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Abstract

To better understand the human brain, further advancements in the capabilities of
computational modelling and analysis of functional neuroimaging data are required.
Electro− and magneto−encephalography (EEG and MEG) technologies provide ef icient
ways to study the complex neural characteristics of both healthy and diseased brains.
This thesis contributes towards extending the current approaches for analysis and
functional connectivity (FC) modelling of M/EEG data. It includes an extensive review of
the different computational modelling and analysis methods applied for the
pre-processing, feature mining, and feature learning of the M/EEG signals in pursuit of
single-trial neurophysiological patterns and their applications in various ields. This is
followed by a review of current frameworks for modelling large scale functional brain
networks. These reviews have identi ied open research challenges in terms of low
performance of M/EEG based single-trial detection systems due to
insuf icient/inappropriate pre-processing and feature extraction methods and lack of
neurophysiological validation of such systems. The research undertaken towards
addressing these challenges have led to three original research contributions. In the irst
contribution, the estimation of current source density (CSD) is introduced as an essential
pre-processing step for EEG analysis. It is shown that CSD signi icantly improves the
distinction of motor-imagery (MI) related brain responses and has performed better than
other referencing schemes (i.e. common reference and common average reference) and
spherical surface Laplacian (SSL) methods (i.e. inite difference method and SSL using
realistic head model). In the second contribution, EEG-based single-trial FC networks are
introduced for MI (hand, feet, and tongue imagery kinaesthetic movements) and cognitive
imagery (CI) tasks (word generation, mathematical subtraction, and spatial navigation)
by implementing ‘partial’ granger causality modelling (PGCM) on two publically available
EEG datasets. The outcome demonstrated that EEG brain networks for mixed imagery
tasks (i.e. combination of CI and MI) can provide higher classi ication accuracy (for both
binary and multi-class approaches) as compared to the current state-of-the-art method
i.e. common spatial patterns (CSP). Moreover, it is shown for the irst time that the FC
between spatially distributed brain regions can provide additional useful discriminant
information for the classi ication of the brain responses evoked during imagery tasks. In
the third contribution, we investigated the temporal evolution and reorganisation of
resting-state MEG FC networks over the four weeks of a multi-modal EEG-driven
post-stroke upper limb (UL) movement rehabilitative therapy. The indings provide
reliable brain connectivity patterns for evaluating UL functional recovery during stroke
neurorehabilitation.
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Chapter 1

Introduction

1.1 Introduction and problem statement

Functional neuroimaging methods provide a means of evaluating local changes in
brain activity and can be performed on healthy (normal) as well as diseased
(compromised) brains [1, 2, 3]. Several functional neuroimaging methods are
currently available, including those based on a hemodynamic measure (e.g.
functional magnetic resonance imaging (fMRI)) and those based on
electrophysiological and associated mechanisms of the brain (e.g.
electroencephalography (EEG) and magnetoencephalography (MEG)). The
electric currents in the synchronously-active neural population cause generation
of electric potentials [4] and magnetic ields [5] which can be measured
non-invasively using EEG and MEG, respectively. Both neuroimaging techniques
have developed into widely used quantitative diagnostic tools in the analysis of
brain signals and patterns. EEG and MEG potentially contain a rich source of
information related to the functional, physiological, and pathological status of the
brain.

Computational modelling and analysis of the M/EEG data required extensive
implementation of signal processing algorithms. The signal analysis process must
consider additional constraints, e.g., minimal computational cost and availability
of small data points in case the system needs to work in online (real-time)
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scenario involving single-trial based feature/pattern detection. M/EEG based
single-trial feature detection systems have been extensively used for various
applications such as clinical decision making, rehabilitative and restorative
interventions, communication and control, and cognitive training [6, 7, 8, 9, 10]. A
typical signal processing and analysis pipeline of an M/EEG data analysis system
consists of several steps: data acquisition, pre-processing, feature extraction,
feature translation and machine learning. Each of these steps involves dedicated
computational methods and contributes to the over all performance of the
system. Despite decades of research and development of these computational
methods single-trial M/EEG-based brain activation pattern detection (BAPD)
systems (e.g. brain-computer interfaces (BCIs)) have found very limited usage in
real-world applications. Thus, there is a pressing need to improve the
performance and reliability of these M/EEG-based systems by further advancing
the computational analysis and modelling of M/EEG data.

This thesis aims to undertake the following open challenges in the research ield
of M/EEG computational analysis and modelling:

• Volume conduction (VC) involves mixing of the spatio-temporal information
generated at the cortical sources of the brain as the tissues and bone
structure between the human cortex and the scalp induce superimposition
of electrophysiological dynamics of the EEG signal [11, 12]. This may result
in diminished separability of the EEG features for distinct cognitive
tasks/processes and hence, severely affects the performance of the
EEG-based BAPD systems. Several measures i.e. EEG referencing schemes
and surface Laplacian (SL) estimation can be applied for minimising the
effect of VC at the scalp level recordings [13, 14, 15, 16, 17] (for further
details refer to [18]). However, majority of previous research studies
involve qualitative comparison of different spatial transformation methods
often restricting their analysis to different algorithms or different
parameters for the same algorithm (e.g. parameters optimisation of SL
methods, source imaging techniques, or different independent component
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analysis (ICA) algorithms) [19, 20, 21]. Thus, there is an urgent need for an
empirical evaluation of the effect of the current available referencing
schemes and SL methods on single-trial classi ication of EEG signals.

• One of the probable reasons for the lower performance of current
EEG-based BAPD systems is the use of features derived from channel
speci ic data (e.g. band-power (BP), autoregressive (AR), common spatial
patterns (CSP) and wavelets), which may not contain information about
interactions among different brain regions, while it is well known that
multiple brain regions dynamically interact in accomplishing a mental task.
Over the last few years, several research groups attempted to implement
connectivity-based BCIs [22, 23, 24, 25, 26] using different measures to map
the interactions between distinct brain regions. However, a majority of
these studies reported lower performances of connectivity-based features
for single-trial BAPD systems.

• A major application ield of M/EEG-based single-trial BAPD systems is
upper-limb (UL) stroke rehabilitation [27, 28, 8, 29]. Majority of the
previous studies related to this ield relied on the behavioural measures for
the assessment of the ef icacy of M/EEG based UL stroke rehabilitative
interventions in terms of functional recovery. Recently, neurophysiological
measures such as functional brain networks (FBNs) have been evaluated
successfully for this purpose. However, reorganisation of FBNs during the
course of a longitudinal M/EEG-based UL stroke rehabilitation intervention
is still poorly understood. Thus, the neurophysiological patterns based on
M/EEG FBNs must be explored to better understand the process of stroke
recovery and to assess the clinical ef icacy of the M/EEG based UL stroke
rehabilitation intervention.
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1.2 Thesis outline

The remainder of the thesis is organised as follows.

• Chapter 2 outlines the key idea and motivation behind advancing the
current computational analysis and modelling methods for M/EEG-based
BAPD systems. This chapter will provide a systematic discussion on several
topics related to this ield of research. First, Section 2.1 introduces this
chapter. Second, Section 2.2 provides a brief description about the
anatomical and physiological aspects of the human brain along with EEG
and MEG neuroimaging technologies. Third, various steps involved in a
single-trial BAPD system using M/EEG data are described in Section 2.3.
Fourth, current referencing schemes and SL approaches for EEG data are
presented in Section 2.4. Fifth, Section 2.5 describes two state-of-the-art
M/EEG feature extraction methods i.e. CSP and GCM in detail. Next, various
applications of an M/EEG-based BAPD system are provided in Section 2.6.
Furthermore, current outstanding issues in the ield of M/EEG data analysis
and pattern recognition are presented in Section 2.7. Finally, Section 2.8
summaries this chapter.

• Chapter 3 undertakes an empirical evaluation of the effect of the current
available referencing schemes and SL methods on single-trial classi ication
of EEG signals. This chapter is organised as follows: Section 3.1 introduces
this chapter. Section 3.2 provides a detailed description of the EEG dataset
and the algorithms implemented. Section 3.3 and 3.4 present the data
processing and analysis pipeline and outcomes of the studies undertaken.
Section 3.5 provides a detailed review of the outcomes and impact of the
studies undertaken in this chapter. Section 3.6 summaries the indings of
this chapter.

• Chapter 4 aims to address the limitation of low classi ication accuracies of
EEG-based FC features. This chapter is organised as follows: Section 4.1
introduces this chapter. Section 4.2 describes the connectivity methods, the
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BCI datasets, data processing and analysis pipelines, and performance
evaluation method. Next, Section 4.3 presents the results obtained from the
analysis. Finally, the results are discussed in Section 4.4 and Section 4.5
summarises the indings of this chapter.

• Chapter 5 aims to study the neural mechanisms related to the stroke
recovery obtained from BCI-driven robotic hand exoskeleton. In particular,
the associations between the estimated brain networks of the RS MEG data
and the behavioural outcomes related to stroke recovery are evaluated.
This chapter is organised as follows: Section 5.1 introduces this chapter.
Section 5.2 provides the detailed description about the participants,
rehabilitative intervention, assessment of hand functional recovery, and
acquisition and connectivity analysis of RS MEG data. Section 5.3 illustrates
the outcomes of the hand functional recovery assessment and the RS MEG
connectivity analysis. Section 5.4 provides a detailed review of the
outcomes and impact of the studies undertaken in this chapter. Section 5.5
concludes the chapter.

• Chapter 6 presents a summary of the work performed in the previous
chapters along with their limitations, and new directions for future work
are proposed.

1.3 Publications

The research work undertaken in this thesis is published in following
peer-reviewed articles:

Journals publications

• Rathee, D., Raza H., Prasad G., Cecotti H. (2017) “Current source density
estimation enhances the performance of motor-imagery related
Brain-computer interface.” IEEE Transactions on Neural Systems and

Rehabilitation Engineering, 25(12), pp. 2461-2471. Rathee et al. 2017a
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• Rathee, D., Cecotti. H., Prasad G. (2017) “Single-trial effective brain
connectivity patterns enhance discriminability of mental imagery tasks.”
Journal of Neural Engineering, 14(5), 056005. Rathee et al. 2017b

• Rathee, D., Meena, Y. K., Chowdhury. A., Dutta, A., McDonough S., and
Prasad, G. (2018) “Brain-Machine Interface Driven Post-stroke Upper-limb
Functional Recovery Correlates with Beta-band Mediated Cortical
Networks.” IEEE Transactions on Neural Systems and Rehabilitation

Engineering, (under editorial review). Rathee et al. 2018a

Conferences publications

• Rathee, D., Meena, Y. K., Chowdhury. A., Dutta, A., McDonough, S., and
Prasad, G. (2018) “Functional whole-brain connectivity using
magnetoencephalography to identify the neuro-biomarkers of BMI driven
stroke recovery.” Conference Abstract: The 21st International Conference on

Biomagnetism (Biomag 2018), Philadelphia, US. Rathee et al. 2018b

• Rathee D., Cecotti. H., Prasad G. (2018) “Current source density estimates
improve the discriminability of scalp-level brain connectivity features
related to motor-imagery tasks.” Engineering in Medicine and Biology

Society (EMBC), 40th Annual International Conference of the IEEE (in press).
Rathee et al. 2018c

• Rathee D., Cecotti. H., Prasad G. (2016) “Estimation of effective
fronto-parietal connectivity during motor imagery using partial granger
causality analysis.” Neural Networks (IJCNN), IEEE International Joint

Conference on, pp. 2055-2062. Rathee et al. 2016a
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Other relevant peer-reviewed publications that are not included in this thesis
are following:

Journal publications

• Raza H., Rathee D., Zhou S., Cecotti. H., Prasad G. (2018) “Covariate shift
estimation based adaptive ensemble learning for handling non- stationarity
in motor-imagery related EEG-based Brain-computer interface.”
Neurocomputing (in press) 2018. Raza et al. 2018d

Conference publications

• Rathee D., Cecotti. H., Prasad G. (2018) “Classi ication of propofol-induced
sedation states using brain connectivity analysis.” Engineering in Medicine

and Biology Society (EMBC), 40th Annual International Conference of the IEEE,
(in press). Rathee et al. 2018e

• Rathee D., Cecotti. H., Prasad G. (2017) “Propofol-induced sedation
diminishes the strength of frontal-parietal-occipital EEG network.”
Engineering in Medicine and Biology Society (EMBC), 39th Annual

International Conference of the IEEE, pp. 4463-4466. Rathee et al. 2017c

• Rathee D., Cecotti. H., Prasad G. (2017) “Functional Connectivity Networks
and Tangent Space Analysis Ef iciently Discriminate Distinct Levels of
Propofol-induced Sedation.” Conference Abstract: 8th Annual Translational

Medicine (TMED8) Conference, Londonderry, UK. Rathee et al. 2017d

• Rathee D., Cecotti. H., Prasad G. (2017) “Comparing Cognitive and Motor
Imagery Features for Classi ication of MEG Responses.” Conference Abstract:
MEG-UK 2017, Oxford, UK. Rathee et al. 2017e

• Rathee D., Cecotti. H., Prasad G. (2016) “Effective connectivity analysis in
fronto-centroparietal network during altered levels of consciousness.” Front.
Neuroinform (58), Conference Abstract: Neuroinformatics 2016, Reading, UK.
Rathee et al. 2016b
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• RatheeD., Cecotti. H., Prasad G. (2016) “(Un)Consciousness and Time-Series
Complexity: A study with spontaneous EEG.” Conference Abstract: MEG-UK

2016, Yorkshire, UK. Rathee et al. 2016c
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Chapter 2

Computational modelling and

EEG/MEG data analysis for

single-trial brain activation pattern

detection: A review

2.1 Introduction

Computational neuroscience has seen a revolutionary change with the
introduction of practical methods to non-invasive imaging that provides immense
support in the development of a functional and structural understanding of the
neural system. Functional neuroimaging methods provide a means of evaluating
local changes in brain activity and can be performed on healthy (normal) as well
as diseased (compromised) brains [1, 2, 3]. Several functional neuroimaging
methods are currently available, including those based on a hemodynamic
measure (e.g. functional magnetic resonance imaging (fMRI)) and those based on
electrophysiological and associated mechanisms of the brain (e.g.
electroencephalography (EEG) and magnetoencephalography (MEG)). As the
focus of this thesis is on these latter two methods − EEG and MEG, this chapter
will further concentrate on the computational analysis and modelling of the data
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generated by these two approaches. The electric currents in the
synchronously-active neural population cause generation of electric potentials [4]
and magnetic ields [5] which can be measured non-invasively using EEG and
MEG, respectively. With EEG being able to record neural activities from both
tangential and radial brain sources and MEG having higher sensitivity to
tangential sources, the two methods are complementary to each other. Both
neuroimaging techniques have developed into widely used quantitative
diagnostic tools in the analysis of brain signals and patterns. EEG and MEG
potentially contain a rich source of information related to the functional,
physiological, and pathological status of the brain. In particular, they are
extremely useful for the diagnosis and monitoring of brain activity and offer not
only the functional but also pathological, physiological, and metabolic changes
within the brain and implicitly other body parts.

A considerable amount of signal processing is involved in computational
modelling and analysis of the M/EEG data, e.g. signal-to-noise ratio (SNR)
enhancement (also known as pre-processing), feature extraction, source
localization, automated classi ication, hidden information extraction (pattern
detection), and dynamic modelling. These involve a variety of signal processing
methods, e.g. surface Laplacian (SL), signal-space projections,
principal/independent component analysis (PCA/ICA), temporal/spatial iltering,
and machine learning approaches. This chapter will provide a systematic
discussion on several topics related to this ield of research. First, Section 2.2
provides a brief introduction of the anatomical and physiological aspects of the
human brain along with EEG and MEG neuroimaging technologies. Second,
various steps involved in a single-trial brain activation pattern detection (BAPD)
system using M/EEG data are described in Section 2.3. Third, current referencing
schemes and SL approaches for EEG data are presented in Section 2.4. Fourth,
Section 2.5 describes two state-of-the-art M/EEG feature extraction methods i.e.
common spatial pattern (CSP) and Granger causality modelling (GCM) in detail.
Next, various applications of an M/EEG-based BAPD system are provided in
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Section 2.6. Furthermore, current outstanding issues in the ield of M/EEG data
analysis and pattern recognition are presented in Section 2.7. Finally, Section 2.8
summarises this chapter.

2.2 Functional neuroimaging methods

There are several brain imaging methods to study physiological (functional)
patterns of the human brain, e.g. fMRI, positron emmision tomography (PET),
single positron emission computerised tomography (SPECT), EEG, local ield
potentials (LFPs), electrocorticogram (ECoG), MEG, and near-infrared
spectroscopy (NIRS). Apart from these, there are other brain imaging techniques
involving methods like radiolabelling, histological, or optical imaging techniques.
Noninvasive M/EEG neuroimaging offers two unique attractions, namely high
time resolution in the millisecond range and direct access to neuronal signalling
rather than the indirect metabolic signals picked up by fMRI, PET, and NIRS. This
section focus on the two neuroimaging techniques, i.e. EEG and MEG. In
particular, the focus is on how, why, and where the brain generates
electrical/magnetic activities that can be recorded noninvasively on the scalp.

2.2.1 Human brain

The brain, one of the most complex human body organs, constitutes more than
100 billion nerve cells (primary neuronal body) which are interconnected by
specialised structures known as synapses. The healthy human brain remains
plastic during the entire lifespan, allowing the individual to keep gathering and
remembering information and to learn new skills.

Different brain regions are connected to other parts of the brain as well as to
the sensory and motor periphery by axonal ibres that form the brain’s white
matter due to its visual appearance of white colour myelin sheets. The anatomy of
the human brain includes two major structural regions, namely cortical area
(cerebrum) and subcortical areas (thalamus, brainstem, and cerebellum) as
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Figure 2.1: Major anatomical regions of Human Brain

illustrated in Fig. 2.1. A brief description related to the structural and functional
aspects of the parts mentioned above of the brain is provided below.

• The cortical area consists of the two paired cerebral hemispheres (see
Fig. 2.1). Each hemisphere is covered with cortex, a structure that varies in
thickness in different regions from about 1.5 to 4.0 mm. The cortex is
known colloquially as grey matter because of the colour imparted by its
large number of neurons. The cerebral cortex has four major parts, or lobes,
namely frontal, parietal, occipital, and temporal. The frontal and parietal
lobes are separated by the central sulcus, which is a deep groove between
the cortical folds (called gyri). The frontal lobe lies on the anterior of the
central sulcus, and the parietal lobe lies on its posterior side. The frontal
lobe is involved in higher-order executive functions including complex
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cognitive behaviours, personality, and decision making. Parietal lobe is
responsible for sensation (e.g. pain, touch), sensory comprehension,
recognition, perception of stimuli, orientation, and movement. The occipital
lobe, at the posterior pole of the brain, consists primarily of visual areas and
is responsible for visual processing. The temporal lobes are located
ventrally along the sides of the brain. They are critical for auditory signal
processing, higher-level visual processing, and memory.

• The major subcortical areas of the brain that interact with the cortex and
are intimately involved in motor and sensory function include thalamus,
brainstem, and cerebellum. The thalamus is located below the cortex and
deep within the cerebrum. It serves as the primary gateway to the cerebral
cortex for sensory inputs from the spinal cord and other subcortical
structures including basal ganglia and cerebellum. The brainstem is at the
base of the brain and consists of the midbrain, pons, and medulla oblongata.
The cerebellum is nestled under the posterior part of the cerebral
hemispheres. The cerebellum is involved in the production of smooth,
coordinated movements as well as in motor learning and adaptation.

2.2.2 Electroencephalography

EEG has its earliest beginnings in the 1930s as a tool of clinical diagnostics after
Hans Berger, a psychiatrist from Germany, recorded the electrical activity
originated by the human brain for the irst time [4]. The widespread clinical use
of EEG began by visual inspection of the spontaneous EEG activity in patients
suffering from various neurological disorders, particularly epilepsy.

EEG signals are recorded as potential differences, and their measurement
requires both a recording electrode and a reference electrode (see Fig. 2.2 (A)).
Typical EEG scalp electrodes are circular plates of metal that, when coupled to a
conductive medium, provide a good low-resistance path between the scalp and
EEG ampli ier.

Suppose V (r, t) is an unknown scalp potential. Each EEG channel records an
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experimental scalp potential that depends on a pair of scalp electrode locations
(rn, rR). In standard EEG parlance, reference recordings involve choosing some
ixed location rR , typically an ear, mastoid, or neck site, and recording all

potentials with respect to this ixed site. Apart from ixed reference montage, EEG
can also be acquired in bipolar setting which involves recording of potential
difference between two nearby electrodes both of which are presumed to be
changing in potential. These recordings are not fundamentally different from
referenced recordings, except that bipolar recordings acknowledge the presence
and in luence of the reference electrode explicitly. The process of EEG recording
is further described in Section 2.3.1.

2.2.3 Magnetoencephalography

In addition to the generation of electrical signals, brain-current sources can also
generate an external magnetic ield in the order of femto− and pico−Tesla (1 fT
= 10−15 Tesla and 1 pT = 10−12 Tesla). MEG is a neuroimaging technique,
pioneered by [30], that uses an array of sensors located around the head that are
extremely sensitive to minuscule changes in these magnetic ields resulted from
corresponding changes in the electrical activity within the brain (see [31], for a
detailed review).

As the typical MEG signal is of the order of 100 fT and thus a mere 10−8 times
the strength of the Earth’s steady magnetic ield, the best-quality MEG recordings
are carried out inside magnetically shielded rooms. The most commonly used
MEG sensors are SQUIDS (Superconducting quantum interference devices), which
do not make direct contact with the head as they are immersed within the
vacuum-insulated liquid-helium dewar. The magnetic ields emanating from the
head induce current lows in the SQUIDs. They combine the physical phenomena
of lux quantisation and Josephson tunneling [32, 33]. The circuit associated with
the SQUID functions as a lux-voltage ampli ier, transforming the magnetic lux
sensed by the SQUID to a voltage readable by the computer. The essential
property of the SQUID is that a steady increase in the magnetic lux threading the
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loop causes the critical current to oscillate with a period of one lux quantum. In
today’s SQUIDs, using conventional semiconductor readout electronics, one can
typically detect a change in magnetic lux corresponding to 10−6 times the
magnetic lux quantum(2.07 x 10−15 Tm2) in one second [34, 35]. This allows the
current MEG systems to have a high temporal resolution. The primary source
currents of both MEG and EEG arise in the cortical pyramidal neurons, which can
be radial (perpendicular to the cortical surface) and tangential (see Fig. 2.2 (B)).
EEG measures the voltage difference between different parts of the scalp and is
most sensitive to the super icial radial currents.

However, MEG signals majorly represent the tangential currents generated by
the neuronal population present in the walls of cortical issures. This is an
advantage over EEG, as about two-third of the cerebral cortex is located within
issures that are dif icult places to reach even with the intracranial recordings.

Moreover, as the magnetic ields are insensitive to the inhomogeneities of the
intervening tissues between cortical surface and sensor array, MEG signals are
less distorted than EEG signals. An additional signi icant difference between MEG
and EEG is that EEG recordings measure the voltage between two recording sites
whereas MEG recordings provide information on the magnetic lux or its gradient
precisely at the measurement site. Moreover, EEG is more susceptible to muscle
artefacts than MEG as the EEG electrodes are placed in direct contact with the
scalp surface. The process of MEG recording is further described in Section 2.3.1.
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Current advancements towards future MEG systems are majorly focused on
development of novel MEG sensors. High-transition-temperature (High-Tc)
SQUIDs could be applied to MEG with much reduced thermal shielding and thus
shorter distance from the brain compared to the current liquid-helium-cooled
SQUIDs [36]. However, the sensitivity of high-Tc SQUIDs is still clearly inferior,
and although the reduced distance to brain means larger signals, improvements
in sensitivity are needed for high-Tc SQUIDs to be on a par with their low-Tc

cousins, high-Tc SQUIDs hold promise for an adjustable high-resolution MEG
array [36, 37].

Optically-pumped magnetometers (OPM), based on magnetic- ield-induced
polarization rotation in an alkali-metal vapor, have demonstrated sensitivities
approaching those of low-Tc SQUIDs. MEG with chip-scale OPM sensors has been
demonstrated [38]. Such sensors would enable construction of a multi-channel
MEG system with an individually-adjustable array, where the sensors are within
millimeters from the scalp. A new generation portable OPM sensors are
presented recently to allow room temperature recording [39].

