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Abstract

This paper presents a new spiking neural network architecture with a meta-

neuron which envelopes all the pre- and postsynaptic neurons in the network.

The concept of the meta-neuron is inspired by the role of astrocytes in modulat-

ing synaptic plasticity in biological neural networks. The meta-neuron utilizes

the global information stored in the network (synaptic weights) and the local

information present in the input spike pattern to determine a weight sensitivity

modulation factor for a given synapse. Based on the weight sensitivity modula-

tion factor and the postsynaptic potential of a neuron, the meta-neuron based

learning rule updates the synaptic weights in the network to produce precise

shifts in the spike times of the postsynaptic neurons. Using this learning rule,

an Online Meta-neuron based Learning Algorithm (OMLA) is presented for

an evolving spiking neural classifier. The learning algorithm employs heuristic

learning strategies for learning each input spike pattern. It can choose to add

a neuron, update the network parameters or delete a spike pattern depending

on the spike times of the output neurons. OMLA employs a meta-neuron with

memory that stores only those spike patterns which are used to add a neuron

to the network. These spike patterns (spike patterns in meta-neuron memory)

are used as representative of past information stored in the network during

subsequent neuron additions. The performance of OMLA has been compared

with both the existing online learning and batch learning algorithms for spiking
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neural networks using the UCI machine learning benchmark data sets. The sta-

tistical comparison clearly indicates that the OMLA performs better than other

existing online learning algorithms for spiking neural networks. Since, OMLA

uses both, the global as well as the local information in the network, it is also

able to perform better than other batch learning algorithms.

Keywords: Spiking neural networks, Evolving architecture, Meta-neuron,

Pattern classification, Online Learning

1. Introduction

The neural circuitry in the brain is continuously updated to adapt the re-

sponse of the neurons to future events. This property of the brain is termed as

plasticity. It is the primary reason behind the ability of the brain to exhibit a

wide range of functionalities and also for its eternal learning capabilities. These

qualities have motivated the developments in the field of Spiking Neural Net-

works (SNNs) that try to emulate, both the behavioral and structural properties

of the brain (biological neural networks).

SNNs are quite different from the earlier generations of artificial neural net-

works and as a result it is difficult to directly extend the existing neural network

learning algorithms to SNNs. But, the ability of SNNs to mimic the feedforward

sigmoidal neural networks [21] and their superior computational power in com-

parison to sigmoidal neurons [22] based networks have motivated researchers to

develop new learning algorithms for SNNs. The mathematical models of spiking

neural networks are closer to their biological counterparts, which encouraged re-

searchers to look more deeply towards the learning phenomena observed in the

brain.

Spike Timing Dependent Plasticity (STDP) [23, 7] is one of the most studied

learning phenomenon observed in biological neural systems. It uses the tempo-

ral differences between the pre- and postsynaptic spike times for adapting the

weights. This implies that STDP considers only the information that is locally

available to a neuron for adapting the weights of the incoming synapses. In the
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absence of any counterbalancing mechanism, a local learning rule like STDP

would act as a positive feedback loop for potentiated synapses, thereby lead-

ing to their further potentiation. This can lead to the creation of regions in the

brain, which contain highly active dendrites at the expense of the regions having

inactive dendrites [16]. Hence, there is a need to develop a learning algorithm

which can overcome this problem.

It is well-known that the synapses in our brain are capable of simultaneously

exhibiting multiple forms of plasticity [6]. For example, it has been reported in

the neuroscience area that astrocytes are star-shaped cells found in the brain

that form an envelope around the synapses connecting the neurons in the brain.

They can also make contacts with up to 100,000 synapses at a given time [5, 17],

thereby allowing them to intercept and process the information transmitted

across these synapses [1, 24]. This allows the astrocyte cells to utilize the global

information in the network for modulating the sensitivities of multiple synapses

simultaneously [29].

Inspired by the roles of astrocytes, in this paper, we develop a spiking neu-

ral network architecture with a newly defined concept of a meta-neuron. The

meta-neuron envelops the pre- and the postsynaptic neurons. Also, there ex-

ists bidirectional communication between the meta-neuron and the enveloped

synapses. Based on the global information contained in the network (synaptic

weights) and the local information present in a synapse (presynaptic spikes),

the meta-neuron modulates the sensitivities of all the synapses in the network.

Each synapse changes its weight based on the weight sensitivity modulation fac-

tor generated by the meta-neuron and the required change in the postsynaptic

potential such that the postsynaptic neuron spikes at the desired time. This is

referred to as the meta-neuron based learning rule. It is a generic learning rule

that updates the weights of the postsynaptic neurons in one-shot to produce

precise shifts in their spike times.

Since the meta-neuron based learning rule can determine the appropriate

adjustments in the synaptic weights of a postsynaptic neuron in one-shot, we

propose an Online Meta-neuron based Learning Algorithm (OMLA) for pattern
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classification problems that evolves the spiking neural network architecture and

simultaneously adapts its synaptic weights. The learning algorithm employs

three heuristic strategies to evolve the network and update the network param-

eters; they are the ‘neuron addition strategy’, the ‘delete spike pattern strategy’

and the ‘parameter update strategy’. The appropriate learning strategy for a

given spike pattern is selected based on the first spike generated by the output

layer neurons. In case of neuron addition strategy, a new neuron is added to the

network when the knowledge stored in the network is not sufficient to approx-

imate the information present in the current input spike pattern. The weights

of the newly added neuron are initialized to the normalized contributions of the

corresponding input neurons for the current input spike pattern. Based on the

initialized weights, the threshold of the new neuron is set as its postsynaptic

potential at the target firing time. The spike patterns used by the learning

algorithm to evolve the network (add a neuron) are also stored in meta-neuron

memory. The learning algorithm uses these spike patterns as pseudo-inputs to

efficiently capture the past knowledge while adding a neuron for a subsequent

spike pattern. For the delete spike pattern strategy, the learning algorithm

discards a spike pattern from the learning process when it is similar to the pre-

viously learned spike patterns. In the parameter update strategy, the synaptic

weights are adapted using the meta-neuron based learning rule.

