma to produce and maintain high levels of 
aromatase and estrogens, growth factors, collagen, and many other essential factors 
246. During this interaction, malignant epithelial cells produce large quantities of 
TNFα, IL-11 and IL-6, which may promote local aromatase expression while also 
maintaining stromal cells in an undifferentiated state, as they are also antiadipogenic 
factors 15,245,247. As a response to the highly inflammatory environment, cancer-
associated fibroblast (CAFs) respond by efficiently expressing aberrant levels of 
aromatase. However, it should be noted that regulation of aromatase expression in 
these cells differs from that in the healthy breast stroma. Furthermore, aromatase 
expression in the fat tissue adjacent to the tumor is also elevated at levels close to 
those within the tumor 15,107,242. This maintains a gradient of aromatase expression in 
the affected breast tissue while providing optimal and continuous estrogen fuel to 
support cancer progression.  

Aberrant aromatase mRNA levels in CAF are maintained through a switch in 
aromatase promoter use, from the weak PI.4 to the more potent PI.3 and PII 83,113. 
Thus, the activity of these two promoters is the major driver of aromatase within the 
tumor environment (Fig. 10). However, the transcriptional activity of PI.4 is also 
upregulated in breast cancer, thereby contributing significantly to the total aromatase 
being produced 242,248. This malignant shift to use aberrant promoters is believed to 
be partly caused by the excessive levels of PGE2 secreted by the malignant epithelial 
cells and the abundant immune cells surrounding the tumor. In fact, it has been 
demonstrated that the levels of TNFα, IL-6, and cyclooxygenase-2 (COX-2) are 
positively correlated with CYP19A1 transcripts in cancerous breast tissues 249. 
Additionally, altered levels of transcription factors LHR-1, ATF-2, and C/EBPβ in 
the breast cancerous milieu lead to the phosphorylation of ATF-2 into the PI.3/PII 
inhibitory transcriptional complex, thus allowing an increase in their transcriptional 
activity 15,18,250. Other important factors thought to induce PII in breast cancer are 
HIF-1α and leptin, whose concentrations are significantly elevated in cancer and 
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obese conditions, and the reduced levels or absence of PI.3/PII related repressors, S1 
and SnaH and Slug proteins 106,251,252. In addition to the tumor stroma, aromatase is 
also overexpressed in the vascular endothelial cells of breast cancer tissues via 
aromatase PI.7 via not fully understood mechanisms 18,80,249.  

 

Figure 10.  Aromatase promoter use in the healthy and cancerous breast. In a healthy breast, 
low levels of aromatase expression are maintained through the coordinated and balanced 
action of local inducers and repressors of PI.4 transcriptional activity in adipose tissue. 
Class I cytokines and TNFα produced by the adipocytes and macrophages stimulate PI.4-
related aromatase gene expression in breast adipose fibroblast (BAF) in the presence of 
glucocorticoids. Transcriptional activity of promoter II and I.3 in adipose tissue remains 
very low in non-cancerous conditions. This pattern in promoter usage, however, changes 
in breast cancer where promoter I.3 and PII activity increase well above that of PI.4. This 
results in an aberrant production and activity of aromatase inside the tumor, but mainly in 
the surrounding stroma (desmoplastic reaction) consisting of cancer-associated 
fibroblasts (CAF). The driving cause of this shift is thought to be the increased production 
of proinflammatory factors, particularly PGE2, by the malignant epithelial cells, adipocytes 
and resident macrophages.  

Currently, aromatase inhibitors (AI, anastrozole, and letrozole) are the most effective 
endocrine therapy against ER+ breast cancer, proving that excessive aromatization 
is an important factor in breast carcinogenesis. Several randomized trials have 
proved the therapeutic superiority of AI over selective estrogen receptor modulators 
(SERMs, e.g. tamoxifen) in the treatment of locally advanced or metastatic breast 
cancer 253-256 . Moreover, tamoxifen has shown to increase the expression of ERα 
within the tumor, while AI may promote the expression of ERβ 257. This last issue 
may explain the elevated resistance observed in patients using SERMs and the 
superior efficacy of AI 258. 
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2.2.3 Obesity-inflammation-aromatase axis  
Obesity, defined as having a body mass index (BMI) greater than 30, is considered 
a global health challenge that affects over 600 million adults worldwide 259. In the 
last decades, the prevalence of obesity has significantly increased, and it is expected 
to further grow over the next decades. In the USA, almost 40% of the total adult 
population are obese, followed by Europe with a prevalence of around 23% 260-264. 
Although prevalence rates may differ significantly among men and women within 
and between countries, on a global scale, more women are obese than men 259,264-266. 
Rates of obesity dramatically increase in women after the age of 40, reaching almost 
65% between 40-59 years, and 73% in women over 60 141.  

Strong associations between obesity and several metabolism-related diseases are 
well established, including hypertension, cardiovascular diseases, type 2 diabetes 
and metabolic syndrome 267-270. Obesity is also associated with increased risk of 
postmenopausal breast cancer and with poorer survival rates and increased 
recurrence 1,29,271. A substantial amount of evidence indicates that serum estrogen 
levels are associated with increasing BMI in postmenopausal women 30,237,272,273. 
Importantly, by losing weight and increasing physical activity, women could reverse 
the implication of this relationship and reduce their risk of breast cancer 236,274,275. 
Excessive energy intake forces adipose tissue to adjust to meet the new metabolic 
circumstances, thus promoting the stock of lipids and the expansion of the tissue via 
hyperplasia and/or adipocyte hypertrophy. At the same time, a pro-inflammatory 
milieu arises in the obese WAT due to the presence of cellular stress, fibrosis, 
hypoxia and adipocyte dysfunction or death 276-278.  

In the early stages of obesity, hyperplasic adipose tissue and hypertrophic 
adipocytes secrete increased levels of pro-inflammatory factors, including TNFα, IL-
6, IL-1β, adipokines, and chemokines, particularly leptin and CCL2, respectively. 
This, in turn, is associated with immune activation, characterized by increased 
recruitment and invasion of immune cells, especially macrophages, and increased 
lipolysis, which result in the release of free fatty acids (FFA) by the adipocytes 267,279-

281. This inflammatory condition is able to activate the I.4 promoter in BrAT while 
leading to the local overstimulation of aromatase gene transcription.  

As this process progresses and adiposity reaches critical levels, the obesity-
mediated inflammatory, metabolic, and hormonal disturbances intensify. Increased 
number of activated M1 macrophages within the BrAT exacerbates the local level of 
pro-inflammatory factors (TNFα, IL-1β, IL-8, IL-6, and PGE2) and, importantly, the 
secretion of CCL2 267,279,282. The crosstalk between hypertrophic adipocytes and M1 
macrophages provokes the initiation of a vicious circle of additional macrophages 
and pro-inflammatory immune responses 283. Hypertrophic adipocytes often undergo 
cell death, which contribute then to the formation of crown-like structures (CLS). 
These are defined as clusters of lipid-scavenging macrophages surrounding free lipid 
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droplets from dead adipocytes 282,284. The presence and abundance of CLS in obese 
WAT are often used as a marker of chronic inflammation, but also as a marker to 
indicate severity of obesity, as they are associated with altered adipose tissue gene 
expression, cytokine overproduction, systemic insulin resistance and vascular 
endothelial dysfunction 262,285,286. Moreover, due to limited vascularization and 
restricted oxygen availability in the obese WAT, a hypoxic environment ensues with 
increased levels of HIF-1 and vascular endothelial growth factor (VEGF) 277,287. The 
lipid-laden adipocytes, on the other hand, release large amounts of saturated FFAs 
that are ready to activate inflammasome complexes, which results in the production 
of NFκB and subsequent activation of its related pro-inflammatory pathways, as well 
as in the over-secretion of PGE2 by macrophages 27,281,283,288,289.  

Ultimately, the combination of tissue inflammation and hypoxia during obesity 
is associated with a stage of insulin resistance, increased lipolysis and excess leptin 
production in the adipose tissue that may promptly promote systemic metabolic 
dysfunctions, such as diabetes 290-292. More importantly, at this stage, elevated levels 
of TNFα, IL-6, IL-11, IL-1β, and PGE2 in BrAT might already promote carcinogesis 
either by a direct action on cell proliferation or by increasing aggregation of 
aromatase expressing stromal cells within the tissue. In addition to the increased 
levels of PGE2, elevated levels of other aromatase PII inducer factors, including 
leptin and HIF-1, are also found in the obese BrAT 27,105,251,293.  

Studies have demonstrated that circulating and WAT levels of estrogens are 
higher in obese postmenopausal women 22,82,236,237,294-297. The causes of this are partly 
attributed, firstly, to an obesity-mediated decrease in SHBG (sex hormone-binding 
globulin) concentration, thus enhancing the androgen and estrogen delivery to 
peripheral tissues, and secondly, to an increased expression of aromatase in WAT 
via upregulation of all local promoters, PI.4, PI.3 and PII 120,297-299. Adiposity directly 
correlates with the expression levels of aromatase gene in adipose tissue, where 
levels can reach up to three-four-fold higher in the breast of obese postmenopausal 
women 26,27,295,300. While increased levels of androgens in the obese breast adipose 
tissue may offer more substrate for estrogen synthesis, the increased local aromatase 
expression may support a greater conversion of androgens to estrogens within the 
tissue. 

Taken together, obesity-mediated inflammatory, hormonal, and metabolic 
alterations support the increased activity of PI.4 and aberrant use of PI.3/PII in WAT, 
thereby enhancing aromatase expression and estrogen production, and the risk of 
developing breast cancer in postmenopausal women. While the mechanisms behind 
this complex interplay are not fully defined, the obesity→ inflammation→ aromatase 
axis is regarded as a significant driver of breast carcinogenesis after menopause and 
is thus a valuable target for cancer prevention (Fig. 11) 24,301-303.  
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Figure 11. The obesity-inflammation-aromatase axis driving breast growth in 
postmenopausal women. The prevalence of obesity and overweight is higher in 
postmenopausal women, as well as is the risk of metabolic syndrome and ER+ breast 
cancer. Adiposity and associated low-grade inflammation in the breast adipose tissue 
(BrAT) modulate susceptibility to carcinogenesis. In an attempt to store the excessive 
caloric energy, inflamed and hypertrophic adipocytes secrete elevated levels of 
proinflammatory factors that, in addition, alter the local metabolic function, stimulate the 
recruitment of macrophages and subsequent formation of CLS. Combined, these three 
highly inflammatory entities support and maintain high levels of TNFα, IL-1β, IL-6 and 
PGE2 that overstimulate the expression of aromatase in BrAT through the action of all 
local promoters I.4, I.3 and II. Breast adipose tissue of obese women exhibits higher 
levels of testosterone, which may result in greater availability of C19 substrates for 
aromatization. Consequently, high levels of estrogens in the breast of obese 
postmenopausal women may prompt epithelial cells to proliferate, which increases the 
risk of local carcinogenesis. 

2.3 Dietary Polyphenols and Regulation of Adipose 
Tissue Function 

Polyphenols are secondary plant metabolites with a variety of essential intrinsic 
functions, including protection against UV light, herbivores, and pathogens. 
Moreover, polyphenols are implicated in the formation of bitter taste and 
pigmentation in plants that attracts pollinating insects 304,305. These chemical 
compounds characterize for a very strong antioxidant activity as a result of the 
aromatic rings and hydroxyl groups in their structure 306. 

To date, several thousand molecules having a polyphenol structure have been 
identified, and these are the most abundant antioxidants in the human diet 307. 
Nevertheless, depending on the number of phenolic rings and the position of their 
hydroxyl groups and other structural elements, most of polyphenols can be classified 
into only four groups: phenolic acids, flavonoids, stilbenoids, and lignans (Fig. 12).  

The structure of polyphenols is also important with regard to their biological activity, 
efficacy, bioavailability, and pharmacokinetics 308-310. Phytoestrogens, including 
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isoflavones, stilbenes, and lignans, are considered nonsteroidal estrogens with a similar 
structure and function to E2 311-313. The dietary isoflavone daidzein and the lignan 
secoisolaricirecinol are metabolized by the gut microbiota to equol and enterolignans, 
respectively, the estrogenic and antioxidant potential of which are even higher than their 
initial precursors 314. However, consumption of polyphenol-rich food usually provides 
only a low concentration of these compounds in blood and urine, sometimes due to poor 
absorption or because of extensive metabolism and rapid excretion 308,310. 

Nevertheless, the consumption of fruits, seeds, vegetables, and soy, which 
contain dietary polyphenols, are associated with a reduced risk of several cancers 
32,315. While the mechanisms by which polyphenols interfere in cancer development 
and progression are still controversial, there is a clear indication that 
chemopreventive actions of these compounds result from improving energy 
metabolism and inflammation, as well as, directly suppressing tumor development 
and progression 315.  

 

Figure 12. Classification of dietary polyphenols and the chemical structure of selected 
examples. 

2.3.1 Role of polyphenols in obesity and obesity-related 
inflammation 

Numerous studies in cells and obese animal models suggest that polyphenols, 
especially catechins (flavonoids, very abundant in green and black tea), resveratrol 
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(RSV, a stilbenoid common in red grape skin and wine), and curcumin (a 
hydroxycinnamic acid) have significant effects on obesity 316,317. Whether these 
interventions were based on polyphenol-rich diets or pure isolated compounds, long-
term interventions in obese mice and rats have shown to improve energy metabolism 
and reduce body weight and triglycerides, making them a valuable alternative to 
prevent obesity and other metabolic related diseases in humans, such as diabetes, 
hypertension, cardiovascular diseases, and cancer. 

The anti-obesity effects of dietary polyphenols are thought to be driven by 
several mechanisms: 1. Reducing food intake, 2. Decreasing lipogenesis, 3. 
Increasing lipolysis, 4. Inducing fatty acid β-oxidation, 5. Preventing adipocyte 
differentiation, 6. Suppressing inflammatory responses and oxidative stress and, 7. 
Altering the composition of the gut microbiota 316. Interestingly, dietary polyphenols 
appear to modulate signaling pathways related to adipogenesis, lipogenesis, and 
lipolysis in cells and animal studies 318,319.  

Cathechins and RSV have been shown to activate AMPK/sirtuin-1/ peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha cascade, therefore 
reducing cholesterol, fatty acid and triglyceride formation in adipose tissue 316,320-322. 
Polyphenols may also reduce body fat and fat storage by increasing lipolysis, fatty 
acid β-oxidation and thermogenesis via stimulation of key metabolic factors such as 
hormone-sensitive lipase, carnitine palmitoyltransferase-1, and uncoupling proteins 
323-326. In cultured preadipocytes, catechin, RSV, and curcumin have been shown to 
inhibit expression of genes that participate in the differentiation of these cells into 
mature adipocytes, such as CCAAT/enhancer-binding protein-β proteins, 
peroxisome proliferator-activated receptor gamma and adipocyte fatty acid-binding 
protein 2 316. In the case of inflammation, catechins, RSV, curcumin, and lignans act 
as anti-inflammatory agents blocking the production of obesity-related cytokines, 
resistin, IL-6, TNFα and CCL2, while suppressing the recruitment of macrophages 
into the adipose tissue. This last feature is attributed to a direct effect on NF-κB and 
MAPK signaling pathways 316,327-332. Furthermore, recent evidence suggests that the 
ability of polyphenols to modulate energy metabolism may involve modulation of 
the gut-brain axis 333,334. In fact, polyphenols are shown to alter the gut microbiota 
by reducing the growth of inflammation-related bacteria or to favor the growth of 
beneficial bacteria and potentially shift the microbiota composition into a non-
obesogenic type 335-339. On the other hand, the intestinal microbiota is a key metabolic 
site for many phenolic compounds, generating the bioactive metabolite compounds 
that will ultimately produce the effects in the body 340.  