Both high-Tc SQUIDs and OPMs would remove the problems related to liquid
helium. However, zero helium boil-off MEG systems have been introduced
recently [40]. This development clearly enhances the usability of MEG in
hospitals, as the need for frequent transfers of liquid helium, requiring expertise
and personnel, is eliminated.

2.3 A conventional signal processing and analysis

pipeline of M/EEG data

Fig. 2.3 depicts various steps involved in a typical M/EEG signal processing and
analysis pipeline for single-trial BAPD. In subsequent subsections, each of these
steps are described in detail.
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2.3.1 Data acquisition

EEG recording:
EEG recording involves electrodes for at least three different purposes, namely
grounding, referencing, and recording. Fig. 2.2 (A) depicts EEG recording from a
human subject who is conductively isolated from the ground of the power supply.
The ground electrode is connected to the ampli ier ground, which is isolated from
the ground of the power supply. As described in Section 2.2.2, potential
differences V1(t) − VR(t) measured on the scalp are generated by brain current
sources P (r, t) (current dipole moments per unit volume) and by biological
artefacts.

Environmental electric and magnetic ields can also generate scalp potentials,
mostly due to capacitive coupling of body and electrode leads to ambient
electromagnetic ields (e.g. from power lines and other electric equipment). EEG
systems use differential ampli iers, which are designed to amplify the potential
difference between pairs of scalp locations such that the output voltage E(t) is
proportional to scalp potential differences generated within the body [41], that is,

E(t) = A [V1(t)− VR(t)] (2.1)

where A is the total system gain typically due to several ampli ier stages. The
ground electrode that is placed on the scalp, nose, or neck provides a reference
voltage to the ampli ier to prevent ampli ier drift.
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Traditional EEG practice provides guidelines for contact impedance, typically
requiring impedance of less than 10 KΩ [42]. This can be achieved by abrading
the scalp at the electrode site and using a conductive gel or paste between the
electrode and the scalp. Another option is using sponge-saline electrodes instead
of using conductive gel. When using modern ampli iers that have large input
impedances (e.g. 200 MΩ), electrode contact impedances of 30−50 KΩ

(relatively large compared to traditional guidelines) can easily be tolerated
without degrading EEG quality [43]. The only noticeable effect is to increase
power-line artefacts at 50 Hz (Europe, Asia, Africa, Oceania) or 60 Hz (North and
South America), which can easily be removed from the data by using online
analog ilters or by of line processing with digital ilters. Most commercial EEG
electrode systems use Ag/AgCl electrodes. Au electrodes also minimise drift and
show less high-frequency noise than Ag/ AgCl electrodes. Conductive-gel and
sponge-saline electrodes are often referred to as wet electrodes. Because of the
inconvenience and messiness of the typical electrode gels and the short useful
lifespan of the electrode saline solutions, there has been much interest in recent
years in developing dry electrodes, electrodes that do not require the
low-impedance contact with the scalp that gel and mild skin abrasion provide to
wet electrodes. The sensor material of a dry electrode can be an inert metal (e.g.
platinum, gold, or stainless steel) or even an insulator. Whichever material is
used, there is generally a capacitive coupling between the skin and the
electrode [44, 45, 46, 47].

In most EEG practice, the potentials at all the other (typically 32−256)
electrodes are recorded with respect to one electrode selected as the reference
electrode. Any particular choice of reference placement has advantages and
disadvantages that depend on the locations of the sources generating the EEG
signals. The positions of the electrodes are referred to collectively as the
electrode montage. In practice, these vary considerably across laboratories.
Standard electrode-placement strategies use the International 10−20, 10−10,
and 10−5 placement systems shown in Fig. 2.4 [48]. These montages are based
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Figure 2.4: The standard 10−20, 10−10, and 10−5 electrode montages. The
10−20 montage is indicated by the 21 electrodes shown as black circles. The
10−10 montage (in total 74 electrodes) consists of the 21 electrodes of the 10−20
montage (black circles) plus 53 additional electrodes indicated in gray. The
additional electrodes of the 10−5 montage are indicated by the black dots and the
open circles. The 68 open circles and the 74 10−10 electrodes together comprise a
142-channel montage that provides a more complete and homogeneous coverage
of the head. The nomenclature for the standard 10−20 and 10−10 and 10−5
extensions is indicated.
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on systematic extensions of the standard clinical EEG 10−20 electrode
montage [49], and they are widely (but not universally) used. The basis of these
standard electrode placements is to de ine contours between skull landmarks
(e.g. nasion and inion) and to subdivide the resulting contours in proportional
distances. The standard 10−20 system uses proportional distances of 20% of the
total length along contours between skull landmarks, whereas the 10−10 and
10−5 systems use 10 % and 5 % distances, respectively. Fig. 2.4 shows the
standard 10−20 system consisting of 21 electrodes indicated by black circles.

MEG recording:

MEG methods record the small magnetic ield generated by the brain using a
SQUID magnetometer. SQUID devices were irst used to detect the magnetic ield
of the brain in the 1970s [50] and are sensitive detectors of magnetic lux (see
Fig. 2.2 (B)). When compared to EEG recording, MEG has several advantages and
disadvantages. The spatial resolution of MEG decreases rapidly as a function of
the depth of the brain sources [51]. Thus, the detectability of deep brain structure
activities is still an open question [52, 53, 54]. Moreover, as the magnetic ields
associated with the brain current sources are very small relative to the ambient
magnetic ield variations that are outside experimental control (e.g. luctuations
in the Earth’s magnetic ield), MEG recordings are performed in a specially
shielded chamber, usually made of high-permeability mu-metal [31].
Superconductivity is essential to the function of the SQUID coils, so the coils are
maintained at very low temperatures in a helium-containing insulated (Dewar)
chamber. The main practical effect of this elaborate system is that the
measurement point is about 1−2 cm above the scalp surface. This substantial
distance from the sources of brain activity reduces spatial resolution signi icantly.
Individual SQUID coils, called magnetometers, can be arranged in different
con igurations to accommodate different purposes. The most straightforward
con iguration is a single magnetometer.

An array of 100−200 magnetometers can provide coverage of the entire head.
Each one detects only the radial component of the magnetic ield generated by
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brain sources. Another common coil con iguration is an axial gradiometer, which
consists of a pick-up coil and a compensation coil located above the pick-up coil.
The two coils are wound in opposite directions to cancel noise produced by
non-brain magnetic ields. Although both the simple magnetometer and the
axial-gradiometer coil con igurations have spatial resolution comparable to (but
sometimes poorer than) EEG [55, 56, 57], they are both more sensitive than EEG
to a particular subset of sources. Whereas EEG detects activity from both
tangential and radial sources, MEG is sensitive to sources oriented tangentially to
the detectors and is blind to sources pointed radially [12]. This property of MEG
is identically valid in spherical models of the head and is approximately valid in
realistic models that include the ields produced by return currents. MEG’s
preferential sensitivity for tangential sources has particular value in studies of
primary sensory areas of the brain that are located in sulcal folds oriented
tangentially to the MEG coils [31]. This preferential sensitivity to tangential
sources accounts for the main practical distinction between EEG and MEG.

A recently developed MEG system implements a planar gradiometer; it
consists of two adjacent coils (with parallel axes) wound in opposite directions.
This con iguration measures the gradient of the radial component of the magnetic
ield in one direction. The planar gradiometer strategy is similar to the bipolar

EEG recording strategy and imparts to MEG a potentially much higher spatial
resolution than is possible with conventional MEG. However, planar gradiometers
only offer a real-world spatial-resolution advantage over axial gradiometers if
they are used with a high-enough packing density in a the sensor helmet.

A major advantage of MEG over EEG is that MEG provides a true ield measure
at a speci ic point, whereas EEG measures the potential difference between two
points on the head. Thus, MEG does not require the choice of a reference sensor.
Reference selection is a critical factor in EEG recording since an improper choice
can result in data that are misleading or even entirely useless. Furthermore, MEG
is less distorted by the head openings and other tissue inhomogeneities that can
distort EEG because current follows the paths of lowest resistance, such
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irregularities may cause EEG electrodes to record substantial scalp currents
produced by sources located far from the recording sites. These and other
considerations such as SNR and electrode density must be taken into account
when assessing the relative advantages and disadvantages of EEG and MEG for a
particular application. Other practical issues, such as temporal iltering and
analogue-to-digital conversion (ADC) are identical for EEG and MEG.

2.3.2 Data pre-processing

The irst step of feature extraction is called signal conditioning or pre-processing.
This step enhances the signal by pre-emptively eliminating known interference
(i.e. artefacts) or irrelevant information, and/or by enhancing spatial, spectral, or
temporal characteristics of the signal that are particularly relevant to the
application. It is common to have some prior knowledge about the general signal
characteristics relevant for a particular application, and this knowledge is used in
pre-processing. Signal pre-processing can include a number of different
procedures that can primarily be categorised as:

Referencing and surface Laplacian: These methods are primarily
data-independent as their implementation is based on the ixed geometrical
relationships to determine the transformation weights and thus are not
dependent on the data being iltered [20]. These methods have certain local or
global characteristics that, although somewhat generic, can be extremely useful in
many applications. McFarland et al. (1997) describe the value of appropriate
data-independent iltering for brain-computer interfaces (BCIs) [58]. A
common-average reference (CAR) ilter is realised by recording all channels with
a common reference, computing at each time point the global mean of all the
digitised channels, and then subtracting that mean from each channel. This tends
to reduce the impact of artefacts that are similar across all channels (e.g. 50/60
Hz power-line interference). A SL ilter is based on a computation of the second
spatial derivative. If the channels have been recorded with a common reference,
this computation is effectively equivalent to taking a central channel of interest
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and subtracting the mean of all the channels at some ixed radial distance from
this central channel. Although this simpli ied Laplacian ilter is effective and
commonly used, more elaborate Laplacian ilters can be constructed based on the
precise spatial-derivative derivation such as spline surface Laplacian (SSL) with
inite-distance method (SSF ) [59], Hjorth Laplacian [14], and SSL with realistic

head geometry (SSR) [17]. Spatially adjacent channels tend to be highly
correlated since they have similar positions relative to many brain sources. By
eliminating this correlated activity, a Laplacian ilter emphasises highly localised
activity (i.e. an activity that is not the same at both locations). Thus, the ixed
radial distance of the ilter should be set based on the spatial characteristics of the
activity of interest. A detailed description of the state-of-the-art referencing and
SL iltering methods is provided in Section 2.4.

Frequency-range pre- iltering: Signals are often pre- iltered to eliminate
frequencies that lie outside the frequency range of the brain activity most relevant
to the application. Depending on the application and the available hardware, this
pre- iltering can be performed before or after the signal is digitised. For example,
because the observed signal power in EEG decreases as 1/frequency and the skull
and scalp tissue provide additional signal attenuation, scalp-recorded EEG
frequencies above 80 Hz have a very low SNR and thus may not be very useful for
BAPD applications. However, for MEG, as the signal attenuation is not very
prominent, higher signal frequencies can be utilised. Additionally, low-frequency
drift produced by the ampli ier is sometimes present in M/EEG and can distort
signal visualisation. As a result, it is common at the beginning of M/EEG feature
extraction to apply a highpass iltering at 0.5/0.1 Hz. In general, the width of the
ilter should be set conservatively to prevent unnecessary loss of information,

which can also be bene icial for of line analysis of the signals.
Data decimation and normalisation: If the signal is digitised at a rate that

is higher than the Nyquist rate required to capture the relevant activity, it may be
advantageous to decimate the sampled signal to the minimum effective sampling
rate for more ef icient processing and storage. Decimation is the elimination of
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samples in a periodic fashion. For example, the decimation of a signal by a factor of
two will eliminate every other sample, effectively halving the sampling rate and the
length of (i.e. the number of samples) the signal. However, just as with sampling
in analogue-to-digital conversion, it is essential to avoid aliasing. To avoid aliasing,
the signal should be low-pass iltered before decimation, with a cut-off frequency
equal to one-half of the decimated sampling frequency.

The signal normalisation can be useful when one is comparing different signals
that have differences in mean values, or dynamic (i.e. amplitude) ranges that are
not relevant to the particular application. For example, EEG signals recorded over
two brain areas often differ markedly in amplitude range, but if the signal dynamics
within these ranges may be of primary interest for a given application and not the
actual difference in the respective signal amplitude values, signal normalisation
can be implemented. The most common way to normalise a set of signals is to
subtract from each signal its mean value and then scale the resulting signals by
dividing by its standard deviation. Normalisation can also be used to adjust signals
that are affected by unintended electrode impedance differences. By converting
the signals to the same scale, normalisation can potentially simplify the analysis
and interpretation of the signals and the subsequent processing steps.

Removal of environmental interferences and physiological artefacts:

Environmental interference is an artefact in brain-signal recordings not
attributable to biological sources. It includes interference from environmental
factors such as power-lines or other electrical/magnetic sources in the
environment. This issue is highly prominent in case of MEG signal acquisition, as
the brain magnetic ields are very minute (in range of 10−12 to 10−15 T) and can
easily be distorted by environmental magnetic noise. Various denoising methods
can be used to remove these inferences, e.g. a bandstop (or notch) ilter at 50/60
Hz and its harmonics, signal-space separation (SSS), signal-space projections etc.

Physiological artefacts from sources such as the eyes (electrooculographic)
(EOG), heart (electrocardiographic) (ECG), and muscles (electromyographic)
(EMG) arise because these organs also rely on electric signalling, generating
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current, and voltage differences that can signi icantly interfere with M/EEG
signals [60, 61]. EMG activity is electrical activity produced by muscle
contractions. It is typically manifested as a spectrally broadband activity that
often varies substantially from moment to moment. EOG activity is the electrical
activity generated by eye movements. For obvious reasons, this interference
tends to be prominent in frontal M/EEG activity. Similarly, eye blinks create a
large transient frontal pulse that can also affect more posterior channels. In EEG
recording, EMG is typically the most signi icant artefact because it is often dif icult
to remove or even to fully recognise. Various signal processing methods such as
ICA, PCA, SSS can be implemented to remove these artefacts.

2.3.3 Feature extraction and conditioning

After the initial signal conditioning step has optimised the signal by enhancing its
most relevant features and/or reducing artefacts, the next step of signal
processing measures or extracts the chosen features. This section introduces the
process of feature extraction with emphasis on methods widely used and/or
particularly appropriate for BCI applications. The methods are described in terms
of processing a single channel, but they can be generalised to multiple channels.
Measuring brain activity through EEG leads to the acquisition of a signi icant
amount of data. To obtain the best possible performances, it is necessary to work
with a smaller number of variables which describe some relevant properties of
the signals. These variables are known as “features”. Features are generally
aggregated into a vector known as a “feature vector” [62]. Thus, feature extraction
can be de ined as an operation which transforms one or several signals into a
feature vector. The feature vector, which is comprised of the set of all features
used to describe a pattern, is a reduced dimensional representation of that
pattern.

The distributions and the relationships among the features can have a
signi icant effect on the performance of the learning algorithm that follows
feature extraction. These effects depend on the characteristics of the particular
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learning algorithm. This section reviews common methods of
feature-conditioning that can improve the performance of particular learning
algorithms.

In signal conditioning, signal normalisation is commonly accomplished by
subtracting the signal mean and scaling the signal amplitude to have unit variance
(i.e. variance equal to 1). Likewise, features can also be normalised. Feature
normalisation is advantageous when the features comprising a feature vector
display differences in their means or dynamic ranges that are not relevant to a
particular brain task. For example, the derivation of feature weights for a
multiple-regression algorithm can be very sensitive to differing feature
magnitudes. Features of greater magnitude will tend to dominate the results, even
if their greater magnitude has no bearing on their usefulness.

Some feature-learning algorithms, such as Fisher’s linear discriminant achieve
optimum results when the input features have Gaussian distributions. Input
features often are not natively Gaussian-distributed. For example, a feature
de ined as the magnitude of an FFT amplitude bin will likely not have a Gaussian
or symmetric distribution since the lower range of the feature is bounded by zero
and the upper range is unbounded. Moreover, the power of the EEG frequency
spectrum is inversely proportional to frequency. In many cases, unimodal
non-Gaussian distributed features can be shaped ef iciently to be more Gaussian
by applying a monotonically increasing nonlinear transformation. A
monotonically increasing transformation guarantees that the transformed feature
variables will have the same ordering as the original values with different spacing
between the values.

Although specialised transforms can be derived for shaping known feature
distributions into more Gaussian distributions, the simple log-normal transform
shown below has proved useful for transforming a variety of general unimodal
distributions to be more Gaussian. This transform is especially useful for M/EEG
because it compensates for the decrease in power with increasing frequency and
thus creates a more symmetric distribution. When the extracted features are
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highly correlated, PCA and ICA can be applied to decorrelate the features, and/ or
reduce the dimensionality of the feature vector. Effectively reducing the
dimensionality of the feature vector can greatly simplify the training and
effectiveness of the learning algorithm, particularly when few observations are
available for training the learning algorithm.

2.3.4 Feature learning

As the extracted features represent indirect representations of the task/event
speci ic mechanisms/states of the brain, they must be learned by the machine
learning algorithms to generate appropriate information from them. The core of a
learning algorithm is a model, which is a mathematical procedure typically
comprised of a mathematical equation, set of equations, and/or mapping
mechanism such as a lookup table. The model accepts the feature vector (i.e. the
set of features) at a given time instant as its input and processes the feature vector
to output appropriate information which can be further used to make decisions.
Thus, the goal of the model is to describe the relationship between these features
and a speci ic brain state in a form that is simpler than the data that are actually
measured. The value of such a description is that it can be used to convert future
observations to appropriate output (i.e. it can be generalised to new data).

The model parameters are commonly selected, or trained (also referred to as
learned or parameterised) by using a set of training data. Each unit of training
data (i.e. each observation) consists of a feature vector (or training sample) and
its correct (i.e. intended) output (or training label). Through an iterative
procedure, called supervised learning, the parameters are repeatedly adjusted
until the model translates the feature vectors into output decisions that are as
accurate as possible (i.e. as close as possible to the correct output). The accuracy
of the model is evaluated with an objective function (also called a cost function or
a itness function). For instance, a common objective function is a mean-squared
error (i.e. difference) between the model output and the correct output: the
smaller this error, the more accurate the model. During the supervised learning
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process, the feature vectors (i.e. the training samples) are processed by the model
with some initial parameters (selected randomly or using a priori information),
the objective function then compares the model outputs to the correct outputs
(i.e. the training labels), and the model parameters are then updated based on the
objective function; inally, the process is repeated until stopping criteria are
satis ied (e.g. the mean-squared error is minimised).

With the fact that these models may have to operate in real time with certain
applications such as BCIs, it is not suf icient to develop through post-hoc analysis
a model that applies well to a given body of previously acquired data. Instead, the
crucial requirement is that the model must apply to new data as well, that is, it
must generalise. Its ability to generalise is tested (or validated) using an
independent set of observations called testing (evaluation) data. Each unit of
testing data (i.e. each observation) consists of a feature vector (i.e. testing
sample) and its correct (i.e. intended) output (or testing label). Testing data are
used to validate the model after its parameters have been ixed via training. In this
validation, the testing data are processed by the model, and the model outputs are
compared to the corresponding testing labels by using the same objective
function employed for model training or some other measure of model accuracy.
This model validation process is essential for evaluating how well a given model
generalises to new observations. However, some models and training procedures
are prone to over itting, in which the parameterised model is tuned so precisely to
the training data that subtle differences between the training data and the test
data prevent it from processing the testing data accurately.

Feature learning models fall into two classes according to whether their
outputs are discrete categories or continuous dimensions. Speci ically, models
are either discriminant functions (also called classi ication functions) or
regression functions [63]. A discriminant function translates the observations
(i.e. the feature vectors) into discrete categories of output (e.g. speci ic mental
task). A regression function translates the observations into a continuous variable
(e.g. constantly varying consciousness states of the brain). For the two-target (i.e.
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two possible outputs) both kinds of models require that a single function is
parameterised. However, for the ive-target instance (i.e. with ive possible
outputs), the discriminant model requires that four functions be parameterised,
while the regression model still needs that only a single function be
parameterised.

2.4 Current referencing schemes and SL methods

for pre-processing of EEG data

Scalp-recorded EEG activity can be the basis for non-muscular communication
and control application using a BAPD system e.g. BCI [64, 65, 9]. EEG-based
communication systems measure speci ic features of EEG activity (i.e. Brain
rhythms) and use the results as control signals. Brain rhythms are not always
apparent in ‘monopolar” surface recordings, in part due to volume conduction of
activity from cortical regions associated with other functions. For example, visual
alpha rhythms from posterior regions may be volume conducted to the central
electrodes where MI-related brain activities are typically recorded [66]. In
addition, there are distinct effects associated with movements of speci ic body
parts, such as the hands or feet. Movement or imagery involving the hand often
produces desynchronization over areas associated with that hand and
simultaneous synchronization over foot areas [67]. Thus, there may be several
brain rhythms associated with movement or imagery of different body parts.
Signal processing methods to separate the multiplicity of signals present at any
single electrode can enhance the separability of patterns associated with distinct
actions.

Section 2.3.2 presented the several ways to pre-process the M/EEG signals to
enhance the SNR. In addition, the section covered a brief introduction of various
referencing schemes and SL methods. This section provides a detailed description
of these method.
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2.4.1 Common reference

Scalp EEG signal acquisition systems use differential ampli iers, which take the
measurements of two electrodes (i.e. the main channel and a reference channel)
as input and generate a signal for the corresponding EEG channel as the
difference between the two inputs with subsequent ampli ication. The choice of
input electrodes to each ampli ier is known as a montage. Fig. 2.5.A presents a
schematic representation of CR method using an electrode grid and a non-scalp
reference electrode. The most basic montage is CR, where the potential difference
at each electrode in the montage is computed with a common reference, for
instance, left mastoid, right mastoid or earlobe.

2.4.2 Common average reference

The CAR scheme can be implemented by subtracting the average potential of all
EEG channels from scalp potential of each channel. Fig. 2.5.B presents a schematic
representation of CAR method using an electrode grid. The target electrode
(represented with red colour) is referenced to the a common average of rest of
the electrodes (represented with green colour) present in the montage. The
method enhances the SNR by reducing the noise common to all the channels [68].
If the scalp potentials are assumed to be generated by point sources, and the
whole head is uniformly covered by EEG channels (symmetrically and equally
spaced), the CAR transforms the scalp potential distribution into a zero-mean
spatial potential distribution [68].
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Although the assumptions of uniform and complete channel coverage as well as
point sources are generally dif icult to satisfy in practice, the referencing scheme
still provides nearly reference free scalp EEG recordings. The CAR montage can be
implemented according to the equation,

bi = ai −
N∑
j=1

(aj/N) (2.2)

where ai ∈ R1×T is the potential difference between ith channel and a common
reference, N is the number of channels, and T is the number of time samples in
each channel data.

2.4.3 Hjorth Laplacian

The physical interpretation of SL can be provided by the following equation
(see [20] for further explanation):

LapS(ai) =
∂2ai
∂x2

+
∂2ai
∂y2

(2.3)

where ai ∈ R1×T is the potential difference between ith channel and a common
reference, and x and y are the Cartesian coordinates of the channel location.

The irst Laplacian estimates in the literature were performed by Hjorth
(1975), who presented an approximation to Eq. 2.3 based on inite difference
estimation [14]. This method is conceptually simple and easy to implement, and
for this reason still very popular. Fig. 2.5.C presents a schematic representation of
Hjorth method using an EEG scalp electrode grid. The target electrode
(represented with red colour) is referenced to the four next neighborhood
electrodes (represented with green colour) present in the montage while
considering the inite distance between the electrodes.

If the potential is measured in a regular rectangular grid, the SL Ls(i, j) at grid
point (i, j) can be estimated by averaging the acquired potentials a(k, l) at the
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direct neighbors of (i, j) using:

Ls =
1

d2
(ai−1,j + ai+1,j + ai,j−1 + ai,j+1 − 4ai,j) (2.4)

where, d is the distance between the nodes in the grid.
Hjorth’s estimation is based on two major assumptions. First, the surface of

the scalp is locally approximately lat, thus the SL of the voltage at any electrode
location can be given by Eq. 2.3. Second, the electrodes are placed at equal
distance from each other, thus, forming a rectangular grid. This assumption
results in a simple estimation of the SL provided in Eq. 2.4 using inite-difference
method [69]. Thus, if the channels have been recorded with a common reference,
this computation is effectively equivalent to taking a central channel of interest
and subtracting the mean of all the channels at some ixed radial distance from
this central channel. These radial distances provide the spatial iltering
characteristics of the applied Laplacian. Thus, the Laplacian becomes less
sensitive to signals with higher spatial frequencies with increase in the radial
distance and vice-versa.