To illustrate the effect of the ‘delete spike pattern strategy’ and the meta-

neuron memory on the performance of OMLA, a study is conducted using the

Ionosphere problem from the UCI machine learning repository [20]. As high-

lighted in a previous work [32], the study showed that deleting similar spike

patterns improves the generalization performance of the learning algorithm.

The study also showed that the performance of the learning algorithm is sig-

nificantly better when meta-neuron memory is used for approximating the past

knowledge. The Ionosphere problem is also used to analyze the impact of its

algorithm parameters on the performance of the learning algorithm. Based on

this study, guidelines have been suggested for setting the algorithm parameters

to appropriate values.
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A detailed comparison on multiple benchmark problems has also been done

between the performance of OMLA and other existing online learning algorithms

for SNNs, namely, online spiking neural network [35] and the online version of

Self-Regulating Evolving Spiking Neural (SRESN) classifier [8]. The perfor-

mance of OMLA has been statistically compared with the performance of other

online learning algorithms using one-way ANOVA [13] test followed by a pair-

wise comparison using the Bonferroni test [11, 12]. The results of performance

comparison indicate that OMLA performs better than the other online learning

algorithms in a 95% confidence interval. For completeness, the performance of

the OMLA is also compared with three well-known batch learning algorithms

for SNNs, viz. SpikeProp [4] Synaptic Weight Association training (SWAT) [34]

and the batch version of SRESN classifier. The performance of OMLA is better

in comparison with batch learning algorithms as well as it utilizes both the local

as well as global information in the network.

Rest of the paper is organized as follows. Section 2 provides a brief overview

of the existing learning algorithms in the spiking neural network literature.

Section 3 describes the newly introduced spiking neural network with a meta-

neuron. Section 4 presents the online meta-neuron based learning algorithm.

Section 5 describes the working of the learning algorithm followed by the re-

sults of a detailed performance evaluation of the learning algorithm for multiple

benchmark classification problems. Section 6 summarizes the conclusions from

this study.

2. Related Works

Broadly, the existing spiking neural network learning algorithms for pattern

classification problems can be classified into three major categories, namely, the

gradient-descent based learning algorithms [4, 14], the rank order based learning

algorithms [19, 10, 37, 8, 18] and the Spike Timing Dependent Plasticity (STDP)

[23, 7] based algorithms [25, 30, 35, 34].

One of the earliest spiking neural network learning algorithm was the gra-
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dient based learning approach, called SpikeProp [4]. It was an extension of

the traditional error back-propagation learning rule of feedforward networks to

spiking neural networks. Chronotron [14] is another gradient based learning

algorithm which estimates the synaptic weights by minimizing the distance be-

tween the actual and desired output spike trains. SpikeProp and Chronotron

encode information using the precise time of the spikes. Rank order coding

[28] is another coding strategy that encodes information using the order of the

spikes. Due to the ability of rank order coding for faster information transmis-

sion [33] several learning algorithms have been developed for SNNs using rank

order coding [19, 9, 10]. It is a non-local encoding technique, but it allows the

network to learn the knowledge present in the spike patterns in one-shot. On

the other hand, spike timing dependent plasticity is a local learning technique

considered to be the phenomenon behind learning in biological neural systems.

It has been the basis of many learning algorithms for SNNs [25, 35, 34].

Remote Supervised Method [25] employs a combination of Spike Timing

Dependent Plasticity (STDP) and anti-spike timing dependent plasticity for

updating the weights in a spiking neural network. In [35], STDP along with

an unsupervised Hebbian like learning rule was used to train a network with a

single evolving hidden layer in an online framework. Similar to other Hebbian

learning mechanisms, STDP is also inherently unstable due to its local nature

[26, 15]. It can form a positive feedback loop between a neuron and its dendrites

leading to further potentiation of potentiated synapses [16]. This may result in

an unbalanced distribution of weights. Synaptic Weight Association Training

(SWAT) [34] combined STDP with Bienenstock Cooper Munro [3] learning rule

to overcome the unstable nature of STDP. But, the update rule for SWAT does

not utilize the global information stored in the network. As a result, SWAT

may not produce precise shifts in the spike times of the output neurons.

In the next section, a new spiking neural network architecture and its learn-

ing rule are presented that can precisely shift the spike times of the postsynaptic

neurons by performing a one-shot update of the synaptic weights in the network.
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3. Spiking Neural Network with a Meta-neuron

In this section, the architecture and the learning rule for a Spiking Neural

Network (SNN) with a meta-neuron are described. The concept of the meta-

neuron is inspired by the heterosynaptic plasticity induced by astrocyte cells in

biological systems. Astrocyte cells can be simultaneously connected to multiple

synapses [5, 17] which allows them to intercept the activities on the connected

synapses and modulate their plasticity [1, 24]. This form of heterosynaptic

plasticity demonstrated by astrocytes provides a good mechanism to consider

the global information present in the network while updating synaptic weights.

The ideas presented in this section are applicable to a network with multiple

postsynaptic neurons. But, for better understanding, let us consider a SNN that

consists of m presynaptic neurons connected to a single postsynaptic neuron.

The presynaptic neurons in the network are also connected to a single meta-

neuron which allows the meta-neuron to access the local information present in

the input spike trains. Further, the meta-neuron can access the global infor-

mation stored in the network as synaptic weights of the postsynaptic neuron.

Figure 1 shows the architecture of a spiking neural network with a meta-neuron.