The current evidence on the consumption of polyphenols and the reduction of 
obesity is limited and still quite inconsistent. One of the main reasons for this is the 
huge variation in absorption and metabolism between individuals during a dietary 
intervention 310,341. Nevertheless, some human studies have reported significant 
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effects on polyphenols reducing body weight and preventing obesity. For example, 
catechins from tea have been shown to reduce body weight gain, fat mass, and waist 
circumference in obese humans 342,343. Higher consumption of flavonoids, especially 
soy isoflavones, are associated with lower BMI and lower plasma lipids levels in 
obese subjects, although the potency of such effects may vary when using soy or the 
pure compounds 344-346. Flaxseed lignans, on the other hand, have been shown to 
reduce central obesity and to improve the metabolic profile of obese postmenopausal 
women, particularly in improving insulin sensitivity347-350. 

2.3.2 Role of dietary polyphenols in the prevention of breast 
cancer 

The impact of polyphenols on breast cancer risk is thought to be largely influenced 
by their ability to modulate oxidative stress and inflammation, but also by their 
actions on the molecular targets and protein cascades critical for breast cancer 
development and progression. These include cell survival, proliferation, migration 
and differentiation, production, and action of sex hormones, immune responses, to 
name a few. However, as for other disease conditions, the beneficial effects of 
dietary polyphenols on breast cancer remain limited and controversial since most of 
the evidence still comes from cells and animal studies. 

Among all dietary polyphenols, the most studied compounds in epidemiological 
trials are the isoflavones, genistein and daidzein. Numerous studies evaluating the 
association between high consumption of soy and soy-derived isoflavones and breast 
cancer risk, particularly among Asian population, have reported positive effects in 
reducing breast cancer incidence 351-357. Most of these preventive actions appeared to 
be the result of reducing important risk factors, including circulating ovarian 
hormones and adrenal androgens levels, obesity, and inflammation. However, 
several other epidemiological studies in pre- and postmenopausal women have not 
identified an association between soy intake and breast cancer risk 358-363.  

Resveratrol has demonstrated potential breast cancer-preventive effects in recent 
preclinical studies 364. However, few epidemiological trials have investigated these 
actions in humans. For example, Levi and coworkers analyzed the impact of 
resveratrol from three different dietary sources, red wine, white wine, and grapes, on 
postmenopausal breast cancer risk 365. The study suggested an inverse relationship 
between breast cancer risk and dietary resveratrol intake, but only when it was 
obtained from grapes since alcohol intake was positively associated with breast 
cancer risk. Resveratrol consumption also increased the concentration of the sex 
hormone-binding globulin (SHBG) in postmenopausal women 366, which inversely 
associated with the risk of breast cancer. 
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Furthermore, a high intake of flaxseed containing dietary lignans, 
secoisolarecinol (SECO), a precursor of the enterolignans, enterodiol (END), and 
enterolactone (ENT) is associated with reduced breast cancer risk in both pre- and 
postmenopausal women 34,367,368. In postmenopausal women, daily consumption of 
around 32 g of flaxseeds was associated with 20% lower risk of breast carcinogenesis 
and breast cancer mortality 367,369. In these studies, authors also suggest that such 
preventive effects may be due to a strong anti-inflammatory effect by lignans. 
Moreover, consumption of phytoestrogens (isoflavones and lignans) was associated 
with a reduced breast cancer risk in premenopausal women 356,368. The risk was also 
lower among overweight women, which indicates that modulation of BMI and other 
obesity-related disturbances could be their possible mechanism of action. In 
postmenopausal women with primary breast cancer, the study conducted by 
Thompson et al. showed that daily intake of muffins containing 25 g of flaxseeds 
reduced markers of tumor growth 370. In combination with the aromatase inhibitor, 
anastrozole, 25 g of flaxseeds/day did not show any change in tumor markers of 
proliferation, apoptosis, or circulating sex hormone levels in postmenopausal women 
with ER+ breast cancer 371.  

Multiple questions remain unanswered regarding the specific molecular 
mechanisms of action of dietary polyphenols to reduce breast cancer risk. 
Nevertheless, an increasing amount of data indicates that consumption a polyphenol-
rich diet could prevent postmenopausal breast cancer. However, further studies need 
to investigate whether these compounds could improve current drug preventive 
strategies.  

2.4 Nonclinical Models to Study the Regulation of 
Human Aromatase Gene 

Mechanisms by which obesity, inflammation, and breast cancer regulate expression 
of CYP19A1 in extragonadal tissues are difficult to study in human subjects. 
Therefore, several in vitro and in vivo models have been developed to study the 
regulation of CYP19A1 expression. 

An important finding regarding aromatase regulation in WAT emerged with the 
discovery of the specific cell-site expressing this gene within the tissue. In 1992, it 
was found that aromatase mRNA expression in the adipose tissue primarily occurs 
in the stroma rather than in the mature adipocytes 81,288. While the debate is still 
ongoing, it is widely accepted that the epithelial fraction is also an important source 
of aromatase in the breast, especially in cancer conditions 244,372,373. Since then, an in 
vitro model of primary cultured adipose fibroblasts has been successfully used to 
study the regulation of estrogen biosynthesis in physiological and disease conditions 
374. However, there are important limitations with translating the in vitro data to in 
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vivo conditions. For example, while it is known that glucocorticoid induces 
aromatase in cultured ASCs, no association has been found regarding the levels of 
glucocorticoids and the aromatase expression in women’s WAT in vivo 19,375.   

Although, aromatase is widely expressed in most vertebrate species, particularly 
in the gonads and brain, humans and higher primates are the only species with a 
strong extragonadal expression 15,376. Furthermore, there are also important 
regulatory and structural differences in the aromatase gene between species. 
Compared to that of humans, the mouse aromatase gene (Cyp19a1) covers only 104 
kb, but equally it contains IX translated exons (Fig. 13). Transcription of Cyp19a1 
is also regulated in a tissue-specific manner by the use of tissue-specific exons I or 
tissue promoters. However, its regulation appears to be significantly simpler as it 
contains fewer promoters. Only five aromatase promoters have been identified in 
mice: P2 (ovaries), I.f (brain), Etes (testis), I.3 (ovaries and testis), and I.4 (visceral 
adipose tissue), but their regulation remains unknown (Fig. 13) 377-379.  

 

Figure 13. Structure of the Cyp19a1 gene. Similar to the human aromatase gene, Cyp19a1 in 
mice is also regulated by several tissue-specific promoters situated upstream the actual 
coding region containing nine exons (II-X). However, only five promoters have been 
identified in mouse tissues: PI.4 in gonadal fat, I.f in brain, Etes in testis, I.3 in gonads 
and PII in ovaries. Modified from 379 

Nonetheless, due to the relatively high sequence homology that some of these 
promoters have to their human counterpart, researchers have used WT mice, 
especially C57BL/6J, to study the impact of distinct obesogenic conditions on mouse 
aromatase expression in the adipose tissue. Initially, Zhao and coworkers 377 
demonstrated the presence of one promoter driving aromatase in visceral adipose 
tissue of male mice in a similar way as the I.4 promoter in humans. While they could 
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not find expression of this promoter in subcutaneous adipose tissue or in females by 
using primary mouse adipose fibroblasts, they found that local Cyp19a1 mRNA 
expression was induced by DEX, similar to the I.4 human promoter. Later, it was 
shown that in both OVX and ob/ob obese C57BL/6J females, mammary gland 
aromatase mRNA expression is increased 302. However, due to the existing 
differences in aromatase gene regulation between humans and mice, humanized 
aromatase mouse models are preferred. Several humanized aromatase mouse models 
have been generated over the past years. Most of these have utilized only specific 
fragments or promoter regions of the CYP19A1 380-383. However, at least two 
transgenic mouse models have been successfully designed to express almost all 
promoters along the exon I of CYP19A1. The humanized aromatase (Aromhum) 
mouse model created by Bulun’s group in 2012 119 and the human aromatase reporter 
(hARO-Luc) mouse model created in 2013, by Poutanen’s group 384. 

Transgenic Aromhum mice (FVB/N) express human aromatase gene in several 
mouse tissues driven by its native promoters 119. Importantly, the aromatase tissue 
expression pattern in these animals mimics the expression distribution in women. In 
the case of mRNA expression in mammary adipose tissue, it seems that the local 
aromatase transcripts are derived from proximal promoters II and I.3 and distal I.4. 
Therefore, and because the aromatase protein is also produced, this model has been 
particularly used to study the regulation of aromatase in mammary adipose tissue 
and its implications in breast diseases. These animals show higher estrogen levels in 
mammary gland tissue compared to the WT females, and therefore they exhibit 
increased mammary duct elongation by the age of puberty and, after 24 weeks of 
age, higher incidence of breast hyperplasia and carcinogenesis 119. In the same study, 
researchers used Aromhum females on a high-fat diet (HFD) to study the effects of 
weight gain on mammary aromatase expression. Their results support the idea that 
diet-induced weight gain stimulates aromatase and estrogen production in the breast, 
as total aromatase mRNA expression and PI.4 and PII specific transcript expression 
were found elevated in the mammary adipose tissue of these animals 119. 

While the sequence of the aromatase gene inserted in Aromhum mice contains all 
translated exons, the hARO-Luc reporter mouse model contains only three translated 
exons (II-IX). This allowed the inclusion of 100 kb of the 5’ region or exon I 
regulatory region, containing promoters I.1, I.8, I.4, I.5, I.7, I.f, I.2, I.6, I.3 and II 
(Fig. 14) 384. This shorter sequence allowed researchers to introduce also a 
luciferase reporter at the common splice site, providing thus an easy way to measure 
or track gene transcription within tissues and cells. Nevertheless, it is important to 
point out that the human aromatase protein is not produced in this model. Thus far, 
the correct function and tissue distribution of promoters I.1, I.4, I.7, I.f, I.3, and II 
have been clearly proved in male and female hARO-Luc mice 384,385. An important 
limitation of this model is, of course, its inability to correlate the expression of 
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aromatase with the tissue level of estrogens, as the inserted sequence translating the 
gene generates a truncated protein.  

 

Figure 14. Reporter gene structure used in the hARO-Luc mouse model. Modified from 384 
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3 Aims 

The main objective of this work was to identify novel obesity-related factors that 
regulate aromatase expression in white adipose tissue (WAT) depots, with emphasis 
on those in the mammary/breast adipose tissue, as these may represent new targets 
for breast cancer therapy and prevention. We hypothesized that inflammatory 
cytokine profile in the adipose tissue determines the local aromatase level, and 
consequently, the local estrogen production. Results were obtained from hARO-Luc 
reporter mice as a tool to characterize the impact of weight gain and adiposity on 
CYP19A1 gene expression in WAT depots, and from primary human cells and tissue 
samples as models for validation and clinical translation.  

The specific aims were as follows:  

1. To confirm the suitability of the hARO-Luc mouse as a model to study 
obesity-mediated disturbances in CYP19A1 regulation in WAT (I) 

2. To study the role of endogenous anti-inflammatory and proinflammatory 
factors, particularly IL-10 and CCL2, in the regulation of CYP19A1 
expression in bone marrow-derived mesenchymal stromal cells (MSCs) 
from hARO-Luc mice and human breast adipose stromal cells (ASCs) (II, 
III) 

3. To evaluate the effect of weight gain and adiposity on promoting 
inflammation and CYP19A1 expression in different WAT depots in vivo by 
using HFD-fed male and female hARO-Luc mice and subcutaneous fat 
tissue samples from obese women (I, III)  

4. To investigate the impact of ovariectomy (OVX) and its related weight gain 
on CYP19A1 gene expression in WAT and gut bacterial composition in vivo 
using OVX female hARO-Luc mice (II) 

5. To study the potential effect of dietary polyphenols on obesity-related 
inflammation and CYP19A1 reporter activity in WAT in vivo using HFD-fed 
hARO-Luc males, as well as their effects on CYP19A1 transcription in vitro 
using cultured hARO-Luc MSCs and human ASCs (I, unpublished data)



 47 

4 Materials and Methods 

4.1 Animal Experiments 
Animal care and use were conducted in accordance with the Finnish Act on Animal 
Experimentation and EU laws, guidelines, and recommendations. The studies were 
approved by the national Animal Experiment Board in Finland 
(ESAVI/7471/04.10.03/ 2012). Mouse line maintenance and genotyping was done 
in collaboration with the Turku Center for Disease Modeling (TCDM). 

hARO-Luc mice 384 were housed under standard conditions in the Central 
Animal Laboratory at the University of Turku. The mice were maintained with 12 
hours light/dark cycle in constant temperature (21 ± 3 °C) and humidity (55 ± 15 %), 
fed with soy-free RM3 chow (SDS, Whitham, Essex, UK) and tap water ad libitum. 
Mice were euthanized by CO2 inhalation followed by cervical dislocation. 

4.1.1 Primary bone marrow derived MSCs (I, II) 
Mesenchymal stromal cells (MSCs) were collected from 4-6-weeks-old hARO-Luc 
female mice. Cells were isolated from femurs and tibias by flushing bone marrow 
from the diaphysis with stromal medium: Minimum Essential Medium alpha (MEM, 
Life Technologies Ltd, NY, USA) medium supplemented with 15% heat inactivated 
fetal bovine serum (USA origin, Gibco, Carlsbad, CA, USA), 10 mM HEPES, 100 
IU/ml penicillin, 100 μg/ml streptomycin, 2.5 mM L-glutamine, 10 nM of DEX 
(SERVA, Heidelberg, Germany) and 0.25 μg/ml amphotericin B (Fungizone, Life 
Technologies Ltd). After centrifugation at 200 x g for 8 min, the cell pellet was 
resuspended in stromal medium, plated at density of 1x106 cells/cm2 into T75 flasks, 
and cultured at 37 °C humidified atmosphere with 5 % CO2. After 2 days, non-
adherent cells were removed by washing the culture with phosphate buffered saline 
(PBS) and fresh stromal medium was changed every 48 hours until the culture was 
60-90% confluent. For every assay, cells from 2-3 animals were pooled.  