2.4.4 Finite-difference method on a triangulated 3D spherical

surface

The SSF method, presented by Oostendorp et al. [59], provides the approximation
of SL operator on a triangulated 3D spherical surface. Thus, an interpolation for
scalar functions on a rectangular grid of a planar surface is extended to the
interpolation function on a closed three-dimensional triangulated surface.

Let’s consider the SL estimated by a rectangular 2D grid, provided in Eq. 2.4. If
the grid of known potential values is irregular, this 2D inite-difference method can
be replaced by one of the methods proposed by Huiskamp [70], in which the value
of the SL at electrode position lo can be estimated from appropriately weighted
potential readings of the direct neighbors at positions li in a triangular grid, where
i ∈ {1, . . . ,M}, and M is the number of direct neighbors. This approximation can

35



be expressed by:

Ls =
4

r̄η

M∑
i=1

(
1− cos(ϕ−

i )

sin(ϕ−
i )

+
1− cos(ϕ+

i )

sin(ϕ+
i )

)
.

1

ri
(ai − a0) (2.5)

where, ri is the length of vector r⃗i = l⃗i − l⃗0, r̄ is the mean value of r⃗i over all M
direct neighbors of l⃗0. ϕ−

i is the angle from r⃗i−1 to r⃗i and ϕ+
i is the angle from r⃗i to

r⃗i+1. η is a normalization factor and given as:

η =
M∑
i=1

(
1− cos(ϕ−

i )

sin(ϕ−
i )

+
1− cos(ϕ+

i )

sin(ϕ+
i )

)
(2.6)

2.4.5 Spline surface Laplacian iltering for realistic head

geometry

The SSR method has the advantage of being readily applicable to the surfaces
de ined by MRI-based triangular meshes without the help of any intermediate
representations, and it does not require any coordinate transformations as
well [17]. The implementation of SSR involves a two-step operation. The irst step
is to estimate a continuous potential distribution function F (r) using the discrete
inputs from various EEG electrode locations using a 3D polyharmonic spline
interpolation scheme (Eq. 2.7), identical to the spherical spline Laplacian [12].

F (r) =
N∑
i=1

pKi
m−1(r) +Qm−1 (2.7)

where, Ki
m−1(r) is a polyharmonic radial basis function, Qm−1 (osculating

polynomial) acts as a smoothing function for the spline, and p is the spline
coef icient.

In the second step, the SL operator ∇2
s is created over a de ined underlying

surface, using the Laplace-Beltrami operator ∇2, which takes the form of the trace
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of the function’s Hessian

Ls(F ) = ∇2
s(F ) = tr [∇∇F ] (2.8)

where, tr[.] is the trace operator.
By explicitly removing the surface normal component from the gradient of the

function F (r), the operator is restricted to the surface tangent plane. Further, SL
is considered to be the negative of the resulting operator to facilitate visualization
and source analysis [12].

∇2
s(F ) = −tr [∇(I − n′n)∇F ] (2.9)

∇2
s(F ) = −tr [∇∇F ] + tr [∇(n′n)∇F ] (2.10)

The second term on the right side of the above equation can be further expanded
as,

tr [∇(n′n)∇F ] = n(∇∇F )n′ + n(tr[∇n]).∇F +

(∇F )′(∇n)n′ (2.11)

The three expanded terms on the right side of Eq. 2.11 utilise distinct levels of
geometrical variations: information of surface normals n, the trace of the
curvature tensor ∇n, and the complete form of geometry (i.e. Jacobian matrix of
surface normals). Furthermore, for generating analytical expression of the SSR

the surface is discretised using triangular mesh form, where vertices and edges
represent the continuous surface geometry.

On a general surface given by a triangular mesh, the interpolation points are
de ined on the vertices of each triangle. The vertex normal can be generated from
the surrounding triangle face normal while the weighting of a particular triangle
face normal is set to be inversely related to the face area of that triangle [71]. To
estimate the Jacobian matrix at each triangle vertex, the one-ring neighbours of a
particular vertex is determined at irst, followed by calculation of the inite
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difference of vertex positions and unit normal vectors on these vertices.

2.5 Common spatial patterns and Granger causality

modelling

This section will cover two important methods of time-series modelling i.e. CSP
and GCM. CSP is a mathematical procedure used in signal processing for
transforming a multivariate signal (time-series data) into additive
sub-components which have maximum differences in variance between two given
windows [72]. GCM is a method for identifying directed functional (“causal”)
interactions from time-series data. These methods have been used in
neuroscience previously for assessment of neural patterns associated with both
intended and actual motor movements [73, 74].

2.5.1 Common spatial patterns

CSP method was irstly suggested for classi ication of multi-class MI-related EEG
signals by H. Ramoser [75]. The primary idea is to use a linear transform to
project the multi-channel EEG data into low-dimensional spatial subspace with a
projection matrix, of which each row consists of weights of two-class signal
matrices. CSP method is based on the simultaneous diagonalisation of the
covariance matrices of both classes.

For effective use of the CSP algorithm, several parameters have to be speci ied,
namely, the frequency for band-pass iltering of the EEG measurements, the time
interval of the EEG measurements taken relative to the stimuli, and the subset of
CSP ilters to be used [76]. Typically, general settings such as the frequency band
of 7–30 Hz, the time segment starting 1 s after cue, and 2 or 3 subset of CSP ilters
are used [76]. However, the performance of the CSP algorithm can be potentially
enhanced by subjectspeci ic parameters [77]. Several approaches were proposed
to address the issue of selecting optimal temporal frequency band for the CSP
algorithm. These include, but not limited to, the Common Spatio-Spectral Pattern
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(CSSP) which optimizes a simple ilter that employed a one time-delayed sample
with the CSP algorithm [78]; the Common Sparse Spectral-Spatial Pattern (CSSSP)
which performs simultaneous optimization of an arbitrary Finite Impulse
Response (FIR) ilter within the CSP algorithm [79]; and the SPECtrally weighted
Common Spatial Pattern (SPEC-CSP) algorithm [80] which alternately optimizes
the temporal ilter in the frequency domain and then the spatial ilter in an
iterative procedure.

For the purpose of simplicity, the mathematical background of the basic CSP
algorithm is explained in the remaining section. CSP involves the extraction of log
variance features of the band-limited M/EEG data after performing spatial iltering
using CSP algorithm. The CSP method is highly successful in calculating spatial
ilters for detecting event-related desynchronisation/synchronisation (ERD/ERS)

during MI tasks. The algorithm involves band-pass iltering of the scalp (or sensor)
M/EEG signals followed by spatial iltering based on linear transformations that
can be represented as:

Zi = W TEi (2.12)

where Ei ∈ Rc×N denotes the band-pass iltered M/EEG signals from the ith

trial/segment; Zi ∈ Rc×N denotes the spatially iltered M/EEG data; W T ∈ Rc×c

denotes the transpose of the CSP projection matrix; c is the number of channels;
and N is the number of time-samples in one trial/segment.

The CSP algorithm computes the transformation matrix W to yield features
whose variances are optimal for discriminating two classes of M/EEG
measurements. Further, the m pair of CSP ilters (i.e. irst and last m) are selected
as,

Wcsp = (w1 . . . wm wc−m+1 . . . wc) (2.13)

and the iltered signal matrix of the ith M/EEG trial is given by,
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vi = W T
cspEi =

(
v1i . . . v

d
i

)T (2.14)

where d = 2m. Further, the CSP feature vector for ith trial (i.e.
x = (x1, x2, . . . , xd)

T ) can be generated as,

xj = log

(
var

[
vji
]∑d

j=1 var
[
vji
]) (2.15)

2.5.2 Granger causality modelling

GC analysis is a prediction-based approach that predicts statistical dependencies
between a local measurement of neuronal activity and measurements of activity
elsewhere in the past [81, 82]. It is a simple yet robust way to characterise the
propagation of information along a network of sources. In neuroscience, the
standard GC has been applied to various brain data types such as LFP [83, 84, 85],
M/EEG/ERP [86, 87, 88, 89, 90, 91], fMRI (BOLD) [92, 93, 94, 95] and spike
train [96, 97] data. The estimation in GC measures requires multivariate
autoregressive (MVAR) modelling. The MVAR model is an extension of AR model
for an arbitrary number of channels and works based on stochastic process
theory and stationarity assumption. If the data are initially nonstationary, a range
of methods can be considered to ful ill the stationarity assumption. Drifts and
slow luctuations can be removed by detrending (linear or piecewise),
differencing, and/or high-pass iltering [98]. Oscillatory nonstationary features
like electrical line noise can be removed by notch iltering or other methods. The
data can also be windowed into shorter and possibly more stationary
epochs [86, 99]. In addition, analysis can focus on limited data segments where
stationarity applies. Whereas in most neuroscience contexts some combination of
these steps will suf ice, if nonstationarities persist, other more sophisticated
approaches will be needed [87].

As the MVAR model allowed straight forward z-domain transformation, the GC
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measures have been applied both in time- or spectral-domain. Moreover, GC
method has been tested and developed for both linear [100, 84, 101] and
nonlinear models [99, 102, 103].

In the following sections, the theory of linear MVAR modelling and linear GC in
time- and pectral domains are discussed.

2.5.2.1 Multivariate Autoregressive model

An MVAR model for a set of L observed time-sampled series x(t) ∈ RL, with 1 ≤

t ≤ N , N is the total number of samples, can be de ined as follows [104]:

x(t) =
r∑

o=1

β(o)


x1(t− o)

...
xL(t− o)

+


q1(t)

...
qL(t)

 (2.16)

where r is the model order and q = [q1, . . . , qL]
T is a zero-mean white noise

vector with normally distributed real-values. The auto-regression coef icient
matrices β(o) are given by:

β(o) =


β
(o)
1,1 . . . β

(o)
1,L

... . . . ...
β
(o)
L,1 . . . β

(o)
L,L

 (2.17)

where 1 ≤ o ≤ r. The matrix β(o) ∈ RL×L reveals the linear interactions
among multiple time-series at the time delay o. The coef icients βo are usually
determined by the recursive entropy-based Levinson-Wiggins-Robinson (LWR)
algorithm [105] that is computationally more robust [106] than classical
moment-based method (i.e. Yule-Walker algorithm) [107]. The autocovariance
matrix can then be elicited from AR coef icients. For a reliable estimation using
MVAR modelling, the total number of available data points (i.e. LN) must be
signi icantly higher than the total number of estimated parameters (i.e.
L2r) [104].
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Figure 2.6: Schematic representation of the time-domain GCM approaches. (A)
bivariate-GC (BGC), (B) conditional-GC (CGC), and (C) partial-GC (PGC)

The z-domain transformation of the model can be obtained as follows:

q(z) =

(
1−

r∑
o=1

β(o)z−o

)
x(z); z = e−i2πfδt (2.18)

A(z) = 1−
r∑

o=1

β(o)z−o (2.19)

x(z) = A(z)−1q(z) = H(z)q(z) (2.20)

where H(z) and A(z) are the transfer function matrix and its inverse matrix,
respectively.

2.5.2.2 Linear time-domain Granger causality

Time-domain GC has been developed under three main frameworks, bivariate -,
conditional - and partial - GC, in order to describe the interactions among various
data sources [101]. Fig. 2.6 shows the strategies of three GC approaches for
dealing with two typical coupled sources X(t) and Y (t) that are mediated by
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another source Z(t) and confounded by unknown sources i.e. exogenous input E
and latent variables L. Bivariate-GC (BGC) analysis is a straightforward technique
that considers two contemporaneous observations (Fig. 2.6A). However, it may
not be able to ind the true causal effects when two sources are mediated by a
third with different time delays [106]. The extended version, conditional GC
(CGC) (Fig. 2.6B), provides an unambiguous dissociation of couplings among
sources by taking into account all the measured variables [108]. However, the
CGC measure is only able to ind the interactions of measurable variables, while in
situations that are more realistic there may be unknown effects, e.g. exogenous
and endogenous inputs, which can confound accurate causal
in luences [106, 101]. Partial-GC (PGC) was introduced by controlling the
aforementioned confounding in luences [84]. It is a modi ication of the standard
GC measure that have added terms based on residual correlations between the
predicted and the conditional variables (Fig. 2.6C).

The mathematical formulations of GC measures are provided in the following
description. Based on GC rules, if the prediction error of one source activity could
be improved by taking the previous knowledge of another time series into
account, then the latter is said to have a causal in luence (i.e. GC) on former [82].
The mathematical formalism of the three GC types for a two-dimensional
stationary joint time series is schematically exhibited in Fig. 2.7.

The BGC is applied in pairwise situations. Fig. 2.7A schematically shows two
stationary time series P(t) and Q(t), which are jointly interactive. If the prediction
error of P(t+1) using o previous values of P(t) and Q(t) (i.e. complete model,
Eq. 2.23) is less than the prediction error using only the series P(t) (i.e. reduced
model, Eq. 2.21), then Q(t) is said to have a causal in luence (Granger-cause) on
P(t) (ζ1Q→P , Eq. 2.25). Similarly, if the prediction error of Q(t) in the complete
model is less than that in the reduced, then P(t) is said to Granger-cause Q(t)
(ζ1P→Q ) [100].
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Figure 2.7: Mathematical representation of the time-domain GCM approaches. (A)
bivariate-GC (BGC), (B) conditional-GC (CGC), and (C) partial-GC (PGC)
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P (t) =
k∑

o=1

(a(1,o)P (t− o)) + ϵ1(t) (2.21)

Q(t) =
k∑

o=1

(b(1,o)Q(t− o)) + ϵ2(t) (2.22)

P (t) =
k∑

o=1

(a(2,o)P (t− o)) +
k∑

o=1

(c(2,o)Q(t− o)) + ϵ3(t) (2.23)

Q(t) =
k∑

o=1

(b(2,o)Q(t− o)) +
k∑

o=1

(d(2,o)P (t− o))ϵ4(t) (2.24)

ζ1Q→P = ln

(
var(ϵ1(t))

var(ϵ3(t))

)
(2.25)

ζ1P→Q = ln

(
var(ϵ2(t))

var(ϵ4(t))

)
(2.26)

The CGC, an extension of BGC, can be used for more than two time series,
namely, when two time series are mediated by a third source. Thus, in the
presence of such intervening in luence, CGC compares the prediction error
between the reduced model (Eq. 2.27) and complete model (Eq. 2.29) when it is
conditioned by a third, measurable series R(t). As shown in Fig. 2.7B, the causal
in luence of Q(t) on P(t) given R(t) (ζ2Q→P |R) is de ined by the log-ratio of residual
variance matrices of the reduced and complete model (ln

(
X1,1

Y1,1

)
in Eq. 2.34).

Thus, one variable causally in luences a second variable if the prediction error
variance of the irst is reduced after including the second variable in the model,
with all other variables included in both cases.

P (t) =
k∑

o=1

(a(1,o)P (t− o)) +
k∑

o=1

(c(1,o)Q(t− o)) + ϵ1(t) (2.27)

R(t) =
k∑

o=1

(b(1,o)R(t− o)) +
k∑

o=1

(d(1,o)Q(t− o)) + ϵ2(t) (2.28)
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P (t) =
k∑

o=1

(a(2,o)P (t− o)) +
k∑

o=1

(d(2,o)Q(t− o)) + (2.29)
k∑

o=1

(g(2,o)R(t− o)) + ϵ3(t)

Q(t) =
k∑

o=1

(b(2,o)Q(t− o)) +
k∑

o=1

(e(2,o)P (t− o)) + (2.30)
k∑

o=1

(h(2,o)R(t− o)) + ϵ4(t)

R(t) =
k∑

o=1

(c(2,o)R(t− o)) +
k∑

o=1

(f(2,o)P (t− o)) + (2.31)
k∑

o=1

(l(2,o)Q(t− o)) + ϵ5(t)

Thus, the noise covariance matrices for the reduced and complete model can
be obtained as:

X =

 var(ϵ1(t)) cov(ϵ1(t), ϵ2(t))
cov(ϵ2(t), ϵ1(t)) var(ϵ2(t))

 (2.32)

Y =


var(ϵ3(t)) cov(ϵ3(t), ϵ4(t)) cov(ϵ3(t), ϵ5(t))

cov(ϵ4(t), ϵ3(t)) var(ϵ4(t)) cov(ϵ4(t), ϵ5(t))
cov(ϵ5(t), ϵ3(t)) cov(ϵ5(t), ϵ4(t)) var(ϵ5(t))

 (2.33)

Finally, the directional connectivity measure fromQ(t) toP (t) conditioned over
R(t) can be estimated as :

ζ2Q→P |R = ln

(
X1,1

Y1,1

)
(2.34)

ζ2P→Q|R = ln

(
X2,2

Y2,2

)
(2.35)

The concept of PGC, provided by Guo et al. [84], is based on eliminating the
effects of exogenous (environmental) input and latent variables during the
estimation of conditional GC. Initially, the representations of exogenous
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(environmental) input and latent variables are considered during the MVAR
modelling of the data. Later, their effect is mitigated by partitioning the noise
covariance matrices generated from the model. For generating a mathematical
expression for PGC, similar to case of BGC and CGC, let’s consider two time-series
as P (t) and Q(t) representing M/EEG data from two electrodes for which
causality analysis must be performed (see Fig. 2.7C). Also, consider another time
series representing the data from a third electrode (i.e. a common input) as R(t).
Further, two separate MVAR models are considered, irstly for predicting the
values of P (t) from its previous values and the common input (i.e. reduced model,
Eq. 2.36) and secondly for predicting the values of P (t) from the previous values
of itself, Q(t) and the common input (i.e. complete model, Eq. 2.38). The reduced
model can be presented as:

P (t) =
k∑

o=1

(a(1,o)P (t− o)) +
k∑

o=1

(c(1,o)R(t− o)) + (2.36)

ϵ1(t) + ϵE1 (t) + β1(L)ϵ
L
1 (t)

R(t) =
k∑

o=1

(b(1,o)R(t− o)) +
k∑

o=1

(d(1,o)P (t− o)) + (2.37)

ϵ2(t) + ϵE2 (t) + β2(L)ϵ
L
2 (t)

where o is the model order, ϵi(t), ϵEi (t), and β(L)ϵLi (t) are the prediction errors
related to the model, exogenous inputs (E) and latent variables (L), respectively.
Likewise, the complete model can be represented as:

P (t) =
k∑

o=1

(a(2,o)P (t− o)) +
k∑

o=1

(b(2,o)Q(t− o)) + (2.38)
k∑

o=1

(c(2,o)R(t− o)) + ϵ3(t) + ϵE3 (t) + β3(L)ϵ
L
3 (t)

Q(t) =
k∑

o=1

(d(2,o)P (t− o)) +
k∑

o=1

(e(2,o)Q(t− o)) + (2.39)
k∑

o=1

(f(2,o)R(t− o)) + ϵ4(t) + ϵE4 (t) + β4(L)ϵ
L
4 (t)

R(t) =
k∑

o=1

(g(2,o)P (t− o)) +
k∑

o=1

(h(2,o)Q(t− o)) + (2.40)
k∑

o=1

(i(2,o)R(t− o)) + ϵ5(t) + ϵE5 (t) + β5(L)ϵ
L
5 (t)
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For ease of notation, let’s de ine the collective prediction error as:

µi(t) = ϵj(t) + ϵEj (t) + βj(L)ϵ
L
j (t) (2.41)

with 1 ≤ j ≤ 5.
Thus, the noise covariance matrices for the reduced and complete model can

be obtained as:

X =

 var(µ1(t)) cov(µ1(t), µ2(t))

cov(µ2(t), µ1(t)) var(µ2(t))

 (2.42)

Y =


var(µ3(t)) cov(µ3(t), µ4(t)) cov(µ3(t), µ5(t))

cov(µ4(t), µ3(t)) var(µ4(t)) cov(µ4(t), µ5(t))

cov(µ5(t), µ3(t)) cov(µ5(t), µ4(t)) var(µ5(t))

 (2.43)

Finally, the directional connectivity measure fromQ(t) toP (t) conditioned over
R(t) can be estimated as:

ζ3Q→P |R = ln

(
X1,1 −X1,2X

−1
2,2X2,1

Y1,1 − Y1,3Y
−1
3,3 Y3,1

)
(2.44)

ζ3P→Q|R = ln

(
X2,2 −X2,1X

−1
1,1X1,2

Y2,2 − Y2,3Y
−1
3,3 Y3,2

)
(2.45)

2.5.2.3 Linear spectral-domain Granger causality

Spectral (frequency-domain) GC is generally measured using elements of transfer
matrix H(z) of MVAR, where H is derived by applying z-transform to the causal
effects of time-domain GC [109]. The main advantage of spectral GC is the
robustness against different levels of noise. Indeed, the Fourier transform equally
rescales the residuals of the reduced and complete model, therefore, leaving them
GC invariant [90]. Considering Eq. 2.19 and 2.20, the (auto/cross) spectra matrix
can be estimated as:
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S(z) = H(z)
∑

H∗(z) (2.46)

where H(z) is the transfer function, z denotes z-transform,∑ is covariance of
the residuals, and * is complex conjugation and matrix transposition. According
to [109, 108], the pairwise (unconditional) spectral GC for two sample P(t) and
Q(t) time series can be de ined as,

ζQ→P |R(z) = ln

(
|S11(z)|

|S11(z)−H12(z)
∑

22|1H
∗
12(z)|

)
(2.47)

where ∑ij|o =
∑

ij −
∑

io

∑−1
oo

∑
oj denotes a partial covariance matrix and

S11(z) is the auto-spectrum of P (t)-series. Theoretically, the time-domain
causality can be decomposed by frequency components hence the average of
spectral causality over all frequencies should give rise to causality in
time-domain [106].

Furthermore, there are two other popular spectral connectivity estimators
based on MVAR modelling, i.e. partial directed coherence (PDC) [110, 111] and
directed transfer function (DTF) [112]. Their estimations can be obtained
according to the following equations:

PDCj→i(z) =
|Aij(z)|√
AT

:j(z)A:j(z)
(2.48)

DTFj→i(z) =
|Hij(z)|√

Hi:(z)HT
i: (z)

(2.49)
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2.6 Applications of neuronal activation pattern

detection using M/EEG in the ields of

communication, control and stroke

rehabilitation

M/EEG have been extensively used for various applications such as clinical decision
making, rehabilitative and restorative interventions, communication and control,
and cognitive training. This section discusses the scope of these applications and
related previous research work.

2.6.1 Communication and control

The ability to communicate - whether by speech, email, text message, or even a
simple head nod or smile - is central to human interaction. For people who have
severe communication disabilities despite intact cognition, M/EEG-based BCI
technology is poised to have a profound impact. One clinical condition, locked-in
syndrome (LIS), is commonly identi ied as the most immediate target for
neuroimaging-based BCI researchers. LIS can result from a variety of clinical
etiologies, including: acute events such as ischemic or hemorrhagic infarction of
the brainstem or motor neuron disease, most notably amyotrophic lateral
sclerosis (ALS) [113, 114].

For people with incomplete LIS, early EEG-based BCI systems using evoked
potentials to choose among items in a matrix or to provide unidimensional or
multidimensional cursor control have already been shown to enable selection of
letters or words on a screen [115, 9]. BCIs of this kind are currently in use by a
small number of people with advanced ALS [116].

For people with total LIS (e.g. some people with advanced ALS and on chronic
mechanical ventilation), there has not yet been a successful demonstration of BCI
use. Although it is possible that this re lects the limitations of BCI systems
attempted thus far and/or the dearth of suf iciently meticulous studies. It has also
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been suggested that the complete LIS state, as de ined above, exists only
transiently, since the state of complete de-efferentation might quickly lead to
diminished goal directed behavior [117]. Nevertheless, with extensive training,
completely locked-in patients are able to modulate their SCPs which can be
suf icient to generate control signals for moving a cursor on a computer
screen [118]. On similar lines, Birbaumer et al. developed a communication
application involving selection of virtual keyboard letters using EEG-driven
cursor movement [64]. The study involved validation of the proposed system
with two patients at advanced stages of ALS wherein a mean typing rate of 2
characters per minute was achieved during a message typing task.

EEG-based virtual keyboard applications also utilised other types of control
signals, such as classi ication of three cognitive tasks [119] and detection of eye
blinks [120] to select the commands or characters. A letter speller was also
designed using a standard Graz-BCI systems [121]. Apart from these features,
P300 event-related brain potentials are also very popular in BCI-based speller
applications. P300-based BCI systems have been suf iciently suitable for ALS
patients, in particular those are in the early and middle stages of the
disease [122]. P300-based systems have advantage over others as the brain
responses occur spontaneously and consequently do not require substantial
training. Moreover, recent advancement with P300-based spellers have resulted
in the development of commercial applications available to the general
public [123].