The SNN is presented with m-dimensional spike patterns represented by

x = {x1, · · · , xi, · · · , xm} at intervals of time T , where T is termed as the

simulation interval for one spike pattern. Here, xi = {t(1)
i , · · · , t(g)

i , · · · , t(Gi)
i }

is the spike train, with Gi spikes, generated by the ith presynaptic neuron. The

unweighted Postsynaptic Potential (PSP) induced by the gth spike generated

by the ith presynaptic neuron at time t is given by ε(t− t(g)
i ). In this paper, ε(.)

has been modelled using the spike response function [4], given by

ε(s) =
s

τ
exp

(
1− s

τ

)
(1)

where τ is the time constant for the neuron and is set to 3 ms. Based on

the PSPs induced by the individual presynaptic neurons, the PSP (v) of the

postsynaptic neuron at time t is given by

v(t) =
∑
i

∑
g

wiε(t− t(g)
i ) (2)
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Meta-neuron

Presynaptic
neurons

Postsynaptic
neuron

Figure 1: Architecture of a two layered spiking neural network with a meta-neuron. The

SNN has m presynaptic neurons connected to a single postsynaptic neuron. The presynaptic

neurons are also connected to the meta-neuron, which allows the meta-neuron to access the

local information present in the input spike train on a particular synapse. The meta-neuron

can also access the global information (synaptic weights) stored in the network, represented

by the oblique arrow from the meta-neuron across the network.

where wi is the weight of the synapse between the ith presynaptic neuron and the

postsynaptic neuron. The postsynaptic neuron generates a spike whenever its

PSP reaches a threshold θ and immediately after generating a spike, the PSP of

the postsynaptic neuron is reset to zero. The output of the postsynaptic neuron

is a spike train ŷ = {t̂(1), · · · , t̂(f), · · · }. The objective of the learning rule is

to closely capture the functional relationship between the input spike patterns

and the desired output spike patterns. For this purpose, the weights of the

postsynaptic neuron are updated for each spike generated by the postsynaptic

neuron individually. Suppose t(f) represents the desired time of the f th spike

generated by the postsynaptic neuron then the learning rule performs a one-shot

update of the weights of the postsynaptic neuron such that it generates a spike
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precisely at t(f).1

To ensure that the postsynaptic neuron generates a spike at t(f) for the

current spike pattern (x), its weights should be updated such that its PSP is

equal to θ at t(f). Thus, the required change in PSP (∆v(f)) of the postsynaptic

neuron is given by

∆v(f) = θ − v(t(f)) (3)

Since only the presynaptic spikes in the interval Γ = [t̂(f−1), t(f)] will contribute

to a postsynaptic spike at t(f), the weights of the postsynaptic neuron are up-

dated such that ∑
i

∑
t
(g)
i ∈Γ

∆wiε(t
(f) − t(g)

i ) = ∆v(f) (4)

where ∆wi is the change in the synaptic weight of the connection between the

ith presynaptic neuron and the postsynaptic neuron. The weight update using

Equation (4) ensures that the postsynaptic neuron generates a spike precisely

at t(f).

In a given learning step (for a particular postsynaptic spike), the value of ∆wi

depends on the contribution of the particular presynaptic neuron towards the

required change in PSP (∆v(f)). For this purpose, the meta-neuron estimates

a weight sensitivity modulation factor for the synapses in the network which

is used to determine the proportion of ∆v(f) that is contributed by a given

presynaptic neuron. It uses both local and global information to compute its

weights (z(f) = [z
(f)
1 , · · · , z(f)

i , · · · , z(f)
m ]) and determine the weight sensitivity

modulation factor (M
(f)
i ) for each synapse of the postsynaptic neuron.

Based on the required change in PSP (Equation (3)) and the weight sensi-

tivity modulation factor (M
(f)
i ) of a synapse, the weights of the postsynaptic

1It is possible that the number of desired spikes (F ) and the number of actual spikes (F̂ )

generated by the postsynaptic neuron are not equal. In this case, the following convention is

used to update the synaptic weights of the postsynaptic neuron. When F̂ < F , the time of

the missing actual spikes is set to (T + δ) and in case F̂ > F , the desired time of extra spikes

generated by the postsynaptic neuron is set to (T + δ). Here, δ > 0 is a small positive number

and a spike time of (T + δ) implies an absence of spike in the simulation interval.
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neuron are updated using the meta-neuron based learning rule which is given

by

∆wi = M
(f)
i

∆v(f)∑
t
(g)
i ∈Γ

ε(t(f) − t(g)
i )

, i ∈ {1, · · · ,m} (5)

Here, M
(f)
i is computed by the meta-neuron as the ratio of the PSP induced by

the ith presynaptic neuron at t(f) and the total PSP of the meta-neuron at t(f),

i.e.,

M
(f)
i =

∑
t
(g)
i ∈Γ

z
(f)
i ε(t(f) − t(g)

i )∑
i

∑
t
(g)
i ∈Γ

z
(f)
i ε(t(f) − t(g)

i )
, i ∈ {1, · · · ,m} (6)

where z
(f)
i is the weight of the synapse between the ith presynaptic neuron and

the meta-neuron. The meta-neuron sets its weights by comparing the infor-

mation present in a given input spike train with the knowledge stored in the

corresponding synaptic weight. In a given learning step, the synaptic weight of

the connection between the ith presynaptic neuron and the meta-neuron is set

as

z
(f)
i =

 u
(f)
i (t(f))− wi if u

(f)
i (t(f)) > wi

0 otherwise
i = 1, · · · ,m (7)

Here, u
(f)
i represents the knowledge present in the input spike train generated

by the ith presynaptic neuron. It is termed as the normalized PSP induced by

the ith presynaptic neuron at t(f) and is given by

u
(f)
i (t(f)) =

∑
t
(g)
i ∈Γ

ε(t(f) − t(g)
i )∑

i

∑
t
(g)
i ∈Γ

ε(t(f) − t(g)
i )

(8)

It can be observed from Equation (7) that the meta-neuron weights are ini-

tialized to zero for a synapse when the normalized PSP of the corresponding

input neuron for the current spike pattern (x) at (t(f)) is lower than its existing

weight. The input neurons whose weights are initialized to zero will have a

weight sensitivity modulation factor of zero and, hence, their weights are not

updated. The selective update mechanism of the meta-neuron based learning

rule is similar to the selective regulation of synaptic plasticity exhibited by the
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astrocytes in the brain. This selective approach to modulating synaptic plas-

ticity prevents a continuous increase in the weights of the potentiated synapses

that is induced by STDP [16].

The intuitive motivation for computing M
(f)
i using Equation (6) is to pro-

duce a higher change in the weight of the synapse when higher PSP is con-

tributed by the corresponding presynaptic neuron. Further, the computation of

M
(f)
i using Equation (6) ensures that M

(f)
i always lies in the interval [0, 1] and∑

iM
(f)
i = 1. This guarantees that the weight update results in a change of

∆v(f) in the PSP of the postsynaptic neuron at t(f), thereby ensuring that the

postsynaptic neuron generates a spike precisely at t(f).