MSCs were plated into 12-wells culture plates with DEX-free stromal medium 
(II) or DEX and serum-free SC medium (I) at a density of 40.000 cells per well. To 
study the expression of aromatase gene (Luc reporter activity) via PI.4 or PII, 80-
90% confluent MSCs were exposed to 250 nM DEX + 5 ng/ml TNFα (Sigma-
Aldrich, Saint Louis, MO, USA) or 25 µM forskolin (FSK, Sigma-Aldrich) + 4 nM 
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phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich), respectively. For cells in 
publication I, medium was supplemented with 10 mg/L polyphenol rich pine knot 
extract (PKE) or one of the following polyphenols (10 µM): pinosylvin 
monomethylether (MePS), pinosylvin (PS), nortrachelogenin (NTG) or stilbenoid 
mixture (LSmix). For cells in publication II, 20 ng/ml IL-10 (PeproTech, Rocky Hill, 
NJ, USA) was additionally added into the culture medium.  

After 24 h incubation, cells were washed with PBS and lysed with Tropix lysis 
solution (Applied Biosystems, Foster City, CA) supplemented with 0.5 mM 
dithiotretiol (Sigma Aldrich) for protein concentration and luciferase activity 
analyses, or with RLT buffer supplemented with β-mercaptoethanol for RNA 
isolation.  

4.1.2 High-fat diet (HFD)-induced obesity: In Vivo study (I) 

The experimental design followed is shown in figure 15. A total of 44 hARO-Luc 
males were used for this study. At 6 weeks of age, animals were distributed according 
to their body weight and adiposity into 3 different dietary intervention groups: 1. 
LFD group (n=17) fed with purified low-fat diet providing 10 % of calories from fat 
(D12450 - Research Diets Ltd, New Brunswick, NJ, USA), 2. HFD group (n=17) 
fed with HFD providing 60% of calories from fat (D12492 - Research Diets Ltd), 
and 3. HFD-PKE group (n=10) fed with HFD supplemented with polyphenol-rich 
extract (PKE, 1600 mg/kg/diet). The preparation, analysis of the composition and 
bioavailability of PKE, obtained from Pinus sylvestris was carried out as described 
in 386. Dietary interventions lasted for 8 weeks.  

 

Figure 15. Experimental design for the dietary intervention study in I. In sample collection, the 
numbers in parentheses specify the method for which it was used. 
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Mice were weighed weekly and their body adiposity was measured by EchoMRI 
(EchoMRI LCC, Houston, TX, USA) in the beginning, middle and end of dietary 
intervention (at 6, 10 and 14 weeks of age). Food intake per cage was measured twice 
a week. To analyze the bioavailability of PKE-derived polyphenols in the animals, 
24 h urine samples were collected in metabolic cages, and the concentration of 
MePS, PS, NTG and matairesinol (MR) were determined as previously described 386.  

Prior to sacrifice, mice were fasted for 4 hours and blood samples were collected 
from tail vein for fasting glucose measurements. For serum measurements, blood 
samples were collected by intracardiac puncture and immediately stored at -70 °C. 
Subcutaneous (inguinal fad pad) and gonadal fat tissue samples were collected, 
weighed and snap frozen to liquid nitrogen and stored at -70°C for Luc activity 
measurements, ex vivo cultures and histological analyses. 

4.1.3 Ovariectomy (OVX)-induced weight gain: In vivo study 
(II) 

For this experiment, a total of 11 hARO-Luc female mice were used. Each animal 
was housed individually and maintained on soy-free chow diet (RM3, SDS). The 
experimental design followed is shown in figure 16. Starting at 4 weeks of age, mice 
were separated and placed into individual cages. At the age of 8 weeks, 6 females 
were OVX whilw 5 remained intact. Mice were weighed weekly and their body fat 
composition was measured by EchoMRI one week before OVX and later, just before 
the end of the experiment. The two 4th inguinal mammary fad pads and gonadal fat 
samples were collected and weighed. The right mammary fat pads and gonadal fat 
were snap frozen in liquid nitrogen and stored at -70 °C for Luc activity 
measurements. The left mammary fat pads were divided in two pieces. One was used 
for measuring crown like structures (CLS) density, and the second one, along with a 
gonadal fat sample, were placed into a 12-well plate and maintained with 1 ml 
modified Eagle Medium (DMEM/F-12, Life Technologies Ltd) containing 100 
IU/ml penicillin and 100 μg/ml streptomycin for 24 h. Conditioned media were 
collected and stored at -70 °C for ex vivo tissue-derived IL-10 measurement. 
Additionally, colon tissue and fecal samples were collected and immediately frozen 
in liquid nitrogen and stored at -70 °C for qPCR, Luc activity and microbiota 
sequencing analyses.  
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Figure 16. Experimental design for the OVX-induced weight gain study in II. In sample 
collection, the numbers in parentheses specify the method for which it was used. 

4.1.4 High-fat diet (HFD)-induced obesity: In Vivo study (III) 

The experimental design followed is shown in figure 17. 6-week-old hARO-Luc 
female mice were weighed and their whole-body fat content was measured with 
EchoMRI. After this, mice were allocated into two groups with similar body weights 
and adiposity, and fed with purified low-fat D12450B diet (LFD, 10% of calories 
from fat) or high-fat D12492 diet (HFD, 60% of calories from fat) obtained from 
Research Diets Inc. Experiments were done in three parts with 4 to 6 animals per 
group for a final number of 16 mice on LFD and 17 mice on HFD. After 8 weeks, 
whole body fat content was measured, four hours fasting blood was collected from 
tail vein samples for fasting plasma blood glucose, and mice were sacrificed. 
Cytokine concentrations were measured in serum samples obtained from cardiac 
puncture blood. Right inguinoabdominal mammary fat pad and samples from 
gonadal fat and retroperitoneal fat were snap frozen in liquid nitrogen and stored at 
-70 °C for Luc activity measurements. Furthermore, mammary fat pad (left side), 
gonadal fat and retroperitoneal fat were collected and equally divided. One part was 
placed into a 12-well plate for ex vivo tissue-derived cytokines measurement, and 
another one was exposed to 10% neutral buffered formalin. Formalin fixed tissues 
were sectioned and stained with hematoxylin (HE), and CLSs were counted from 
HE stained sections. 
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Figure 17. Experimental design for the HFD-induced obesity study in III. In sample collection, 
the numbers in parentheses specify the method for which it was used. 

4.1.5 White adipose tissue (WAT) explants: Ex vivo cultures 
(I, III) 

Inguinoabdominal subcutaneous and gonadal adipose tissue samples were collected 
from 4-month-old hARO-Luc males on HFD (I) and from 4-6-month-old hARO-
Luc females (III). Following a previously described method 387, tissue samples were 
divided into equal explants of approximately 100 mg of weight, and placed 
separately on 24-well culture plates with 1ml of DMEM/F12, supplemented with 
100 IU/ml penicillin and 100 μg/ml streptomycin. In every experiment, tissues from 
4 animals were used. Luc aromatase reporter activity via PI.4 was induced with 10 
nM and 250 nM DEX in gonadal and subcutaneous fat tissue samples, respectively. 
To examine the effect of other common proinflammatory factors on WAT aromatase 
expression, tissue samples in I were treated also with 100 or 1000 ng/ml 
lipopolysaccharide (LPS, Sigma Aldrich) from E. coli 0111: B4. To investigate the 
potential effect of CCL2 on regulation of local aromatase gene expression, tissues in 
publication III were additionally treated with 100 ng/ml CCL2.  

After 24 h incubation, tissue samples were collected and analyzed for Luc activity.  

4.2 Human Tissues and Cells 

4.2.1 Primary human breast ASCs (II, III) 
In publication II, to examine the potential effect of IL-10 on modulation of 
aromatase and PI.4 transcripts expression, primary adipose stromal cells (ASCs) 
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were isolated from breast adipose tissue of two women undergoing reduction 
mammoplasty (average age 45 y, average BMI 30 kg/m2). The collection of these 
samples was done at the Monash Medical Centre hospital in Melbourne, Australia; 
and was approved by the Monash Health Human Research Ethics Committee B 
(00109B). In the manuscript (III), to examine the potential activation of MAPK-
ERK1/2 signaling pathway by CCL2 on breast ASCs, were obtained from Turku 
University Hospital (Ethical committee approval ETKM 23/2018). Isolation was 
done by collagenase and hyaluronidase digestion as previously described 374. Cells 
were maintained in Waymouth's medium (Life Technologies Ltd) or DMEM/F-12 
containing 5-15% calf serum until they reached 70% confluency. ASCs in I were 
then treated with 10 nM DEX alone or in combination with 5 ng/ml TNFα, and 10 
μM IL-10, while cells in III, were treated as described later in 4.7. 

To investigate the impact of the ERK1/2 signaling pathway on TNFα-mediated 
CYP19A1 expression (II) and the role of CCL2 and dietary polyphenols in the 
regulation CYP19A1 transcription (III and unpublished data, respectively) in the 
breast adipose tissue, cryopreserved breast ASCs isolated from women undergoing 
elective breast reduction were purchased from ZenBIO, Inc (Research Triangle Park, 
NC, USA). For each experiment, three replicates using cells from three different 
donors (aged 20 – 66 y, BMI: 25.1 – 29.1 kg/m2) were performed. At first, ASCs 
were plated at a density of 2x104/cm2 in T75 flasks containing DMEM/F-12 
supplemented with 15% heat inactivated fetal bovine serum, 100 IU/ml penicillin 
and 100 μg/ml streptomycin; and were maintained at 37°C humidified atmosphere 
with 5% CO2. Once they reached approximately 70% confluency, cells were serum 
starved overnight in medium containing 0.1% BSA (serum-free medium). For 
publication II, ASCs were treated with 10 nM DEX alone or in combination with 5 
ng/ml TNFα and U0126 (ERK1/2 inhibitor, Sigma-Aldrich). In III, ASCs were 
treated with 10 nM DEX alone or in combination with 100 ng/ml CCL2 and one of 
the following inhibitors (10 μM): U0126, BAY 11-7082 (NFκB inhibitor, Sigma-
Aldrich) or RS 504393 (CCR2 inhibitor, Tocris Bioscience, Bristol, UK). Lastly, for 
the unpublished data, ASCs were treated with 10 nM DEX alone or in combination 
with 5 ng/ml TNFα to induce PI.4-related CYP19A1 expression, and with 25 µM 
FSK + 4 nM PMA to induce PII-related CYP19A1 expression. Additionally, cells 
were treated with one of the following polyphenols (10 µm): PS, genistein (GNS), 
resveratrol (RSV, Sigma-Aldrich), enterodiol (END), enterolactone (ENT) or 
secoisolarecinol (SECO). PS and SECO were isolated from wood knot materials at 
Åbo Akademi (Laboratory of Forest -Products Chemistry). ENT and END were 
synthesized at Åbo Akademi (Department of Organic Chemistry). GNS was 
obtained from Prof. William Helferich, University of Illinois.  

After 24 h treatment, all ASCs were washed with PBS and lysed with TRIsure 
for RNA isolation. 
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4.2.2 Subcutaneous adipose tissue (III) 
Snap-frozen adipose tissue samples from abdominal subcutaneous depot were 
purchased from ZenBIO, Inc. Tissue samples were collected from non-obese BMI 
(≤25) or obese (≥30) women aged 32 - 47 years. 

4.3 Determination of CLS Density (I-III) 
To assess the inflammatory status of different adipose tissue samples collected from 
I, II and III in vivo studies, formalin fixed tissue samples were processed for 
histological analysis of CLS. Paraffin embedded sections were cut at 5 µm thickness 
and stained with HE. To determine the average adipocyte area (1/number of 
adipocytes per 1 mm2) and the CLS density (number of CLS structures per 1 mm2 of 
WAT, stained fat tissue sections were scanned with Olympus BH2 virtual 
microscope (Digital Virtual Microscope, Soft Imaging System, Olympus, Germany) 
or Pannoramic 250 slide scanner (3DHISTECH Ltd, Hungary), and values were 
calculated from 4 randomly selected areas.  

4.4 Luciferase Reporter Activity Assay (I-III) 
Adipose tissue samples were homogenized in 300 μL of lysis buffer containing 25 
mM Tris acetate (pH 7,8), 1.5 mM EDTA, 10% glycerol, 1% Triton X-100, 2 mM 
dithiothreitol, and Complete Miniproteinase inhibitor tablets (Roche Diagnostics, 
Penzberg, Germany). The homogenates were then centrifuged at +4°C, 800 x g for 
30 min. Luc activity was measured from supernatants with the Luciferase assay kit 
(BioThema AB, Handen, Sweden) according to manufacturer’s instructions by using 
the Victor2 Multilabel counter (PerkinElmer, Turku, Finland). The results were 
related to the sample weight, or protein content measured by using Pierce BCA 
Protein Assay Kit (Thermo Fisher Scientific, Rockford, IL, USA) as instructed by 
the manufacturer. 

4.5 Analysis of Serum and Tissue-derived 
Cytokines (I-III) 

For the analysis in I, the concentration of leptin, insulin, CCL2, IL-6, and TNFα 
were quantified in serum and adipose tissue explant media with multiplex assays 
(Merck Millipore) according to manufacturer’s instructions using Luminex 200 
reader (Luminex corporation). For calculations, first the amount of each factor per 
adipocyte (m) was estimated by using the average adipocyte volume determined 
from the sample histological sections. Next, the relative values of CCL-2, IL-6 and 
TNFα (indexanalyte) was determined with the formula: indexanalyte = manalyte(99/(mmax-
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mmin))- mmin(99(mmax-mmin))+1 with the highest amount (mmax) being adjusted to 100 
and the lowest (mmin) to 1. Finally, the total cytokine production in each adipose 
tissue sample (cytokine index) was calculated with the formula: cytokine index= 
indexCCL-2 + indexIL-6 + indexTNFα. 

To study the potential changes in adipose tissue IL-10 production prompted by 
OVX in II, IL-10 levels were measured from mammary and gonadal adipose tissue 
conditioned media by using the IL-10 Mouse ELISA Kit (Abcam, Cambridge, UK) 
according to the manufacturer’s instructions. The colorimetric reaction was read at 
450 nm with EnSight Multimode Plate Reader (PerkinElmer). Each sample was 
measured in duplicate and IL-10 levels were normalized to tissue protein.  

For experiments in III, CCL2, leptin, IL-6, and TNFα levels were quantified 
from tissue exposed media and serum samples with the MILLIPLEX MAP Mouse 
Adipocyte Magnetic Panel (#MADCYMAG-72K; Merck Millipore, Billerica, MA, 
USA) according to manufacturer’s instructions by using the Luminex 200 analyzer 
(Luminex Corporation, Austin, TX). The results were related either to the sample 
weight or protein content. 