Movement restoration, such as grasping, is feasible in physically-disabled
patients through functional electrical stimulation (FES)-guided neuroprostheses.
FES is capable of eliciting arti icial muscle contractions which can be
implemented for voluntary actions (see [124] for a review). A tetraplegic patient
was able to control paralyzed hands to grasp a cylinder wherein the FES was
guided by the beta bursts generated through foot movement imagery [125]. A
combined FES-robot based training system using user’s residual EMG signals was
developed for facilitating an effective wrist control of a stroke patient [126].
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Although FES has been proven to be an effective way to restore movement, it
requires the use of residual movements, which are not possible in severely
impaired patients. For this reason, some groups have started to explore other
approaches to control the neuroprostheses such as using the control signals
generated directly from the features of M/EEG activations such as MI-related
features and ERPs. MI-related features (i.e. ERD/ERS) were exploited effectively
to control a hand orthosis by tetraplegic patients, whose residual upper-limb
muscle activity was restricted to the left biceps, due to an upper spinal cord
injury [127, 128].

Multi-class MI (i.e. left-right hands MI, foot movement, and idle state) has
been explored for wheelchair control applications using both synchronous and
asynchronous BCI systems in virtual as well as real-world
environments [129, 130, 131]. Moreover, an EEG-based human-robot interface
has been explored with autonomous navigation system wherein steady-state
visually evoked potential (SSVEP) brain responses were utilised to design a smart
wheelchair system for disabled people, who have impairments in their arms and
legs [132, 133]. A brain signal controlled neuroprosthetic device was developed
using four-class SSVEPs for the reestablishment of the grasp motor function for
people with spinal cord injuries [134]. This system enabled operation of four
different movements corresponding to the four different frequencies of LEDs
lickering. In similar lines, MEG-based evoked potentials were utilised to trigger

rehabilitative devices such as upper limb exoskeletons and digit ingers in order
to restore the grasping motor tasks in paralysed patients [29, 135].

2.6.2 Stroke rehabilitation

Extensive brain plasticity can occur during spontaneous recovery after stroke.
Human studies have provided evidence of brain changes during natural recovery
of motor function after stroke [136, 137, 138, 139]. Even in regions distant from
the infarction, Graziadio et al. (2012) reported positive correlation between the
recovery index and degree of symmetry within both lesioned and nonlesioned
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corticospinal systems [140]. There is also evidence for other kinds of changes
during natural recovery, including reorganization of cortical excitability and
motor maps [141, 142, 143, 144], changes in the functional and effective brain
connectivity [145, 146], and rerouting of ipsilesinal and contralesional
hemispheric connections [147, 148].

In addition to the plastic changes occurring during spontaneous motor
recovery, several studies have demonstrated restorative intervention-dependent
brain plasticity resulting from speci ic training after neural injury. These
restorative interventions may involve physical activity (e.g. physical therapy,
constraint-induced movement therapy, gait therapy) [149, 150], cognition tasks
(e.g. motor imagery (MI), mirror therapy, virtual and augmented
reality) [151, 152, 153, 154, 155], device-driven (e.g. robotics,
BCI) [156, 157, 158, 159], sensory stimulation (e.g. vagal nerve stimulation,
passive limb movement, and electrical stimulation) [160, 161], brain stimulation
(e.g. repetitive transcranial magnetic stimulation, transcranial direct current
stimulation, and epidural cortical stimulation ) [162, 163, 164], and
pharmacological interventions [165].

BCI systems involving M/EEG-based BAPD can also be useful in
supplementing standard neurorehabilitation therapies so as to improve the
functional outcomes of the target population. Physical, occupational, and/or
speech and language therapy are commonly used in stroke rehabilitation.
Recognizing the brain’s capacity for activity-dependent plasticity, newer
rehabilitative therapies seek to modify injured brain areas or to encourage
non-injured brain areas to assume the functions of injured areas [138, 166, 167].
BCIs might contribute to these goals by encouraging the return of brain activity
that can enable voluntary control of the limbs, and/or by strengthening existing
functional neural pathways by pairing movement intentions with actual
movements (e.g. assisted therapeutic exercise) [168].

M/EEG-based BCI training can also be applied to the problem of motor
recovery after neural injury. While conventional therapies for treating motor
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impairments after stroke, other CNS trauma, or disease rely on exercise of the
limbs, M/EEG-based training offers a different approach to motor-recovery
therapy. Broetz et al. [169] proposed a combination of MEG and EEG-based BCIs.
Initially, the MEG-based BCI was used to boost rehabilitation training success.
Later, the user continued rehabilitation training with an EEG-based BCI; a more
affordable technology than MEG. The results of this study suggest that the
combination of BCI training with goal-directed active physical therapy improves
the motor abilities of chronic stroke patients. In similar studies, the effectiveness
of a combination of BCI training and physiotherapy for stroke rehabilitation was
con irmed [170, 8]. These studies encourage further research on the role of BCIs
in brain plasticity and post-stroke recovery. Taken as a whole, these studies
provide abundant evidence of the extent and complexity of plasticity associated
with recovery after injury. It is thus intriguing to consider that, by focusing
training directly on brain activity, M/EEG-based BCI systems might induce or
guide plasticity that results in the recovery of motor control.

Frequently repeated, skilled motor actions, particularly those employing
precise temporal coordination of multiple muscle activations and joint
movements, can induce changes in sensorimotor areas of the brain. Current
therapeutic methods based on such repetition focus on improving limb
movements, and any associated induced brain plasticity occurs ostensibly in
response to the limb motor practice and the sensory afferent input it induces.
Thus, BCIs, which can focus on changing brain activity itself, may offer a more
direct and effective avenue for inducing brain plasticity that improves motor
function. BCIs might provide a powerful new approach to improving motor
function after CNS trauma or in disease.
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2.7 Open challenges in the research ield of M/EEG

analysis

2.7.1 EEG data pre-processing

The overall performance of EEG-based BCI system depends on various factors, e.g.
pre-processing of the raw brain signals, extraction of information (features)
related to the mental task, translation of the features into control commands, and
inally the application of the control commands to the output device (i.e.

controlling a process). Most of the previous research studies focused on feature
extraction algorithms and their optimisation for the overall performance
improvement although pre-processing operations can affect the performance of
the system signi icantly [171, 172, 173]. The complex multi-dimensional EEG
data recorded at scalp level provide a direct inference of the electrical activity
associated with a sizable neuronal population of the brain cortex. Volume
conduction (VC) results from mixing of the spatio-temporal information
generated at the cortical sources of the brain as the tissues and bone structure
between the human cortex and the scalp induce superimposition of
electrophysiological dynamics of the EEG signal [11, 12].

Several measures can be applied for minimising the effect of VC at the scalp
level EEG recordings. Different referencing schemes (e.g. CR, bipolar, CAR) and
Laplacian iltering methods (e.g. Hjorth, SSL methods) have been implemented
earlier for this purpose [13, 14, 15, 16, 17] (for further details refer to [18]). Apart
from these, ICA [174], PCA [175], and advanced source localisation techniques
(i.e. beamforming, sLORETA) [176, 177] have been utilised for enhancement of
the BCI performance. Additionally, recent studies using source localisation
techniques have shown that the linear inverse transforms can be applied in real
time and have shown signi icant improvement in the MI task classi ication
performance of M/EEG-based BAPD systems [178, 179, 180].

Prior research studies that involve qualitative comparison of different spatial
transformation methods often restrict their analysis to different algorithms or
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different parameters for the same algorithm (e.g. different parameters of current
source density (CSD) estimation, source imaging techniques, or different ICA
algorithms) [19, 20, 21]. Other published works emphasise the theoretical
perspectives while comparing different referencing schemes or Laplacian iltering
methods, with little or no consideration of their impact on the performance of
M/EEG-based BAPD systems (e.g. BCIs) [181, 182]. Although the indings of these
studies may contribute signi icantly to the optimisation of the algorithms, limited
information has been provided for the BCI researchers regarding the achievable
improvement in the classi ication accuracies using these methods. A recent study
showed enhancement of binary classi ication accuracies during MI task with CAR
implementation as compared to CR [183]. However, the study involved
preliminary analysis (only ive subjects and two classes) and did not include
spline based Laplacian methods, which recently attracted a lot of EEG-based
studies [19, 20, 15, 59]. Thus, there is an urgent need for an empirical evaluation
of the effect of the currently available referencing schemes and SL methods on
single-trial classi ication of EEG signals.

2.7.2 Low performance with connectivity-based features for

M/EEG-based single-trial detection

Most of the current M/EEG-based BCI systems involving MI detection rely on
task-speci ic changes in the sensorimotor EEG rhythms (ERD and ERS), which
involve kinaesthetic imagination of a particular motor action without its actual
execution [184, 185, 186]. Although promising results and achievements have
been reported in the literature [187], there remain many challenges and barriers
to the use of this technology reliably and ef iciently for the intended
bene iciaries [22]. One of the probable reasons for the lower accuracies of
MI-based BCI systems is the use of static channel derived features (e.g.
band-power (BP), autoregressive (AR), CSP, and wavelets), which may not contain
information about interactions among different brain regions, while it is well
known that multiple brain regions dynamically interact in accomplishing a mental
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task. Thus, it is reasonable to assume that the connectivity of spatially distributed
regions could provide additional useful discriminant features for the classi ication
of brain responses evoked during imagery tasks.

Over the last few years, several research groups attempted to implement
connectivity-based BCI systems [22, 23, 24, 25, 26] using different measures to
map the interactions between distinct brain regions (e.g. transfer entropy [188],
coherence, directed transfer function (DTF) [112], and partial directed coherence
(PDC) [110]). A recent study implemented several vector autoregressive (VAR)
model-based methods for the realisation of MI-based BCI system [25]. The
empirical indings provided low classi ication accuracies for most of the methods
when compared to BP features. In this case, the connectivity between scalp
electrodes failed to provide robust distinction among various MI tasks.

Investigations of the connectome associated with imagination (i.e. MI) as well
as the execution of motor tasks revealed the manifestation of induced activations
and information lows at various cerebral structures, including, the primary
motor areas (M1), the premotor cortex (PMC), and the supplementary motor
areas (SMA) [189]. These cortical areas are located in close vicinity to each other
making estimation of the MI task speci ic causal interactions a challenging task, in
particular at scalp level analyses, due to the VC effect. Furthermore, single-trial
connectivity estimations become inherently more dif icult due to a lack of
suf icient EEG data for this type of analysis. These confounding factors lead to the
low performance of connectivity-based MI-BCI systems. Thus, the current
literature showed a major research challenge in terms of inding a novel approach
to improve the performance of single-trial functional connectivity-based BCI
systems.

2.7.3 Neurophysiological validation of BCI based upper-limb

neuro-rehabilitation for stroke patients

Recovery of movement related functions after stroke and its assessment are
highly crucial for restoring activities of daily living of the patients. Majority of the
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stroke survivors have upper limb (UL) associated impairment symptoms in
chronic stage [190]. Many patients show some degree of spontaneous
(autonomous) UL motor recovery during initial months following a stroke,
however, in general, this is inadequate recovery in terms of physical
outcomes [191, 192]. Therapeutic interventions of stroke survivors using
M/EEG-based BCI system, in particular with MI-based paradigms have been
effectively implemented previously [8, 193, 194, 28, 195, 196, 197, 29, 27] (see a
recent review [198]).

The rationale behind using the MI-related M/EEG-BCI systems for stroke
rehabilitation is that the mental workload associated with MI involves the brain
areas that govern UL movement execution [199, 65]. Moreover, recent
advancements in the M/EEG-driven stroke rehabilitation showed the signi icant
ef icacy of visual and proprioceptive feedback and robotic UL exoskeletons along
with MI [200, 27, 195]. Furthermore, several other studies reported successful
implementation of BCI-driven exoskeletons for attaining functional recovery in
patients with post-stroke hand paresis [196, 201, 202]. These studies involved
various types of end-effector based haptic and kinesthetic feedback systems to
improve the clinical parameters of post-stroke motor recovery e.g. a haptic knob
[195], MIT Manus [28], and a custom-made orthotic device [203, 204, 205]. While
an increasing number of studies have shown signi icant alterations in neural
activations and functional connectivity networks related to the mental imaginary
tasks and/or attempted movements of an impaired upper extremity with the use
of neural signal driven-robotic devices [203, 206, 200, 207], it still remains
unclear whether and to what extent the underlying neurophysiological
mechanisms are affected during a UL stroke rehabilitative intervention using an
MI-related EEG-driven hand-exoskeleton.

There are three major constraints of the currently available functional
connectivity-based studies implemented for validation of the clinical ef icacy of
M/EEG-based rehabilitative interventions. Firstly, the majority of them are
focused on the reorganisation of brain networks during the MI task, and thus,
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include the issue of controlling for effort and performance when stroke patients
with varying motor de icits are under consideration [168, 208, 209]. Secondly,
the comparisons are drawn on the difference between the functional brain
networks obtained at the pre- and post-intervention states, and thus, failed to
observe the continuously changing patterns in the brain networks during the
course of the rehabilitative intervention [200, 210]. Lastly, no previous study
attempted to examine brain network-based neurophysiological changes for a
multi-modal UL rehabilitation intervention involving the simultaneous
implementation of MI, BCI, visual and proprioceptive feedbacks, and robotic
hand-exoskeleton. Thus, there is a pressing need to examine the brain functional
networks that are correlated with the motor recovery during a longitudinal
multi-modal UL stroke rehabilitative intervention.

2.8 Summary

This chapter has provided a review of two often used neuroimaging techniques
i.e. EEG and MEG along with the currently available computational algorithms
that are implemented for analysis and modelling of the M/EEG data. In particular,
special emphasis is given to various pre-processing methods (i.e. EEG referencing
schemes and SL methods), feature extraction methods (i.e. CSP and Granger
causality based connectivity features), and application of single-trial BAPD with
M/EEG signals. Furthermore, based on this literature review, three open research
challenges have been identi ied to further improve the computational analysis of
M/EEG signals in pursuit of performance enhancement of M/EEG-based BAPD
systems. Firstly, despite the availability of various referencing schemes and SL
methods for EEG, there is no empirical evaluation of their impact on the
performance of single-trial EEG-based BAPD systems. Secondly, over the last few
years, several studies showed the potential of functional connectivity features to
be useful for single-trial BCI systems, however, the performance of these systems
are still not suf icient to be used for practical application. Moreover, the majority
of these studies showed signi icantly poor classi ication accuracies of FC features
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as compared to the features derived from intra-channel signals. Lastly, there is a
compelling need to study the patterns of functional brain networks associated
with the motor recovery during a longitudinal brain-machine interface-driven UL
stroke rehabilitative intervention. These challenges motivate to research towards
handling these issues associated with current M/EEG-based BAPD systems that
opens a prospect of novel contributions towards advancing the computational
analysis and modelling of M/EEG data. Furthermore, Chapter 3, 4, and 5 of this
thesis aim to address these open challenges by considering each of them
separately.
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Chapter 3

Current source density estimation

enhances the discriminability of

motor-imagery related brain

responses

3.1 Introduction

Electroencephalographic oscillations, recorded over the scalp, can be the basis of
alternative modes of communication and control, in particular as brain activation
pattern detection (BAPD) systems (e.g. brain-computer interfaces
(BCIs)) [64, 211, 212]. Non-invasive electroencephalography (EEG)-based BCI
systems acquire neural signals at scalp level, analyse them to extract speci ic
features (patterns) of brain activity that are related to the voluntary
imagery/execution mental tasks, detect the related tasks from the extracted
features, and inally utilise the detection outcomes as control signals that are
further relayed to efferent devices. During the past few decades, EEG-based BAPD
systems attracted signi icant research interests due to the relative ease of
conducting experiments, inexpensiveness, and minimal risk to the participants. In
general, there are two ways to generate the mental task speci ic features. First, in
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the case of active BCI paradigms, features of the spontaneous brain signals
generated during the performance of endogenous tasks, for instance,
motor-imagery (MI), emotion imagery, and mental arithmetic tasks are
considered [213, 214]. Second, in case of reactive BCI paradigms, brain potentials
generated in response to the specialised external stimulations (e.g. P300,
steady-state evoked potentials, and evoked potentials) are utilised [215, 216].
The former approach of BCI implementation is highly prevalent, in particular, the
MI-related BCI systems which is one of the most explored M/EEG-based
paradigms [217, 218, 219].

This chapter aims to target the open challenge presented Section 2.7.2 of
Chapter 2. In particular, it undertakes an empirical evaluation of the effect of the
currently available referencing schemes and surface Laplacian (SL) methods on
single-trial classi ication of EEG signals and includes two different studies. The
irst study aims to evaluate the impact of two referencing schemes: common

reference (CR) (left mastoid) and common average referencing (CAR), and three
spherical surface Laplacian (SSL) iltering methods: current source density
(CSD) [15, 220], SSL with inite-difference method (SSF ) [59], and SSL using
realistic head model (SSR) [17], on the classi ication performance of the MI-based
BCI systems. The raw EEG signal was pre-processed separately using the above
mentioned ive methods, and support vector machine (SVM) classi ier has been
implemented on features generated by the ilter-bank common spatial pattern
(FBCSP) algorithm. The performance is evaluated for both binary and multi-class
classi ication tasks. Furthermore, the effect of reducing the number of the
channels at the pre-processing level and the feature extraction level has also been
studied. Based on the results of the irst study, the analysis is further extended in
the second study. The extended analysis involved estimation of the effect of CSD
on the discriminability of single-trial directed functional connectivity features
related to the EEG signals during four MI tasks. Both studies involved same EEG
dataset. In particular, the classi ication performance of the time-domain partial
Granger causality (PGC) measures with and without performing CSD
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pre-processing are compared.
The further sections of the chapter are organised as follows: Section 3.2

provides a detailed description of the EEG dataset and the algorithms
implemented in both the studies. Section 3.3 presents data processing and
analysis pipeline, and the results of study I. Section 3.4 presents data processing
and analysis pipeline, and the results of study II. Section 3.5 provides a detailed
review of the outcomes and impact of the studies undertaken in this chapter.
Section 3.6 summarizes the indings of this chapter.

3.2 Materials and methods

3.2.1 EEG dataset

The BCI competition-IV [221], dataset 2A is a publically available MI related EEG
dataset. The dataset comprised of 4 classes of MI tasks (i.e. left hand movement
imagery, right hand movement imagery, both feet movement imagery, and tongue
movement imagery) from nine healthy participants, namely [A01-A09]. Two
sessions, one for training and one for evaluation, were recorded from each
participant. The EEG data were acquired with 22 monopolar EEG channels (with
left mastoid as the reference and right mastoid as the ground) and three
monopolar electrooculogram (EOG) channels.

3.2.2 Estimation of current source density

Spherical spline interpolation method, presented by Perrin et al. [15, 220], was
implemented for the estimation of scalp-level CSD values from the raw EEG data.
The following expressions formally de ine the estimation of CSD:

Let’s assume an EEG data with N number of electrodes with vi be the
amplitude estimated for ith electrode. Now, the irst step is to calculate the
function g(cos(Li, Lj)), also known as G matrix, using the following mathematical
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Figure 3.1: The task-timing of the experimental paradigm for dataset-2A. Trial
duration is 6 s with a break of 1.5 s between trials. Trial start is indicated with
an acoustic beep and appearance of the ixation symbol. After 2 s, participants are
cued for the MI task to be performed.

expressions:

g(x) =
1

4π

∞∑
p=1

(
2p+ 1

pq(p+ 1)q

)
· Ep(x) (3.1)

cos(Li, Lj) = 1−
(XLi

−XLj
)2 + (YLi

− YLj
)2 + (ZLi

− ZLj
)2

2
(3.2)

where, (X,Y, Z) are cartesian coordinates; Li and Lj are spherical projections of
ith and jth electrodes; q is the spline lexibility index and Ep(x) is the Legendre
polynomial of degree p. The second step is to estimate the transformation
constants kis using the solutions of the following equations:

(G+ λ)K +Dk0 = V (3.3)

D′K = 0

where D′ = [1, 1, . . . , 1], K ′ = [k1, k2, ..., kN ], V ′ = [v1, v2, ..., vN ],
G = g(cos(Li, Lj)), and the value of λ (smoothing constant) is equals to 1.0e - 5.
We have selected a default value for λ as the splines performed best at this value
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(see [15, 220] for further details). Similar to Eq. 3.1, the function h(cos(Li, Lj)),
also known as H matrix, can be estimated using:

h(x) = − 1

4π

∞∑
p=1

(
(2p+ 1)2

pq(p+ 1)q

)
· Ep(x) (3.4)

wherex is cos(Li, Lj) and can be generated using Eq. 3.2. Finally, the CSD estimates
can be generated using:

U(L) =
N∑
i=1

kih(cos(L,Li)) (3.5)

Thus the EEG transformation process using CSD method involves three major
steps. The irst step is to generate two transformation matrices termed G and H

using Eqs. 3.1 and 3.4. These transformation matrices depend only on the number
and relative position of surface locations included in the EEG montage (i.e. their
cosine distances), which can be estimated using Eq. 3.2. For this reason, these
matrices have to be computed only once for any given EEG montage. Therefore,
they have no impact on the duration of the calibration process. The second step
is to calculate the constant vector (K) using Eq. 3.3. The length of the constant
vector is equal to the number of electrodes in the EEG montage. The inal step is to
compute the CSD values for each EEG channel data using Eq. 3.5.

3.2.3 Finite-difference method on a triangulated 3D spherical

surface

The SSF method, presented by Oostendorp et al. [59], provides the approximation
of SL operator on a triangulated 3D spherical surface (cf. Chapter 2,
Section 2.4.4). Thus, an interpolation for scalar functions on a rectangular grid on
a planar surface is extended to the interpolation function on a closed
three-dimensional triangulated surface. This method is elaborately described in
Section 2.4.4 of Chapter 2.

65



3.2.4 Spline surface Laplacian iltering for realistic head

geometry

The SSR method has the advantage of being readily applicable to the surfaces
de ined by MRI-based triangular meshes without the help of any intermediate
representations, and it does not require any coordinate transformations as
well [17]. The complete mathematical expressions and implementation of SSR is
presented in Section 2.4.5 of Chapter 2.

3.2.5 Time-domain partial Granger causality analysis

The concept of PGC, provided by Guo et al. [84], is based on eliminating the effects
of exogenous (environmental) input and latent variables during the estimation of
conditional GC. The representations of exogenous (environmental) input and
latent variables are considered during the multivariate autoregressive (MVAR)
modelling of the data. Later, their effect is mitigated by partitioning the noise
covariance matrices generated from the model. The method is already described
in Section 2.5.2.2 of Chapter 2 along with other variants of time-domain GC.

3.2.6 Filter bank common spatial patterns

The ilter bank CSP (FBCSP) is a widely used feature extraction algorithm. FBCSP
is an extension of the CSP algorithm, where n different bandpass ilters are used
at the irst stage to decompose the data into multiple frequency bands in the
temporal domain [222]. In the subsequent stage, CSP is typically used to create
spatial ilters for detecting event-related desynchronisation/synchronisation
(ERD/ERS) within each frequency band. The mathematical concept behind CSP is
described previously in Section 2.5.1 of Chapter 2. A total of 10 bandpass ilters in
MI-related frequency range are used (i.e. [8−12 Hz], [10−14 Hz], [12−16
Hz],…,[26−30 Hz]) for creating the ilter bank.
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3.3 Study I: Evaluation of the impact of various

pre-processing schemes on classi ication of

MI-related tasks

This analysis involves experimental evaluation of the impact of two referencing
schemes: CR (left mastoid) and CAR, and three SSL iltering methods:
CSD [15, 220], SSF [59], and SSR [17], on the MI-based BCI classi ication
performance using a four class dataset.