The meta-neuron based learning rule (Equation (5)) is a generic learning rule

that utilizes the local and global information in the network to perform a one-

shot weight update of the synapses in the network such that the spike times of

the postsynaptic neuron are precisely shifted. This property of the meta-neuron

based learning rule makes it suitable for online learning. Further, determining

the minimal structure required to approximate the relationship between the

input and output spike patterns is a challenge in a spiking neural network.

Hence, in the next section, we propose an online meta-neuron based learning

algorithm for an evolving spiking neural classifier that employs the meta-neuron

based learning rule to update the synaptic weights in the network.

4. Online Meta-neuron based Learning Algorithm for Pattern Clas-

sification Problems

In this section, an Online Meta-neuron based Learning Algorithm (OMLA)

for a two layered evolving spiking neural network for pattern classification prob-

lems is developed. OMLA learns from input spike patterns in an online manner

i.e. training spike patterns are presented to the network one-by-one and only

once. The aim of the learning algorithm is to closely approximate the rela-

tionship between the input spike patterns and the corresponding class labels

and evolve the network structure automatically. The predicted class for a given
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spike pattern is determined based on the class association of that output neuron

which spikes first (output neuron having a minimum latency). As a result, there

is a need to encode the true class label in the form of a spike pattern. Since

latency of the neuron is used to determine the class label, the learning algorithm

trains the network to generate the first spike for a given spike pattern at the

target firing time. The target firing time for a neuron belonging to the true

class is set to a fixed time instant in the simulation interval, denoted by TID.

For other class neurons, the target firing time is set to T + δ, which implies that

other class neurons should not generate a spike within the simulation interval.

OMLA utilizes the meta-neuron based learning rule as given in Equation

(5) to learn and evolve the network in an online framework. It chooses one

of the three different heuristic strategies, namely, ‘neuron addition strategy’,

‘delete spike pattern strategy’ or ‘parameter update strategy’ for learning a

given input spike pattern. The suitable learning strategy is chosen based on the

current input spike pattern and the knowledge present in the network. A similar

self-regulated learning approach has been previously used in the Self-Regulating

Evolving Spiking Neural (SRESN) classifier [8] which uses rank order learning

to update the synaptic weights in a batch learning environment. Different from

the SRESN classifier, OMLA learns from each spike pattern in one-shot using

the meta-neuron based learning rule.

For an efficient approximation of the functional relationship between the

input spike patterns and their class labels, the input spike patterns have to be

presented to the network multiple times. To overcome this problem in online

learning, OMLA employs a meta-neuron with memory that stores the spike

patterns used to add new neurons to the network. While adding a neuron for

a subsequent spike pattern, these pseudo-inputs (spike patterns in meta-neuron

memory) are used by the learning algorithm for a better approximation of the

past knowledge stored in the network.

Without loss of generality, it is assumed that the network has K output

neurons, which were added while learning the spike patterns x1, · · · ,xh, · · · ,xK .

At this juncture, the meta-neuron’s memory will contain these spike patterns
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that have been used to add the K neurons. Next, the current spike pattern x

from class c is presented to the network for learning.

In the following discussion, CC (CC implies correct class) is used to repre-

sent the output neuron having minimum latency from class c. Suppose cj is the

class associated with the jth output neuron, then the neuron CC is given by

CC = argmin
j,cj=c

t̂
(1)
j (9)

Similarly, MC is used to represent the output neuron with minimum latency

from any other class, given as

MC = argmin
j,cj 6=c

t̂
(1)
j (10)

Since the learning algorithm uses only the first spike for learning and prediction,

the discussion below uses t̂j (instead of t̂
(1)
j ) and tj (instead of t

(1)
j ) to represent

the actual and desired times of first spike generated by the jth output neuron.

Further, the normalized PSP induced by the ith presynaptic neuron is denoted

by ui (instead of u
(1)
i ). Next, the different learning strategies employed by the

learning algorithm are given in detail.

• Neuron addition strategy: In this strategy, a new neuron is added to

the network when the current spike pattern contains a significant amount

of new knowledge. For this purpose, the learning algorithm considers the

time interval between TID and t̂CC . A high value of this time interval

(TID << t̂CC) implies that the knowledge stored in the network is not

sufficient to approximate the current input spike pattern and hence, a

new neuron is added to the network. A fixed time instant Tn ∈ [TID, T ] is

used as a threshold for t̂CC to develop a heuristic criterion for this strategy,

given as

If t̂CC > Tn

Then a neuron is added to the network (11)

where Tn is given by

Tn = αnT + (1− αn)TID (12)
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Here, αn is termed as novelty threshold and is always set to a value in the

interval [0, 1]. If its value is set closer to zero, the learning algorithm adds a

neuron to the network for each input spike pattern resulting in overfitting.

If it is set closer to one, the learning algorithm adds too few neurons to

the network, resulting in an imprecise model of the data. It should be

set to a value closer to one, to ensure proper generalization of the trained

network on unseen spike patterns. A suitable range for initializing αn is

[0.7, 1].

The weight of the synapse between the ith input neuron and the newly

added neuron is initialized according to the normalized PSP (Equation (8))

induced by the ith input neuron at TID. Hence, the weights (w(K+1) =

[w1(K+1), · · · , wi(K+1), · · · , wm(K+1)]) of a newly added neuron are given

as

wi(K+1) = ui(TID) (13)

The threshold (θ(K+1)) for the neuron is initialized as

θ(K+1) =
∑
i

∑
g

wi(K+1)ε(TID − t
(g)
i ) (14)

The learning algorithm considers the spike patterns used to evolve the

network (spike patterns stored in meta-neuron memory) as pseudo-inputs

representing the past knowledge stored in the network. These pseudo-

inputs are used to update the weights of the newly added neuron, such

that it closely approximates the past knowledge stored in the network.