4.6 RNA Isolation, cDNA Synthesis and 
quantitative (q)-PCR (II, III, unpublished data) 

In II, total RNA was isolated from human and mouse cells/tissues by using RNAeasy 
Mini Kit (Qiagen, Hilden, Germany), and treated with deoxyribonuclease I 
(Amplification Grade kit, Invitrogen, Paisley, UK) as instructed by the manufacturer. 
For in vitro studies using hARO-Luc-derived MSCs, 0.5 μg of total RNA was 
converted into cDNA by using DyNAmo cDNA synthesis kit (Finnzymes, Espoo, 
Finland) and the primer LucAs1 (Table 1). qPCR reactions were then performed with 
the primers luciferase antisense LucAs2 and the complementary sense for aromatase 
PI.4 using DyNAmo flash SYBR green qPCR kit (Finnzymes). Cycling conditions 
were 95°C for 7 min, 40 cycles at 95°C for 10 sec, 60°C for 40 sec and 72°C for 15 
sec. For hARO-Luc-derived tissue samples, cDNA synthesis was carried out by 
using DyNAmo cDNA synthesis kit (Finnzymes) and random hexamers primers. 
qPCR reactions were done using DyNAmo flash SYBR green qPCR kit with mouse 
primers: Il-10, Il-6, Pyy, Gcg-1, Tnfα, Fiaf, Lpl, under the following conditions: 10 
min at 95°C and variable number of cycles at 95°C for 10 sec, specified annealing 
temperature for 30 sec, and 72°C for 15 sec. Transcript levels were then normalized 
to expression levels of mouse Ppia and mouse L19 genes (Table 1). For human 
ASCs, 0.5 μg of total RNA was reverse transcribed using Super-Script III First-
Strand Synthesis System (Invitrogen, Carlsbad, CA, US). qPCR was performed with 
the primers: hArom and PI.4 by using FastStart DNA Master SYBR Green Kit 
(Roche, Pleasanton, CA, USA). Cycling conditions were 95°C for 10 min and 
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variable number of cycles at 95°C for 10 sec, specified annealing temperature for 30 
sec, and 72°C for 15 sec. Expression levels were normalized to housekeeping gene 
human ACTB.  

For transcriptional studies in III and unpublished data, total RNA from human 
cells/tissues was isolated by using TRIsure (Bioline, Luckenwalde, Germany) 
according to the manufacturer's instructions. Isolated RNA (1 μg) was then digested 
with deoxyribonuclease I (Amplification Grade kit, Invitrogen, Paisley, UK) and 
converted to cDNA by using SensiFAST cDNA Synthesis Kit (Bioline, London, 
UK), as instructed by the manufacturer. qPCR was performed with the primers 
hArom and PI.4 by using the Dynamo Flash SYBR Green qPCR Kit (Thermo Fisher 
Scientific). The cycling conditions were 95°C for 10 min and variable cycles of 95°C 
for 10 sec, 59°C for 30 sec and 72°C for 15 sec. Expression levels of the final 
products were normalized to one or two of these human housekeeping genes ACTB, 
GAPDH, RPL19 or G6PD (Table 1). 

Table 1.  Genes analyzed by qPCR 
Gene Forward 5´-3´ Reverse 5´-3´ 

Mouse cells / tissues 

LucAs1  AATAACGCGCCCAACACCGG 

LucAs2 ACTGCATACGACGATTCTGT  

Aromatase PI.4 GACCAACTGGAGCCTGACAG  

Il10 TGAGGCGCTGTCGTCATCGATTTCTCCC ACCTGCTCCACTGCCTTGCT 

Il6 GGCCTTCCCTACTTCACAAG ATTTCCACGATTTCCCAGAG 

Pyy AGCTCTGTTCTCCAAACTGC TGCAAGTGAAGTCGGTGTAG 

Gcg1 TGGCAGCACGCCCTTC GCGCTTCTGTCTGGGA 

Tnf GAACTGGCAGAAGAGGCACT AGGGTCTGGGCCATAGAACT 

Angptl4 (Fiaf) GATAGGTATCTCTGCTGCTGGG GGAGGTTGCCGACATAAAGC 

Lpl CTGCTGGCGTAGCAGGAAGT GCTGGAAAGTGCCTCCATTG 

Ppia CATCCTAAAGCATACAGGTCCTG TCCATGGCTTCCACAATGTT 

Rpl19 (L19) GGACAGAGTCTTGATGATCTC CTGAAGGTCAAAGGGAATGTG 

Human cells / tissues 

CYP19A1 TTGGAAATGCTGACCCGAT CAGGAATCTGCCGTGGGAGA 

Aromatase PI.4 GTAGAACGTGACCAACTGG CACCCGGTTGTAGTAGTTGCAGGCACTGCC 

CCL2 AATGGTCTTGAAGATCACAGCTTC TAGCAGCCACCTTCATTCCCCAAG 

ACTB (β-actin) TGCGTGACATTAAGGAGAAG GCTCGTAGCTCTTCTCCA 

GAPDH TGGTATCGTGGAAGGACTCATGAC ATGCCAGTGAGCTTCCCGTTCAGC 

RPL19 (L19) AGGCACATGGGCATAGGT CCATGAGAATCCGCTTGT 

G6PD GGCAACAGATACAAGAACGTGAA CCCTCATACTGGAAACCCACT 
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4.7 NFκB, p38- and ERK1/2-MAPK Activity (II, III) 
To identify the underlying mechanisms behind the IL-10 inhibition of TNFα-induced 
aromatase expression (II) and the stimulatory action of CCL2 on aromatase 
expression (III), functional assays of the canonical TNFα and CCL2-related pathways 
were performed. Primary human breast ASCs were plated in 24 well plates at the 
density of 20,000 cells/well. At 80-90% confluency, cells were treated with 20 ng/ml 
IL-10 or 10 µM of the following inhibitors, BAY 11-7082 (NFkB inhibitor), SB 
239063 (p38-MAPK inhibitor, Tocris Biosciences) or U0126 (ERK1/2 inhibitor). 
After 15 min incubation, 5 ng/ml of TNFα or 100ng/ml CCL2 was added, and 15 
min later, endogenous levels of the active proteins were measured from the cell 
lysates (containing 10-15 μg of protein per well) by using NFkB p65 (pS536) ELISA 
SimpleStep Kit (Abcam), p38 MAPK alpha (pT180/Y182 + Total) ELISA Kit 
(Abcam) and ERK1/2 (pT202/Y204) SimpleStep ELISA Kit (Abcam), respectively. 
The assay was performed according to the manufacturer’s instructions and analyzed 
at 450 nm using EnSight Multimode Plate Reader (Perkin-Elmer, Norwalk, CT, 
USA) 

4.8 Gut Microbiota Sequencing Analysis (II) 
DNA isolation from 0.1 mg of colon fecal samples was carried out using PowerFecal 
DNA isolation Kit (Mo Bio Laboratories Inc., Carlsbad, CA, USA) following 
manufacturer’s instructions. The V4-V5 region of 16S rRNA gene was amplified 
using KAPA HiFi PCR kit (KAPA Biosystems, Wilmington, MA, USA) with 515F 
and 926R fusion primers containing identification indices as well as sequences 
required for Illumina sequencing 388. The PCR conditions comprised an initial 
denaturation step at 98 °C for 4 min, followed by 25 cycles at 98 °C for 20 sec, 65 °C 
for 20 sec, and 72 °C for 35 sec, and ended with an extension step at 72 °C for 
10 min. The PCR products were purified with Agencourt AMPure XP Magnetic 
beads (Beckman Coulter Inc., Indianapolis, IN, USA). Length and integrity of the 
amplicons were checked with TapeStation (Agilent Technologies Inc., Santa Clara, 
CA, USA), and the final DNA concentrations was measured with Qubit 2.0 
fluorometer (Life Technologies). Sequencing was performed at Turku Clinical 
Sequencing laboratory by Illumina MiSeq sequencer (Illumina Inc., San Diego, CA, 
USA).  QIIME (v 1.8) pipeline was used with default parameters for identifying 
representative sequences for each operational taxonomic unit (OTU) generated from 
complete linkage clustering with a 97 % similarity and aligned to the GreenGenes 
13_8 database. OTU table for these samples was further processed at different 
taxonomic levels. 
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4.9 Preparation of PKE Extract and Polyphenol 
Compounds (I) 

Knots from Finnish Scots pine (pinus sylvestris) were obtained from an industrial 
pulp mill process (UPM Tervasaari, Valkeakoski, Finland). The knots were freeze-
dried, ground, and extracted through multiple cycles of hexane at 90°C (5 min) and 
ethanol water at 100°C (5 min) using a Dionex Accelerate Solvent Extractor. The 
chemical composition of the PKE extract was determined using a GC-flame 
ionization detector (FID), GC-MS and high-performance size-exclusion 
chromatography 389. The major chemical compounds in the PKE extract were lignans 
(16%), stilbenoids (17%), oxidized resin acids (20%), resin acids (24%), and higher-
molar-mass compounds (550–4000 Da, 18%). The main polyphenols in the PKE 
extract were (wt-% of dry extract): pinosylvin 4-monomethyl ether (MePS, 10.2%), 
nortrachelogenin (NTG, 7.0%), pinosylvin (PS, 4.0%), mateiresinol (MR, 1.5%), 
abietic acid (1.5%), and pinostilbene (0.4%).  

NTG, MR, PS and MePS were isolated (purity of >95%) in the Laboratory of 
Wood and Paper Chemistry at Åbo Akademi (Turku, Finland) as described 
previously 390.  A mix (LSmix) of the four main PKE-derived stilbenoids (PS, MePS, 
NTG and MR) was prepared using the approximately same concentrations to these 
in the PKE extract (10 mg/l). 

4.10 Antioxidant Properties of PKE and PKE-
derived Phenolic Compounds (I) 

The antioxidant activity of the extract and isolated polyphenols was measured by 
using three different biochemical methods already described in 391,392. Trolox 
(vitamin E) was used as an antioxidant reference compound. Briefly, the antioxidant 
activity of the compounds against peroxyl radicals generated from the thermal 
decomposition of 2,2`-azobis-amidinopropane in phosphate buffer was determined 
using rat liver microsomes and the Bio-Orbit 1251 Luminometer (Bio-Orbit. Turku, 
Finland). The reaction was initiated by the addition of tert-butylhydroperoxide, 
followed by the assessment of the chemiluminescence by the Bio-Orbit. 
Additionally, the ability of the compounds to inhibit low-density lipoprotein (LDL) 
oxidation was examined after incubation with phosphate buffer, LDL and Cu2+ at 
37°C. To assess lipid oxidation, conjugated dienes were measured with PerkinElmer 
Lambda 2 spectrophotometer (PerkinElmer Corp., Norwalk, CT). 

4.11 Statistical Analyses (I-III) 
Statistical analyses were performed by using GraphPad Prism (GraphPad Software 
Inc., San Diego, CA, USA). To assess the statistical significance between two 
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groups, unpaired parametric t-test was used. For multiple comparisons, one-way 
analysis of variance (ANOVA) followed by Tukey's post hoc test were used. Pearson 
correlation test was used to evaluate the relationship between two variables. 
Differences were considered statistically significant at P ≤ 0.05. Data is expressed 
as mean ± standard error of mean (SEM). 
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5 Results 

5.1 Obesity and OVX-related Increased Adiposity 
Upregulates hARO-Luc Reporter Gene in Male 
and Female Mice (I-III). 

As shown in the in vivo studies carried out in I, II and III, increased adiposity, 
either as a consequence of long HFD intake or OVX, upregulated the activity of 
the aromatase Luc reporter in WAT in male and female hARO-Luc mice (more 
detailed results in the following sections). These results confirm the suitability of 
this mouse model to investigate in vivo the role of obesity in the regulation of 
CYP19A1 in WAT.  

5.2 IL-10 Inhibits Aromatase Gene Expression in 
Breast Adipose Tissue (II) 

5.2.1 IL-10 blocks TNFα-induced total aromatase reporter 
and PI.4 transcripts expression in hARO-Luc MSCs  

The potential effect of IL-10 on aromatase Luc reporter was initially investigated in 
vitro using hARO-Luc MSCs under conditions favorable to study PI.4 
transcriptional activity. Accordingly, MSCs were exposed to DEX alone or with the 
combination of DEX + TNFα and/or IL-10 in serum-containing medium. IL-10 
inhibited TNFα-mediated induction of aromatase gene expression in these cells. 
Suppressive action of IL-10 altered the synergistic effect between TNFα and DEX 
while no changes in expression were observed in cells treated with DEX alone (II, 
Fig. 1A). A more detailed analysis on the distinct mesenchymal promoter transcripts 
revealed that IL-10 blocked specifically PI.4 transcript expression in MSCs treated 
with the combination DEX/TNFα (II, Fig. 1B). 

Combined, these results indicate that IL-10 acts as a suppressor of aromatase 
gene expression in MSCs, an action that may prevent TNFα induction of aromatase 
expression via distal promoter I.4 in the breast adipose tissue.  
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5.2.2 IL-10 suppresses TNFα-induced CYP19A1 expression 
in human breast ASCs via down-regulation of PI.4 

In order to translate the previous results into a human breast tissue setting, primary 
breast ASCs were treated with the same treatments used for hARO-Luc mouse MSCs. 
Similar to MSCs, IL-10 was able to fully suppress both TNFα-induced CYP19A1 and 
PI.4 transcripts expression in cultured breast ASCs (II, Fig. 2A and B). 

5.2.3 IL-10 mediates the suppression of CYP19A1 
expression through inhibition of TNFα-related ERK1/2 
signaling pathway 

To identify the molecular mechanism by which IL-10 suppresses TNFα action on 
aromatase gene transcription, functional activity of TNFα-related signaling pathways 
was examined. Stimulation of breast ASCs by TNFα activates two critical inflammatory 
pathways, NFκB, and the MAPKs-related signaling involving p38, JNK, and ERK1/2. 
Out of these, IL-10 showed to mediate the downregulation of aromatase gene 
expression by specifically blocking phosphorylation of the ERK1/2 signaling, upon 
treatment of breast ASCs with TNFα (II, Fig. 3B). No effect on aromatase expression 
was observed in cells treated with either NFκB (II, Fig. 3A) or P38 specific inhibitors 
(data not shown). Moreover, to evaluate the potential role of ERK1/2 pathway in the 
transcriptional activation of aromatase by TNFα, CYP19A1 transcripts expression was 
measured in breast ASCs treated with U0126, a specific inhibitor of ERK1/2. Together, 
these data shown that, indeed, TNFα-induced aromatase expression is inhibited when 
blocking its inflammatory action through the ERK1/2 pathway (II, Fig. 3C). 

5.3 CCL2 Upregulates Aromatase Gene 
Expression in Breast Adipose Tissue (III) 

5.3.1 CCL2 regulates glucocorticoid-mediated CYP19A1 
transcription through activation of promoter I.4  

To investigate whether CCL2 could act as a direct regulator of aromatase gene 
transcription in the breast adipose tissue, possible changes in transcription rates were 
assessed in vitro using CCL2-treated hARO-Luc-derived mammary fat explants and 
primary breast ASCs.  

Firstly, hARO-Luc-derived mammary fat explants were treated with CCL2 and 
DEX to evaluate a potential action of this chemokine via PI.4. In effect, CCL2 
enhanced glucocorticoid mediated Luc reporter activity through a further stimulation 
in the mammary fat pad (III, Fig. 4). Thereafter, to confirm similar responses in 
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human cells, cultured primary breast ASCs were treated with CCL2 alone or in 
combination with DEX. As expected, the combination DEX/CCL2 caused a higher 
induction of CYP19A1 gene expression when compared to that induced by DEX 
alone (III, Fig. 5A). Furthermore, the direct implication of CCL2 on the regulation 
of aromatase transcription was further confirmed by the inhibition of its effect on 
CYP19A1 expression when using the combination CCL2 and the inhibitor 
RS504303, a specific CCR2 receptor antagonist (III, Fig. 5A). To further examine 
whether CCL2 action on aromatase expression implicates upregulation of PI.4, 
transcript expression of this specific promoter was measured. Similar expression 
patterns as with total aromatase were obtained, and the combination DEX/CCL2 
induced PI.4 transcription up to levels three-fold higher compared to the stimulation 
of DEX on PI.4 activity (III, Fig. 5B). Apart from this, no induction of PII-driven 
aromatase expression was detected in human ASCs (III, supplementary Fig. 1).  

