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A B S T R A C T

Curcumin is a natural non-toxic phenol which is isolated from Curcumin longa L. Mounting evidence has revealed
the anticancer properties of curcumin in various tumors, but the underlying molecular mechanisms of this
suppression in cervical cancer is still remained unclear. Here we assessed the antitumor effects of curcumin
compared with 5-Fluorouracil in Hella cells in spheroids models and monolayer cell cultures.

The anti-proliferative effects of curcumin and 5-Fluorouracil were as examined in spheroid and monolayer
models. The expression levels of Wnt/β-catenin and NF-kB pathways as well as the influence of the cell cycle
were evaluated. Curcumin inhibited cell growth in Hella cells through the regulation of NF-kB and Wnt path-
ways. Also, cells developed a G2/M cell cycle arrest followed by sub-G1 apoptosis with 5-Fluorouracil and
curcumin. It was also shown that curcumin either considerably affects the Wnt/β-catenin and NF-kB pathways.
We showed that curcumin inhibits invasion and proliferation of cervical cancer cells via impairment of NF-kB
and Wnt/β-catenin pathways, proposing further studies on the potential impacts of this compound on cancer
therapy.

1. Introduction

According to the data released by World Health Organization
(WHO) in 2012, cervical cancer is the 4th most prevalent cancer in
women and the 7th most common among all cancer types. Cervical
cancer, with 275,000 deaths and 528,000 diagnosed cases per year [1],
is classified into two subtypes based on the pathology: adenocarcinoma
(10–15% of cases) and squamous cell carcinoma (80%) [2]. The pri-
mary and secondary sarcomas and lymphomas are the rest [3]. Ac-
cording to the estimated age-standardized rates of cervical cancer in-
cidence and mortality in 2012, Iran have an incident of 2.8 and a

mortality of 1.2 which are 14.0 and 6.8 in the world, respectively [4].
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-
dione) [5], the main compound extracted from rhizome of Curcuma
longa L. and turmeric the, is commonly used as a food additive and
dietary pigment. Numerous investigations indicated that curcumin
possesses antioxidant, anti-inflammatory, and anticancer properties
[6–10]. It is tolerable and safe even at high doses, but its low bioa-
vailability limits its therapeutic application [11]. Curcumin is a po-
tential anti-angiogenic agent and induces the apoptosis process in
tumor cells resulting in cancer suppression [12]. Many studies have
shown antitumor activities of curcumin on prostate cancer, head and
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neck squamous cell carcinoma, lung cancer, breast cancer, and brain
tumors [13]. Anticancer function of curcumin involves the inhibition of
the NF-κB and STAT3 pathways, the main molecular mechanisms in
cancer progression and development [14]. Curcumin also exerts anti-
proliferative activities owning to different pathways, such as forkhead
box O3 (FOXO3), β-catenin, cyclooxygenase-2 (COX-2), as well as
transcription factors, including cyclin D1, protein kinase B (Akt), and
HIF-1a [15,16]. The aim of our investigation was to determine the in-
hibitory property of curcumin on Wnt/β-catenin and NF-kB pathway in
cervical cancer cell line.

2. Materials and methods

2.1. Provision of reagents

Curcumin (Sami Labs Ltd, Bangalore, India) and 5-Fluorouracil
(Biolysis Pharma Company, Canada) were provided. The drugs were
dissolved in water and diluted in culture medium without FBS and
Antibiotic before use. Penicillin-streptomycin, RPMI-1640 medium,
trypsin-EDTA, and fetal bovine serum (FBS) were purchased from Gibco
(Grand Island, NY, USA).

2.2. Provision of human cervical cancers cell line Hella

The human cervical cancer cell line Hella was obtained from the
Pasture Institute (Tehran, Iran). Cells were cultured with DMEM
medium consisting 1% penicillin-streptomycin (50mg/L penicillin;
100000U/L streptomycin) and 10% heat-inactivated FBS in 75-cm3

tissue culture flasks. Cells were incubated in humidified (5% CO2) at-
mosphere at 37 °C.