Suppose t̂
[h]
K+1 is the time of the first spike generated by the (K + 1)th

neuron for the hth spike pattern in the meta-neuron memory. When t̂
[h]
K+1

is closer to t̂
[h]
h , the weights of the newly added neuron are updated such

that it fires late for spike patterns from the class ch. For this purpose,

a fixed time duration, Tm is used to develop a criterion for updating the
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weights of the newly added neuron given as

If (t̂
[h]
K+1 − t̂

[h]
h ) < Tm, h ∈ {1, · · · ,K}, ch 6= cK+1

Then update the weights of the (K + 1)th neuron (15)

where Tm is given by

Tm = αm(T − TID) (16)

Here, αm is termed as the margin threshold and is always initialized to a

value in the interval [0, 1]. If it is set closer to zero, the network will not

generalize well due to smaller interclass margin. If it is set closer to one,

then the network may not accurately approximate the knowledge acquired

from past spike patterns very well. The experimental analyses showed that

the performance of the learning algorithm is acceptable when αm is set

in the interval [0, 0.3]. The value of αm is set to 0.3 for all simulations

described in this work.

The weights of the newly added neuron are updated using the meta-neuron

based learning rule and its desired spike time (t
[h]
K+1) for the hth spike

pattern in meta-neuron memory is given as

t
[h]
K+1 = t̂

[h]
h + Tm (17)

• Delete spike pattern strategy: In this strategy, the learning algorithm

deletes a spike pattern when a neuron from the same class as that of the

current input spike pattern fires closer to the target firing time (TID),

which implies that this particular spike pattern is similar to the earlier

learnt spike patterns. This helps OMLA in avoiding over-fitting and gen-

eralizing better on unseen spike patterns. The learning algorithm uses a

fixed time instant Td ∈ [TID, T ] to develop a heuristic criterion for this

strategy, given as

If t̂CC ≤ Td & (t̂MC − t̂CC) ≥ Tm

Then the current input spike pattern is deleted (18)
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where Td is given as

Td = αdT + (1− αd)TID (19)

Here, αd is termed as the delete threshold and is used to determine the

spike patterns that can be discarded from the learning process. It is always

set to a value in the interval [0, 1]. If it is set closer to zero, it will result in

all spike patterns being learnt by the learning algorithm which will lead to

a lower generalization performance. If it is set closer to one, it will result

in the deletion of too many spike patterns resulting in an imprecise model

of data. Based on the simulation studies, it was observed that a suitable

range for αd is [0, 0.25]. The performance of the learning algorithm is

satisfactory when αd is set in this interval. Its values is fixed at 0.25 for

all the simulations presented in this work.

• Parameter update strategy: The learning algorithm chooses to update

the synaptic weights of existing neurons when the criterion for none of the

above strategies of neuron addition or delete spike pattern are satisfied.

The aim of this strategy is to update the synaptic weights such that t̂CC

is closer to TID and there exists a high time difference between t̂CC and

t̂MC , for all the spike patterns. The weights of the neuron CC are updated

to ensure that the correct class neuron fires closer to TID. Further, the

learning algorithm also updates the weights of the neuron MC to ensure

a higher time difference exists between t̂CC and t̂MC .

The weights of the neuron CC are updated using the meta-neuron based

learning rule only when t̂CC is higher than Td. In this case, the desired

spike time (tCC) of the neuron CC for the current input spike pattern (x)

after the weight update is given as

tCC = t̂CC − αst̂CC (20)

where αs is termed as the learning rate and is always initialized to a value

in the interval [0, 1]. A high value of the learning rate causes oscillations in

the learning process. Hence, a suitable range for initializing αs is [0, 0.1].
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Algorithm 1 Pseudocode for Online Meta-neuron based Learning Algorithm

1: for each training spike pattern do

2: t̂CC ← spike time of same class neuron with minimum latency

3: t̂MC ← spike time of differnt class neuron with minimum latency

4: if t̂CC > Tn then

5: Add a neuron

6: else if (t̂CC ≤ Td) & (t̂MC − t̂CC) ≥ Tm then

7: Delete the spike pattern

8: else

9: if t̂CC > Td then

10: Update the CC neuron

11: end if

12: if (t̂MC − tCC) < Tm then

13: Update the MC neuron

14: end if

15: end if

16: end for

To improve the margin between t̂CC and t̂MC , the weights of the neuron

MC are updated using the meta-neuron based learning rule when (t̂MC −

tCC) < Tm. The desired spike time (tMC) for the neuron MC after the

weight update is given by

tMC = tCC + Tm (21)

The utilization of global as well as local information by the meta-neuron

enables the learning algorithm to estimate the changes in weights such that the

relationship between the input spike patterns and the corresponding class labels

is closely approximated in one-shot. Further, a meta-neuron with memory for

storing spike patterns used to evolve the network allows the learning algorithm

to approximate the past knowledge properly while adding a neuron.

A summary of the online meta-neuron based learning algorithm in a pseu-
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docode format is given in the Algorithm 1. Next, the performance of the learning

algorithm is evaluated on benchmark problems from the UCI machine learning

repository and the results of evaluation are compared with that of other spiking

neural classifiers.

5. Performance Evaluation of the Online Meta-neuron based Learn-

ing Algorithm

In this section, the performance of the learning algorithm is evaluated using

five benchmark data sets from the UCI machine learning repository [20]. For all

the simulation studies reported in this section, the spiking neurons in the output

layer are modeled using the spike response model [4] and the time constant

for the neuron is fixed at 3 ms. The real valued data from the benchmark

problems is encoded into spike patterns using the population coding scheme

[4]. As described in [8], the overlap constant for the population coding has

been fixed at 0.7 and six receptive fields have been used for converting the real

valued data into spike patterns. Using the population coding, each receptive

field generates a spike in the interval [0, 3] ms. Hence, the simulation interval

has been set slightly higher than the range of input spikes, at 3.2 ms, to ensure

that all spikes generated by the output layer neurons are recorded.

The performance of all the algorithms is evaluated based on overall training

and testing accuracy, which is equal to the percentage of total number of spike

patterns that are correctly classified by the network. The average performance

over ten random trials is used for the purpose of comparison. All the experiments

have been carried out in Windows 7 in MATLAB 2014b using a CPU with

12 logical cores, 16 GB memory with a speed of 3.2 GHz. Before discussing

the results of the detailed performance evaluation, the working of the learning

algorithm is described using the Ionosphere problem from the UCI machine

learning repository. The Ionosphere problem is also used to describe the effect of

the different algorithm parameters on the performance of the learning algorithm,

based on which suitable guidelines are suggested for setting the parameters to
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appropriate values.