5.3.2 CCL2 induction of CYP19A1 gene expression in 
breast ASCs involves the activation of the MAPK-
ERK1/2 signaling pathway 

As described before, the interaction of CCL2 with its membrane receptor, CCR2, 
activates NFκB and MAPKs (especially, ERK1/2) inflammatory cellular pathways, 
both equally associated with upregulation of aromatase promoter I.4 activity in 
breast ASCs 393-395. To identify the possible intracellular pathway driving CCL2 
induction of PI.4 transcriptional activity, cultured breast ASCs were treated with 
specific inhibitors of NFκB (BAY 11-7082) and MAPK-ERK1/2 (U0126) cascades. 
While the treatment with the NFκB inhibitor did not alter CCL2-mediated CYP19A1 
expression, blocking the ERK1/2 cascade by U0126 inhibitor led to a significant 
reduction in CCL2-mediated gene transcription (III, Fig. 5C). This indicates that the 
ERK1/2 signaling pathway could be the main molecular mechanism driving CCL2 
actions on adipose tissue aromatase expression.  

5.4 Obesity is Associated with Inflammation and 
Elevated Aromatase Expression in Different WAT 
Depots of hARO-Luc Mice and Women (I, III) 

5.4.1 High-fat diet promotes weight gain, adiposity, and 
metabolic dysfunction in female and male hARO-Luc 
mice 

In both male and female hARO-Luc mice, eight-week-long HFD feeding resulted in 
significant weight gain and higher body fat mass when compared with control mice 



Gabriela Martínez-Chacón 

 62 

fed with LFD (I and III, Fig. 1A and B). Along with the increased adiposity, HFD also 
primes important metabolic impairments evidenced by increased serum levels of leptin 
(I, Fig. 1C), glucose and insulin in males, and higher circulating leptin and glucose 
levels in females (III, Fig. 1C and D). Furthermore, particularly in males, HFD-fed 
mice exhibited heavier subcutaneous and gonadal adipose depots in addition to larger 
adipocyte sizes than those from LFD-fed mice (I, Fig. 1D, E, F, and G). 

5.4.2 Excessive fat accumulation in WAT depots promotes 
tissue proinflammatory milieu and upregulates 
aromatase Luc expression in hARO-Luc mice 

In males, HDF-fed hARO-Luc mice exhibited higher aromatase Luc reporter activity 
in subcutaneous and gonadal adipose depots compared to respective tissues in LFD-
fed mice (I, Fig. 3A and B). Higher aromatase Luc reporter correlated with both 
gonadal and mammary adipose tissue weight (I, Fig. 3C and D). Remarkably, obese 
HFD-fed animals demonstrated a low-grade inflammatory state evidenced by higher 
levels of CCL2, TNFα, and IL-6 (calculated as “total cytokine index”) in serum and 
tissue subcutaneous and gonadal fat (I, Fig. 2A, B, and C), and by a higher CLS 
density in both WAT depots, but especially in gonadal fat (I, Fig. 2D and E). 
Accordingly, there was a correlation between adiposity in the HFD fed male mice 
and the levels of pro-inflammatory cytokines in serum, subcutaneous, and gonadal 
tissues (I, Fig. 2F, G, and H).  

The direct effects of some aromatase PI.4-related inducers in the regulation of 
aromatase gene expression in male WAT were examined by using fat tissue explants 
cultures from hARO-Luc mice. Treatment of subcutaneous and gonadal fat explant 
with DEX promoted a significant increase in aromatase Luc reporter activity (I, Fig. 
3E and F). Interestingly, to achieve similar levels of Luc induction in the tissue, 10 
nM DEX was used for gonadal fat explants, while for subcutaneous fat, 250 nM 
DEX was required, which represents a dose difference of more than 20-fold. 
Moreover, the addition of lipopolysaccharides (LPS) to the culture media of both 
WAT depot explants further stimulated the DEX-induced activity of the Luc reporter 
in a dose-dependent manner (I, Fig. 3E and F). 

As previously reported, several mice strains, including FVB/N, do not gain 
weight similarly when fed with HFD 396-398. In female hARO-Luc mice (III), this 
difference in response to an HFD was more evident than in males. Of all 17 females 
on HDF, 14 gained weight by the end of the intervention while 3 did not gain weight 
or gained less than 20%. Nevertheless, as shown in section 5.4.1, the majority of 
HFD-fed females exhibited evident metabolic disturbances with higher circulating 
leptin and glucose levels. However, an increased aromatase Luc reporter activity was 
found only in the mammary fat pad from those animals that gained weight by more 
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than 20% (III, Fig. 2A). A positive correlation was noted between the levels of Luc 
activity in mammary fat pad and both adiposity and weight gain of HFD-fed female 
mice (III, Fig. 2B and C).  

On the other hand, aromatase Luc reporter activity in the mammary fat pad of 
HFD-female mice was also found to be positively associated with the tissue levels 
of leptin (III, supplementary table 1 ), and pro-inflammatory factors, CCL2 (III, Fig. 
2D) and IL-6 (III, supplementary table 1). However, as shown in the previous study 
with OVX- hARO-Luc females, despite the increased weight gain and adiposity in 
the HFD group, very low numbers of CLS (≤2 per mm2) were observed in the 
mammary fat pad of these females. Such CLS density, moreover, did not correlate 
with the mammary gland tissue aromatase Luc reporter activity (data not shown). 
Furthermore, in the case of gonadal and retroperitoneal fat tissues, no significant 
correlations were found between the local aromatase Luc reporter activity and the 
tissue CCL2 or IL-6 secretion level. The same applied to the other analyzed adipose 
tissue-secreted factors, TNFα, IL-1β, IL-1α, VEGF, PAI-1, resistin, and adiponectin, 
with no significant changes in gonadal nor retroperitoneal fat either (III, 
supplementary table 1). 

5.4.3 Obesity is associated with increased CCL2 and 
CYP19A1 mRNA levels in the subcutaneous adipose 
tissue of women 

Transcription levels of CCL2 and CYP19A1 in subcutaneous adipose tissue of obese 
and lean women were measured and compared in order to test whether obesity 
induces similar alterations in human adipose tissues as in hARO-Luc mouse adipose 
tissues. In women with clear obesity, CCL2 and CYP19A1 transcripts levels were 
significantly higher in subcutaneous fat tissues compared to those of lean women 
(III, Fig. 3A and B). These differences were particularly evident for CCL2, with 
nearly 6-fold higher mRNA expression in obese than in lean tissues. These results 
indicate that excess weight and adiposity in women promote a proinflammatory 
status in subcutaneous adipose tissue that may upregulate the local expression and 
activity of aromatase, and the resultant production of estrogen in the breast.  

5.5 Obese OVX hARO-Luc Females Gain Weight 
and Exhibit Increased Aromatase Luc Reporter 
and Reduced IL-10 Levels in Mammary Fat 
Pad, and Altered Gut Microbiota (II) 

In hARO-Luc females, ovariectomy led to greater weight gain and body fat mass (II, 
Fig. 4A and B). Increased fat accumulation in OVX mice resulted in mammary fat 
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pad weights almost 3-folds higher compared to those from intact mice (II. Fig. 4C). 
Parallel to the increased adiposity, OVX females also exhibited increased aromatase 
Luc reporter activity and reduced IL-10 levels in mammary fat pad when compared 
to their intact and lean littermates (II, Fig. 4D and E). To evaluate the potential 
influence of reduced levels of IL-10 on aromatase reporter activity after OVX, the 
values were correlated. The results (II, Fig. 4F) showed a significant negative 
correlation between IL-10 and aromatase reporter levels in the OVX mammary fat 
pads. Interestingly, no difference was noted in the mammary CLS density between 
OVX and intact females; in fact, a very low density was observed in both groups 
(absence or a maximum of 0.03 CLS per mm2). This association in aromatase 
reporter activity and IL-10 expression, however, was observed only in mammary fat 
tissue, in other words, no significant association was observed in gonadal fat samples 
at the end of the experiment. 

5.5.1 Loss of ovarian hormones promotes a gut bacterial 
composition that facilitates obesity 

Bacterial composition, aromatase Luc reporter expression, and the expression of 
several genes related to energy metabolism were analyzed in fecal or colon samples 
collected from OVX and intact hARO-Luc females. As expected, the colon bacterial 
profile in all the animals was dominated by Firmicutes and Bacteroidetes at the 
phylum level, with a total of 98.5% bacteria belonging these two groups. The rest 
was composed of bacteria from phyla Verrucomicrobia (~0.36%), Proteobacteria 
(~0.36%), Deferrebacteres (~0.30%), and Actinobacteria (~0.30%). No significant 
differences were noted in bacterial diversity between samples from OVX and intact 
mice, but the Bacteroidetes/Firmicutes ratio was found to be lower in samples from 
OVX females (II, Fig. 5A). While OVX reduced the number of Bacteroidetes by 
almost 10% (OVX 71% vs intact 81%), Firmicutes content increased at almost 
similar proportions (OVX 27% vs. intact 18%). Despite these changes after OVX, 
aromatase Luc reporter expression remained unaltered in colon tissue samples (II, 
Fig. 5B). In addition, our results indicated that OVX-mediated changes in gut 
bacterial composition might prompt altered gut expression levels of genes related to 
gut motility, appetite, and inflammation. More specifically, the colon tissue of OVX 
mice demonstrated lower transcript levels of proglucagon (Gcg-1) and higher levels 
of peptide YY (Pyy) (II, Fig. 5C and D). No significant changes in mRNA 
expression levels were detected among genes regulating adipose tissue metabolism, 
fasting-induced adipose factor (Fiaf), or lipoprotein lipase (Lpl) (data not shown). 
Moreover, colon mRNA expression of IL-6 was elevated in OVX compared to intact 
mice; however, there were no changes in the local expression of TNFα and IL-10 
(II, Fig. 5E-G). 
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5.6 Dietary Polyphenols as Potential Suppressors 
of Obesity-related Inflammation and as 
Regulators of Aromatase Gene Expression in 
WAT (I, unpublished data) 

5.6.1 Dietary intervention with PKE extract attenuates 
inflammation and aromatase Luc reporter activity in 
male HFD-fed hARO-Luc mice activity in vivo 

By feeding the mice with HFD or HFD supplemented with polyphenol-rich pine knot 
extract (PKE) for eight weeks, we demonstrated that the consumption of a diet 
supplemented with polyphenol compounds diminished CLS density (i.e. marker of 
WAT inflammation) in subcutaneous and gonadal fat depots (I, Fig. 4A and B). 
PKE-supplemented HFD suppressed the levels of aromatase Luc reporter activity in 
subcutaneous WAT depot when compared to the levels expressed in non-
supplemented HFD-fed mice (I, Fig. 4C and D). However, PKE-supplemented HFD 
did not show any effect on body weight, which partly indicates the good tolerability 
of PKE, but neither did it demonstrate an effect on adiposity or the levels of 
proinflammatory cytokines in WAT (data not shown). Nevertheless, PKE reduced 
fasting blood glucose and the levels of leptin and insulin in serum (data not shown). 

In a previous study from our group, the tolerability and bioavailability of orally 
administered PKE polyphenols were demonstrated in vivo in immunocompromised 
mice 386. Given the amount of PKE within the diet (1.6 g /Kg diet), the calculated 
average consumption of PKE per animal was 5 mg/mouse/day (120 mg/kg of body 
weight). Similar to this previous study, micromolar concentrations of all PKE-
derived polyphenols were found in the urine of hARO-Luc males (data not shown), 
confirming thus the absorption of ingested PKE polyphenols. Furthermore, by 
applying three different biochemical methods, the antioxidant ability of each of the 
isolated polyphenolic compounds in the PKE extract was determined and 
subsequently compared to one of the most potent antioxidants, vitamin E.  The 
results showed that PKE extract alone and its main polyphenol compounds 
(pinosylvin, pinosylvin 4-monomethyl ether, nortrachelogenin, and matairesinol) 
have antioxidant effects in vitro that are comparable with vitamin E (I, table 1). In 
particular, the capacity of PKE (89 g/mol), nortrachelogenin (NTG, 62 g/mol) and 
matairesinol (MR, 120 g/mol) compounds to scavenge peroxyl radicals was 
significantly greater than that of vitamin E (110 g/mol). Although the IC50 
concentrations of PKE were slightly lower than that of vitamin E, PKE was able to 
inhibit both tert-butylhydroperoxide-induced lipid peroxidation in rat liver 
microsomes (IC50 16 ng/ml) and the oxidation of human LDL (IC50 3.8 µg/mg of 
LDL). PS was the most potent phenolic compound from the PKE extract to inhibit 
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LDL oxidation (IC50 2.5 µg/mg of LDL), while MR and nortrachelogenin (NTG) 
were the second- and third-most potent compounds to suppress the tert-
butylhydroperoxide-induced lipid peroxidation (IC50 17 ng/ml and 26 ng/ml, 
respectively). These results are in line with previously published data on the 
antioxidative potential of wood-derived stilbenoids and lignans  399.  

5.6.2 Effects of dietary polyphenols on aromatase Luc 
reporter expression in hARO-Luc-derived MSCs 

The effect of PKE and its derived phenolic compounds on human aromatase gene 
expression was examined in vitro using hARO-Luc (male) bone-marrow-derived 
MSCs. To investigate their potential effect on modulating either of the two-
aromatase promoters expressed in the human adipose tissue, PI.4 and PII, cultured 
MSCs were exposed to specific conditions to induce expression of these promoters. 
DEX + TNFα was used to induce PI.4, while FSK + PMA was used to activate PII-
related gene transcription. As expected, aromatase Luc reporter activity in MSCs 
was significantly upregulated by PI.4 and PII stimulating conditions (I, Fig. 4E and 
F). In MSCs with PI.4-induced aromatase Luc reporter activity, only NTG and 
LSmix were able to downregulate the level of aromatase reporter. Conversely, the 
other tested compounds, PKE, pinosylvin 4-monomethyl ether (MePS) and PS, 
enhanced aromatase reporter gene expression in MSCs (I, Fig. 4E). Regarding the 
effect of polyphenols on PII-induced aromatase expression, all tested phenolic 
compounds and mixtures, except MePS, inhibited the activity of PII-mediated 
aromatase Luc reporter in hARO-Luc-derived MSCs (I, Fig. 4F). These findings 
proposed that the chemopreventive effects of polyphenols could be partly attributed 
to a modulation of aromatase gene transcription in breast adipose stroma.  