3.3.1 Signal processing pipeline

According to Fig. 3.2 (b) in the MI related EEG-based BCI, the following steps have
been implemented for the BAPD of four MI tasks: raw EEG signal acquisition,
pre-processing, feature extraction (i.e. temporal and spatial iltering), and
classi ication. Initially, the raw EEG signals from the complete set of 22 channels
have been considered and then pre-processing has been performed to improve
the spatial resolution using each of the following methods (see Fig. 3.2 (a)): CR,
CAR, CSD, SSF , and SSR. For SSR, the default head MRI model provided with the
SSLtool toolbox [17] has been utilised. Further, in the feature extraction stage, a
bandpass ilter bank has been applied to decompose the EEG signals into different
frequency bands (FBs) by employing an 8th order, zero-phase forward and
reverse bandpass Butterworth ilter. A total of 10 bandpass ilters with
overlapping bandwidths, including [8−12 Hz], [10−14 Hz], [12−16 Hz], [14−18
Hz], [16−20 Hz], [18−22 Hz], [20−24 Hz], [22−26 Hz], [24−28 Hz], [26−30 Hz],
are used to process the data from 10 EEG channels (represented with gray colour
in Fig. 3.2 (a)). Later, spatial iltering has been performed on each FB, which helps
to maximise the divergence of bandpass iltered signals under one class and
minimise the divergence for the other class. In the MI-related BCI systems, both
physical and imaginary movements cause growth of bounded neural rhythmic
activity known as ERD/ERS.
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The CSP algorithm is widely used for calculating the spatial patterns for
detecting ERD/ERS [222]. Each combination of the bandpass ilter and CSP
algorithm calculates the discriminative features that are distinct to the particular
frequency range. After doing CSP iltering, the discriminating features have been
extracted using a time window of 3 s after the cue onsets. This particular time
segment is responsible for capturing the MI related ERD/ERS activities. The
features obtained after applying CSP algorithms from all FBs are merged to create
the set of input features for training/testing a classi ier. Finally, the performance
is obtained by measuring the accuracies for both two-class (i.e. the six pairwise
binary classi ication tasks over four MI classes), and four-class BCI approaches
using a linear SVM classi ier. As the focus here is to evaluate the effect of various
pre-processing methods on the performance of a MI-related BCI system,
implementation of other classi iers e.g. linear discriminant analysis (LDA) or
multiple classi iers is out of scope of the current study. Moreover, to avoid the
possible bias caused by complex classi ier designs e.g. multi-kernal, non-linear
kernal, we have opted for a linear SVM model.

For the four-class approach, features were generated in one-versus-rest
condition and four linear SVM classi iers were implemented for estimation of
classi ication accuracies. The classi ier was on the features of the irst session
data and performance was evaluated on the features of second session data.
Moreover, the whole process was repeated for three different con igurations of
channel selection (i.e. 22/22, 22/10, and 10/10). We thus use the couple
(Ns0/Ns1) to denote the number of sensors that are used for pre-processing (Ns0)
and for feature extraction (Ns1).

The computational work has been performed on an Intel Core i7-4790 with 16
GB of memory, using in-house programs written in MATLAB V8.1 (The
Mathworks, Natick, MA). The Matlab codes for implementing three SSL methods
have been obtained from publicly available toolboxes (CSD toolbox [223],
SSLtool [17], and Fieldtrip [224]).
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3.3.2 Results

3.3.2.1 Spatial and temporal analysis

To study the topographical responses of the methods, we implemented a similar
approach published in a recent study [225]. Bivariate Pearson’s correlation
coef icients (R) between class target (i.e. a dummy variable, coded −1 and +1)
and bandpower features in µ (8−12 Hz) and β (13−30 Hz) frequency bands for
each electrode have been generated. These values were estimated for each binary
task pair, subject, and session for 3 s of the MI-related period. Further, group
averaged R2 values (across subjects and sessions) were estimated and scalp
plotted over the 22 channel EEG montage for all the pairwise binary classi ication
tasks and referencing methods in µ and β frequency bands (see Fig. 3.3). The
maplimit for all the topoplots within a pairwise binary task is kept same for
making the plots comparable across various referencing methods and frequency
bands. Fig. 3.3 depicts higher values of correlation for CAR, CSD, SSF and SSR as
compared to CR.

Moreover, for most of the pairs of classes, CSD topographic plots showed
relatively darker yellow colour spots as compared to other methods. This
evidently suggests that CSD provided better spatial localisation and higher values
of R2. Furthermore, time evolution plots of the averaged and normalised
envelopes of EEG signals (for µ and β frequency bands) from C3 and C4 EEG
channel for the four imagery classes are presented in Fig. 3.4. Here, we included
EEG data segment from 0 to 6 s from each trial, including both the rest state (i.e.
from 0s to 3s) and MI state (i.e. from 3s to 6s). The envelope of the time series has
been obtained using absolute values of Hilbert transformed signals. The envelope
plots show better separability between two classes for the three Laplacian
methods (i.e. CSD, SSF , SSR) and CAR methods as compared to CR. It is worth
noting that the common-reference data appears to show an artefact at the
beginning of the trial (see the left-most column of Fig. 3.4).
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3.3.2.2 BCI performances

The SVM-based classi ication accuracies (in %) for each pairwise binary
classi ication task are presented in Tables 3.1. Here, the CR method has been
selected as a baseline method for pairwise comparisons with other methods.
Wilcoxon signed rank test reveals a statistically signi icant (p < 0.05, FDR
corrected for multiple comparisons) difference between the baseline method and
CSD for all the binary classi ication tasks except for left vs tongue whereas CAR,
SSF , and SSR failed to provide consistent results (see Tables 3.1). Furthermore,
the differences between the six binary classi ications tasks were evaluated to
examine if there exists a combination of two MI tasks among the four that would
emerge better than others, but this evaluation showed no statistically signi icant
difference across the six binary classi ication results. Table 3.2 provides the grand
mean (SD) (across six binary tasks) of classi ication accuracies for the ive
referencing schemes. The subject-wise comparative results showed CSD as the
better method with highest classi ication accuracies for eight out of nine subjects
(see Table 3.2).

The overall performance across subjects and the six binary classi ication tasks
is 78.75 ± 11.81%, 79.33 ± 11.53%, 82.36 ± 11.04%, 77.48 ± 12.23%, and
78.06 ± 11.93% for CR, CAR, CSD, SSF and SSR methods, respectively. By
considering all the six binary tasks together, i.e. with 54 samples for each
pre-processing method, pairwise comparisons indicate a signi icant difference
between the baseline and the CSD method (p<10e−8). The classi ication
accuracies for four-class BCI approach are presented in Table 3.3. The average
performance across nine subjects is 52.55 ± 12.66%, 53.51 ± 11.12%,
58.14 ± 9.64%, 52.74 ± 10.49%, and 52.28 ± 9.59% for CR, CAR, CSD, SSF and SSR

methods, respectively where the chance level accuracy is 25%. Here, the CR
method has been selected as a baseline method for pairwise comparisons with
other methods. Wilcoxon signed rank test reveals a statistically signi icant
difference between the baseline method and CSD (p = 0.0039) whereas other
comparisons failed to provide signi icant differences. Moreover, CSD enhances
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the over-all four-class BCI accuracy by more than 5%.
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Table 3.2: Average classi ication accuracies (in %) for ive referencing schemes
across six binary tasks. The grand mean, SD and p − values are estimated by
considering all the six binary tasks and nine subjects together (i.e. 54 accuracy
values). Statistical signi icance has been estimated using Wilcoxon signed rank test.

Subj. CR CAR CSD SSF SSR
A01 90.62 91.44 92.25 92.01 89.24
A02 70.25 71.06 77.78 65.16 69.44
A03 86.81 88.43 88.54 85.88 85.76
A04 76.39 81.37 83.10 81.25 77.66
A05 67.48 68.17 70.49 65.74 63.89
A06 66.78 66.55 69.68 66.55 64.58
A07 84.61 86.23 88.31 84.03 86.57
A08 78.94 79.17 81.94 75.23 82.41
A09 86.92 81.60 89.12 81.48 82.99

Grand Mean 78.76 79.33 82.36 77.48 78.06
SD 11.81 11.53 11.04 12.23 11.92

p-value - 0.2067 1.29e-08 0.1067 0.4779

3.3.2.3 Impact of altered number of channels at preprocessing stage and

feature extraction stage

The performances of three channel-selection con igurations (i.e. (22/10),
(10/10), and (22/22)) at the pre-processing stage and feature extraction stage,
have been evaluated for CAR, CSD, SSF , and SSR, and the results are depicted in
Fig 3.5 and Fig 3.6. The mean classi ication accuracies across the six binary
classi ication tasks, for each con iguration, are 79.33 ± 11.53%, 76.20 ± 11.89%,
and 75.96± 12.40% for CAR; 82.36± 11.05%, 79.69± 11.99%, and 77.67± 13.54%
for CSD; 77.48 ± 12.23%, 75.46 ± 12.74%, and 76.45 ± 13.07% for SSF ;
78.06 ± 11.93%, 75.68 ± 13.02%, and 77.27 ± 12.82% for SSR. Pairwise
comparisons with false discovery rate (FDR) multiple comparison correction
indicated that the (22/10) system provides the best performance for both CAR
and CSD while (22/22) results in worst performance. Although for SSF , the
pattern is different as we found no statistically signi icant difference between
(22/10) and (22/22) whereas (10/10) con iguration performed worst. Besides,
SSF ’s performance is signi icantly better in (22/10) when compared with
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Table 3.3: Classi ication accuracy (in %) for the con iguration (22/10): 4-class
classi ication results obtained by using linear SVM classi iers in one-versus-rest
con iguration. The chance level accuracy is 25%. Statistical signi icance (p −
values) has been estimated using Wilcoxon signed rank test.

Subj. CR CAR CSD SSF SSR
A01 65.97 68.05 67.70 63.54 66.31
A02 36.46 43.06 49.65 44.79 42.71
A03 57.99 51.74 58.33 59.03 53.13
A04 50.35 57.99 58.68 44.79 56.60
A05 37.50 42.36 48.26 36.81 40.28
A06 37.85 42.71 43.40 42.01 40.97
A07 60.42 61.81 66.32 58.33 60.42
A08 56.94 44.44 58.68 63.19 48.96
A09 69.44 69.44 72.22 62.15 61.11
Mean 52.55 53.51 58.14 52.74 52.28
SD 12.66 11.12 9.64 10.49 9.59

p-value - 0.5313 0.0039 1 0.9141

(10/10). For SSR, however, we found no signi icant differences across the three
con igurations.

3.3.2.4 Impact of the position of CSD in the EEG signal processing pipeline

The impact of the performance related to the position of CSD in the EEG signal
processing pipeline was evaluated by comparing different feature extraction
approaches: 1) FBCSP only, 2) CSD on the raw signal followed by FBCSP, 3)
bandpass iltering followed by CSD on each frequency band and then CSP, 4) same
as 3 but without CSP, i.e. with bandpower features only, and 5) CSD on the raw
EEG data followed by bandpower feature extraction. The variations of
performance in relation to the place of CSD in the signal processing pipeline are
depicted in Fig. 3.7, by considering the set of 22 channels for pre-processing, and
10 channels for classi ication. In the approach 4 and 5, i.e. without CSP, the
number of features is therefore 100. Across the six binary classi ication tasks, the
average accuracy is 78.75 ± 11.82%, 82.36 ± 11.05%, 80.92 ± 11.13%,
70.64 ± 11.15%, and 70.90 ± 11.66% with the ive feature extraction approaches.
Post-hoc analyses with a Wilcoxon signed rank test indicated that the approach 2,
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(a) CAR

(b) CSD

Figure 3.5: Performance variation with different channel combinations during pre-
processing and classi ication for CAR and CSD methods. The couple (Ns0/Ns1)
denotes the number of sensors used for pre-processing (Ns0) and for feature
extraction (Ns1). The error bars represent the standard error across subjects.
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(a) SSF

(b) SSR

Figure 3.6: Performance variation with different channel combinations during pre-
processing and classi ication for SSF and SSR methods. The couple (Ns0/Ns1)
denotes the number of sensors used for pre-processing (Ns0) and for feature
extraction (Ns1). The error bars represent the standard error across subjects.
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Figure 3.7: Difference of performance in relation to the position of CSD in the
feature extraction pipeline. The error bars represent the standard error across
subjects.

i.e. to apply CSD on the raw signal, provides the best performance among all ive
approaches. Without CSP, there was no difference between applying CSD after or
before bandpass iltering. Finally, the results con irm the impact of CSP in the
increase of the classi ication accuracy.
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3.4 Study II: Evaluation of the impact of CSD on

classi ication of brain connectivity features

In this analysis, we have utilised the EEG-based BCI dataset presented in
Section 3.2.1 to estimate the effect of CSD on the discriminability of single-trial
directed functional connectivity features related to four different MI tasks.

3.4.1 Signal processing pipeline

According to Fig. 3.8, the following steps have been implemented for this analysis:
pre-processing (i.e. CSD and bandpass iltering), feature extraction (i.e. PGC
measures), and classi ication. The initial step was the estimation of scalp CSD
values from the raw EEG data. The remaining processing steps were performed
separately for the raw EEG data and CSD processed data. Next, the data were
bandpassed in the lower gamma (γ) frequency band (25−40 Hz) using a 4th

order, zero-phase forward and backward bandpass Butterworth ilter as our
recent study showed better separability of MI related connectivity values for this
frequency band. For further analysis, we have selected seven EEG channels (i.e.
FC1, FC2, C3, CZ, C4, CP1, and CP2) over the motor cortex region. Furthermore,
the data related to the imagery tasks (i.e. 3000 ms to 6000 ms) were extracted
from each trial. The extracted data were segmented using a sliding window
(segment length 1000 ms and 500 ms overlap) approach. Thus, we obtained 5
segments from each trial. The windowing strategy can effectively reduce the
probability of spurious causal effects due to non-stationarity in EEG signal.
Time-domain PGC method was implemented with the multi-segment data to
estimate the causal interactions between the scalp channel data. The coef icients
of the MVAR model were estimated using the Levinson-Wiggins-Robinson (LWR)
algorithm [105]. Schwarz bayesian information criterion (SBIC) [226] was used
for the estimation of the optimal value of the model order o.

The analysis provides 42 (Ns ∗ Ns − Ns, with Ns = 7 being the number of
sensors) non-zero directed connectivity measures for each trial. Furthermore,
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SVM classi ier was incorporated to evaluate the classi ication performances (i.e.
area under the ROC curve (AUC)) of the six binary classi ication tasks. The
complete analysis was performed for two conditions: Firstly, the inter-session
condition where the classi ier was trained and evaluated on feature-sets of S01
and S02, respectively. Secondly, the intra-session condition where 10 times
10-fold cross-validation (CV) was performed for S01 and S02 separately. The
computational work has been performed on an Intel Core i7-4790 with 16 GB of
memory, using in-house programs written in MATLAB V8.6 (The Mathworks,
Natick, MA).

3.4.2 Results

The performance is evaluated with 6 binary classi ications tasks (i.e. left vs right
(L↔R), left vs feet (L↔F), left vs tongue (L↔T), right vs feet (R↔F), right vs
tongue (R↔T), and feet vs tongue (F↔T)) for each condition and sub-condition.
Fig. 3.9 and 3.10 provide the mean AUC values with six classi ication tasks and
their grand mean values for session S01 and S02 (intra-session condition),
respectively. For this analysis, CSD provided statistically signi icant
improvements of 12.54% (p = 0.00014) and 13.92% (p = 0.00017) in overall
performances (i.e. grand mean AUCs) of session S01 and S02, respectively. The
average (±SD) AUC values obtained across nine subjects for session S01 are
0.65± 0.11, 00.68± 0.09, 0.66± 0.15, 0.64± 0.09, 00.63± 0.15, and 0.61± 0.10 and
session S02 are 0.67± 0.14, 00.70± 0.14, 0.66± 0.14, 0.64± 0.10, 00.65± 0.13, and
0.61± 0.08 for L↔R, L↔F, L↔T, R↔F, R↔T, and F↔T.
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For inter-session analysis, the mean AUC values with six classi ication tasks
and their grand mean value are presented in Fig. 3.11. For this condition, CSD
provided statistically signi icant improvements of 20.28% (p = 0.00007) in overall
performance (i.e. grand mean AUCs). The average (±SD) AUC values obtained
across nine subjects are 0.69 ± 0.14, 00.73 ± 0.13, 0.73 ± 0.14, 0.68 ± 0.10,
00.71± 0.12, and 0.64± 0.07 for L↔R, L↔F, L↔T, R↔F, R↔T, and F↔T.

3.5 Discussion

Pre-processing methods are often overlooked, and the focus for improving
MI-based BCI has been mainly on feature extraction techniques that maximise the
difference between two classes. Although, with the present study, we found that
the feature extraction methods do play a major role in improving classi ication
accuracy, implementing ef icient pre-processing techniques can further enhance
the performance of a BCI system. In the irst study, ive different pre-processing
methods, namely, CR, CAR, CSD, SSF , and SSR, have been compared to address
their effect on the performance of FBCSP based MI-related BCI system. More
particularly, we have shown that CSD provides an improvement of about 3% (in
case of two-class approach) and 6% (in case four-class approach) compared to
the widely used common average referencing scheme. Moreover, the study also
estimates the effect of varying the number of EEG channels distinctly during
pre-processing stage and feature extraction stage. As we included various distinct
algorithms in our signal processing pipeline (i.e. CSD, bandpass iltering, and CSP)
which can be positioned in several ways, the impact of all possible combinations,
for instance, changing the position of CSD (the winning pre-processing method)
and utilising the technique with and without FBCSP on the performance of
MI-related BCI has also been studied. In this analysis, we have not considered the
discrete methods such as the Hjorth’s Laplacian [14], which is a planar scheme
(i.e. subtracting the linearly-weighted potential of the nearest neighbours) as the
estimates fail at the edges of a two-dimensional montage, effectively reducing the
number of channels with available EEG data [19, 227]. Thus, implementation of

84



Figure 3.9: Mean AUC measures obtained from 10 times 10-fold CV with Session
S01 data for six pairwise comparisons. Each tick on x-axis provides mean AUCs
for the band-passed data and CSD processed band-passed data. The error bar for
each of the six pairwise comparison represents the standard deviation (SD) across
9 subjects whereas the error bar for grand mean is the SD across 6 comparisons.
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Figure 3.10: Mean AUC measures obtained from 10 times 10-fold CV with Session
S02 for six pairwise comparisons. Each tick on x-axis provides mean AUCs for the
band-passed data and CSD processed band-passed data. The error bar for each
of the six pairwise comparison represents the standard deviation (SD) across 9
subjects whereas the error bar for grand mean is the SD across 6 comparisons.
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Figure 3.11: Mean AUC measures obtained from training with data of session S01
and evaluation with session S02 for six pairwise comparisons. Each tick on x-axis
provides mean AUCs for the band-passed data and CSD processed band-passed
data. The error bar for each of the six pairwise comparison represents the standard
deviation (SD) across 9 subjects whereas the error bar for grand mean is the SD
across 6 comparisons.
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Hjorth’s Laplacian may restrict the analysis as the availability of the
pre-processed EEG channels will not be uniform across the different competing
methods. Nevertheless, a study involving empirical comparison of various spatial
iltering methods showed better performance of CAR as compared to small

Laplacian method [58]. To extend our analysis, in the second study, we explored
the effect of CSD estimation on the discriminability of single-trial directed
functional connectivity features related to the EEG signals during four MI tasks.

The irst study presented in this chapter yielded several major outcomes. The
comparative analysis of all the six binary classi ication tasks and four-class
classi ication approach for (22/10) combination showed better performance of
CSD method as compared to other methods. Furthermore, the performance
differences are statistically signi icant in ive out of six comparisons. A recent
study also reported a better performance of CSD as compared to SSF and CAR
method for counteracting muscular noise in scalp EEG signals [182]. Grand
averaged (across all subjects and all binary classi ication tasks) analysis of
performances showed CAR and CR as better pre-processing methods as
compared to SSF and SSR. The results related to the impact of the number of
channels for pre-processing and feature extraction (classi ication) indicated three
key indings. First, choosing a large number of channels at pre-processing stage
(possibly whole scalp coverage) and con ining to the motor cortex related
channels during feature extraction, yielded better classi ication accuracies for all
the Laplacian methods as compared to other combinations. Second, the ef iciency
of all the methods reduced signi icantly with a decrease in the number of
channels considered during the pre-processing (e.g. from (22/10) to (10/10)),
showing the importance of acquiring the signal with a large number of channels.
Third, the number of channels for classi ication should be reduced after the
Laplacian methods as the inclusion of all the channels add redundant information
to the classi ier (the performance of the (22/10) was better than (22/22)). The
study involving variation in the position of CSD method in EEG signal processing
pipeline displayed that applying the bandpass iltering before CSD decreased the

88



classi ication accuracies in all six comparisons and hence supported the
utilisation of CSD as the irst step in the pipeline. Finally, CSD with FBCSP
enhanced the grand mean accuracy by approximately 17% as compared to CSD
without CSP. Furthermore, the results obtained from the second study con irmed
signi icant improvements in the discriminability of the connectivity features using
CSD as a pre-processing method for both inter- and intra-session conditions. Our
indings complement a recent study which showed that better interpretation of

the brain networks can be obtained through CSD processed EEG data [181]. The
analysis found a signi icant reduction in the number of spurious connections with
CSD [181].

3.6 Summary

VC may result in diminished separability of the EEG features for distinct cognitive
tasks/processes and hence, severally affect the performance of the M/EEG-based
BAPD systems. Thus, new robust pre-processing methods have to be proposed to
improve the accuracy of single-trial command detection. In this chapter, the
estimation of CSD is introduced as an essential pre-processing step for EEG
analysis. It is shown that CSD signi icantly improves the distinction of related
brain responses and has performed better than other referencing schemes (i.e.
CR and CAR) and SSL methods (i.e. SSF and SSR). In addition, it is shown that
selecting a large number of channels at pre-processing stage (possibly whole
scalp coverage) and con ining to the motor cortex related channels during feature
extraction, yielded better classi ication accuracies for all the Laplacian methods
as compared to other combinations. Furthermore, a signi icant improvement in
the discriminability of the connectivity-based features has been achieved by
introducing CSD as a pre-processing method. However, the classi ication
accuracies with FC features are still not high enough to be suitable for a practical
application. Thus, further exploration of the M/EEG FC-based features for
single-trial BAPD should be undertaken. Chapter 4 addresses this limitation by
introducing FC features related to mixed imagery tasks i.e. a combination of MI
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and cognitive imagery (CI).
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Chapter 4

Single-trial effective brain

connectivity patterns enhance

discriminability of mental imagery

tasks

4.1 Introduction

Electroencephalography (EEG) based brain activation pattern detection (BAPD)
systems (e.g. brain-computer interface (BCI)) can be implemented for a wide
variety of communication and control purposes, such as controlling a cursor,
wheelchair or prosthesis [228], operating virtual keyboards [229], and navigation
through virtual environments [230]. These systems assert a strong positive
impact on disabled users in terms of improvement in quality of life and facilitating
communication with their close environment. In addition, they offer alternative
means of communication for healthy users in the form of EEG controlled
entertainment systems such as computer games and music [231, 232] as well as
hybrid BCI systems [233]. Moreover, recent studies have shown that the use of
BCI can affect neural plasticity during the period of cognitive/rehabilitative
training [234], and possibly contribute to the enhancement of motor
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rehabilitation for stroke patients [8]. Thus, the development of this technology
bene its several research domains, e.g. medical and healthcare, neuro-marketing,
entertainment and games, smart environments, and security.

The human brain has been divided into different areas based on their
anatomical and physiological characteristics [235]. These areas are connected to
each other to form functional brain networks that are dynamically employed to
perform various sensorimotor and cognitive tasks. Analyzing these network
connectivities (i.e. connectome) and their dynamics during different brain states
may provide a better understanding of physiological mechanisms related to them.
However, functional connectivity evaluations are unable to provide exact
information regarding the directionality of the interaction, i.e. whether the
information low is from a brain area A to another area B, or vice-versa. Effective
connectivity analysis can derive better relationships between two areas of
interest by providing directed interactions. Therefore, effective connectivity is a
relevant measure for better assessing the induced physiological variations in the
brain occurring during imagery tasks. The results presented in Section 3.4.2 of
Chapter 3 showed signi icant improvement in the performance of brain
connectivity features for motor-imagery (MI) tasks using the current source
density (CSD) method, however, the area under the ROC curve (AUC) values
(range: 0.67 to 0.73) were still low for a practical implementation of such system.