2.3. Curcumin and Paclitaxel effects on the Hella cells livability

We placed the Hella cells in a 1×104 cells/well density and they
were cultured for 24 h. We added enhanced condensations of curcumin
1000, 500, 100, 50, 10, 0.1, 0.05, 0.001, 0.0001 μM/ml and 5-
Fluorouracil 0.15, 0.31, 0.62, 1.25, 2.5, 5, 10mg/ ml, and cells were
grown for 24 h at 37 °C, while untreated cells were considered as con-
trol group. The livability of Hella cells was evaluated by MTT assay
after 24 h culture and the test was conducted at least three times.

The cytotoxic ability of compounds was assessed with IC50 obtained
from the does-response curve in Graph Pad Prism (version.7)

2.4. Cell cycle analysis

We assessed the quantity of cells in sub-G1 phase by flow cytometry.
Briefly, before cells were harvested by centrifugation, 1× 106 Hella
cells/10-cm dish were incubated with enhanced condensations of cur-
cumin relying on the IC50 for 24 h. After harvest, the cells were washed
in PBS then slowly fixed in 70% ethanol. We set the cells in an ice bath
overnight and then suspended in PBS (40 μg/ml). We analyzed the cells
with flow cytometry (BD FACSCalibur) equipped with an argon laser at
488 nm after incubation for 20min at 37 °C in the dark. The present
relationship between apoptosis and cell cycle was analyzed by using
FLOWJO software.

2.5. Effect of curcumin on multicellular spheroids

We suspended Hella cells at a concentration of 5× 103 cells/ml in
serum-free medium containing RMPI and seeded in six agarose-coated
well plates. Curcumin and 5-Fluorouracil cytotoxicity on spheroid for-
mation was evaluated via using inverted phase contrast microscope
Leica-DMI300B (Leica, Wetzlar, Germany).

2.6. Quantitative reverse-transcriptase polymerase-chain-reaction (qRT-
PCR)

Hella cells were cultured by seeding 1×106 cells/well in RMPI in 6
well plates. After adding IC50 5-Fluorouracil and curcumin, the cells
incubated at 37 °C for 24 h. We extracted Total RNAs from the cells
using the Trizol reagent (Invitrogen, CA, USA), based on the manu-
facturers’ protocol. Total RNA was used to synthesize from cDNA by the
cDNA Synthesis Kit (Fermentas, USA) pursuant to manufacturer’s pro-
tocol. A quantitative RT-PCR analysis was carried out exploiting spe-
cific primers (Macrogene co, Seoul, Korea) that amplify the Wnt/β-ca-
tenin and NF-kB pathway. Real-time RT-PCR was conducted in ABI-
PRISM StepOne instrument (Applied Biosystems, Foster City, CA) with
the SYBR Premix Ex Taq (TaKaRa Bio, Shiga, Japan). The levels of
expression of these genes were normalized to the housekeeping gene
(GAPDH)expression levels, using a standard curve of cDNAs get from
Quantitative PCR Human Reference RNA (Stratagene, La Jolla, CA), as
explained previously.

2.7. Invasion assays

Cell invasion was carried out in BD BioCoat Matrigel invasion
chambers (24 wells, 8 μm pore size; BD Biosciences) pursuant to man-
ufacturer’s protocol. Briefly, the top chamber was seeded with 1× 106

Hella cells in RPMI without FBS. The bottom chamber was replete with
in RPMI with 10% FBS supplemented. Cells were treated with IC50

concentration of 5-Fluorouracil and curcumin in the top chamber, fol-
lowed by 24 h incubation. Then, cells were fixed with formalin and
stained with toluidine blue. Ten random fields/wells were counted for
cell invasion.

2.8. Statistical analysis

Information was demonstrated with mean ± standard deviation.
The untreated cells were assigned as control group. The distinction
between groups was compared with one-way ANOVA and p-values<
0.05 were set a significant difference for all trials. We were utilized
SPSS v.20 statistical software (IBM, Chicago) to analyze data.