5.6.3 Effects of dietary phytoestrogens on CYP19A1 gene 
transcription in human breast ASCs: In vitro studies 
(unpublished data) 

This research project also investigated whether dietary polyphenols could regulate 
breast adipose aromatase at the transcriptional level. Cultured primary breast ASCs 
were treated with known local aromatase-PI.4 and -PII transcription inducers, and 
several phytoestrogens, including the isoflavone genistein (GNS), the stilbenoids 
resveratrol (RSV), and PS, and the lignans secoisolariciresinol (SECO), enterodiol 
(END) and enterolactone (ENT).  

With regard to the potential regulatory action of the selected flavonoids and 
stilbenoids on PI.4-mediated CYP19A1 expression, the results demonstrated that 
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only RSV and GNS (P= 0,09) were able to downregulate the glucocorticoids 
mediated transcriptional CYP19A1 activity in ASCs (Fig. 18).  

 

Figure 18. Effect of genistein, pinosylvin, and resveratrol on glucocorticoid mediated 
CYP19A1 expression in breast ASCs. Data (mean ± SEM) are shown as relative to 
dexamethasone (DEX, set at 100%). *P<0.05. Treatments: 10 nM DEX and 10 µM 
polyphenols, genistein (GNS), pinosylvin (PS) and resveratrol (RSV). 

Because lignans have shown strong anti-inflammatory effects in animal and clinical 
studies 316,400 and to downregulate aromatase expression (e.g. previous results on 
hARO-Luc MSCs, I), we studied the potential action of several lignans as inhibitors 
of CYP19A1 expression in human ASCs. However, none of the tested lignans was able 
to downregulate aromatase gene expression, neither via PI.4 nor PII-transcriptional 
activity in these cells (Fig. 19A and B). Instead, ENT further upregulated DEX-
induced CYP19A1 expression levels (Fig. 19A), while END did the same but on 
FSK/PMA-induced transcription (Fig. 19B). This suggests that lignans particularly 
ENT and END may promote the expression of aromatase gene in the breast. 

 

Figure 19. Effect of lignans, secoisolariciresinol, enterodiol, and enterolactone on PI.4 and 
PII-related CYP19A1 expression in breast ASCs. A. Effect of dietary lignans on 
DEX/TNFα-induced CYP19A1 expression. Data (mean ± SEM) are shown as relative 
to dexamethasone (DEX, set at 100%). B. Effect of dietary lignans on FSK/PMA-induced 
CYP19A1 expression. Data (mean ± SEM) are shown as relative to forskolin + phorbol 
12-myristate 13-acetate (FSK+PMA, set at 100%). *P<0.05, **P≤0.01, ****P≤0.0001. 
Treatments: 10 nM DEX, 25 µM FSK, 4 nM PMA and 10 µM polyphenols, 
secoisolariciresinol (SECO), enterolactone (ENT) and enterodiol (END). 
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6 Discussion 

6.1 IL-10 as Part of the Endogenous “Brake” 
Mechanisms Regulating Aromatase 
Expression in Breast Adipose Tissue 

While much is known about the regulatory effect of proinflammatory factors on 
aromatase gene expression in the breast adipose tissue, there is limited published 
information on the role of local anti-inflammatory factors in this transcriptional 
control. The data in II, proves the importance of IL-10, an anti-inflammatory 
cytokine, in the regulation of CYP19A1 expression in the breast adipose stroma 
where it acts as a local transcriptional inhibitor.  

Considered as the quintessential anti-inflammatory cytokine, IL-10 plays a 
critical role in maintaining tissue homeostasis and regulating inflammation, thanks 
largely to its ability to inhibit excessive proinflammatory responses of T-cells and 
macrophages. More precisely, IL-10 suppresses the production of proinflammatory 
cytokines,  TNF-α, IL-1β, and IL-8, while it can also prevent their inflammatory 
signaling cascades on other immune and non-immune cells 401. The inhibitory action 
of IL-10 on TNFα, is perhaps one of the most relevant and studied effect of this 
cytokine as TNFα is a key factor in the development of several chronic diseases 402. 
In obesity, TNFα levels in WAT are increased by almost 7.5 fold compared to lean 
subjects 403. Furthermore, higher activity of TNFα-induced NFκB and MAPKs 
signaling is associated with impaired metabolism and increased local aromatase 
expression in WAT 26,280,404. Therefore, we investigated the potential effect of IL-10 
on the modulation of TNF-mediated CYP19A1 expression in the mammary/breast 
adipose stroma. In this way, we discovered that IL-10 inhibits the levels of aromatase 
Luc reporter activity in hARO-Luc-derived MSCs and the CYP19A1 expression in 
primary breast ASCs induced by TNFα in the presence of glucocorticoids. 

 Although the molecular mechanisms driving the effect of TNFα on CYP19A1 
expression are still not well defined, it is known that activation of both NFκB and 
MAPK signaling cascades by TNFα stimulate promoter I.4 transcription 395. Here, we 
also demonstrated that IL-10 suppresses specifically TNFα-induced aromatase PI.4 in 
cultured breast ASCs, a molecular action that potentially involves the inhibition of the 
TNFα signal transduction via the MAPK-ERK1/2 cascade. To our knowledge, IL-10 
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is the first adipose tissue-related factor known to downregulate aromatase in WAT via 
PI.4. Previously, ghrelin, a gut-related hormone, was shown to suppress aromatase 
expression in breast ASCs via the proximal PII405. Overall, our findings suggest that 
high tissue IL-10 may help maintain normal basal levels of aromatase and estrogens in 
the healthy breast adipose tissue. Altered circulating and adipose tissue levels of IL-10 
have been reported in obese subjects 406-409. In this regard, our data could predict that 
reduced levels of IL-10 in obese postmenopausal women may contribute to the 
excessive aromatase and estrogen levels in their breasts. 

6.2 CCL2, an Inducer of Aromatase Gene 
Transcription in the Breast Adipose Stroma 

In obese postmenopausal women, WAT inflammation is accompanied by increased 
aromatase expression in the breast adipose tissue 23,27,295,299. While it is true that 
proinflammatory factors, including TNFα 93, IL-6 92, PGE2114, and leptin 410, directly 
or indirectly contribute to the abundance of CYP19A1 transcripts in the breast 
adipose tissue, it is not yet known whether other immune mediators, such as 
chemokines, could have similar implications in this process. On this basis, study III 
demonstrates that CCL2, a well-known proinflammatory chemokine, may also 
regulate the expression of aromatase in breast adipose tissue through stimulation of 
the glucocorticoid-mediated promoter I.4 transcription. 

CCL2, also known as monocyte chemotactic protein (MCP)-1, is one of the key 
chemokines driving the migration and infiltration of macrophages into inflammatory 
sites. It is produced primarily by monocytes/macrophages, but also by several non-
immune cells, such as fibroblasts and endothelial and epithelial cells 411,412. In the 
adipose tissue, CCL2 actions are primarily mediated via the GPCR receptor, CC-
receptor 2 (CCR2), expressed in macrophages, adipocytes and stromal cells 412-414. 
During the first stages of obesity, the growing need for fat storage prompts the 
already hypertrophic adipocytes to release large amounts of CCL2 to recruit 
macrophages and enhance tissue expansion 277,280,281. CCL2 level, on the other hand, 
is then further increased at later stages, when adipose tissue macrophages start to 
accumulate and the number of adipose tissue CLSs grow 267,279,280,415. In addition to 
a very powerful chemo-attractive effect, CCL2 also stimulates inflammation via 
activation of proinflammatory signaling pathways, particularly the PI3K/Akt/NFκB 
and Ras/MEK/ERK signaling cascades 393,416,417. The latter assumes even greater 
significance since both signaling pathways are known to also upregulate aromatase 
expression via PI.4 in cultured breast ASCs 395. Importantly, CCL2 expression in 
breast cancer has shown to be upregulated and strongly modulated by estrogens 
418,419. Given the prominent role of CCL2 in the development and progression of 
obesity-mediated WAT inflammation, it was pertinent to hypothesize that CCL2 
may have direct effects on CYP19A1 transcription in the breast adipose tissue.   
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We also discovered that the CCL2 stimulating effect on aromatase involves the 
activation of CCR2 at the cell membrane and the downstream activation of the 
MAPK-ERK1/2 signaling pathway in cultured breast ASCs. While no previous 
studies address a direct effect of CCL2 on human aromatase expression, our results 
indicate that CCL2 and TNFα share similar regulatory mechanisms in the induction 
of aromatase transcription in WAT. Recent studies have provided new evidence for 
TNFα on its downstream mechanisms, suggesting these involves the activation of 
the NFκB and MAPK signaling pathways, the transactivation of early transcription 
factors 2 and 3 (EGR2 and EGR3), and the indirect induction of the AP-1 
transcriptional site within promoter I.4 395. Further studies are needed to elucidate 
the specific molecular mechanisms involved in the induction of aromatase 
expression by CCL2 in the breast adipose stroma. 

6.3 Mechanisms behind the Obesity → 
Inflammation → Aromatase axis in WAT  

6.3.1 Adipose tissue expansion-induced inflammation as the 
primary cause of the increased aromatase expression 
in obese female and male WAT. The role of CCL2  

In lean subjects, the balance between energy intake and expenditure supports an anti-
inflammatory environment in WAT, favoring the secretion of anti-inflammatory 
cytokines, such as IL-10, IL-4, IL-13, and adiponectin 420, and limiting the levels of 
proinflammatory mediators, thus maintaining at low the local transcription levels of 
aromatase. Conversely, in obese and overweight status,  the unhealthy WAT 
expansion is often associated with the onset of hypertrophic adipocytes, 
macrophages, and crown-like structures (CLS) 267,276,282. As a result, the obese 
adipose tissue preferentially releases proinflammatory cytokines, including TNF-α, 
IL-6, resistin and leptin, and chemokines, especially CCL2 420. In this study, an 
attempt was made to relate the expression of aromatase in WAT to the local 
production of pro and anti-inflammatory factors in obesity conditions. By using male 
and female hARO-Luc mice on HFD as well as subcutaneous adipose tissue samples 
from obese women, we demonstrated that elevated levels of CCL2 in WAT might 
contribute to the increased local aromatase expression. 

In hARO-Luc males (I), exposure to HFD associated with higher body weight 
and adiposity, systemic metabolic dysregulation, and WAT inflammation. For 
instance, in addition to higher serum leptin and glucose levels, all males on HFD 
exhibited a prominent increase in body weight and body fat composition. The 
presence of inflammatory markers was clearer in the obese WAT depots, evidenced 
by elevated CLS density and increased cytokine index in subcutaneous and gonadal 
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adipose tissue. As in previous studies using aromatase mouse models 302, obesity in 
male hARO-Luc correlated with increased Luc activity and cytokine index in 
gonadal and subcutaneous WAT. Furthermore, the ex vivo stimulation of these 
distinct WAT depots with LPS (bacteria-derived lipopolysaccharide, an inducer of 
TNFα secretion) was shown to upregulate aromatase Luc reporter activity in the 
presence of distinct concentrations of DEX. Gonadal fat required a far lower 
concentration of DEX than subcutaneous fat to activate the local aromatase 
transcription. This difference in DEX response could be explained by a different 
tissue composition, metabolism, or expression of glucocorticoid receptors. However, 
more research is needed to clarify the possible gender-specific mechanisms that 
regulate the expression of aromatase in visceral and subcutaneous fat depots.  

Obesity is associated with elevated circulating estrogen in men as a result of 
increased aromatization in WAT and the inhibition of the hypothalamic-pituitary-
gonadal axis 421-424. In combination, these conditions can lead to the development of 
the so-called Male Obesity-associated Secondary Hypogonadism (MOSH), 
characterized by impaired fertility, bone mineralization, body fat 
metabolism/composition, and cognitive function. Increased estrogen production in 
men can also lead to the development of gynecomastia and male ER+ breast cancer 
13,425,426. Treatment with aromatase inhibitors has shown to effectively reverse 
MOSH 427. In our diet-induced obesity model, the observed metabolic and 
inflammatory disturbances in the WAT may mimic those in obese males, which 
indicates that limiting inflammation could form the basis of new approaches aimed 
at prevention or more efficient treatments for these pathological conditions. 

While the metabolic consequences of HFD in male FVB/N mice have been 
reported 397, our results may provide important knowledge on the role of obesity and 
its related WAT inflammation in the male WAT aromatase expression.  

In hARO-Luc females (III), HFD-induced weight gain also associated with 
increased mammary fat aromatase Luc reporter activity. However, conversely to 
males, 15% of HFD-fed female mice did not shown increase in body weight. Higher 
aromatase expression was then only observed in HFD-fed animals who gained more 
than 20% weight. This latter result highlights the significant role of adiposity in 
influencing inflammation and aromatase production in WAT. Interestingly, 
expression of aromatase in gonadal and retroperitoneal WAT depots was not affected 
by the increased weight and adiposity in females. Similar results were obtained in 
Aromhum FVB/N by Chen and coworkers 119. HFD-fed Aromhum females 
demonstrated an increased expression of CYP19A1 only in the mammary fat pad. 
Furthermore, increased Cyp19a1 expression was reported in the mammary fat of 
HFD-fed OVX and ob/ob C57BL/6J females, but, unlike our results, they also 
showed upregulated aromatase expression in visceral fat 302. These differences in 
response are likely to be strain specific. However, it is known that the inflammatory 
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milieu and the regulation of CYP19A1 transcription in the subcutaneous adipose 
tissue differ from visceral fat depots 120,296,428. In fact, in obese women, changes in 
aromatase gene expression are found to be more evident in subcutaneous fat depots 
than in central visceral fat 85,120,296,429. Particularly, obese postmenopausal women 
exhibit an almost three-four-fold higher aromatase expression in the breast adipose 
tissue than that of healthy women 24,295,300. 

 Overall, the upregulation of CYP19A1 in these previous human and mouse 
studies was attributed to the augmented expression of TNFα, IL-6, and IL-1β in the 
WAT depots of obese subjects. However, in OVX and ob/ob C57BL/6J mice and 
obese women, it was also attributed to an elevated tissue number of CLS 119,285,295,302. 
Similar to these studies, obese hARO-Luc females exhibited mammary adipose 
tissue inflammation with higher levels of IL-6 and CCL2, which also correlated with 
the tissue Luc reporter activity. Moreover, as it is already the case for IL-6, we have 
now shown that CCL2 positively regulates aromatase gene expression in cultured 
breast stromal cells. Thus, it is evident that CCL2 not only plays a critical role in 
obesity-mediated inflammation and disturbed WAT metabolism, but it also 
contributes to the overexpression of aromatase within the mammary adipose tissue. 

Furthermore, significant differences were not noted in CLS density in any WAT 
depot between obese and lean hARO-Luc females, which differs from the previous 
mouse and human studies. Increased CLS density in WAT is considered an important 
marker of local inflammation since it is associated with higher levels of PGE2, CCL2, 
and TNFα 23,267,302,430. Accordingly, higher CLS numbers are associated with elevated 
activity of aromatase promoters I.4 and II 27,119. In our study, the absence of CLS may 
rather indicate a more modest proinflammatory condition that is sufficient to upregulate 
aromatase PI.4 and there to increase the transcription of the aromatase gene in the 
mammary fat pad. While the increased activity of PII is considered the main driving 
force boosting the aberrant production of aromatase in the severely obese and/or 
cancerous breast, upregulation of PI.4 is also found in the early and the advanced phases 
of obesity as well as in breast cancer 14,19. Therefore, it is vital to understand the 
regulation of this promoter and its role in limiting production of estrogen in high-risk 
obese postmenopausal women and preventing further carcinogenesis (Fig. 20). 