Investigations of the connectome associated with imagination (i.e. MI) as well
as the execution of motor tasks revealed the manifestation of induced activations
and information lows at various cerebral structures, including, the primary
motor areas (M1), the premotor cortex (PMC), and the supplementary motor
areas (SMA) [189]. These cortical areas are located in close vicinity to each other
making estimation of the MI task speci ic causal interaction a challenging task, in
particular at scalp level analyses, due to the volume conduction (VC) effect.
Furthermore, single-trial connectivity estimations become inherently more
dif icult due to a lack of suf icient EEG data for this type of analysis. These
confounding factors lead to the low performance of connectivity-based MI-BCI
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systems.
This chapter undertakes the research challenge presented in Section 2.7.2 of

Chapter 2 and investigates the effect of imagery task type on the performance of
EEG-based BAPD system which uses features of multivariate autoregressive
(MVAR) model based connectivity estimates. In particular, the single-trial
directed functional connectivity features are estimated to elucidate the
interaction among the EEG signals during various MI (i.e. left hand imagery, right
hand imagery, feet imagery, and tongue imagery) and cognitive imagery (CI) tasks
(word generation imagery, spatial navigation imagery, and subtraction imagery).
The rationale behind the proposed work is that CI tasks involve activations of
distinct regions of the brain that are relatively far from each other compared to
those associated with MI tasks.

The study undertaken in this chapter involved implementation of
time-domain partial Granger causality (PGC) [84] along with two frequency
domain GC measures (i.e. partial directed coherence (PDC) [110] and directed
transfer function (DTF) [112]) on the two publicly available datasets. Thus, we
included three different methods belonging to MVAR based modelling of
time-series data. As the major aim of this study is to test the hypothesis that CI
based connectivity features can provide better separability than MI-based
features, an exhaustive discussion of different connectivity measures in the
analysis is out of the scope of this chapter. Nevertheless, several previous studies
have compared various connectivity measures with both simulated and empirical
datasets [25, 236, 237]. Furthermore, we compared the PGC results with a
state-of-the-art feature extraction method for BCI, i.e. log variance after spatial
iltering using common spatial pattern (CSP) method.

The remainder of this chapter proceeds as follows: Section 4.2 describes the
feature extraction methods, BCI datasets, data processing and analysis pipeline,
and performance evaluation. Next, Section 4.3 presents the results obtained from
the analysis. Finally, the results are discussed in Section 4.4, and Section 4.5
summarises the indings of this chapter.
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4.2 Materials and methods

4.2.1 Multivariate autoregressive model

Given a univariate time series, its consecutive measurements contain information
about the process that generated it. An attempt at describing this underlying
order can be achieved by modelling the current value of the variable as a
weighted linear sum of its previous values. This is an Autoregressive (AR) process
and is a very simple, yet effective, approach to time series characterisation. The
order of the model (i.e. the number of preceding observations used) and the
weights characterise the time series. MVAR models extend this approach to
multiple time series so that the vector of current values of all variables is
modelled as a linear sum of their previous values [104]. The detailed description
of the MVAR model is presented in Section 2.5.2.1 of Chapter 2.

4.2.2 Time-domain partial Granger causality analysis

The concept of PGC, provided by Guo et al. [84], is based on eliminating the effects
of exogenous (environmental) input and latent variables during the estimation of
conditional GC. The method is already described in Section 2.5.2.2 of Chapter 2
along with other variants of time-domain GC.

4.2.3 Common spatial pattern iltering

This method involves the extraction of log variance features in particular frequency
bands after spatial iltering using CSPs. The CSP method is highly successful in
calculating spatial ilters for detecting ERD/ERS during MI tasks. The mathematical
concept related to CSP is described previously in Section 2.5.1 of Chapter 2.

4.2.4 EEG dataset-1

The BCI Competition IV dataset 2A has been analysed to investigate causal
interactions during various MI tasks [221]. The dataset comprised of EEG signals
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acquired from nine healthy participants using a cue-based paradigm (see
Fig. 4.1.A) during two sessions on different days. The MI tasks included four
different classes: left hand MI (class 1), right hand MI (class 2), both feet MI (class
3), and tongue MI (class 4). Each data acquisition session consisted of 6 runs
where each run comprised of 48 trials (12 trials for each class). Thus the
complete study involved 576 trials from both sessions. The total trial length was
7.5 s with variable inter-trial duration. The data were acquired from 25 channels
(22 EEG channels along with three monopolar EOG channels) with a sampling
frequency of 250 Hz and bandpass iltered between 0.5 Hz to 100 Hz (notch ilter
at 50 Hz). Reference and ground were placed at the left and right mastoid,
respectively.

Table 4.1: Participant details: The ID, age in years, months since occurrence and
the type of event are shown for each individual of dataset-2. ASIA: American Spinal
Injury Association

ID Age Month Event
P1 42 6 Locked-in syndrome due to

brainstem stroke
P2 31 5 Locked-in syndrome due to

brainstem stroke
P3 33 2 Spinal cord injury C5, ASIA C
P4 40 255 Spinal cord injury C5, ASIA A
P5 57 5 Hemorrhagic stroke (HS) in left

hemisphere
P6 43 27 Spinal cord injury C5, ASIA C
P7 20 6 HS parieto-temporal,

right central no cranium
P8 36 53 Spinal cord injury C5, ASIA A
P9 38 15 Spinal cord injury C4, ASIA A
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4.2.5 EEG dataset-2

The mental imagery-based BCI dataset has been previously analysed [238] for
pairwise comparison of BCI performances during various imagery tasks. The
dataset comprised of EEG signals acquired from nine participants with severe
motor disabilities using a cue-based paradigm (see Fig. 4.1.B) during two sessions
on different days. Demographic details of the participants are summarised in
Table 4.1. For further exploration, readers are referred to the original study
in [238]. The mental tasks included ive different classes: word generation
imagery (class 1), mental subtraction imagery (class 2), spatial navigation
imagery (class 3), right hand MI (class 4), and both feet MI (class 5). The dataset
consists of two different session and each session consists of 8 runs resulting in
200 trials (40 trials for each class). Thus the complete dataset includes 400 trials
from both sessions. The total trial length was 10 s with variable inter-trial
duration. The data were acquired from 30 EEG channels with a sampling
frequency of 256 Hz and bandpass iltered between 0.5 Hz to 100 Hz (notch ilter
at 50 Hz) (see Fig. 4.1.B). Reference and ground were placed at the left and right
mastoid, respectively. This dataset is publicly available at
http://bnci-horizon-2020.eu/database/data-sets.

4.2.6 Data pre-processing and analysis

MVAR based connectivity methods are sensitive to volume conduction, thus the
irst step of data pre-processing involved the estimation of CSD for both datasets

using the spherical spline method [220]. A recent study showed that CSD
estimation improves the interpretability of connectivity results by reducing the
number of spurious interactions [181]. In addition, the results presented in
Section 3.4.2 of Chapter 3 showed signi icant improvement of classi ication
performance by using CSD for MI tasks. Next, the channels that were noisy or
severely contaminated with artefacts were interpolated for dataset-2 followed by
exclusion of the bad trials. The information regarding the faulty EEG channels and
noisy trials is provided in [238]. However, for dataset-1, no such information is
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present, so all the available trials were considered for the analysis. For the three
connectivity methods, the features were generated for delta (δ) (1−4 Hz), theta
(θ) (4−8 Hz), alpha (α) (8−12 Hz), beta (β) (13−25 Hz), lower gamma (γ)
(25−40 Hz), and wide-band (1−40 Hz) frequency bands whereas for CSP we
included a wideband approach (8−30 Hz) as incorporated in the original
research article [238]. Bandpass iltering was applied by employing an 8th order,
zero-phase forward and backward bandpass Butterworth ilter. For further
analysis, seven channels (C3, FC1, CP1, Cz, FC2, CP2, and C4) related to the
motor-cortical areas were selected for dataset-1. Likewise, for dataset-2, 11
channels (F3, F4, T3, C3, Cz, C4, T4, P3, P4, O1 and O2) were selected for
considering the frontal, temporal, central, parietal, and occipital areas of the
cortex. The motive behind this implementation was to select a common network
for all imagery classes.

Furthermore, the data related to the imagery tasks were extracted from each
trial and for both datasets (i.e. 3000 ms to 6000 ms for dataset-1 and 3000 ms to
10000 ms for dataset-2). The extracted trials were segmented using a sliding
window starting from 3000 ms to the end of the trial. For dataset-1, we extracted
segments of length 1000 ms with 500 ms overlap while for dataset-2, the segment
size was 2000 ms with an overlap of 500 ms. Thus, we obtained 5 and 11
segments from each trial for dataset-1 and dataset-2, respectively. The
windowing strategy can effectively reduce the probability of spurious causal
effects due to non-stationarity in EEG signal [86]. A longer segment may lead to
better model itting, but they are frequently non-stationary. The implemented
segment lengths provided a better trade-off between satisfactory model itting
and local stationarity. The optimal size of the data segment and overlap window
were obtained using a threshold criterion based on the outcomes of
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [239] (for time-series stationary
testing) and Durbin-Watson whiteness test [240] (for MVAR model consistency
testing). The Moreover, to counter the issues related to inter-segment variations
and non-stationarity, processes of detrending and demeaning of the data were
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performed wherein the average was subtracted from each segment separately
along with the division of each segment by the standard deviation.

The coef icients of the MVAR model for multi-trial data were estimated using
the Levinson-Wiggins-Robinson (LWR) algorithm [105]. The application of MVAR
modelling for connectivity analysis requires estimation of the model order (MO)
(i.e. the number of time-lags). The time-lags for an MVAR is the number of lags
(previous values) of all the variables in the system to be used as regression
predictors for each variable. This process is highly crucial for the correct
estimation of the connectivity networks. If the MO is too high, over itting occurs
and may introduce spurious links in the network. If the MO is too low, the itted
model may fail to capture the essential dynamics of the data resulting in the
exclusion of the existing links [241]. A previous study examined empirically the
effect of incorrect MO selection on estimated functional connectivity networks
with both simulated and real-world datasets [242]. Furthermore, the study
compared the performances of various criteria available for estimating the
correct MO and it suggested a cautious usage of these criteria. In this study, we
implemented the Schwarz bayesian information criterion (SBIC) [226] and the
Akaike information criterion (AIC) [243] for estimating the optimal value of the
MO p. The expressions for these two methods are given as follows:

AIC(p) = log[det(Σ)] + 2pL2

N
(4.1)

SBIC(p) = log[det(Σ)] + log (N)
pL2

N
(4.2)

where Σ is the estimated noise covariance matrix, L is the number of EEG
channels, and N is the number of data samples. Furthermore, the MO was
selected for the measure provided minimum values. During the analysis of
optimum MO, we found 8 as the best MO for most of the segments (more than
75%) for dataset-1, and 10 for the majority of cases (more than 85%) for
dataset-2. Hence to ensure the analysis was unbiased, we set these MO values for
the complete analysis. Furthermore, we implemented two different techniques to
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con irm the legitimacy of applied regression models. Durbin-Watson whiteness
test [240] has been used for approximating whiteness of uncorrelated residuals.
The model consistency assesses the proportion of the correlation structure that is
shared by the real data and “simulated” data generated from the MVAR model. A
higher consistency value (i.e. ≥ 80) provides a con irmatory indication for the
rejection of the null hypothesis. Moreover, validation of the model was con irmed
using the Ding method [86] by checking the consistency of the correlation
structure. The Ding consistency test provided a higher value (nearly equal to 1),
which shows that the selected MVAR model has effectively predicted the time
series.

For CSP based analysis, two pairs of components (i.e. m=2) were selected for
binary classi ication tasks. For computational assignments related to data
processing, we used MATLAB (V8.1), and for estimation of single-trial
connectivity and CSP features, we implemented the algorithms with in-house
scripts using functions from GCCA (V2.9) toolbox [244] and HERMES
toolbox [245].

4.2.7 Performance evaluation

Single-trial connectivity features were utilised to perform a total of 16 binary
classi ication tasks for both datasets. The binary classi ication tasks included
left-right (L−R), left-feet (L−F), left-tongue (L−T), right-feet (R−F), right-tongue
(R−T), and feet-tongue (F−T) for dataset-1 and word-subtraction (W−S),
word-navigation (W−N), word-hand (W−H), word-feet (W−F),
subtraction-navigation (S−N), subtraction-hand (S−H), subtraction-feet (S−F),
navigation-hand (N−H), navigation-feet (N−F), and hand-feet (H−F) for
dataset-2. A Bayesian linear discriminant analysis (BLDA) classi ier was trained
on the feature sets from the data of one session (i.e. training set) while the
evaluation was performed on the feature set generated from the data of the
second session (i.e. evaluation set). BLDA was selected for the machine learning
implementation to keep this part similar with the previous study that published
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the CSP results with the same dataset [238]. This allowed us not only to replicate
their results but also to compare the performance with the connectivity features.
For the selection of the best time segment and the optimal number of features,
cross-validation was performed during the training phase. Consequently, the
computational load during the evaluation phase was ef iciently reduced. We
measured the classi ication performance with the AUC for each binary
classi ication task [246]. Furthermore, to evaluate the best connectivity measures
for each pairwise binary classi ication task, Pearson’s correlation coef icients
were estimated using data from both sessions. The absolute values of class
correlation coef icients |r(i, j, s)| and their signi icance estimators (p − values:
p(i, j, s)) of each connectivity index with their corresponding dummy class labels
l were estimated for each pair of classes, all segments, all subjects, and both
datasets. The dummy class label is a numeric value that indicates whether a trial
contains class-1 (l = 1) or class-2 (l = −1) of the binary classi ication task. For
instance, the dummy label l can be set to +1 for left-hand MI (class-1) and -1 for
right-hand MI (class-1) or vice-versa. Thus, |r(i, j, s)| indicates how strongly a
connectivity measure can distinguish between both types of imagery classes for a
channel pair (i, j) during a time segment s.

4.3 Results

This section presents several outcomes of the above analysis. Firstly, the
classi ication performance of the three directed brain connectivity measures (i.e.
PGC, PDC, and DTF) are provided for various frequency bands. Secondly, a
comparative analysis is presented for PGC and CSP. Lastly, analysis of
class-correlation coef icients associated with PGC connectivity features is
presented for both the datasets.
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4.3.1 Performance comparison of PGC, PDC, and DTF for

different frequency bands (δ, θ, α, β, lower γ, and

wide-band).

Fig. 4.2 presents the mean AUC values (across nine subjects) for PGC, PDC, and
DTF for δ band (1−4 Hz), θ band (4−8 Hz), α band (8−12 Hz), β band (13−25
Hz), lower γ band (25−40 Hz), and wide-band (1−40 Hz) in 16 pairwise binary
classi ication tasks involving both datasets. The irst six comparisons (from
left-hand side) belong to dataset-1 while the next ten comparisons belong to
dataset-2. Furthermore, we compared the grand mean AUCs (across 16 binary
classi ication tasks) for the three methods and found no statistically signi icant
differences in δ, θ, α, β, and wide-band (1−40 Hz). Also, the grand mean AUC
values were lower than 0.65 for all three methods for these frequency bands.
Thus, the results show weak discrimination power of connectivity based features
for binary classi ication tasks. However, interestingly, PGC performed better than
PDC and DTF for the lower γ band. In this frequency band, the grand mean
AUCs(± SD) for PGC, PDC, and DTF are 0.72(± 0.06), 0.62(± 0.03), and 0.62(±
0.3), respectively. In 15 out of the 16 binary classi ication tasks, PGC provided
higher AUC values than PDC and DTF. Thus, the lower γ band with PGC provided
the best classi ication results for both MI and CI binary tasks. The overall
statistical analysis showed PGC in lower γ band performed signi icantly better
than all the other combinations (p < 0.025, FDR corrected for multiple
comparisons).

4.3.2 Performance comparison of PGC and CSP

The performances corresponding to PGC (in lower γ band) and a state-of-the-art
signal processing technique (i.e. CSP + log variance) are presented for both
datasets in Tables 4.2 and 4.3. For simpli ied presentation, we denote the PGC
method by M1, and CSP algorithm by M2 in the results. For dataset-1, the
statistical analysis shows signi icantly better performance of CSP for all six binary
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(a) δ band(1−4 Hz)

(b) θ band(4−8 Hz)

(c) α band(8−12 Hz)

(d) β band(13−25 Hz)

(e) Lower γ band(25−40 Hz)

(f) Wide-band(1−40 Hz)

Figure 4.2: Mean AUC measures for PGC, PDC, and DTF with 16 pairwise
comparisons for: (a) δ band(1−4 Hz),(b) θ band(4−8 Hz), (c) α band(8−12 Hz),
(d)β band(13−25 Hz), (e) lower γ band(25−40 Hz), and (f)wide-band(1−40 Hz).
The irst six comparisons from left side belong to dataset-1 while the rest belong
to dataset-2. The error bars represent the standard error across subjects.
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classi ication tasks (p < 0.05). For dataset-2, the mean AUCs of eight out of ten
binary classi ication tasks are better in the case of PGC however we found
statistically signi icant differences in two cases only, i.e. W−S (p = 0.039) and
W−N (p = 0.01), where improvements of 14% and 10% in mean AUC(%) are
obtained, respectively. Furthermore, we compared the performance of different
MI pairs for PGC results. The comparative analysis for dataset-1 (with FDR
corrected p-value (p=0.026)) shows some interesting results wherein both L−F
(p = 0.004) and L−T pair (p = 0.023) provided signi icantly better AUCs (%) as
compared to F−T. Besides, the MI task pair F−T had the worst overall
performance whereas L−F and L−T performed best among the six binary
classi ications. For dataset-2, group statistical analysis (with FDR corrected
p − value = 0.025) showed signi icantly better performance of PGC during W−S,
W−H, and W−F as compared to S−N (p=0.021, p=0.011, p=0.019), S−H (p=0.007,
p=0.003, p=0.007), S−F (p=0.007, p=0.004, p=0.004), N−H (p=0.004, p=0.007,
p=0.007), N−F (p=0.011, p=0.003, p=0.007), and H−F (p=0.004, p=0.007,
p=0.004).

Additionally, the outcome for W−H (p=0.011) is signi icantly better than
W−N. In terms of average AUC(%) values, W−H and W−S performed best and
H−F performed worst among all ten binary classi ication tasks. This analysis
followed the most practical classi ication procedure for a BCI setting, i.e. training
and evaluation with data from different sessions. However, to further explore the
performances of the two competing methods and to evaluate the variations
between two sessions, we estimated the 10-fold cross-validation results for the
data of session-1 and session-2 separately, and for the combined data of session-1
and session-2. The mean AUCs across subjects for session-1, session-2, and
combined data are presented for both datasets in Fig. 4.3(a) for the CSP method
and in Fig. 4.3(b) for the PGC method. Although we found a slight increase in the
grand mean AUC values for session-2 compared to session-1, the difference is not
statistically signi icant. Moreover, for all three cases, CSP outperformed PGC for
dataset-1 involving MI tasks while the latter outperformed CSP for dataset-2
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involving both CI and MI tasks.
Furthermore, we estimated the outcomes by combining PGC and CSP features

together. BLDA classi ier was trained on the collective feature set of session-1
data and evaluated with combined feature-set of session-2 data. The mean AUC
values (across all subjects) generated with CSP, PGC, and the combined features
are presented for dataset-1 and dataset-2 in Fig. 4.4 and Fig. 4.5, respectively.
Here, we compared the performance of the combined feature set with the best
approach found for each dataset, i.e. CSP for dataset-1 and PGC for dataset-2. For
both datasets, we found no statistically signi icant difference during the
comparisons. However, the difference between the grand mean AUC values with
the combined feature set and PGC is higher for dataset-2 compared to the
difference between combined and CSP features.
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Figure 4.4: Mean AUC measures (across subjects) estimated for dataset-1 involving
six pairwise binary comparisons with only CSP features, PGC features, and with
combination of CSP and PGC features. The error bars represent the standard error
across subjects.

Figure 4.5: Mean AUC measures (across subjects) estimated for dataset-2 involving
ten pairwise binary comparisons with only CSP features, PGC features, and with
combination of CSP and PGC features. The error bars represent the standard error
across subjects.
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4.3.3 Class-correlation analysis of the connectivity features

The absolute values of the class-correlation coef icients were averaged across all
subjects and both sessions for each dataset separately. Next, for each pairwise
comparison, the averaged values of these estimates were normalised between 0
and 1 to evaluate the signi icance of different connectivity indices within each
binary classi ication task. Finally, the class-correlation matrices were generated
using the normalised estimates. These normalised estimates are presented in
Fig. 4.6 and Fig. 4.7 for six pairwise comparisons of dataset-1 and ten pairwise
comparisons of dataset-2, respectively. Each matrix element represents
directional connectivity from the ith column (source) to the jth row (sink).
Table 4.4 illustrates the signi icant connectivity indices with r > 0.5 for various
binary classi ication tasks for dataset-2.

Furthermore, we scrutinised the indices with majority voting criterion, i.e.
selected only those features which maintain the r-value threshold (i.e. 0.5) for at
least 5 subjects out of 9. We found no connectivity feature above the set threshold
and the voting criterion for dataset-1. However, we can assess the most
contributing connectivity features for dataset-1 with Fig. 4.6, for instance,
CP1→C4, C3→FC1, and C4→Cz for L−R, CP1→C4, C3→C4, and C3→CP1 for L−F,
C3→C4, Cz→C4, and C3→CP1 for L−T, C3→Cz, and C3→FC1 for R−F, C3→FC1,
and Cz→C3 for R−T, and inally CP1→FC1, Cz→CP2, Cz→C4, Cz→CP1,and
Cz→FC1 for F−T. For dataset-2, we found a signi icant association of frontal scalp
area with W−S, W−N, W−H, and W−F binary classi ication tasks. Likewise, the
parietal area is more associated with W−N, W−H, and W−F while occipital area
seems to be more activated during N−H, N−F, and S−F. Interestingly, central area
electrodes contributed to almost all the binary classi ication tasks. Temporal lobe
contributed majorly to W−N, S−N, and W−F binary classi ication tasks. However,
we found no signi icant connectivity indices for the H−F binary classi ication task.
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L-R L-F L-T

R-F R-T F-T

Figure 4.6: Class-correlation matrices for each pairwise comparison for dataset-1.
The absolute values of the class correlation coef icients for all subjects and sessions
were averaged and normalised between 0 and 1 for each binary classi ication task
pair separately. Each matrix element represents directional connectivity feature
from the ith column (source) to the jth row (sink).
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4.4 Discussion

Most of the connectivity based single-trial BCI studies focus on MI related
modulations in the motor cortex functional network. Investigations of the brain
connectome related to imagination and execution of motor tasks revealed the
exhibition of induced activations and information low at various cerebral
structures, incorporating M1, PMC, and SMA [247]. These cortical areas are
located in close vicinity to each other making discriminative estimation of the MI
task related causal interactions a challenging task, in particular at scalp level
analyses. Thus, the performances of the MI-based BCI systems using connectivity
features are typically low. In this study, we presented an alternative solution to
overcome this confounding factor by employing CI features, including word
generation, spatial navigation, and mathematical tasks. The rationale behind this
hypothesis is that these imagery tasks activate distinct brain regions, which are
relatively far from each other.

In this chapter, we have considered PGC, DTF, and PDC to generate effective
connectivity features in six frequency bands, i.e. δ, θ, α, β, lower γ, and wide-band
using two publicly available imagery-related BCI datasets. Next, to obtain the best
performing method and optimum frequency band, we compared the results for
16 binary classi ication tasks involving MI and CI. Moreover, we compared the
performances of PGC method and CSP algorithm by evaluating the results of
binary classi ication tasks for both datasets. Our analysis yielded four major
indings. First, we obtained higher discriminative connectivity features in the

lower γ band as compared to the rest of the canonical frequency bands (i.e. δ, θ, α,
β, and wide-band). Second, the performance of PGC is signi icantly better than
PDC and DTF in the lower γ band. Third, and more importantly, the PGC and CSP
comparative analysis showed signi icantly high improvement in classi ication
performances with effective connectivity based features for mixed imagery tasks
(i.e. CI versus MI) as compared to MI tasks. Finally, the post-hoc analysis showed
higher values of class correlation coef icients for connectivity features in binary
classi ication tasks involving word generation, spatial navigation and subtraction
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task compared to MI tasks.
The results of the current analysis illustrate that lower γ frequency range

holds greater information regarding cortical interactions during various brain
imagery tasks than α and β frequency ranges. It is worth noting that we have
included the low-frequency γ range (i.e. 25−40 Hz) to avoid the muscular
artefacts as these are more prominent at higher frequencies. However,
high-frequency broadband gamma may capture better information related to the
brain responses and can be seen in electrocorticographic (ECoG) signals.
Nevertheless, these indings are consistent with several prior studies. A transfer
entropy based brain connectivity study suggested strongest modulation in the γ

band during MI task [24]. Similarly, detection of high-frequency activations in
motor cortex during motor execution and imagery was reported using invasive
modalities including electrocorticography (ECoG) [248] and non-invasive
recording methods including fMRI [249]. Furthermore, two recent studies
presented high correlation between the high-frequency range of ECoG signal with
spatially focal BOLD peaks in primary sensorimotor areas [250] and in pre and
post-central areas (i.e. covering the motor area) [251]. However, it is evident that
the signal to noise ratio is a signi icant issue when dealing with high frequencies
in EEG signals. To mitigate the effect of muscular noise, we implemented CSD
estimation as a pre-processing method [220]. A similar study involving various
MVAR based connectivity measures reported low accuracies of PDC and DTF for
MI-based BCI system [25]. Moreover, the theoretical formulation of PDC and DTF
is based on standard GC measure while the PGC method enhances the ef iciency of
conditional GC measure by mitigating the effect of confounding factors (i.e. latent
variables and exogenous inputs) using a concept similar to partial
correlation [84]. A recent study provided evidence supporting the higher
accuracy and consistency obtained with PGC compared to conditional GC and PDC
approaches in identifying causal connectivity of neural circuits with both
simulated and empirical datasets [99].