3. Results

3.1. Curcumin and 5-Fluorouracil inhibit cell growth

The inhibitory effects of curcumin and 5-Fluorouracil on Hella cell
line growth are present in (Fig. 1). These analyses showed that cur-
cumin inhibited the cell growth in a dose-dependent manner, compared
to 5-Fluorouracil. The concentration of IC50 was determined for cur-
cumin (34.23 μM/ml) and 5-Fluorouracil (0.66mg/ml) respectively.
Analysis of the sub-G1 region of cell cycle showed that curcumin
treatment enhanced cell death. It was controlled by flow cytometry
analysis after propidium iodide staining of the cellular DNA (Fig. 2).

3.2. Curcumin reduces the capability of cervical cancer cell invasion

The number of invasive Hella cells treated with curcumin sig-
nificantly decreased in transwell invasion assays compared to untreated
cells. The experiments were carried out three times and represented
comparisons between treated and control cells using the Student’s t-test
(Fig.3).

3.3. Curcumin causes tumor shrinkage in Hella cells

Three-dimensional (3D) culture models have been shown to be
further radio-/chemo-resistant, compared to two-dimensional mono-
layer cell cultures, supporting the utilization of 3-D models for drug
screening/discovery. We revealed shrinkage of tumor in the spheroids
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after 7 days, in comparison to untreated spheroids (Fig. 4).

3.4. Curcumin enhances cell death and inhibits NF-kB and Wnt signaling
pathways

The mRNA expression levels of NF-κB and Wnt/β-catenin signaling
pathways in Hella cells treated with curcumin were examined by
quantitative Real-time PCR. To determine the related mechanism of
anti-proliferative activities of curcumin, we assessed the expression
pattern of genes implicated in NF-Kβ and Wnt/β-catenin (WNT) sig-
naling pathways after treatment of these cells with 5×IC50 of curcumin
for 48 h compare with control group (Fig. 5).

4. Discussion

Cervical cancer, as a leading cause of mortality and morbidity, is

one of the most frequent malignancies among females [17]. Despite all
developments in discovering the underlying mechanisms implicated in
the progression and generation of this cancer, its therapy and prognosis
has remained poor. Curcumin has some distinguished chemical attri-
butes leading to its interaction with multiple molecules inside and
outside the cell which are actively involved in the onset and progression
of cancer, this interaction results in inhibiting the progression of cancer
[13,18–20]. Numerous studies have demonstrated that deregulated
inflammatory pathways have a crucial role in many chronic diseases,
including cancer [21]. Chronic inflammation leads to onset and pro-
gression of cancer through increment of pro-inflammatory agents, in-
cluding chemokines, cytokines, overexpression of oncogenes, cycloox-
ygenase (COX-2), reactive oxygen species (ROS), matrix
metalloproteinase (MMPs), intracellular signaling pathway mediators,
activator protein 1 (AP1) and signal transducer and activator of tran-
scription 3 (STAT3) that motivate tumor cell proliferation, invasion,

Fig. 1. Inhibition of cell proliferation in Hella cells. Growth inhibitory effects after 24 h’ exposure to A) Curcumin, B) 5-Fluorouracil.