In women, obesity-mediated inflammation is considered one of the most important 
drivers of upregulated aromatase expression and estrogen levels in the breast adipose 
tissue after menopause and one of the major risk factors for ER+ breast cancer 23,26,431. 
While the exact mechanisms and factors behind these associations in vivo are 
unknown, it is thought that the increased production of proinflammatory factors in 
WAT is the missing link in the obesity, aromatase, and postmenopausal breast cancer 
triad 21,28. Identifying these factors and understanding their role in the estrogen 
biosynthesis is then central to preventing breast carcinogenesis.  
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Figure 20. Menopause- and cancer-related changes in the regulation of aromatase expression in breast adipose stroma. Menopause is 
associated with inflammation and increased expression and activity of CYP19A1 in breast adipose tissue (BrAT). This situation may be 
attributable to the upregulation of PI.4 by an imbalance in the local cytokine milieu, accompanied by increased proinflammatory inducers, 
including TNFα, IL-6, and CCL2 levels, and reduced availability of the endogenous inhibitor, IL-10. As the weight and adiposity increases 
in postmenopausal women, the already existing inflammatory conditions in BrAT exacerbate, as does the transcriptional activity of PI.4. 
Initially, the enlarged and inflamed adipocytes secrete greater amounts of TNFα, IL-6, IL-1β, and CCL2, which intensify the local 
inflammation, increase the number of resident macrophages, and overstimulate the transcription of CYP19A1 mostly via PI.4. However, 
the physiological difference in activity between PI.4 and the other local promoter, PII, is progressively reduced as the hypertrophic 
adipocytes begin to die, the recruitment of macrophages increases and the number of crown-like structures (CLS) becomes more evident. 
Together, these three elements raise the levels of PGE2 within the tissue, which in turn, upregulates the activity of the more potent PII. 
Postmenopausal women with severe or morbid obesity often present with 3-4 fold higher expression of CYP19A1 in BrAT, attributed 
partly to an overstimulated local activity of both PI.4 and PII. At this point, women are at elevated risk for ER+ breast cancer, with a more 
than 80% higher risk compared with women with a healthy BMI 1. In ER+ breast cancer, aberrant expression of CYP19A1, particularly 
in the layer of cancer-associated fibroblasts surrounding the tumor, can reach four-five-fold higher compared with non-cancerous adipose 
tissue in the breast. Such levels of transcription are driven by PII to a greater extent than PI.4 2. Nevertheless, while the contribution of 
PI.4 is not as high as PI.3/PII, dysregulation of PI.4 appears to be highly important in the earlier stages of the disease, contributing to 
the initial steps leading to carcinogenesis. 
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Compared to lean women, obese subjects have significantly higher CCL2 levels in 
WAT, which is significantly associated with elevated tissue macrophages and insulin 
resistance 432-434. In postmenopausal women, on the other hand, circulating levels of 
CCL2 are also higher, regardless of their BMI 435-437. In this study, we provided 
additional data on the role of obesity in promoting inflammation and aromatase 
expression in the subcutaneous adipose tissue. By comparing the mRNA expression 
of CYP19A1 and CCL2 in subcutaneous adipose tissue samples from obese and lean 
women, we found that obese adipose tissue expresses significantly higher levels of 
both aromatase and CCL2, providing thus additional support to our previous in vitro 
and in vivo results. Our findings may propose new mechanisms that explain the 
higher levels of aromatase in the postmenopausal breast, and how weight gain and 
excessive adiposity could lead this altered condition.  

6.4 Estrogen Deficiency, Obesity, and WAT 
Inflammation in Females 

6.4.1 Ovariectomy upregulates aromatase reporter 
expression in the mammary adipose tissue of hARO-
Luc mice. Role of local IL-10 and adiposity  

 There is a dynamic and reciprocal interplay between estrogen levels and WAT 
metabolism and inflammatory response, which controls body weight and systemic 
metabolism, but it is still not fully defined. In study II, we demonstrated that loss of 
ovarian hormones might increase the expression of aromatase in the mammary 
adipose tissue by altering the local cytokine profile, while promoting a gut bacterial 
ecology that supports obesity. 

OVX and intact hARO-Luc females were compared in terms of body 
composition, glucose metabolism, and adipose tissue IL-10 levels and aromatase Luc 
reporter activity. Additionally, we also investigated whether changes in estrogen 
levels after OVX may affect the bacterial composition and function of the intestine. 
As other researchers have already reported 149,302,438, in our study, increased body 
weight and adiposity were the most evident metabolic changes caused by the loss of 
ovarian hormone production in OVX hARO-Luc mice. Although, OVX females 
exhibited a significant increase in gonadal and subcutaneous fat, no other metabolic 
disturbances were detected, for example, altered glucose or insulin levels. 
Nevertheless, we found that the ongoing estrogen deficiency particularly affect the 
expression of aromatase Luc reporter and the levels of IL-10 in subcutaneous WAT. 
OVX hARO-Luc mice exhibited increased activity of aromatase reporter and 
reduced levels of IL-10 in the mammary fat pad, while levels remained unaltered in 
gonadal fat. Furthermore, supporting our in vitro findings, tissue levels of IL-10 
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correlated inversely with the local aromatase reporter activity in mammary fat tissue. 
These results are consistent with previous studies in OVX animals and 
postmenopausal women, showing that increased adiposity is associated with 
increased CYP19A1 expression in the mammary and breast adipose tissue, 
respectively 119,295. In addition to adiposity, higher aromatase expression in these 
previous studies was related to an elevated production of proinflammatory factors 
and a high density of CLS. However, our results showed that the increased aromatase 
reporter expression in the OVX hARO-Luc females was not driven by the presence 
of CLS, which is evidenced by a very low number of CLS in the mammary fat tissue 
of OVX and intact mice. Combined with the lack of profound metabolic 
disturbances, the absence of CLS in these animals may reflect a modest stage of 
inflammation, during which, aromatase PI.4, may still be the main promoter driving 
the transcription of aromatase reporter in the mammary tissue. 

Regarding the changes in IL-10, almost no information exists about the 
physiological levels of this anti-inflammatory cytokine in mammary/breast adipose 
tissue, neither on the role of menopause or obesity in controlling these local levels. 
What is known is that circulating IL-10 levels are altered in women with obesity, 
particularly among those with metabolic syndrome 439-441. Interestingly, it is also 
known that in the healthy breast tissue, IL-10 is mainly produced by glandular cells, 
followed by adipocytes, macrophages, and stromal cells 280,408,442. Involution of the 
parenchymal (glandular) fraction of the breast is a well-established process that 
initiates in women around the age of menopause 148. Less glandular tissue producing 
IL-10 may explain, at least in part, why aromatase expression in the breast adipose 
tissue increases after menopause, as it is not caused solely by an increased BMI. 
These results may propose new mechanisms for the pathogenesis of postmenopausal 
breast cancer. Further clinical studies are needed to assess whether the local cytokine 
profile in WAT, particularly in the breast, changes in women throughout menopause. 

6.4.2 Altered gut microbiota: a factor contributing to the link 
between ovariectomy and increased adiposity? 

Increasing evidence exist to substantiate the connection between gut bacterial 
composition and host metabolism and inflammatory status. This is particularly so as 
specific changes in the gut bacterial ecology are associated with the development of 
metabolism-related disorders, including obesity, diabetes, and cancer 161,163,443,444. 
This connection, however, has shown to be far more complex and dynamic than 
initially thought, as obesity and other metabolic diseases are known also to alter the 
gut microbiota composition 172,176,177.  

Compared to lean individuals, obese subjects present a less diverse bacterial 
ecology followed by an increased Firmicutes/Bacteroidetes ratio 170,172,176. Such 
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microbial profile is considered a key driver promoting and maintaining an 
obesogenic environment characterized by increased energy intake, higher fat 
accumulation, and inflammation 445,446. The fact that gut function and systemic 
metabolism are interconnected made us consider whether estrogens could play a role 
in this interplay, and if so, how these responses are affected by the dramatic and 
systemic estrogen deprivation after menopause.  

In study II, we demonstrated that OVX in hARO-Luc mice changes their gut 
microbiota composition and favors an obesogenic type bacterial ecology. More 
specifically, colon bacterial samples from OVX females presented an increased 
Firmicutes/Bacteroidetes ratio compared to these from the intact group. These 
results also concur with previous data obtained in OVX rats 189. In humans, age-
mediated changes in women’s microbiota were also observed by Minelli and 
coworkers in 1993 183. The authors reported fluctuations in the gut bacterial ecology 
of healthy women throughout life, with menopause enhancing the proliferation of 
proinflammatory bacteria, including Escherichia coli and Enterobacter cloacae. 
They concluded that such bacterial changes between pre- and postmenopausal 
women might result from the physiological sex steroid imbalance after menopause.  

Currently, at least three molecular mechanisms have been proposed to explain 
the link between specific gut bacterial changes and modulation of the host 
metabolism: 1. Increased energy intake and appetite by altering the fecal 
concentrations of short-chain fatty acids (SCFAs) and the secretion of intestinal 
hormones, particularly glucagon-like-peptide (GLP)-1, and peptide-YY; 2. Higher 
adipocyte triglyceride deposition by blocking the inhibitory activity of fasting-
induced adipose factor (FIAF) on the lipoprotein lipase (LPL) enzyme; and 3. Local 
and systemic inflammation, which promotes an increased secretion of 
proinflammatory factors (IFNγ, IL-6, TNF-α, and LPS) by the intestine and their 
subsequent release into the circulation 165,178,445. Colon tissue samples from OVX 
hARO-Luc females expressed lower GLP-1 and higher PYY mRNA levels 
compared to the intact group. No significant differences in expression were found in 
LPL and FIAF genes. However, OVX females exhibited signs of gut inflammation, 
evidenced by higher mRNA levels of IL-6. Expression levels of TNFα and IL-10 
genes were altered but did not reach statistical significance.   

Overall, these results may offer new information on the role of estrogens in 
metabolism and the potential mechanisms through which these sex hormones 
controls body weight and energy homeostasis. Reduction of systemic estrogens 
during menopause may support an intestinal microbiota that influences adiposity and 
weight gain. Together, altered gut microbiota, menopausal weight gain, breast 
involution, and WAT inflammation, may account for the increased aromatase 
expression in the breast of postmenopausal women (Fig. 21). Nevertheless, further 
in vivo animal and human studies are needed to confirm and define the mechanisms 
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that drive this complex interplay, its role in the development of postmenopausal 
breast cancer, and the potential action of HRT on improving or preventing these gut 
bacterial changes.  

 

Figure 21. Uncovering new factors behind the link between menopause and increased risk 
of breast cancer. Loss of ovarian estrogens after menopause is associated with weight 
gain, augmented fat accumulation (particularly in visceral depots), and increased 
inflammation and aromatization in the breast adipose tissue (BrAT). Therefore, obese 
postmenopausal women often exhibit increased levels of aromatase in BrAT, which 
directly associates with enhanced local estrogens production. Exposure to cumulative 
high estrogen levels within the menopausal breast lead to aberrant cell proliferation and 
subsequent greater likelihood for cancer development. Among the interplay of 
mechanisms linking the menopause, obesity and breast cancer triad, it is likely that other 
obesity and menopause-related factors, including gut dysbiosis and breast parenchymal 
involution, respectively, may also contribute to the increased breast aromatase 
expression. We propose that reduced circulating levels of estrogens must promote 
changes in the gut microbiota that favor weight gain and higher fat accumulation, 
predisposing postmenopausal women to obesity. Parallel to this, the already-initiated 
involution of the breast during menopause might result in lower local IL-10 levels, which 
in return, could translate into a higher production and activity of proinflammatory 
cytokines, and consequently, to an overstimulated transcription of aromatase. 

6.5 Dietary Phytochemicals as Potential Anti-
inflammatory and Cancer Chemopreventive 
Agents 

6.5.1 Dietary polyphenol supplementation attenuates 
obesity-mediated WAT inflammation and aromatase 
expression 

Dietary polyphenols such as stilbenoids, flavonoids, and lignans have shown 
preventive effect on obesity and its metabolic complications. Their effects are 
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believed to be through the suppression of adipocyte differentiation, preadipocytes 
proliferation, triglyceride accumulation, lipogenesis, hyperglycemia, and 
inflammation, while stimulating fatty acid β-oxidation, lipolysis, insulin sensitivity, 
and adiponectin secretion 316,317,447. In study I, we demonstrated that dietary 
supplementation with a polyphenol-rich extract alleviates WAT inflammation and 
inhibits aromatase expression in the subcutaneous fat of HFD-fed hARO-Luc males. 
Despite the fact that supplementation with pine knot extract (PKE) did not reduce 
body weight or adiposity in these obese mice, it improved some important markers 
of metabolic dysregulation, lowering circulating leptin, insulin, and fasting glucose 
levels. Subbaramaiah and colleagues reported similar effects in vivo using OVX 
C57BL/6J mice on HFD and a dietary supplement containing phenolic antioxidants, 
particularly resveratrol, curcumin, and epigallocatechin gallate 448. In their study, 
polyphenol supplementation inhibited mammary fat pad inflammation in the OVX 
females, reduced CLS density, and the local production of proinflammatory factors 
and related signaling pathways. Additionally, they observed reduced aromatase gene 
expression and activity in mammary gland.  

Our results indicate a good bioavailability of the PKE-formed polyphenolic 
compounds in the mice and their significant antioxidant activity in vitro. Such results 
support our previous study 386and other research data 449 on the bioavailability and 
antioxidative effect of wood-derived stilbenoids and lignans. The anti-inflammatory 
properties of PKE in vivo could thus be the result of a strong antioxidant effect and 
an inhibitory action of macrophage recruitment in the WAT. 

6.5.2 Stilbenoids, flavonoids, and lignans as modulators of 
CYP19A1 gene transcription in stromal cells.  

It has been suggested that a polyphenol-rich diet may contribute to the prevention of 
estrogen-dependent cancers 32,33. Therefore, great interest is shown in identifying 
polyphenols, to evaluate their chemopreventive potential and to define the 
mechanisms through which these effects are displayed. Some dietary polyphenols 
have been shown to modulate aromatase gene expression and activity in breast 
cancer cells and placental microsomes 450-453, nonetheless, their effect on primary 
stromal cells and their mechanisms to regulate aromatase at the transcriptional level 
remain largely unknown. 