5.1. Ionosphere Problem

The Ionosphere problem contains radar information collected from 16 high

frequency receivers. The data set has in total 34 attributes and the problem

is to determine whether the received signal conveys any information about the

structure of the Ionosphere. It has a total of 351 spike patterns, out of which

175 are used for training and the rest for testing.
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Figure 2: Neuron growth history of the learning algorithm for the Ionosphere problem

The learning algorithm has four main parameters, namely, a novelty thresh-

old (αn), a margin threshold (αm), a delete threshold (αd) and the learning

rate (αs). As described earlier, the two parameters, viz. the margin threshold

and the delete threshold values are fixed at 0.3 and 0.25 respectively. For ini-

tializing the novelty threshold and learning rate, the suitable ranges have been

indicated earlier as [0.7, 1] and [0, 0.1] respectively. For example, when the nov-

elty threshold and the learning rate are initialized to 0.73 and 0.09 respectively,

the average training accuracy is 93.2% and the average testing accuracy is 93%

for the Ionosphere problem. Out of the 175 spike patterns, the learning algo-

rithm used only 136 spike patterns for learning and added 25 neurons to the

network. Figure 2 shows the neuron growth history for the Ionosphere problem.
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The learning algorithm adds the last neuron for the 92nd training spike pattern

and chooses only to update the network parameters or delete the spike pattern

from the learning process for the subsequent training spike patterns. Next, the

effects of the ‘delete spike pattern strategy’ and the meta-neuron memory on the

learning algorithm are described. Also, the impact of the algorithm parameters

on the performance of the learning algorithm is illustrated.

Effects of the delete spike pattern strategy: Similar to the observed

behavior in [32], it was observed that the learning algorithm achieves higher gen-

eralization accuracy when similar spike patterns are deleted. For the Ionosphere

problem, training and testing accuracy of 93.2% and 93% are obtained when

the learning algorithm is trained with the ‘delete spike pattern strategy’. The

learning algorithm deleted 39 spike patterns from the training set of 175 spike

patterns (22% is deleted). When the learning algorithm was trained without the

‘delete spike pattern strategy’ all the spike patterns were used in the training.

In this case, a training and testing accuracy of 93.8% and 84.6%, respectively

are obtained. This clearly shows that the ‘delete spike pattern strategy’ helps

in improving the generalization performance of the learning algorithm.

Effect of meta-neuron memory: A similar study was conducted to an-

alyze the impact of meta-neuron memory on the performance of the learning

algorithm. When the learning algorithm is trained without the meta-neuron

memory, the average training and testing performance are 85.71% and 79.55%,

respectively, while with the memory they are 93.2% and 93.0% respectively.

This clearly highlights that, when the learning algorithm is trained without

meta-neuron memory its performance drops considerably for the Ionosphere

problem. In the absence of meta-neuron memory, the learning algorithm has

no information about past knowledge stored in the network. As a result, newly

added neurons do not approximate the past knowledge effectively. This results

in lower performance in an online framework. The results clearly show that

meta-neuron memory plays a vital role in improving the performance of the

learning algorithm.

Effect of novelty threshold: To illustrate the effect of the novelty thresh-
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Figure 3: Effect of novlety threshold (αn) on the (a) training and testing accuracy, (b) number

of neurons required to approximate the decision function

old (αn) on the learning algorithm, it was evaluated for values of αn in the

range [0.5, 1]. Figure 3a shows both training and testing performance against

αn. It can be seen from the figure that there is a small change in the training

performance whereas there is a change of over 15% in testing performance as

αn is varied over the interval [0.5, 1]. Figure 3b shows the impact of αn on the

number of neurons added by the learning algorithm to the network. It is seen

that a lower value of αn results in more neurons being added to the network

and vice-versa, thereby, showing that αn significantly impacts the generaliza-

tion performance and the number of neurons added by the learning algorithm.

Hence, it has to be chosen carefully. A suitable range for setting αn is [0.7, 1]

to achieve good performance using a compact network.

Effect of learning rate: In this experiment, the choice of learning rate

(αs) in the interval [0, 0.2] is studied. Figure 4a shows the impact of learning

rate on both, the training and testing performance. It is seen that there is a

small variation in the training as well as testing performance when the learning

rate is in the range [0, 0.1]. When αs is increased beyond 0.1 both the training

as well as testing performance start deteriorating. This is because for a high

value of αs the network looses knowledge gained from previous spike patterns.

Figure 4b shows the variation in the number of neurons added by the learning
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Figure 4: Effect of learning rate (αs) on the (a) training and testing accuracy, (b) number of

neurons required to approximate the decision function

algorithm as αs is varied in the range [0, 0.2]. When αs is set to zero, it plays

no role in the learning process. In such a scenario, more neurons are required

by the network to ensure that the knowledge present in the spike patterns is

properly learned by the network. This is evident from the plot shown in Figure

4b. To summarize, αs affects both, the generalization performance as well as

the architecture of the trained neural network. Based on these observations, it

is recommended that αs be set in the range [0, 0.1] for achieving good network

performance.
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Figure 5: Effect of delete threshold (αd) on the training and testing accuracy of OMLA

Effect of deletion threshold (αd): In this experiment, the performance
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of the Online Meta-neuron based Learning Algorithm (OMLA) is evaluated for

multiple values of αd in the interval [0, 0.4]. Figure 5 shows effect of αd on the

training and testing accuracy of OMLA. It can be observed from the figure that

the accuracy of OMLA is acceptable for values of αd in the interval [0, 0.25].

As αd is increased further, the accuracy of OMLA goes down. This may be

because OMLA discards more spike patterns from the learning process for high

values of αd. Based on this, a suitable range for setting αd is [0, 0.25]. For all

the experiments reported in this paper, the value of αd is fixed at 0.25. In these

experiments, we observed that αd had a small effect on the number of neurons

added by OMLA.