A major challenge in BCI is to increase the information transfer rate (ITR) as
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the brain-computer interaction competes with other modalities (e.g.
eye-tracking) particularly for people who are not entirely locked-in. The increase
of the number of commands, i.e. the increase of the imagery tasks, that can be
accurately selected at any moment can improve the ITR. The indings of this
chapter have shown that while the performance of features based on effective
connectivity remains below the existing methods for MI tasks, these type of
features provide a robust performance for other types of imagery tasks such as CI.
Finally, because the choice of the easiest imagery tasks may be subject dependent,
the results show that the choice of the feature extraction method must be based
on the selected imagery tasks.

4.5 Summary

Discrimination of brain evoked responses corresponding to imagery tasks is a
challenge for both the person who has to imagine a speci ic task and the signal
processing methods that have to extract robust discriminant features. Most of the
previous studies have focused on MI tasks (e.g., left vs right) by using features
based on the bandpower or log-variance of bandpass signals after spatial iltering.
While this approach remains successful for the classi ication of MI, we have
shown that the use of features based on effective connectivity using PGC in the
gamma band can lead to more reliable performance in speci ic imagery tasks, i.e.
word generation, numerical subtraction, and spatial navigation tasks. The results
demonstrate that the performance of the proposed system is superior to the
performance achieved with a state-of-the-art method for MI (i.e. CSP). Finally, the
results also suggest that the combination of different imagery tasks opens the
scope for improved BCI based on the detection of imagery tasks by increasing the
number of possible classes.

One of the major application ields of M/EEG-based brain activation pattern
detection (BAPD) systems (e.g. BCIs) is upper-limb (UL) stroke
rehabilitation [27, 28, 8, 29]. However, neurophysiological effects of the attained
recovery is still poorly understood. Chapter 5 aims to explore the patterns based
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on M/EEG functional brain networks (FBNs) in order to better understand the
process of stroke recovery and to assess the clinical ef icacy of the M/EEG based
UL stroke rehabilitation.

116



Chapter 5

Brain-machine interface driven

post-stroke upper limb functional

recovery correlates with beta band

mediated cortical networks

5.1 Introduction

Recovery of movement related functions after stroke and its assessment are
highly crucial for restoring activities of daily living (ADLs) of the patients.
Majority of the stroke survivors have upper-limb (UL) associated symptoms after
undergoing an acute stroke [190]. Many patients show some degree of
spontaneous (autonomous) recovery during initial months following a stroke,
however, this is generally inadequate particularly in terms of motor functions.
The condition of the patients with null or incomplete recovery can be improvised
with several restorative therapy methods. These methods mainly include: (i)
dynamic splinting which helps the stroke survivors to straighten their wrists and
ingers (e.g. physical therapy, constraint-induced movement therapy, gait

therapy) [149, 150], (ii) electrical muscle stimulation which helps in moving
weak limb by using electrical impulses delivered directly to skin using
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electrodes [160, 161], (iii) device-driven therapy which guides the users to
execute repeated movements (e.g. robotics, brain-computer interface
(BCI)) [156, 157, 158, 159], (iv) transcranial magnetic stimulation which uses
electromagnetic induction to induce weak currents and helps in causing activity
in speci ic parts of brain [162, 163], and (v) mirror therapy: to make it appears as
if stroke survivors are moving their affected arm, however, they actually look at
the movement of their unaffected hand [252, 253]. These days mental practice
(MP) and physical practice (PP) are two frequently used evidence-based clinical
interventions to enhance UL motor function purportedly to improve motor
movement, coordination, and balance following stroke [254, 255].

Motor-imagery (MI) based BCI systems offer the use of neuronal signals (i.e.
electroencephalography/magnetoencephalography (M/EEG)) for UL
rehabilitation goals, by providing the end users with brain state-related
neuro-feedback through various means such as functional electrical stimulation,
virtual reality environments, or robotic systems. Taking this into consideration,
BCI systems that are applied for motor neuromodulation purposes are used to
induce activity-dependent plasticity by making the user pay close attention to a
task requiring the activation or deactivation of speci ic brain areas [256, 65, 214].

Section 2.7.3 of Chapter 2 presented a major research challenge related to the
evaluation of the neurophysiological mechanisms related to UL functional recovery
attained during a longitudinal stroke rehabilitative intervention provided through
a motor attempt (MA)-based BCI-driven hand-exoskeleton.

We estimated the brain connectivity networks using resting-state (RS) MEG
signals acquired at ive different sessions in conjunction with a multi-modal
rehabilitative therapy provided with the simultaneous intervention of MA-based
BCI and robotic hand-exoskeleton over a period of up to 6 weeks. This study
included ive sessions of functional recovery assessment involving Action
Research Arm Test (ARAT) and grip-strength (GS) measurements. Further, to
assess the neuronal mechanisms related to the stroke recovery obtained from
BCI-driven robotic hand-exoskeleton, the associations between the estimated
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brain networks of the RS MEG data and the functional recovery outcomes are
evaluated. Moreover, a detailed investigation into these neuronal mechanisms is
reported in this chapter.

The remainder of this chapter is organised as follows: Section 5.2 provides the
detailed description about the participants, rehabilitative intervention,
assessment of hand functional recovery, and acquisition and connectivity analysis
of RS MEG data. Section 5.3 illustrates the outcomes of the hand functional
recovery assessment, BCI performance in terms of classi ication accuracies, and
the RS MEG connectivity analysis. Section 5.4 provides a detailed review of the
outcomes and impact of the studies undertaken in this chapter. Section 5.5
concludes the chapter.

5.2 Materials and methods

5.2.1 Participants

Five stroke (ischemic) survivors (3 females, 2 males, age 61.6 ± 5.32 years (range
56−69 years)) who had persistent coordination de icit of the UL were enrolled
for an uncontrolled clinical trial. The clinical trial is retrospectively registered at
the ISRCTN registry with the registration number ISRCTN131390981. The mean
time after stroke was 21.8 ± 4.49 months (range 17−28 months). Table 5.1
provides the demographic information of all the participants. Four participants
were irst-time stroke victims. All participants provided written informed
consent for their participation and this study was approved by the University
Research Ethics Committee of the Ulster University, Northern Ireland, UK. All
research procedures were carried out in accordance with approved institutional
guidelines and regulations.

1http://www.isrctn.com/ISRCTN13139098
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Inclusion criteria were as follows: ischemic stroke resulting in UL disability,
time since stroke onset greater than 6 months, age between 18−80 years (both
inclusive), and no history of neurological condition. Exclusion criteria were as
follows: severe de icits in cognition (Mini-Mental State Examination (MMSE)
score <21), claustrophobic, pregnant or breastfeeding, and metal or active body
implants. This study involved a liberal approach while considering the effect of
handedness of participants on the overall improvement of the physical outcomes
and hence recruited the participants without considering the handedness of the
affected arm. As one of the participants (i.e. P05) had to leave the intervention
after initial 2 weeks of the intervention, the data of the participant is excluded
from the analysis.

5.2.2 Intervention

In this study, we have conducted a clinical trial comprising of a rehabilitative
intervention to four hemiparetic stroke patients who underwent the same
intervention for a period of upto 6 weeks. The intervention consisted of two
stages. The irst stage was the PP stage of 30 min followed by an MP stage of
almost 46 min including the BCI calibration time of around 16 min. This PP and
MP based neurorehabilitation protocol was inspired by an earlier work on BCI
based UL rehabilitation producing effective motor recovery [8].

During PP stage a home-grown hand-exoskeleton device provided repetitive
inger grasping and extension exercise to the affected hand in assist-as-needed

mode. The assist-as-needed strategy was implemented by a force threshold based
switching between active non-assist and passive assistance mode. The applied
inger-tip force by the participants was converted into exoskeleton motion using

an impedance model when the force is above a certain threshold level (active
non-assist mode). The controller goes into a passive assistance mode providing
full assistance to complete the on-going inger grasping/extension action when
the applied force is below the threshold. The dif iculty level of the PP was
adjusted by updating the impedance parameters of the controller, according to
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the average force generation ability of the participant in a session.
In the MP stage the participants were given a hybrid-BCI based multimodal

neurofeedback contingent to the simultaneous activations in the EEG and
electromyography (EMG) signal measured by a spectral bandpower correlation
between the two [257]. Fig. 5.1 depicts the timing and structural details of MP
stage of the intervention. In one particular session of the MP, there were ive runs
of approximately 7 min 3 s each consisting of 40 trials. Each trial starts with a 3 s
rest period, followed by the presentation of a cue to perform either a left or
right-hand grasp attempt. Although the cue remains for 2 s, the participants were
asked to perform the task until 5 s after the presentation of the cue. Among the 5
runs, irst 2 runs were for calibrating the BCI system and the subsequent 3 runs
were for giving online neurofeedback based on the EEG-EMG pattern classi ier
trained during the calibration stage. For the online neurofeedback runs, visual
and proprioceptive feedbacks were provided through the screen and
hand-exoskeleton, respectively, during the last 3 s of the task period. The
exoskeleton was worn in the impaired hand of the participant, whereas the other
hand was placed on a softball on top of the table. During the task period of the
trials, the participants were asked either to perform the grasp movement with the
hand-exoskeleon with impared hand or with softball with unimpaired hand and
the subsequent visual feedback was provided in both cases. It is to be noted that
the participants had not gone for any kind of physiotherapy (PT) or occupational
therapy (OT) during the course of the intervention.
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5.2.3 Assessment of upper-limb functional recovery

Each participant underwent the ARAT [258] and GS assessment at ive different
times during the complete duration of the intervention (see Fig. 5.1). The ARAT is
a standardised ordinal scale for the assessment of 4 basic UL movements i.e.
primary grasp (score range: 0−18), grip (score range: 0−12), pinch (score range:
0−18), and gross movements of lexion and extension at the elbow and shoulder
(score range: 0−9). GS (in Kg) was assessed using a hydraulic hand dynamometer
which gives accurate and repeatable GS readings. The hydraulic hand
dynamometer provides ive different positions to accommodate variable hand
sizes and features a range of 0 to 200lb (90kg). While GS is used to directly
describe strength of the UL, it may also indicate the level of overall upper
extremity strength.

5.2.4 MEG data acquisition

All the participants were screened for any metallic foreign substance e.g.
jewellery, coins, keys or any other ferromagnetic material before entering the
magnetically shielded room. The standard iducial landmarks (left and right
pre-auricular points and Nasion), ive head position indicator (HPI) coils (placed
over scalp), and the additional reference points over the scalp were digitised
(Fastrak Polhemus system) to store information about the participants’ head
position, orientation, and shape. In addition, ocular and cardiac activities were
recorded with two sets of bipolar electro-oculogram (EOG) electrodes
(horizontal-EOG and vertical-EOG) and one set of electrocardiogram (EKG)
electrodes, respectively. Before starting the data acquisition, the complete
procedure and the experimental paradigm were described to the participants.

Ten minutes of resting-state MEG data (i.e. ive minutes each for eyes-open
and eyes-closed) were recorded with a 306-channel (102 magnetometers and
204 planar gradiometers) Elekta Neuromag™ system (Elekta Oy, Helsinki,
Finland) located at the Northern Ireland Functional Brain Mapping (NIFBM)
Facility of the Intelligent Systems Research Centre, Ulster University. During the
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eyes-open experiment participants were instructed to remain relaxed but alert
with their eyes open and ixated on a red cross presented at the centre of the
screen. The ixation point was displayed on a Panasonic projector with a screen
resolution of 1024× 768 and refresh rate of 60 Hz. All recordings were made with
participants seated in upright position in the scanner.

The MEG signals were iltered at a bandwidth of 0.1−330 Hz (online) and
sampled at the rate of 1 kHz during the acquisition itself. Continuous head
positioning was switched on after 20 s of raw data recording and kept running for
rest of the acquisition period.

125



Fo
rw

ar
d

 M
o

d
el

lin
g

A
A

L 
Pa

rc
el

la
ti

o
n

B
an

d
-l

im
it

ed
 

C
o

n
n

ec
ti

vi
ty

 m
at

ri
ce

s

IC
A

 T
o

p
o

gr
ap

h
ie

s

So
u

rc
e 

Lo
ca

lis
at

io
n

R
es

ti
n

g-
st

at
e 

M
EG

 

R
ec

o
ve

ry
-c

o
rr

el
at

ed
 N

et
w

o
rk

s

•
Te

m
p

o
ra

l S
SS

 &
 M

C
 

(M
a
xF
ilt
er

)
•

N
o

is
y 

d
at

a 
R

em
o

va
l

•
B

an
d

p
as

s:
 1

-1
4

5
 H

z
•

N
o

tc
h

 F
ilt

er
: 5

0
,1

0
0

 H
z

•
IC

A
 D

ec
o

m
p

o
si

ti
o

n
 

(F
as

tI
C

A
)

•
IC

 C
la

ss
if

ic
at

io
n

•
Sp

ea
rm

an
 R

an
k 

C
o

rr
el

at
io

n
   

C
o

ef
fi

ci
en

ts

•
C

lu
st

er
-b

as
ed

   
st

at
is

ti
cs

•
A

ct
io

n
 R

es
ea

rc
h

 
A

rm
 T

es
t 

(A
R

A
T)

•
G

ri
p

-s
tr

en
gt

h
 (

G
S)

Fi
gu

re
5.2

:
Sc

he
m

at
ic

di
ag

ra
m

re
pr

es
en

tin
g

th
e

sig
na

la
na

lys
is

pi
pe

lin
e.

Fr
om

to
p

lef
tc

or
ne

r:
Re

sti
ng

sta
te

M
EG

da
ta

we
re

pr
ep

ro
ce

ss
ed

an
d

th
en

,d
ec

om
po

se
d

to
in

de
pe

nd
en

tc
om

po
ne

nt
s(

IC
s)

us
in

gF
as

tIC
A.

Fu
rth

er
th

eI
C

cla
ss

ii
ca

tio
n

wa
sp

er
fo

rm
ed

to
ob

ta
in

br
ain

-re
lat

ed
IC

s.
Th

e
to

po
gr

ap
hi

es
of

br
ain

IC
sa

nd
fo

rw
ar

d
m

od
el

cr
ea

te
d

fro
m

th
e

str
uc

tu
ra

lM
RI

we
re

ut
ili

se
d

fo
r

so
ur

ce
lo

ca
lis

at
io

no
ft

he
M

EG
da

ta
.F

ur
th

er
,b

an
d-

lim
ite

dv
ox

el-
ba

se
df

un
ct

io
na

lc
on

ne
ct

ivi
ty

ne
tw

or
ks

(F
BN

s)
we

re
ge

ne
ra

te
da

nd
co

nv
er

te
dt

oR
OI

-b
as

ed
ne

tw
or

ks
us

in
ga

ut
om

at
ed

an
at

om
ica

lla
be

lli
ng

(A
AL

)a
tla

s.
Ne

xt
,c

lu
ste

r-b
as

ed
sta

tis
tic

sw
as

im
pl

em
en

te
d

to
ob

ta
in

th
er

ec
ov

er
y-

co
rr

ela
te

df
un

ct
io

na
ls

ub
-n

et
wo

rk
s.

126



5.2.5 MEG analysis

The MEG analysis consists of following steps:
Pre-processing and independent component analysis: During the

rehabilitative intervention, a total of ive sessions of MEG datasets were recorded
for each participant. As several participants reported episodes of sleep during
eyes-closed paradigm, only RS eyes-open MEG data have been included for further
analysis. The recorded datasets were visually examined for strong muscular
movements, and then processed for head movement correction wherein HPI
signal-based compensation was carried out using an inbuilt software, i.e.
Max ilter in the ELEKTA MEG system (Elekta Neuromag Oy, version 2.2.15). The
environmental interferences and constant or periodic artefacts were corrected by
applying the temporal extension of signal-space separation (t-SSS) method with
default parameters and after exclusion of bad channels [259]. Further to this
point, data processing was performed using the FieldTrip toolbox [224] and
Matlab 9.2 (64 bit version, R2017a, Mathworks, Natick, USA).

The data were bandpass iltered over 1−145 Hz and notch iltered at
harmonics of 50 Hz (i.e. 50 and 100 Hz). Artefacts related to squid jump, clip, and
muscular movements were identi ied and removed. The cleaned data were then
decomposed into independent components (ICs) by means of the FastICA
algorithm [260] and ICs related to EOG and EKG were identi ied using an in-house
algorithm based on correlation and coherence methods. Before running the IC
decomposition, the data were resampled to 500 Hz to reduce the computational
load. The remaining ICs were further categorised into brain and non-brain ICs
using their multiple characteristics (e.g. it with 1/f spectrum, lat spectrum
quanti ication, and time kurtosis) in time and frequency domains [261, 262]. The
whole process was repeated 20 times and the iteration with highest number of
brain ICs was selected for further analysis.

Source localisation: The IC sensor maps were projected onto the individual
participants’ brain via a localization procedure carried out by means of a linear
inverse method. The T1-weighted structural magnetic resonance images were
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obtained from each participant’s health records after obtaining their consent.
Further, the structural MRI of the participants’ head was co-registered to the MEG
coordinates using the three iducial points and the scalp points acquired before
the MEG data acquisition. A single shell volume conduction model was created
based on the segmentation of the head tissues. The structural data was further
processed using FreeSurfer [263, 264] and MNE suite [265] involving
triangulation of the cortical surfaces with dense meshes with ∼4,000 vertices in
each hemisphere. This allows for the de inition of the source space, that is, a
regular 2D grid within the single shell head model, sampled into 8126 voxels
corresponding to a spacing of approximately 8 mm between adjacent source
locations. A geometrical registration of the MEG sensor array to a coordinate
system referred to the participants’ head was performed by using functional
landmarks (i.e. nasion and pre-auricular points). The mc brain IC sensor maps
were scaled to norm one. An amplitude restoring factor αi, to be subsequently
used in the forward model of data formation, is de ined such as aci = αiaãci,
where aãci indicates the ith IC sensor-level map after scaling. Next, the scaled IC
sensors maps were projected onto the source space via a weighted
minimum-norm least squares (WMNLS) inverse method [266, 267]. Thus, the
brain IC source maps qi are obtained from the sensor maps as follows:

qi = W−2LT (LW−2LT + λI)aãci (5.1)

where i runs over the subset of the mc brain ICs, W is a diagonal weighting
matrix of size [3k × 3k], the elements of which are de ined by Wkk = ||L||, L is the
lead- ield matrix of size [n× 3k], I is the identity matrix of size [n× n], and λ is a
regularization parameter set on the basis of the noise level [268]. In this analysis
pipeline, the regularization parameter was optimised separately for each IC. This is
an important difference with respect to WMNLS localization of artifact-corrected
recordings. After the localization step, mc source maps in participants’ space were
obtained. In addition, an af ine transformation has been applied to the source maps
for a coordinate transformation to an MNI stereotaxic space. This allowed spatial
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comparison across participants.
Once the component topographies had been projected on to the source space,

the activity at each voxel at each sample in time was obtained as a linear
combination of the component time courses weighted by their related brain
source map.

Functional brain network estimation: For the estimation of functional
connectivity networks from the source localised MEG data, we used an extension
of the imaginary part of coherence, namely the Multivariate Interaction Measure
(MIM) [269, 270], that maximises the imaginary part of coherence between a
given reference voxel (seed, s) and any other voxel (target, j). More speci ically,
the estimated MEG signal at each brain voxel is a vector quantity that can be
represented through its components in a given reference system. MIM is designed
to maximise the imaginary part of coherence between vector quantities. The
mathematical details on MIM derivation can be found in [269]. For the readers’
convenience, we brie ly review MIM de inition in the following.

Given the vector Fourier transformed signals as a function of frequency f at
the seed and target voxels: Xs(f) and Xj(f), respectively, and introducing the
compact notation X(f) = [XT

s (f)X
T
j (f)], the cross-spectrum (C(f)) between the

two vectors Xs(f) and Xj(f), can be written in the block form:

C(f) = ⟨X(f)X(f)∗⟩ (5.2)

C(f) =

 CR
ss(f) + JCI

ss(f) CR
sj(f) + JCI

sj(f)

CR
js(f) + JCI

js(f) CR
jj(f) + JCI

jj(f)

 (5.3)

and MIM between s and j is thus de ined as:

MIMsj = tr
(
(CR

ss)
−1CI

sj(C
R
jj)

−1(CI
sj)

T
)

(5.4)

In the above notation, tr indicates matrix trace, the T subscript indicates
matrix transpose, superscripts R and I denote the real and the imaginary parts,

129



the (·)−1 subscript indicates matrix inverse, the ∗ subscript indicates matrix
conjugate transpose, and the capital J indicates the imaginary unit. A more
detailed recapitulation of the method is also given in Marzetti et al. (2013) [270].

In this work, cross-spectra were estimated with Fast Fourier analysis after
signal linear de-trending and Hanning windowing and were averaged using time
epochs of 1.0 s duration with 50% overlap leading to a frequency resolution of 1
Hz. The number of averaged epochs is approximately 550 for each dataset. The
method, being based on the maximization of imaginary coherence, largely
overcomes the well-known limitation to the study of functional connectivity by
EEG/MEG posed by signal mixing artifacts, i.e. any active source in the brain
contributes, in a weighted manner, to the signals measured at all sensors through
volume spread (see Figure 2A in [271]). This effect constitutes an especially
severe confound for estimates of brain interactions [272, 273, 274, 275] and
needs to be taken into account by mapping MEG functional connectivity through
robust measures. Thus, voxel-wise whole brain networks in various frequency
bands i.e. delta (1−4 Hz), theta (4−8Hz), alpha (8−15 Hz), beta-low (15−26 Hz),
beta-high (26−35 Hz), gamma-low (34−49 Hz), gamma-mid (51−76 Hz) and
gamma-high (76−120 Hz) were obtained using MIM with the reconstructed
neuronal time-series. Furthermore, these voxel-based networks were parcellated
to ROI-based networks using AAL [276] atlas restricting the further analysis to 78
cortical regions and 12 sub-cortical brain regions. This process was implemented
for all the MEG sessions and each participant to generate respective FBNs.

5.2.6 Cluster-based statistical testing

For estimating the overall upper limb functional recovery, we irst estimated a
composite recovery score by taking a weighted mean of the GS measure and the
total ARAT score i.e. sum of the four components (primary grasp, grip, pinch, and
gross movements). Firstly, the respective weights for both variables were
calculated using following equations:
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wATAS = 1− meanATAS

meanATAS +meanGS

(5.5)

wGS = 1− meanGS

meanATAS +meanGS

(5.6)

Secondly, the raw values of ATAS and GS were multiplied with their respective
weights and averaged to generate the inal composite score for each session. Next,
given brain connectivity data, we implemented cluster-based statistics which is a
two-step process, to estimate the sub-networks which are (un)correlated with the
composite recovery score. In the irst step, partial correlation coef icients
between each edge of the FBN and the composite recovery score were computed
using Spearman rank correlation coef icient since distribution of the brain
connectivity data is unknown and often does not satisfy the normality condition.
The second step of our method performs cluster-based multiple comparison
correction for correlation coef icients computed in the previous step for all
network edges. The neighbouring connections with strong correlation were irst
grouped together to form clusters and their maximum sizes were calculated. This
procedure is repeated for randomly permuted assignments of composite recovery
score and inally signi icance levels of the identi ied sub-networks are estimated
from the null distribution of the cluster sizes [277]. This method is independent
of network construction methods: either structural or functional network can be
used in association with any functional recovery measures and its ef icacy has
been proved by several previous studies [278, 279].

It is worth noting that before implementation of the cluster-based statistical
analysis, the ROIs for two participant who had right hemisphere lesions were
lipped along the x-plane so that all lesions are on the left hemisphere, thus, for all

participants, the left hemisphere is the ipsilesional hemisphere.
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5.3 Results

This section provides the results obtained from the assessment of the hand
function recovery and the cluster-based statistical test of RS MEG FC networks.

