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Abstract. In this paper, we present a new masking scheme for ring-LWE
decryption. Our scheme exploits the additively-homomorphic property
of the existing ring-LWE encryption schemes and computes an additive-
mask as an encryption of a random message. Our solution differs in
several aspects from the recent masked ring-LWE implementation by
Reparaz et al. presented at CHES 2015; most notably we do not require
a masked decoder but work with a conventional, unmasked decoder. As
such, we can secure a ring-LWE implementation using additive masking
with minimal changes. Our masking scheme is also very generic in the
sense that it can be applied to other additively-homomorphic encryption
schemes.

1 Introduction

Most public-key cryptography deployed today will not withstand attacks
by a quantum computer. Shor’s algorithm [Sho99] can break RSA, discrete
logarithms and elliptic-curve cryptography in polynomial time using a
quantum computer. The National Security Agency (NSA) has recently
announced that quantum computing is a threat to the existing public key
infrastructure, and has recommended a transition to quantum resistant
public key algorithms [nsa15]. In recent years significant progress was
made to improve public-key cryptosystems based on computational
problems that will remain secure even in the presence of powerful quantum
computers. Regev’s learning with errors (LWE) problem [Reg05] and
its ring variant, known as the ring-LWE problem have become very
popular in designing public key encryption, key exchange, digital signature
and homomorphic encryption schemes. Several recent publications such
as [PG14,PDG14,RVM+14,GOPS13,RVV14,dCRVV15,APS13,LSR+15,
BSJ15,POG15] show that ring-LWE based encryption and digital signature
schemes are faster and relatively easier to implement compared to elliptic
curve cryptography (ECC) algorithms.

Though secure against quantum computing, ring-LWE based
cryptography offers no inherent protection against side-channel



attacks [Koc96]. It is well-known that a vanilla, unprotected
implementation of a cryptographic algorithm running on an embedded
device can be broken if the adversary can observe a side-channel, such as
the instantaneous power consumption, the EM radiation or some timing
information. A particularly effective method to extract secrets, such as
cryptographic keys or passwords, from embedded devices is Differential
Power Analysis (DPA) [KJJ99].

Masking [CJRR99,GP99] is a provable sound countermeasure against
DPA. First-order masking works by probabilistically splitting every
intermediate into two shares such that each share is statistically
independent from the intermediate. This property ought to preserve
through the entire computation. A masking scheme defines how the
computation on masked data should be performed. Masking, of course,
comes at a cost. Masked implementations incur area, time and energy
overheads. In public-key cryptosystems, the decryption operation is
normally the prime target for DPA protections, as it is the component
that manipulates long-term secrets.

Post-quantum cryptosystems are not yet as mature as RSA, Diffie-
Hellman or ECC. There is ongoing research to determine the exact
security offered by a concrete parameter choice, to determine which
padding schemes should be used, to design fast and memory-efficient
implementations that can compete with classical public-key cryptography
and to write protected implementations against side-channel analysis.

A first step in a masked ring-LWE implementation is the
work [RRVV15], hereafter refered to as the CHES 2015 approach. This
approach takes an unmasked ring-LWE processor and adds masking with
a bespoke, customized masked decoder. The overhead is roughly 2.6 times
more cycles and the impact in area is very small.

Our contribution. In this paper we propose a new masking scheme
to protect the secret key during decryption operations in ring-
LWE cryptosystems. Our masking scheme is based on the additively
homomorphic nature of the existing ring-LWE encryption. A mask is
computed by encrypting a random message and then the mask is added
to the ciphertext. This operation randomizes the ciphertext and mitigates
the side-channel leakage problem.

Our solution has the advantage compared to the CHES 2015 approach
that we do not require additional hardware (nor software) to compute
the final decoding operation. The masking scheme is applicable to both
hardware and software implementations. A caveat of our approach is that
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we need to place additional assumptions on the underlying arithmetic
hardware compared to the CHES 2015 approach.