0.0 0.1 0.2 0.3 0.4 0.5
αm

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Training
Testing

Figure 6: Effect of margin threshold (αm) on the training and testing accuracy of OMLA

Effect of margin threshold (αm): Figure 6 shows the training and testing

accuracy of the OMLA for values of αm in the interval [0, 0.5]. It can be observed

from the figure that there is a small change in the training/testing accuracy of

OMLA for values of αm in the interval [0, 0.3]. In the same interval, the testing

accuracy of OMLA varies by 6%. For values of αm higher than 0.3, both training

and testing accuracy of OMLA start decreasing. Based on this, an appropriate

range for setting αm is [0, 0.3]. For all the experiments conducted in this paper,

the value of αm is fixed at 0.3. In this range, αm had a small effect on the

number of neurons added by the OMLA.
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5.2. Performance Comparison

In this section, the performance of OMLA is studied using five benchmark

data sets from the UCI machine learning repository [20]. Also, its performance

is compared with other existing online and batch learning algorithms for spik-

ing neural networks. For online learning algorithms, a comparison was made

with Online Spiking Neural Network (OSNN) [35] and the online version of the

SRESN classifier [8]. With regards to the batch learning algorithm, a com-

parison was done with three well-known batch learning algorithms for SNNs,

viz. SpikeProp [4], Synaptic Weight Association training (SWAT) [34] and the

batch version of the SRESN classifier. The results for both the online version

of SRESN (Online SRESN) classifier and the batch version of SRESN (Batch

SRESN) classifier have been reproduced from [8]. Table 1 highlights the details

of the data sets used for comparison. The table provides information about the

number of features, number of classes and number of training/testing spike pat-

terns for the data sets used in comparison. The Landsat data set was only used

to evaluate the performance of the OMLA on a large data set. The performance

of other algorithms has not been evaluated on Landsat data set due to the large

computational requirements.

Table 1: Description of the data sets used for comparison

Data set # # # Spike Patterns

Features Classes Training Testing

Iris 4 3 75 75

Breast cancer 9 2 350 333

Liver 6 2 170 175

PIMA 9 2 384 384

Ionosphere 34 2 175 176

Landsat 36 6 4435 2000

For every data set, ten random sets are generated using the same number

of training and testing spike patterns, as suggested in [2] (for Landsat, a single
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fold was used to minimize computational effort required). The training and

testing accuracy are computed for all the sets and the mean along with the

standard deviation for the experiments is reported. The results for all the other

algorithms have been generated by us except for the OSNN whose results have

been reproduced from [35]. As in the original SpikeProp paper [4], the results

for SpikeProp are generated using 16 delays per receptive field, a learning rate

of 0.0075, coding interval of 4 milliseconds and a time constant of 7 millisec-

onds. The number of neurons in the hidden layer for SpikeProp is determined

using the constructive-destructive procedure [31]. For SWAT, the important

parameters are co and the maximum height of the plasticity window (Ap). The

other parameters pertaining to the neuron model and frequency filtering are set

as mentioned in the original paper [34]. It has been highlighted in the original

paper that, a suitable value of co depends on the number of epochs required

for convergence. We observed during the experiments that, SWAT converged

within 500 epochs for all the data sets evaluated in this paper. Hence, co was

set to 4000 as in the original paper. The impact of Ap is similar to the effect

of learning rate on other learning algorithms and has been set in the interval

[0.1, 0.5] in the original paper. In this work, Ap is fixed at 0.1 to avoid os-

cillations in the learning process. For OMLA, the parameter values for delete

Table 2: Parameter values for novelty threshold (αn) and learning rate (αs) for benchmark

data sets used for comparison

Data set Novelty Update

Threshold (αn) Factor (αs)

Iris 0.70 0.06

Breast cancer (BC) 0.96 0.06

Liver 0.98 0.05

PIMA 0.80 0.04

Ionosphere (ION) 0.73 0.09

Landsat 0.73 0.1
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threshold and margin threshold in OMLA are fixed at 0.25 and 0.3, respectively.

The parameter values for the novelty threshold (αn) and the learning rate (αs)

for all the data sets, have been selected using 10-fold cross validation and are

given in Table 2.

Table 3 shows the architecture and the results of the performance evalua-

tion of the online learning algorithms. The architectures of OMLA and Online

SRESN are shown in the format (m : K) as they employ two layered networks.

The other algorithms employ a three layered architectures, hence, the number of

hidden neurons is also shown. For evolving learning algorithms (OSNN, SRESN

and OMLA) the architecture shows the range of neurons added by the learning

algorithm for the ten random trials. It may be noted that the number of input

neurons in the architecture of the different learning algorithms is equal to the

product of the number of features and the number of receptive fields used for

population coding.

Table 3: Performance comparison of OMLA with OSNN and the Online SRESN

Data Benchmark
OMLA OSNN

Online

set criterion SRESN

Iris

Architecture 24:(5-7) 48:(7-21):3 24:(6-11)

Training 97.9(0.7) 87.2(4.1) 92.7(4.2)

Testing 97.9(0.7) 86.1(6.7) 93.0(5.7)

BC

Architecture 54:2 54:(10-16):2 54:(5-8)

Training 97.4(0.4) 91.1(2.0) 93.9(1.8)

Testing 97.8(0.4) 90.4(1.8) 94.0(2.6)

Liver

Architecture 36:(12-15) 36:(4-7):2 36:(5-8)

Training 69.9(2.3) 58.7(2.2) 59.8(1.2)

Testing 67.7(1.8) 56.7(1.8) 57.4(1.1)

PIMA

Architecture 54:20 54:(8-18):2 54:(6-12)

Training 78.6(1.7) 68.2(2.0) 67.0(0.8)

Testing 77.9(1.0) 63.5(3.0) 66.1(1.4)

ION

Architecture 204:(19-25) 204:(4-11):2 204:(6-13)

Training 94.0(1.7) 76.7(2.4) 85.1(1.9)

Testing 93.5(0.5) 76.6(4.8) 79.3(3.0)
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It can be observed from Table 3 that, OMLA performs significantly better

than the other online learning algorithms. For further discussion, the perfor-

mance of OMLA is compared only with the performance of Online SRESN

as Online SRESN performs better than OSNN. For simple problems like Iris

flower classification and Wisconsin breast cancer, the performance of OMLA is

3% to 4% better than the performance of Online SRESN. For low dimensional

problems with lower separability like Liver and PIMA, OMLA performs 10-11%

better than Online SRESN. For a high dimensional problem like Ionosphere,

OMLA performs 14% better than Online SRESN. Next, a statistical analysis of

the performance comparison is presented.