As already stated, in cultured breast ASCs, treatment with DEX+TNFα or 
FSK+PMA stimulates total CYP19A1 expression via PI.4 and PII, respectively 18. In 
study I, male hARO-Luc-derived MSCs exposed to the two combinations exhibited 
a significant increase in aromatase Luc reporter activity. We also proved that the 
lignan, NTG, and the stilbenoid, PS are capable suppressors of aromatase expression 
in stromal cells. NTG inhibited DEX/TNFα- and FSK/PMA-induced Luc reporter 
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activity in hARO-Luc MSCs, thus indicating it has the ability to modulate PI.4 and 
PII transcriptional activity. To support such effects, it has been demonstrated that 
NTG can inhibit the production of proinflammatory factors, specifically reactive 
nitrogen species (RNS), PGE2, IL-6, and CCL2 454. However, it is still unknown 
whether it can also block their intracellular signaling cascades. On the other hand, 
PS showed different promoter agonist/antagonist effects, inducing DEX/TNFα-
mediated aromatase Luc activity while inhibiting FSK/PMA-induced Luc activity. 
PS, thus, may modulate pathways that are specifically involved in the transcriptional 
activation of PII in stromal cells. Similar to NTG, the stilbenoid PS has demonstrated 
the ability to decrease the production of RNS, IL-6, and CCL2 in M1 macrophages 
455. NTG and PS appear to share similar anti-inflammatory mechanisms. However, 
further studies are needed to elucidate the mechanisms involved in the modulation 
of aromatase in the adipose stroma.  

Genestein (GNS), resveratrol (RSV), PS, and the lignans, enterodiol (ENT) and 
enterolactone (ENL), are efficient modulators of aromatase expression and activity 
in vitro 456,457. Studies converge on the same result that the chemopreventive actions 
of polyphenols are partly caused by a direct inhibition of aromatase and estrogen 
production, particularly in breast cancer cells. However, only three studies have been 
conducted under these conditions. Wang et al. 458, demonstrated that ENL and ENT 
may suppress aromatase enzyme activity in primary preadipocytes derived from 
visceral depots. Campbell and Kurzer 459, reported no effect of GNS on aromatase 
activity in human preadipocytes from subcutaneous and visceral depots. And van 
Meeuwen et al. 460, reported a potent inhibition of aromatase activity by GNS in 
breast fibroblasts. 

In our study, 10 µM GNS and RSV were able to suppress the glucocorticoid 
mediated total CYP19A1 expression in primary breast ASCs, thus showing potential 
ability to modulate PI.4 transcriptional activity. Results with GNS, however, 
contradict those obtained previously in breast cancer cells and visceral fat 
preadipocytes 14,55,120,300, but it is important to emphasize that aromatase expression 
has shown to be differently regulated in cancer and adipose stromal cells from 
visceral and subcutaneous depots, so as in breast adipose tissue. Accordingly, our 
findings concur with previous GNS data in breast fibroblasts 460.  On the other hand, 
our results with RSV are in line with already reported studies, more specifically with 
the one from Wang Y 450, where it showed to inhibit aromatase both mRNA and 
protein expression in breast cancer cells. However, in this previous study, RSV 
blocked the activation of aromatase via PII/PI.3. Instead, uur results suggest that 
RSV could also repress PI.4 in healthy breast stromal cells. Regarding PS, mouse 
and human in vitro experiments indicate that it might not be able to modulate 
aromatase expression via PI.4.  
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Further studies are warranted to evaluate whether these polyphenols could also 
affect PII transcriptional activity in non-cancerous breast ASCs and in PI.4 and/or 
PII in cancer-related adipose fibroblasts (CAF). 

Furthermore, the potential modulatory effect of the lignan secoisolariciresinol 
(SECO) and its mammalian-lignan metabolites, ENT and END, on CYP19A1 
expression was examined in primary breast ASCs (unpublished data). Only END and 
ENT, but not SECO, were shown to affect the breast stroma CYP19A1 expression. 
However, these effects contradicted those previously reported. ENT was shown to 
further upregulate DEX/TNFα-induced CYP19A1 transcription, while END did the 
same but on FSK/PMA-induced CYP19A1 transcription. The reasons for these 
differences in response may relate to the fact that mRNA levels do not always 
coincide with the protein levels and, furthermore, as explained before, regulation of 
aromatase might not be the same in all WAT depots. While the promoters driving 
CYP19A1 transcription in WAT depots are the same, the responsiveness of the 
surrounding stromal cells to the local inducers appears to differ between 
subcutaneous and visceral fat, but also between breast adipose tissue and other 
subcutaneous depots 55,85,120,295. Most preclinical models used for testing the lignans 
for breast cancer prevention lack information about their potential effects on 
aromatase expression. However, it is possible that downregulation of aromatase 
activity in healthy stromal cells derives from an indirect action of lignans on the local 
production of proinflammatory factors. These results may provide new mechanistic 
evidence for a potential regulatory effect of polyphenols on aromatase expression. 
Ultimately, this information may aid to understand how dietary polyphenols affect 
breast cancer development. 

6.6 Strategies for Prevention of Breast Cancer 
There is an urgent need to develop new and more efficient approaches to reduce 
postmenopausal breast cancer risk, as it has become a major health problem 
worldwide. In parallel with the dramatic increase in the incidence of obesity, 
particularly in developed countries, it has been found that increased frequency, 
morbidity, and mortality for breast cancer among postmenopausal women correlate 
with excessive BMI and adiposity 259,271,461. Current strategies for primary breast 
cancer prevention aim at decreasing risk factors, thus weight loss and disrupting or 
interfering with the obesity-inflammation-estrogen axis represents one of the most 
efficient approaches for obese postmenopausal women 28,462.  

Caloric restriction has shown to reduce mammary tumor growth and metastasis in 
a variety of animal models 463. A 30% caloric restriction in obese mice was associated 
with lower inflammation in the mammary fat pad, evidenced by reduced CCL2 levels 
and infiltrated macrophages, lower production of IL-6 and TNFα, and inhibited NF-
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κB and AP-1 inflammatory activities. At the same time, caloric restriction restored the 
correct metabolic function of these animals, increased insulin sensitivity, lowered 
circulating glucose and IGF-1 levels, and promoted adiponectin secretion 464. 
Remarkably, weight loss in obese postmenopausal women, either by improving 
physical activity or by undergoing bariatric surgery, was associated with a significant 
reduction in breast cancer incidence and mortality 274,465. The Iowa Women’s Health 
Study based on 34000 women demonstrated that a tendency towards maintaining 5% 
weight loss can reduce the risk of breast cancer by up to 25%, even in postmenopausal 
women with normal BMI 466. Recent data suggest that caloric-restricted diet-mediated 
weight loss in postmenopausal women, with or without exercise, can lead to significant 
reductions in serum estrogens and free testosterone, as well as in C-reactive protein, 
leptin, and insulin, and increased adiponectin 467. 

In addition to weight loss and physical activity, diet is considered one of the most 
important and most modifiable risk factors for breast cancer 468. Several studies have 
proved an inverse association between breast cancer risk and a low-fat diet with high 
vegetables, fruits, whole grain, soy, and fish, consumption 468,469. Plant rich diets 
contain numerous polyphenols, which, as discussed above, have been linked to 
reduced breast cancer risk, progression, or recurrence 33. While the chemopreventive 
effects of dietary polyphenols may be based on strong anti-oxidant and anti-
inflammatory properties, it is possible that some compounds could also exert direct 
actions on estrogen production 35,456. However, there are still discrepancies between 
the clinical studies and the research in cells and animal models with more controlled 
conditions. Better-designed preclinical studies could address these differences.  

Current preventive pharmacological therapies for postmenopausal women at 
increased risk include selective the estrogen receptor modulators (SERMs),  
tamoxifen and raloxifene, and the aromatase inhibitors (AI), anastrozole and 
exemestane 462,470. Several randomized trials of SERMs demonstrated the overall 
reduction of all breast cancer incidence with tamoxifen, including ductal carcinoma 
in situ, by 38% 471. However, most studies have not been able to report a decrease in 
breast cancer mortality rates with SERMs. The efficacy between tamoxifen and 
raloxifene was compared in the Study of Tamoxifen and Raloxifene, or STAR, trial 
472. Tamoxifen appeared to be more effective than raloxifene in preventing invasive 
breast cancer. However, raloxifene exhibited fewer side effects than tamoxifen did, 
particularly a lower incidence of endometrial cancer and venous thromboembolism. 
At least two studies have demonstrated the efficacy of anastrozole in reducing breast 
cancer, one showing a 65% reduction after a five-year treatment, while in the second 
study, the incidence was reduced by 53% 473,474. Compared with SERMs, AI has 
proved to be superior in reducing the incidence of hormone-dependent breast cancers 
in postmenopausal women 475,476. When comparing the adverse profiles of these 
therapies, AIs are associated with a higher incidence of osteoporosis, stroke, 
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hypercholesterolemia, and vaginal dryness, but a lower incidence of venous 
thrombosis, pulmonary emboli, and vaginal discharge than tamoxifen 470.  
Nevertheless, despite their beneficial effect in high-risk women, long-term 
antiestrogen therapies are associated with important side effects that may reduce 
their feasibility as preventive agents in women without a history of breast cancer or 
premalignant lesions.  

Other pharmacological interventions proposed for breast cancer prevention include 
non-steroidal anti-inflammatory drugs (NSAIDs) and metformin. The use of NSAIDs 
is based on blockage of PGE2 biosynthesis by inhibiting COX-2 activity, thus reducing 
its bioavailability in WAT and the local production of aromatase and estrogens 477. 
Compared with women who never used aspirin, regular intake was associated with a 
reduction of breast cancer risk by 20% 478. Studies have shown that aspirin use (6-7 
days/week) after a breast cancer diagnosis may significantly reduce the risk of 
recurrence and mortality 479. Furthermore, daily use of NSAIDs is associated with 52% 
reduced ER+ breast cancer recurrence in obese women 480. However, no studies have 
addressed whether long-term NSAIDs could reduce breast cancer risk among obese 
postmenopausal women with breast tissue inflammatory markers. Additional use of 
TNFα and CCR2/CCL2 inhibitors may offer a broader strategy for reducing obesity-
related inflammation in postmenopausal women and, therefore, their breast cancer risk. 
The current data on TNFα, however, is very limited and controversial, especially 
because it is regarded as a tumor-killing cytokine and therefore essential for suppressing 
carcinogesis. TNFα-antagonist therapy has shown to promote carcinogenesis in some 
patients with rheumatoid arthritis 481,482. However, a larger study in Sweden contradicted 
these results, reporting no change in breast cancer recurrence in patients with 
rheumatoid arthritis and a prior breast cancer diagnosis 483. In the case of CCL2, several 
anti- CCR2 antibodies are already on the market but very few clinical trials are being 
conducted in cancer patients. Currently, only two CCR2 antagonists are in clinical trials 
for bone metastasis and pancreatic cancer 484,485.  

The use of metformin, an antidiabetic drug, is also associated with a reduced 
incidence of cancer 486. Interestingly, it is known that in cultured breast ASCs, 
metformin treatment reduces aromatase expression under FSK/PMA conditions via 
activation of AMPK activity 487. Several ongoing clinical trials are expected to 
produce more detailed information on its potential chemopreventive effect 488,489. 
Though, recent results from the randomized trial 490 using aromatase inhibitors and 
metformin on ER+ metastatic breast cancer patients has failed to show positive 
effects for the addition of metformin.  

In summary, approaches that aim to reduce weight and adiposity, increase 
vegetable and fruit consumption, and decrease inflammation and estrogen 
production may offer the most promising strategy to prevent breast cancer 
development in obese postmenopausal women. 
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7 Conclusions 

Based on the evidence obtained in this research work, the following conclusions can 
be drawn:  

1. The hARO-Luc reporter mouse model is a valuable tool for studying in vivo the 
impact of obesity on the regulation of CYP19A1 gene expression in the WAT of 
females and males. 

2. Two novel adipose tissue cytokines, IL-10, an anti-inflammatory factor, and 
CCL2, a proinflammatory chemokine, were identified as novel regulators of 
CYP19A1 gene expression in the breast adipose tissue (Fig. 22). IL-10 inhibited 
TNFα-mediated transcription of CYP19A1 in cultured breast ASCs, thus acting 
as a negative regulator. Thus far, IL-10 is the first known adipose tissue secreted 
factor to downregulate local aromatase expression, since only ghrelin, a gut 
hormone, has shown similar effects in breast ASCs 405. CCL2, on the other hand, 
further induced DEX-mediated CYP19A1 gene transcription also in breast ASCs, 
making it a potential stimulator of aromatase in WAT. The mechanism that may 
drive the IL-10 inhibitory effect on TNFα was found to be the suppression of 
ERK1/2-induced aromatase PI.4 transcriptional activity, while, in the case of 
CCL2, it may be the activation of the CCR2/ERK1/2 signaling pathway, and the 
subsequent synergic stimulation of PI.4 transcriptional activity. 

 
Figure 22. New factors involved in the regulation of PI.4 in the breast stroma. 
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3. In hARO-Luc females and males, long-term HFD feeding promoted weight gain 
and increased adiposity, which in turn was associated with increased aromatase 
Luc reporter activity and altered expression of proinflammatory factors in WAT. 
In females, mammary fat pad expression of aromatase and proinflammatory 
factors were particularly affected, more than in other WAT depots. Interestingly, 
mammary fat CCL2 level in obese HFD females was increased and positively 
correlated with Luc reporter activity. In males, subcutaneous and gonadal fat 
depots showed increased Luc activity and clear markers of inflammation, 
including a higher proinflammatory cytokine index, high CLS density, and 
adipose tissue hypertrophy. Furthermore, we found that CYP19A1 and CCL2 
mRNA levels were higher in the subcutaneous adipose tissue of obese women. 
These results further confirm that obesity favors the establishment of a 
proinflammatory environment in WAT, which may overstimulate the local 
production and activity of aromatase.  

4. Ovariectomy (OVX) in hARO-Luc mice is associated with weight gain and 
elevated adiposity, as well as with increased aromatase Luc reporter activity and 
reduced IL-10 levels in mammary fat pad. Furthermore, lower IL-10 levels in the 
mammary tissue, perhaps as a consequence of parenchymal involution, correlated 
with higher local Luc reporter activity. This indicates that loss of ovarian estrogen 
after menopause may promote a proinflammatory milieu that drives increased 
aromatase expression in the breast adipose tissue of postmenopausal women. 
Additionally, reduced levels of estrogens in female mice showed to induce 
changes in gut microbiota that are associated with increased energy intake and 
obesity in human subjects. This particularly evidence provide new insights into 
the mechanisms by which estrogen controls systemic metabolism and the 
underlying causes of menopausal weight gain. 

5. Polyphenol-rich intervention with pine knot extract (PKE) on HFD-fed male 
hARO-Luc mice attenuated WAT inflammation while preventing the 
upregulation of aromatase Luc reporter activity in subcutaneous fat. In vitro, of 
all the polyphenols in PKE, only nortrachelogenin was shown to have a potential 
inhibitory effect on aromatase Luc activity in hARO-Luc MSCs via PI.4 and PII. 
Furthermore, in human ASCs, resveratrol and genistein inhibited CYP19A1 
mRNA levels, while enterolactone and enterodiol were shown to enhance the 
gene transcription levels. It is possible that polyphenols, especially lignans, may 
reduce estrogen levels and breast cancer risk by suppressing inflammation, rather 
than directly inhibiting aromatase at the transcriptional level. 
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