2 Background

For a complete view of the system, we describe the entire ring-LWE
cryptosystem. In this paper we focus on the DPA security of the ring-LWE
decryption operation.

Notation. We denote by R = Fq[x]/(f(x)),+, ∗ a modular polynomial
ring over base field Fq. When we want to access a specific coefficient of a
polynomial s we write s[i]. The operation ⊕ is the xor operation on bits
or strings of bits.

Review of ring-LWE based encryption scheme. In the literature there
are several encryption schemes based on the ring-LWE problem, for
example [LPR10], [FV12], [BLLN13] etc. The major algorithms in
these encryption schemes are: key-generation, encryption and decryption.
These algorithms perform message-encoding, discrete Gaussian sampling,
polynomial addition/subtraction/multiplication, and decoding as the
primitive operations.

In this paper, we use the scheme proposed by Lyubashevsky, Peikert,
and Regev (LPR) [LPR10]. Though our masking scheme is generic and
works with the other ring-LWE encryption schemes, we choose the LPR
scheme for the analysis mainly due to the availability of several efficient
implementations [PG14,RVM+14,GOPS13,dCRVV15,LSR+15,POG15]
and due to the existence of a DPA resistant masked implementation
[RRVV15].

The three main operations in the LPR encryption scheme are described
below. The parameters are (n, q, σ) where n is the dimension of polynomial
ring, q is the modulus and σ is the standard deviation of the discrete
Gaussian distribution.

– Key generation. Two polynomials r and s are generated by sampling
the coefficients from the discrete Gaussian distribution. Next a new
polynomial p = r− g ∗ s is computed where g is a globally known base
polynomial. The key generation outputs s as the secret key and p as
the public key.

– Encryption. The n-bit input plaintext is encoded as a ring element
m̄ ∈ R by multiplying the bits by q/2. The encryption operation
generates three error polynomials e1, e2 and e3 using the discrete
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Gaussian sampler. These error polynomials are used as noise. The
ciphertext is a pair of polynomials (c1, c2) where c1 = g ∗ e1 + e2 and
c2 = p ∗ e1 + e3 + m̄.

– Decryption. In the decryption phase s is used to compute the
intermediate message m̃ = c1 ∗ s + c2. This intermediate plaintext
contains noise. Next, a decoding is performed to recover the original
plaintext bits: mrecovered = decode(m̃). The simplest decoder just
compares each coefficient of m̃ with q/2: if the distance is small (i.e.
< q/4) it returns 1 otherwise it returns 0.

Among all the computations, polynomial multiplication is the costliest.
Most of the reported implementations use the Number Theoretic Transform
(NTT) to accelerate the polynomial multiplications. In the implementation
in [RVM+14] the ciphertext is kept in the NTT domain to reduce the
number of NTTs and inverse NTTs (INTTs). When c1, c2 and s are
in the NTT domain, the plaintext bits are computed as mrecovered =
decode

(
INTT(c1 · s + c2)

)
. Here · is the coefficient-wise multiplication

operator.

Review of CHES2015 approach. The paper [RRVV15] proposes to mask
the ring-LWE decryption by additively splitting the secret s into two
shares s′, s′′ such that s = s′ + s′′. The masked decryption proceeds as
follows: it first computes one branch

a′ = INTT(c1 · s′ + c2), (1)

then proceeds with the computation of the second branch:

a′′ = INTT(c1 · s′′) (2)

and finally outputs the pair of the mask bit and the masked message bit
(m′,m′′) = masked-decoder(a′, a′′).