Statistical analysis of performance comparison: A one-way ANOVA

[13] test was conducted to analyze the results of the performance comparison

between OMLA and other online learning algorithms. The statistical test was

conducted with the null hypothesis that the performance of the three algorithms

do not differ significantly. If the p-value for the computed F -statistic is lower

than 0.05 (95% confidence interval) then the null hypothesis is rejected. In this

study, the mean testing accuracy of the three algorithms for the five data sets

represents three different groups and ANOVA monitors the variations between

the groups. An F -statistic of 31.87 was obtained for group-wise variation which

corresponds to a p-value of 0.0002. Hence, one can reject the null hypothesis

with a 95% confidence interval. Thereafter, a pairwise comparison was per-

formed between the three classifiers using the Bonferroni [11, 12] method. The

observed p-values for the pairwise comparison of OMLA and Online SRESN

was 0.0015 and for the pairwise comparison of OMLA and OSNN was 0.0002.

Since, both the p-values are lower than 0.05 (95% confidence interval), it can

be concluded that OMLA performs better than the other algorithms used for

comparison with a 95% confidence interval. Next, the performance results of

OMLA are compared with other existing batch learning algorithms for spiking

neural networks.

Table 4 shows the results of comparison with batch learning algorithms.

It can be observed from the table that the OMLA performs better than or
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Table 4: Performance comparison of OMLA with SpikeProp, SWAT and the Batch SRESN

Data Benchmark
OMLA SpikeProp SWAT

Batch

set criterion SRESN

Iris

Architecture 24:(5-7) 25:10:3 24:312:3 24:(6-10)

Training 97.9(0.7) 97.2(1.9) 96.7(1.4) 96.9(1.0)

Testing 97.9(0.7) 96.7(1.6) 92.4(1.7) 97.3(1.3)

# Epochs 1 1000 500 102

BC

Architecture 54:2 55:15:2 54:702:2 54:(8-12)

Training 97.4(0.4) 97.3(0.6) 96.5(0.5) 97.7(0.6)

Testing 97.8(0.4) 97.2(0.6) 95.8(1.0) 97.2(0.7)

# Epochs 1 1000 500 306

Liver

Architecture 36:(12-15) 37:15:2 36:468:2 36:(6-9)

Training 69.9(2.3) 71.5(5.2) 74.8(2.1) 60.4(1.7)

Testing 67.7(1.8) 65.1(4.7) 60.9(3.2) 59.7(1.7)

# Epochs 1 3000 500 715

PIMA

Architecture 54:20 55:20:2 54:702:2 54:(9-14)

Training 78.6(1.7) 78.6(2.5) 77.0(2.1) 70.5(2.4)

Testing 77.9(1.0) 76.2(1.8) 72.1(1.8) 69.9(2.1)

# Epochs 1 3000 500 254

ION

Architecture 204:(19-25) 205:25:2 204:2652:2 204:(16-23)

Training 94.0(1.7) 89.0(7.9) 86.5(6.7) 91.9(1.8)

Testing 93.5(0.5) 86.5(7.2) 90.0(2.3) 88.6(1.6)

# Epochs 1 3000 500 1018

Landsat

Architecture 216-30 101-25-61 - -

Training 91.0 87(0.5) - -

Testing 90 85.3(0.3) - -

# Epochs 1 60000 - -

1 SpikeProp results have been reproduced from [4]. The Landsat data consists

of 3x3 image patches with 4 channels that amounts to a total of 36 features.

SpikeProp averages across the channels to obtain 4 features. It uses one bias

neuron and 25 receptive fields per feature resulting in 101 input neurons.

similar to other batch learning algorithms but, it requires a single presentation

of training spike patterns whereas other algorithms require multiple epochs for

learning. For simple problems like Iris flower classification and Wisconsin breast

cancer, the performance of all the algorithms is similar. For other problems,
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further discussion is restricted to a comparison with SpikeProp and SWAT as

SpikeProp performs better than the other batch learning algorithms for all the

other problems, except in case of Ionosphere, where SWAT performs better than

SpikeProp. For low dimensional problems with lower separability like Liver and

PIMA, OMLA performs 1-2% better than SpikeProp and 5-7% better than

SWAT. For a high dimensional problem like Ionosphere, OMLA performs 7%

better than SpikeProp and 3% better than SWAT. For a data set with large

number of samples like Landsat, OMLA performs 5% better than SpikeProp.

These observations clearly highlight that the utilization of global information

present in the network, as well as the local information present in the input spike

patterns, help the meta-neuron based learning rule in effectively updating the

synaptic weights in one-shot.

6. Conclusions

In this paper, a spiking neural network architecture with a meta-neuron that

envelopes the presynaptic and postsynaptic neurons has been presented. The

concept of the meta-neuron is inspired by heterosynaptic nature of astrocytes

in brain. It estimates a weight sensitivity modulation factor for the synapses

in the network based on both, global information (‘synaptic weights’) and the

local information (‘input spike patterns’). The meta-neuron based learning rule

adapts the synaptic weights based on the weight sensitivity modulation factor

and the difference in the postsynaptic potential for precisely shifting the spike

times of output neurons. Using this learning rule, an online meta-neuron based

learning algorithm has been developed for an evolving spiking neural classifier.

The performance of the OMLA is compared with both the other existing on-

line and well-known batch learning algorithms for spiking neural networks using

the benchmark pattern classification data sets from the UCI machine learning

repository. In comparison to other online learning algorithms OMLA performs

better with a 95% confidence level. With regards to other batch learning algo-

rithms as well, the OMLA performs better using one-shot learning because it
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utilizes both, the local and global information within the network.

The future work on the meta-neuron will focus on development of learning

techniques for deep SNNs. Recent research [36, 27] on deep networks have

proven their effectiveness in dealing with complex problems.
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[25] Filip Ponulak and Andrzej Kasiński. Supervised learning in spiking neural

networks with resume: Sequence learning, classification and spike shifting.

Neural Computation, 22(2):467–510, 2010.
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