Fig. 2. The cell growth inhibitory effects of curcumin and 5-Fluorouracil in Hella cell line.
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angiogenesis, transformation, metastasis, chemo resistance, and radio
resistance [18,19,21–29]. Effect of curcumin on these factors is assessed
in numerous studies. AP-1 as a transcription factor express the genes
which pertaining to cancer and activate mitogenic, pro-angiogenic, and
anti-apoptotic signals [30–33]. MAPK family members, including
ERK1/2 activate and phosphorylate AP-1 leading to CCND1 up-reg-
ulation which encodes cyclin D1 [34]. AP-1 is often related to tumor
progression and the high expression level of AP-1 and NF-κB seen in
gliomas associated with enhanced radio-resistance and chemo-re-
sistance [35]. Curcumin (20 μM) suppressed TPA-stimulated PKC ac-
tivity in human astroglioma cells and down-regulated pro-angiogenic
MMP9 and AP-1 [36]. Curcumin inhibited PKC activation by blocking
Ca2+ release from the endoplasmic reticulum in human HCT-116
colon cancer cells [37,38]. Another research suggests that curcumin
repress JNK activation which is induced by carcinogens. Curcumin
suppressed AP-1 activity and led to inhibition of LnCap prostate cancer
cells proliferation induced by hydrogen peroxide [39]. It has been de-
monstrated that curcumin down-regulates the AP-1 expression in cer-
vical cancer cells [40]. Thus, curcumin can suppress tumor neovascu-
larization by inhibiting PKC activity through impairing angiogenesis via
the ERK-AP-1-MMP-9 pathway [41]. According to available data

Fig. 3. Effects of Curcumin in cancer cell invasion. Effects of Curcumin on Hella cells compare with control group in transwell invasion assays.

Fig. 4. Effect of Curcumin on the Hella spheroids.

Fig. 5. Curcumin enhances cell death and inhibits NF-kB (A) and Wnt (B) signaling pathways. (P-value, * P < 0.05).
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constitutive form of NF-κB can be found in virtually all malignancies,
and inhibitory capability of curcumin on NF-κB has made it an potential
compound in cancer treatment [42,43]. Curcumin can inhibit NF-κB
pathway in numerous cancer cells [44], such as breast cancer [45,46],
adenoid cystic carcinoma [47], human oral squamous carcinoma [48],
head and neck squamous cell carcinoma [49], cutaneous T-cell lym-
phoma [50], gastric cancer [51], ovarian cancer [52], medulloblastoma
[53], rhabdomyosarcoma [54], human tongue squamous cell carci-
noma [55], glioblastoma [56], colorectal cancer [57], Myeloid-derived
suppressor cells [58], human biliary cancer [59], Hodgkin’s lymphoma
[60], prostate cancer [61], T-cell and NFAT activation [62], esophageal
adenocarcinoma [63], pancreatic cancer [64], esophageal squamous
cell carcinoma [65], human bladder cancer [66], human epidermoid
carcinoma [67], non-Hodgkin’s lymphoma [68], thyroid carcinoma
[69] and lymphoma [70]. Other researches demonstrated that cur-
cumin can repress the activation of upstream kinases of NF-κB pathway,
IKKβ and IKKα. It has also been indicated that curcumin suppresses NF-
κB activation induced by cigarette smoke in lung epithelial cells [71],
and inhibits constitutive activation of NF-κB in mantle cell lymphoma,
head and neck cancer and multiple myeloma. NF-κB down-regulation
results in inhibited expression of COX-2, cyclin D1, pro-MMP2, and
MMP9 [35]. Curcumin also suppresses NF-κB -induced production of
CXCL1 and CXCL2 in breast cancer cells [72]. It has been found that the
Notch signaling pathway can be repressed by curcumin in pancreatic
cancer cells [73]. Moreover, curcumin is also a powerful proteasome
inhibitor [74], which suppress the 20S proteasome activation and in-
duce demolition of IκBα in colon cancer [75]. Peroxisome proliferator-
associated receptor gamma (PPAR-γ) is known to be an appropriate
inducer of separation as well as proliferation suppressor of tumor cells.
Recent studies have shown that curcumin can activate PPAR-γ and in-
hibit Moser cell growth by inhibiting the cyclin D1 and EGFR gene
expression [19]. Overall, we showed that curcumin efficiently inhibits
the proliferation and invasion of cervical cancer cells through impairing
Wnt/β-catenin and NF-kB pathways. Thus, targeting mentioned pro-
liferative pathways via curcumin could have valuable clinical impacts
on the therapy of cervical cancer and increase chemotherapy effects.
But, to determine the therapeutic applications and exact underlying
mechanisms of different formulation of curcumin in cervical cancer,
more investigations are required (Table 1).
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