The random splitting of s into two shares s′ and s′′ works as a
countermeasure against DPA during the coefficient-wise multiplications.
The main difficulty is the masked-decoder block. This block performs the
threshold th computation in the masked domain, yielding Boolean masked
results m′ and m′′. Inside the decoder block, the two input shares a′ and
a′′ are compared with a lookup table to check if a set of rules is satisfied
or not. When the rules are not satisfied, the shares are refreshed by
adding and subtracting a small refreshment-value ∆ with the two shares,
and then checking the rules again. The masked decoder implementation
in [RRVV15] performs the refreshing operation 16 times in order to achieve
constant time decoding with high success probability.
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3 Additively Homomorphic ring-LWE Masking

Core idea. The central idea is that the LPR encryption scheme presented
in Section 2 is additively homomorphic. This means that for any two
ciphertexts (c1, c2) and (c′1, c

′
2) corresponding to the respective encryptions

of m and m′ under the same public key, (c1 + c′1, c2 + c′2) will be an
encryption of (m⊕m′). Hence we can write the following equation:

decryption(c1, c2)⊕ decryption(c′1, c
′
2) = decryption(c1 + c′1, c2 + c′2) (3)

This additive homomorphism can be exploited to randomize the
computation of the decryption operation. The randomization technique is
explained below.

The proposed randomized decryption. To perform the decryption of (c1, c2)
in a randomized way, the implementation follows the following steps:

1. Internally generate a random message m′ unknown to the adversary

2. Encrypt m′ to (c′1, c
′
2)

3. Perform decryption(c1 + c′1, c2 + c′2) to recover m⊕m′.

The masked recovered message is the tuple (m′,m⊕m′).
This approach has the nice property of not requiring a masked decoder.

One can use an unprotected decoder function. The obvious disadvantage is
that extra circuitry or code is required to perform the encryption. Another
disadvantage is the increased decryption failure rate. When two ciphertexts
are added, the amount of noise increases. The added noise increases the
decryption failure rate as we will see in Section 4.3.

4 Discussion

4.1 Analysis

First-order DPA. Our countermeasure can be thought of as ciphertext
blinding. Note that there is no attacker-known, nor attacker-controlled
inputs that are mixed with the secret key s. Thus, straightforward first-
order DPA attack does not immediately apply. Nevertheless, more refined
first-order DPA attacks do apply.
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First-order attacks. Note that the key is not masked. Thus, we do not
claim theoretic first-order security. Our randomization makes it harder
for the attacker to model the power consumption (and thus harder to
DPA). In Appendix A we describe a strategy to detect whether s[i] = 0
or s[i] 6= 0, which leads to an entropy loss. This seems not to significantly
affect security for the following reason. First, remember that s is handled
in the NTT domain, so that the probability of the event s[i] = 0 is 1/q.
If there are w coefficients for which s[i] = 0, the dimension is effectively
reduced by w. Since q > n, we expect w to be very small and thus not to
lose much in the dimension of the system. The same effect can occur at a
smaller scale, exploiting intermediates from within the multiplication. In
this situation, the consequences are more serious. Therefore, the underlying
hardware must ensure that intermediates from inside the multiplication
are noisy enough to be hard to exploit in this way.

4.2 Comparison with previous work

In this section we compare our solution with the CHES 2015 approach.

Offline precomputations. Our solution allows to precompute the encryption
of m′ into (c′1, c

′
2). This follows since m′ is independent from the message

m to be decrypted. In contrast, the CHES 2015 approach does not allow
to precompute any of the values from Eq. 1 nor Eq. 2. This potential
precomputation minimizes the impact of the countermeasure on the
running time, as detailed in the next section.

Simplicity. The implementation complexity of our solution is remarkably
low, both in software or hardware. In comparison, the CHES 2015 approach
would need a careful implementation of the masked decoder block. This
block is delicate to implement. In particular, the practitioner should
pay careful attention to leaking distances if implemented in software,
since during the masked decoding both shares are handled in contiguous
temporal locations. In hardware comparable observations apply during
the implementation of the masked tables.

In contrast, our approach is very easy to implement. The
implementation handles both shares of all intermediates far from each
other, minimizing the possibility of unintended interferences between
shares (and thus first-order leaks).