5.3.1 Upper-limb functional recovery outcomes

The total ARAT score and the GS (in Kg) are measured ive times during the
intervention at regular intervals and their values over the ive sessions and for all
four participants are presented in Fig. 5.3 and Fig. 5.4, respectively. A steady
increase in the ARAT score is observed for all the participants and the
improvement is in range of 21 for P04 to 26 for P01. In a similar manner, GS
scores of all the participants are also improved over the course of intervention,
however, in contrast to ARAT score, the incremental changes are highly variable.
For P03, there is a high percentage increase in the GS score (approximately
600.0%) whereas the GS is comparatively less improvised (approximately 30.0%)
for P01. The improvement in GS score is in range of 1.7 Kg for P01 to 17 Kg for
P03. Fig. 5.5 presents the average ARAT and GS scores across the four
participants recorded before and after the rehabilitative intervention i.e.
pre-intervention (red color) and post-intervention (green color). The error bar
represents the standard error mean. Across all the participants, there is a mean
change of 23.5 (100.0%) and 8.9 (88.0%) with respect to the mean score of 23.5
and 10.1 recorded at pre-intervention session for ARAT and GS, respectively. The
student t-test (paired, two-tailed) is implemented to estimate the statistical
signi icance for the change in pre- and post-intervention values of both
parameters. The test provided statistically signi icant difference in the ARAT
score only (p = 0.00028). Nevertheless, both measures showed improvements
greater than the minimal clinically important difference (MCID).
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Figure 5.3: The ARAT score recorded over the ive sessions of the rehabilitative
intervention for the four participants.

5.3.2 MEG connectivity analysis

The cluster-based statistical analysis provided signi icant functional connectivity
sub-networks for alpha (8−15 Hz), beta-low (15−26 Hz), beta-high (26−35 Hz)
frequency bands, however, these sub-networks are stable (i.e. presence of any
positively/negatively correlated cluster over all the four participants) only for
beta-low (15−26 Hz) band. Thus, the further results are presented for beta-low
band, unless stated otherwise. The positively and negatively correlated functional
connectivity clusters for participant P01, P02, P03, and P04 are depicted over a
brain template in Fig. 5.6, 5.7, 5.8, and 5.9, respectively. The black dots represent
the ROIs based on the AAL atlas. The nomenclature of the AAL atlas brain regions
and their list of abbreviations are provided in Appendix 1. For majority of the
participants (i.e. P01, P02, and P04), the intra-hemispherical FC values in motor
cortical regions involving precentral gyrus (i.e. primary motor area (M1)),
postcentral gyrus (i.e. primary somatosensory cortex (S1)) and supplementary
motor area (SMA) within both ipsilesional and contralesional hemispheres
increase with UL functional recovery. The cluster-based analysis also showed
hemispherical laterlisation wherein the ipsilesional hemisphere possesses larger
number of positively correlated clusters while contralesional hemisphere exhibits
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Figure 5.4: The Grip Strength (in Kg) recorded over the ive sessions of the
rehabilitative intervention for the four participants.

a contrasting characteristics. Moreover, this lateralization is more prominent
within the anterior-posterior (i.e. Fronto-parietal) network involving superior
frontal gyrus (SFG), inferior frontal gyrus (IFG), superior parietal gyrus (SPG),
superior occipital gyrus (SOG), and medial occipital gyrus (MOG). The
inter-hemispherical FC analysis showed a stable pattern of positively correlated
connections within the motor cortical regions whereas the inter-hemispheric
negative cluster is variable across the participant. For each participant, change in
the values of FC are estimated as follows:

MIM i
diff = MIM i

post −MIM i
pre (5.7)

where MIM i
pre and MIM i

post are FC values for ith ROI of pre- and
post-intervention session. Furthermore, node strength of all the signi icantly
correlated ROIs were estimated by adding their associated FC values (one-to-all).
Fig. 5.10 presents the average node strengths (across four participants) of all the
signi icantly correlated ROIs. Thus, the group analysis showed increase in node
strengths in the motor cortex region and decrease in the node strengths in the
frontal, parietal and occipital areas of the contralesional hemisphere.
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Figure 5.5: The average ARAT and GS scores across the four participants recorded
before and after the rehabilitative intervention i.e. pre-intervention (red color)
and post-intervention (green color). The error bar represents the standard error
mean. Two-tailed, paired student t-test is implemented between pre- and post-
intervention scores. n.s.- not signi icant.
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Positive Correlated Edges

Negative Correlated Edges

Figure 5.6: Functional connectivity clusters correlated positively (blue) and
negatively (Red) with the hand functional recovery index for participant P01
in beta-low (15−26 Hz) frequency band. The nomenclature of the AAL atlas
brain regions and their list of abbreviations are provided in Appendix 1. Left =
Ipsilesional hemisphere
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Positive Correlated Edges

Negative Correlated Edges

Figure 5.7: Functional connectivity clusters correlated positively (blue) and
negatively (Red) with the hand functional recovery index for participant P02
in beta-low (15−26 Hz) frequency band. The nomenclature of the AAL atlas
brain regions and their list of abbreviations are provided in Appendix 1. Left =
Ipsilesional hemisphere
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Positive Correlated Edges

Negative Correlated Edges

Figure 5.8: Functional connectivity clusters correlated positively (blue) and
negatively (Red) with the hand functional recovery index for participant P03
in beta-low (15−26 Hz) frequency band. The nomenclature of the AAL atlas
brain regions and their list of abbreviations are provided in Appendix 1. Left =
Ipsilesional hemisphere
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Positive Correlated Edges

Negative Correlated Edges

Figure 5.9: Functional connectivity clusters correlated positively (blue) and
negatively (Red) with the hand functional recovery index for participant P04
in beta-low (15−26 Hz) frequency band. The nomenclature of the AAL atlas
brain regions and their list of abbreviations are provided in Appendix 1. Left =
Ipsilesional hemisphere
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5.4 Discussion

Assessment of functional recovery of upper extremities after stroke is highly
crucial for restoring ADLs of the patients. Moreover, this assessment can not only
validate the effectiveness of the rehabilitative intervention but may contribute to
the development of better intervention designs. This study presented a functional
connectivity-based neurophysiological assessment of a longitudinal rehabilitative
intervention involving the simultaneous implementation of MA, BCI, visual as well
as proprioceptive feedback, and robotic hand-exoskeleton. The whole-brain
functional connectivity networks using RS MEG data and two different UL
functional recovery measures (i.e. ARAT and GS) were acquired for ive different
sessions over the complete intervention period. Furthermore, a cluster-based
statistical analysis was implemented to discover the positively and negatively
correlated sub-networks wherein Spearman rank correlation coef icients were
estimated between the band-limited whole-brain RS MEG FC networks and the UL
functional recovery index. This analysis yielded several major outcomes.

The behavioural assessment of the functional recovery showed gradual
improvement in the ARAT and GS scores for all the four participants. A
statistically signi icant increase in the overall ARAT score is obtained with the
intervention, while improvements are well over the MCID for both measures.
Although, our previous work based on MI-BCI showed inconsistent improvement
(over the participants) in both ARAT and GS measures [8], a more stable
improvement in this current study may be explained by the major advancement of
involving a combination of several rehabilitative modalities together.

The MEG connectivity analysis and the cluster-based statistical testing have
given several distinct patterns of brain functional connectome. First, the motor
network involving precentral gyrus (i.e. M1), postcentral gyrus (i.e. S1), and SMA
brain regions became stronger with UL functional recovery. Both M1 and S1 have
been directly associated with motor learning and post-stroke functional recovery
whereas SMA is known to play a crucial role in gait control and motor
coordination [280, 200, 281]. A strengthened association of these three systems
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namely, the M1, S1, and the SMA in a functional network could be bene icial for
motor recovery because it might constitute an adapted functional network for
processing. Moreover, this pattern emerged in both ipsilesional and
contralesional hemispheres of the brain, thus, depicting a bilateral hemispheric
effect of the neurorehabilitation intervention. The association of ipsilesional
and/or contralesional hemispheres with UL functional recovery is still unclear
with inconsistent indings reported elsewhere [234, 210, 282]. However, the
implementation of MP and PP to both hands (i.e. healthy and affected) during the
rehabilitative intervention may cause the bilateral hemispheric reorganisation of
brain observed in this study.

Interestingly, we have observed a lateralised reorganisation of a
fronto-parietal network wherein the ipsilesional and the contralesional
hemispheres showed enhanced and reduced connectivity strengths, respectively.
Fronto-parietal connectivity is known to be involved in top-down attentional
control and visuospatial processing [283]. Recently, its association with mobility
has been established through a randomised controlled trial involving aerobic
exercise [284]. However, the hemispheric lateralization showed speci icity of the
intervention effect on the FP network. As the intervention involves MA and
robotics-guided physical movements, its effect may not only involve physical
recovery but also cognitive functional recovery. However, further studies must be
undertaken for in-depth assessment of the phenomena.

5.5 Summary

BMI driven robot-assisted neurorehabilitation intervention has demonstrated
improvement in UL motor function, speci ically, with post-stroke hemiparetic
patients. However, neurophysiological patterns related to such interventions are
not well understood. This study examined the longitudinal changes in
band-limited RS FC networks in association with post-stroke UL functional
recovery achieved by a multimodal intervention involving MA based BMI and
robotic hand-exoskeleton. Five adults were rehabilitated with the intervention for
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a duration of upto 6 weeks. RS MEG signals, ARAT, and GS measures were
recorded at ive equispaced sessions over the intervention period. An average
post-interventional increase of 100.0% (p = 0.00028) and 88.0% were attained
for ARAT and GS, respectively. A cluster-based statistical test involving
correlation estimates between beta-band (15−26 Hz) RS-MEG FCs and UL
functional recovery provided positively correlated sub-networks in both
contralesional and ipsilesional motor cortices. The fronto-parietal FC exhibited
hemispheric lateralisation wherein majority of the positively and negatively
correlated connections were found in contralesional and ipsilesional
hemispheres, respectively. Our indings are consistent with the theory of bilateral
motor cortical association with UL recovery and predict novel FC patterns that
can be important for higher level cognitive functions.
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Chapter 6

Conclusion and future directions

6.1 Thesis Summary

This thesis presented a signi icant work in the ield of computational analysis and
modelling of M/EEG data.

• A review of the two often used neuroimaging techniques i.e.
electroencephalography (EEG) and magnetoencephalography (MEG) along
with the currently available computational algorithms that are
implemented for analysis and modelling of the M/EEG data is presented in
Chapter 1. In particular, special emphasis is given to various pre-processing
methods (i.e. EEG referencing schemes and surface Laplacian (SL)
methods), feature extraction methods (i.e. common spatial pattern (CSP)
and Granger causality (GC) based connectivity features), and application of
single-trial brain activation pattern detection (BAPD) with M/EEG signals.
Furthermore, based on this literature review, three open research
challenges have been identi ied to further improve the computational
analysis of M/EEG signals in pursuit of performance enhancement of
M/EEG-based BAPD systems. Firstly, despite the availability of various
referencing schemes and SL methods for EEG, there is no empirical
evaluation of their impact on the performance of single-trial EEG BAPD
systems. Secondly, over the last few years, several studies showed the
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potential of functional connectivity features to be useful for single-trial
brain-computer interface (BCI) systems, however, performances of these
systems are not suf iciently high to be used for practical applications.
Moreover, the majority of these studies showed signi icantly poor
classi ication accuracies of functional connectivity (FC) features as
compared to the features derived from intra-channel signals. Lastly, there is
a compelling need to study the patterns of functional brain networks
associated with the motor recovery during a longitudinal brain-machine
interface-driven UL stroke rehabilitative intervention. These challenges
motivated to undertake research to handle these issues associated with
current M/EEG-based BAPD systems opening a prospect of novel
contributions towards advancing the computational analysis and modelling
of M/EEG data.

• In chapter 3, the estimation of current source density (CSD) is introduced as
an essential pre-processing step for EEG analysis. Volume conduction (VC)
may result in diminished separability of the EEG features for distinct
cognitive tasks/processes and hence, adversely affecting the performance
of the M/EEG-based BAPD systems. Thus, new robust pre-processing
methods are needed to improve the accuracy of single-trial command
detection. It is shown that CSD signi icantly improves the distinction of
motor-imagery (MI) related brain responses and has performed better than
other referencing schemes (i.e. common reference (CR) and common
average reference (CAR)) and spherical surface Laplacian (SSL) methods
(i.e. SSL using inite-difference method (SSF ) and SSL using realistic head
model (SSR)). In addition, it is shown that selecting a large number of
channels at pre-processing stage (possibly whole scalp coverage) and
con ining to the motor cortex related channels during feature extraction,
yielded better classi ication accuracies for all the SL methods as compared
to other combinations. Furthermore, a signi icant improvement in the
discriminability of the connectivity-based features has been achieved by
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introducing CSD as a pre-processing method.

• Discrimination of brain evoked responses corresponding to imagery tasks is
a challenge for both the person who has to imagine a speci ic task and the
signal processing methods that have to extract robust discriminant features.
Most of the previous studies have focused on MI tasks (e.g., left vs right
hand movement) by using features based on the bandpower or log-variance
of bandpass signals after spatial iltering. While this approach remains
successful for the classi ication of MI tasks, it has been that the use of
features based on effective connectivity using partial-GC (PGC) in the
gamma band can lead to more reliable performance in speci ic imagery
tasks, i.e. word generation, numerical subtraction, and spatial navigation
tasks. The results presented in Chapter 4 demonstrate signi icant
improvement in single-trial classi ication performance with FC features as
compared to a state-of-the-art method for mixed imagery (i.e. a
combination of MI and cognitive imagery) tasks. Finally, the results also
suggest that the combination of different imagery tasks opens the scope for
improved BCI based on the detection of imagery tasks by increasing the
number of possible classes. A major application ield of M/EEG-based BAPD
systems is post-stroke upper-limb (UL) rehabilitation [27, 28, 8, 29].
However, neurophysiological effects of the attained recovery is still poorly
understood. Chapter 5 aims to explore the patterns based on M/EEG
functional brain networks(FBNs) in order to better understand the process
of stroke recovery and to assess the clinical ef icacy of the M/EEG based UL
movement rehabilitation.

• Further, a study is undertaken in Chapter 5 to examine the longitudinal
changes in band-limited resting-state (RS) FC networks in association with
post-stroke UL functional recovery achieved by a multimodal intervention
involving motor-attempt (MA) based brain-machine interface (BMI) and
robotic hand-exoskeleton. Five adults participated in the
neuro-rehabilitation pilot trial involving the multi-modal intervention for a
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duration of upto 6 weeks. RS-MEG signals, action research arm test (ARAT),
and grip-strength (GS) measures were recorded at ive equispaced sessions
over the intervention period. An average post-interventional increase of
100.0% (p = 0.00028) and 88.0% were attained for ARAT and GS,
respectively. A cluster-based statistical test involving correlation estimates
between beta-band (15−26 Hz) RS-MEG FCs and UL functional recovery
provided positively correlated sub-networks in both contralesional and
ipsilesional motor cortices. The fronto-parietal FC exhibited hemispheric
lateralisation wherein majority of the positively and negatively correlated
connections were found in contralesional and ipsilesional hemispheres,
respectively. The indings are consistent with the theory of bilateral motor
cortical association with UL recovery and predict novel FC patterns that can
be important for higher level cognitive functions.

6.2 Limitations and Future Directions

There are following ways that may improve the work presented in this thesis.

• The work presented in Chapter 3 showed signi icant improvement in the
discriminability of the MI related EEG features (both scalp level brain
connectivity and ilter bank CSP (FBCSP)) by implementation of CSD
estimation as a pre-processing step in the analysis. There are several
limitations to be considered while using SL for BCI systems and and can be
taken into account in future studies. First, montage density of EEG data is a
critical consideration, affecting both the surface potential and SL
estimates [285]. A dense electrode array EEG montage (64 or more
electrodes), providing whole head coverage and with inter-electrode
distances less than 2 cm, are generally preferred to a low-density EEG
montage (less than 21) with inter-electrode distances greater than 6
cm [182]. Perhaps, this issue can be seen as a possible cause of the reduced
effectiveness of the two other Laplacian methods other than CSD (i.e SSF
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and SSR). But for BCI application, affording high-density montage may not
be a suitable choice for varied reasons, e.g., long preparation time, subject
inconvenience and it adds to the computational complexity of the system.
Second, the pursuit of the maximum accuracy in estimation of the SL has
strengthened the predominant consideration of high spatial sampling of the
EEG signal in particular to avoid spatial aliasing and other topographic
misrepresentations [286, 287]. However, this principle either rejects the
usefulness of low density or it overlooks the evidence that the SL transform
still renders more useful EEG measures than those obtained from direct
surface potentials. Here, we consider that the usefulness of SL must be
determined with regards to the research objective and in the case of BCI
research, their effectiveness can majorly be assessed in terms of the
classi ication accuracy to predict the targeted identity. Third, with SL
pre-processing, several studies showed suppression of low spatial
frequency (i.e. originating from deep and/or distributed generator sources)
by the Laplacian effect of spatial high-pass iltering. Although the
phenomenon has been studied for EEG coherency, its possible effect on
spatial iltering based feature extraction methods (as for FBCSP) still needs
to be determined [288].

• In Chapter 4, a signi icant performance improvement of single-trial
connectivity-feature based BCI system was achieved by considering a
combination of cognitive imagery tasks (i.e. word generation, subtraction,
and spatial navigation) and MI tasks (i.e. Left hand, right hand, feet, and
tongue). For the mixed imagery tasks, PGC signi icantly outperformed a
state-of-the-art method (i.e. CSP). However, connectivity features related to
MI tasks failed to provide high separability between different MI tasks. We
also found higher AUCs for mixed imagery tasks (i.e. adding CI and MI) as
compared to single imagery type tasks (i.e. either MI or CI only) with both
CSP and PGC features which is consistent with indings of several previous
studies [238, 289, 290]. However, as per our knowledge, this is the irst
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study to compare the CI, MI, and the combined tasks pairs for connectivity
features. There are several limitations to this study. Firstly, dataset-2
consists of small number of trials, and hence future work may involve
validation of the proposed hypothesis with a larger number of trials and
also with other non-invasive imaging modalities, such as MEG and
functional magnetic resonance imaging (fMRI). Secondly, the linearly mixed
noise due to VC is the most challenging problem in scalp-based connectivity
analysis. Although we computed CSDs from the raw EEG signal to reduce
the amount of spurious interactions before estimating the connectivity
matrices, several other methods, including independent component
analysis (ICA) decomposition [291] and source localization [292] may
provide more robust estimations in the face of higher computational
complexity. Thirdly, although we estimated the class-correlation
coef icients for all binary classi ication tasks to ind signi icant connectivity
features, the interpretation of neurophysiological mechanisms based on
these indings is not absolute and requires further analysis in the source
space. The EEG data acquired from the sensors can not be directly related to
the underlying neuronal sources as the brain signal undergoes several
spatio-temporal transformation before reaching the scalp surface [11, 293].
Thus, for studying actual physiological mechanisms the sensor space data
must be source localised before estimation of connectivity features,
however, it requires to solve the ill-posed EEG inverse problem.
Nevertheless, future work may involve in-depth study of the mixed imagery
related physiological interactions at source level.

• Chapter 5 presented an FC-based neurophysiological assessment of a
multi-modal longitudinal rehabilitative intervention involving the
simultaneous implementation of MA, BCI, visual as well as proprioceptive
feedback, and robotic hand-exoskeleton. The whole-brain FC networks
using RS MEG data and two different UL functional recovery measures (i.e.
ARAT and GS) were acquired for ive different sessions over the complete
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intervention period. Furthermore, a cluster-based statistical analysis was
implemented to discover the positively and negatively correlated
sub-networks wherein Spearman rank correlation coef icients were
estimated between the band-limited whole-brain RS-MEG FC networks and
the UL functional recovery index. There are several limitations to be
considered while considering these outcomes of this study. First, as the
study involves the implementation of several rehabilitative modalities
simultaneously, it is dif icult to associate various outcomes with different
modalities individually. Thus future studies may consider assessment of RS
FC networks for the clinical trials involving various modalities separately
and in comparison with healthy control groups. Second, this study involved
neurophysiological assessment of the intervention with stroke participants
only and lacks the involvement of healthy individuals as a control group.
Thus, future work may include a demographically matched control group
for assessment of the longitudinal neurophysiological changes in relation to
UL functional recovery. Third, these indings must be veri ied with large
sample size and larger intervention duration for further establishment of
these neurophysiological patterns as biomarkers for the BMI-driven
post-stroke UL functional recovery.
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Appendix-I

Nomenclature of Automated Anatomical Labelling (AAL) atlas brain regions

and their list of abbreviations

Region Regions Abbr. Anatomical
No. Area
1, 2 Precentral gyrus PreCG Sensorimotor
3, 4 Superior frontal gyrus, dorsolateral SFGdor Frontal
5, 6 Superior frontal gyrus, orbital part ORBsup Frontal
7, 8 Middle frontal gyrus MFG Frontal

9, 10 Middle frontal gyrus, orbital part ORBmid Frontal
11, 12 Inferior frontal gyrus, opercular part IFGoperc Frontal
13, 14 Inferior frontal gyrus, triangular part IFGtriang Frontal
15, 16 Inferior frontal gyrus, orbital part ORBinf Frontal
17, 18 Rolandic operculum ROL Frontal
19, 20 Supplementary motor area SMA Sensorimotor
21, 22 Olfactory cortex OLF Frontal
23, 24 Superior frontal gyrus, medial SFGmed Frontal
25, 26 Superior frontal gyrus, medial orbital ORBsupmed Frontal
27, 28 Gyrus rectus REC Frontal
29, 30 Insula INS Subcortical
31, 32 Anterior cingulate & paracingulate gyri ACG Frontal
33, 34 Median cingulate & paracingulate gyri DCG Frontal
35, 36 Posterior cingulate gyrus PCG Parietal
37, 38 Hippocampus HIP Temporal
39, 40 Parahippocampal gyrus PHG Temporal
41, 42 Amygdala AMYG Subcortical
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Region Regions Abbr. Anatomical
No. Area

43, 44 Calcarine issure & surrounding cortex CAL Occipital
45, 46 Cuneus CUN Occipital
47, 48 Lingual gyrus LING Occipital
49, 50 Superior occipital gyrus SOG Occipital
51, 52 Middle occipital gyrus MOG Occipital
53, 54 Inferior occipital gyrus IOG Occipital
55, 56 Fusiform gyrus FFG Temporal
57, 58 Postcentral gyrus PoCG Sensorimotor
59, 60 Superior parietal gyrus SPG Parietal
61, 62 Inferior parietal IPL Parietal
63, 64 Supramarginal gyrus SMG Parietal
65, 66 Angular gyrus ANG Parietal
67, 68 Precuneus PCUN Parietal
69, 70 Paracentral lobule PCL Parietal
71, 72 Caudate nucleus CAU Subcortical
73, 74 Lenticular nucleus, putamen PUT Subcortical
75, 76 Lenticular nucleus, pallidum PAL Subcortical
77, 78 Thalamus THA Subcortical
79, 80 Heschl gyrus HES Temporal
81, 82 Superior temporal gyrus STG Temporal
83, 84 Temporal pole: superior temporal gyrus TPOsup Temporal
85, 86 Middle temporal gyrus MTG Temporal
87, 88 Temporal pole: middle temporal gyrus TPOmid Temporal
89, 90 Inferior temporal gyrus ITG Temporal
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[197] Alexander A Frolov, Dušan Húsek, Elena V Biryukova, Pavel Dmitrievitch Bobrov, Olesya A
Mokienko, and AV Alexandrov. Principles of motor recovery in post-stroke patients using
hand exoskeleton controlled by the brain-computer interface based on motor imagery.
Neural Network World, 27(1):107, 2017.
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[266] Matti S Hämäläinen and Risto J Ilmoniemi. Interpreting magnetic ields of the brain:
minimum norm estimates. Medical&biological engineering&computing, 32(1):35–42, 1994.

[267] J-Z Wang, Samuel J Williamson, and Lloyd Kaufman. Magnetic source images determined by a

175



lead- ield analysis: the unique minimum-norm least-squares estimation. IEEE Transactions

on Biomedical Engineering, 39(7):665–675, 1992.
[268] Manfred Fuchs, Michael Wagner, Thomas Köhler, and Hans-Aloys Wischmann. Linear and
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