Is the masked decoder needed? In this paragraph we would like to point
out an important difference between the CHES 2015 approach and the
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one presented in Section 3. Namely, in this paper we do not require a
masked decoder, while the CHES 2015 solution does. One can wonder if
the masked decoder of the CHES 2015 approach is really needed: after all,
Eq. 3 may seem to imply that the decoding function is linear. However,
this is clearly not the case.

The difference is that, in our additively-homomorphic masking scheme
the inputs to the decoder are coefficients resulting from the proper
decryption with respect to the secret key s, and hence the input coefficients
are distributed around 0 or q/2. Whereas in the CHES 2015 approach,
the shared coefficients a′ and a′′ in (Eq. 1 and Eq. 2) are not individually
proper decryptions of a valid message; and hence are uniformly distributed
in (Fq,Fq). This is why the CHES 2015 requires a custom decoder, whereas
our masking scheme does not.

4.3 Error rates

The LPR encryption scheme is probabilistic in nature, i.e. the decryption
of a valid ciphertext may produce an incorrect plaintext with a small
probability. A decryption failure occurs when the noise in the coefficient-
to-be-decoded exceeds the threshold value of the decoder. In our additive
masking scheme the addition of two ciphertexts also adds the noises
present in the two ciphertexts: the error coefficients in the new ciphertext
could be at most one bit larger than the error coefficients in the two
ciphertexts. This larger noise increases the decryption failure rate. To
know the exact decryption failure rate we performed experiments for the
parameter set (n, q, σ) = (256, 7681, 4.51) [GFS+12] corresponding to a
medium-level security. The parameter set was used in [PG14,RVM+14,
dCRVV15,LSR+15,POG15] to implement encryption schemes. When the
masking is turned off, the decryption failure rate is 3.6×10−5 per bit. The
failure rate increases to 3.3× 10−3 per bit when the masking turned on.

The increase in the decryption failure rate can be compensated at the
cost of a minor deterioration in the security by using the techniques as
follows.

– The modulus q can be increased by one bit. This increment in the
size of q (from 13 bits to 14 bits) does not slow down our software
implementation since the underlying processor architecture is 32 bit,
and hence the processing times for both 13 and 14 bit coefficients are
the same.

– As suggested by one of the anonymous reviewers, decreasing the
standard deviation σ of the discrete Gaussian distribution may be
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more effective than increasing the size of q as the final noise is in the
order of σ2.

5 Implementation results

The presented masking scheme is suitable for implementation both in
hardware and software. We wrote a reference version of the proposed
countermeasure in C99. The implementation follows the same lines as
de Clercq et al. [dCRVV15].

Overheads. The overhead of our solution with respect to an unprotected
decryption is one random message generation, one extra encryption and
one coefficient addition. This incurs a negligible code size increase if the
encryption operation is available. In terms of speed, the costliest process
is the encryption. It is 2.8 times slower than the decryption. However,
this computation can be performed in advance before even knowing the
ciphertext to be decrypted.

6 Experimental results

In this section we describe the key-recovery DPA attacks on an ARM
Cortex-M4 processor that we performed to assess the security of our
solution.

Experimental setup. We compiled the reference implementation
with arm-none-eabi-gcc version 4.8.4 20140526 without any special
optimization flags (note that we do not aim at maximum speed or code
efficiency). We flashed an STM32F407VGT6 microcontroller featuring
an ARM Cortex-M4 core running at 168 MHz (full speed) and an RNG
that “delivers 32-bit random numbers generated by an integrated analog
circuit”1. We collected contactless power measurements by placing a
Langer LF-R 400 magnetic field probe in the vicinity of the chip power
supply circuitry as indicated in Figure 6. Traces are synchronized by a
GPIO pin.

Methodology. We follow a standard methodology to assess the security
of our countermeasure. We first attack our implementation when the
source of randomness is switched off—that is, the whole computation
is deterministic. This is equivalent to switching off the countermeasure.

1 http://www.st.com/web/en/resource/technical/document/datasheet/DM00037051.pdf
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Therefore, attacks are expected to work against this mode of operation.
Nevertheless, successful attacks in this scenario serve to confirm that the
experimental setup is indeed sound. In the second part of our analysis we
switch on the randomness to observe security gained exclusively by the
countermeasure.

We assume that when the adversary places hypotheses on certain key
coefficients, he knows all other key coefficients. This allows the adversary
to easily predict intermediates deep into the computation. This adversarial
model may seem quite strong; however, due to the mathematical structure
of the scheme it is possible to predict deep intermediates with low effort.

An overview EM trace is depicted in Figure 1. The trace spans the entire
protected computation as described in Section 3. Features of this EM trace
are more visually recognisable in the cross-correlation picture of Figure 2.
We can recognize the two most time-consuming blocks: the encryption of
m′ and the subsequent computation of decryption(c1 + c′1, c2 + c′2).

0 1 2 3 4 5 6 7

x 10
5time

E
M

Fig. 1: An exemplary EM trace covering the whole protected decryption.
Data series with large number of samples are difficult to plot; patterns
are more visible with other plotting techniques cf. Figure 2.

Masks off. We modeled the power consumption of a 32-bit register
holding the result of a MUL instruction as the Hamming distance between
two consecutive values, and applied standard CPA [BCO04]. When the
randomization is switched off the CPA attack is successful. In this scenario
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Fig. 2: Cross-correlation of a single trace.

the adversary learns the “random” values, he can predict any intermediate,
and thus the attack is expected to work. Nevertheless, this confirms that
the setup is sound.

Figure 3 shows the result of correlating 5 000 traces against predictions
of an intermediate that appears towards the end of the INTT computation.
Note that there are plenty of time samples that allow key-recovery; this
is because this intermediate is handled at many other times during the
execution of the decryption block.

The evolution of the Pearson’s correlation coefficient as the number
of traces increases is plotted in Figure 4. We can see that starting from
1 000 measurements the attack is successful.

Masks on. We repeated the same procedure when the randomness is
switched on. This is equivalent to activating the countermeasure. At the
time of this writing, we had available 5 000 traces. as Figure 5 shows.
The countermeasure makes harder the DPA attack: the correlation for the
correct key hypothesis does not stand out among other key hypothesis.
We acknowledge that it is suspiciously high. A more detailed study is
planned for the extended version of this paper.
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Fig. 3: Top: EM trace in the region where the modular multiplication is
performed. The time axis spans around 10 instructions, including MUL.W.
Bottom: CPA results. Correct key coefficient hypothesis in black; incorrect
hypotheses in grey. Masks off.
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Fig. 4: Evolution of CPA results
masks off.
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Fig. 5: Evolution of CPA results
masks on.

7 Conclusion

In this paper we proposed a new masking scheme for protecting ring-
LWE decryption against differential power analysis based attacks. The
proposed masking technique is more generic than the state of the art and
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Fig. 6: Setup photography showing the orientation of the H-field pick-up
probe.

can be applied to all ring-LWE encryption schemes that are additively
homomorphic. Moreover we showed that the masking scheme is easy to
implement and does not require any masked decoder circuit or software.
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A An attack on the multiplication

An adversary could mount the following attack with a zero-value power
model to recover only whether s[i] = 0 or not. Note that the distribution
of (c1 + c′1) · s when s = 0 and c1 + c′1 is uniform random is different from
the distribution of (c1 + c′1) · s when s 6= 0. This effect resembles [GT02],
with the important difference that here the attacker has no control over
(c1 + c′1) and that the outcome of the attack is recovering only whether
s[i] = 0 or not.

1. locate time samples where (c1 + c′1)[i] · s[i] is handled i ∈ {0, . . . , 255}.
2. cluster (c1 + c′1)[i] · s[i] into two groups according to mean power

consumption (or variance).
3. tag the two groups as s[i] = 0 or s[i] 6= 0.
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