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USE OF AN INERTIA SPHERE TO DAMP THE ANGULAR MOTIONS
OF SPINNING SPACE VEHICLES

By Jerrorp H. Svpparn

.o .+ SUMMARY

A theoretical study was made of a decice whick
might be used to damp the angular motions of spin-
stabilized space vehicles with constant moments of
inertia.  The device was assumed to conxist of a
rate gyro, a servo control, and a rotor mounted 1n a
single gimbal.  The tnrestigation wax conducted by
considering the general equations of motion of the
vehicle-damper system and noting that simplification
would result if the damper had a spherical tnertia
distribution. Such a distribution was  assumed
thereafter, and a control command was defined so
that the gimbal angle would be proportional to the
angular velocity of the vehicle about the gimbal aris.
The resulting equations were linearized, and the
Routh-Hurwitz criterion was applied to determine
the conditions for stability.  The study included fwo
numerical examples showing possible applications of
snertia-sphere rate dampers.

The general conditions for stability were found to
be feasible for practical applications. A simplified
stability criterion covers a large class of practical
problems.

INTRODUCTION

Spinning satellites which experience disturbance
torques may develop precessional and nutational
motions which interfere with scientific experiments
and/or crew comfort in the case of manned
missions. Therefore, u device which could reduce
or eliminate such motions would have w real,
practical value in some spuce missions.

A system which could control the attitude of a
spinning space vehicle is discussed in reference 1.
The purpose of this study wuas to investigate
analytically the properties of a device which would
damp the angular motions of spinning space
vehicles with constant moments of inertin.  The

assumed device consists of a spinning body, a rate
gvro, and a servo control mounted in the space
vehicle.  The center of mass of the spinning body
would be located on a principal vehicle axis, and
mounted in a gimbal with the gimbal axis parallel
to a principal vehicle axis normal to the spin axis.
The rate gyvro would sense vehicle angular rates
about the gimbal axis and supply a control
command to the servo control.  The servo control
would apply a torque to the gimbal, and the
renction torques would damp the angular motions
of the vehicle.

The general equations of motion of a vehicle
with such a device were considered, and it was
noted that u great deal of simplification would
result il the spinning device had a spherieal
inertin  distribution.  Such a  distribution  was
assumed thereafter, and a servo control command
wus defined.  The resulting equations ol motion
were lincarized, and the Routh-Hurwitz stability
eriterion was applied to the characteristic equation
of the system.  The study included two numerical
examples of possible applieations of inertia-sphere
rate dampers.

SYMBOLS

ABCD constants used in characteristic
equation (defined by eqs. (32)
to (35))

ab.c coefficients  (defined by eqs. (43)
to (45))

') identity matrix

H angular-momentum veetor, slug-ft*/
sec

I=TI*"+1,, slug-I1?

I* transverse moment of Inertia of

vehicle when Iy=1,, slug-ft?
1
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1 monient-of-nertia matrix, slug-t?
1, moment of ertia of damper when

[1': I!J; ]S- Slllg—'.tz

I 1y 1, motments of mertia of vehtele about
X L7
principal  vehiele XN-) Y-, and
Z-axes, respectively, slug-f12
1, 1,.1. moments of inertia of damper about
PER e

principal  damper -, y-, and
s-axes, respectively, slug-fi2
fi=1y+ 1, slug-t*
imaginary number, 4 —1

:

ij.k unit  veetors along principal X
¥~ and Z-uxes, respectively

1y control sensitivity, sec

L Lagrangian function, T— 1V, {t-Ib

r period, see

D¢, angular velocities about principal
M- Y- and Z-axes, respectively,
radians/sec

P, positive coustant spin rate of vehiele
about \-axis, radians/see

Q generalized foree or moment vector

@y, Gy, rolling, pitching, and yawing mo-
netits, respeetively, i prineipal
vehiele-axis  coordinate  system,
ft-1b

Ws,, (s, external torque acting upon rotor
atd gimbal, respectively, ft-1b

Q:, component of external torque along
Eiuxas

S rotor spin vector, radians/sce

S=8,, radians/see

N Laplace transform variable, per sec

T kinetie energy, ft-1h

{ time, see

tpe time to damp to one-hall amplitude,
see

U, unit base veetor of five-dimensional
space

v potential cnergy, ft-1b

XY, 7 prineipal vehicle-axis coordinates

N Y.z, inertinl-axis coordinates

Yy, prineipal  damiper-axis  coordinates

r Lagrangian vector operator

A orthogonal matrix which trans-
forms  veetors  from  prinecipal

vehicele-axis coordinate system to
the  prineipal  damper-axis  co-
ordinate system

o, angle generated by spin of damper
about damper r-nxis, radians

ALRONAUTICS AND SPACE ADMINISTRATION

3. angle of deflection of damper gim-
bal measured about Z-axis, ra-
dians

.0,y Euler angles, radians

=g, 0, ¢, (for i=1, 2, 3, 4, 5, respectively)
8, 8,

w angular-velocity vector, radians/sec

Subseripts:

D damper

7 mteger

0 initial value

Vv vehiele

A bar over a symbol indicates the Laplace trans-
formation. Vectors uare denoted by boldface
letters. Dots over symbols indicate differentia-
tion with respeet to time. A tilde below a symbol
denotes a matrix. A primed vector or matrix
indicates the transposed vector or matrix.

ANALYSIS
DESCRIPTION OF SYSTEM

Figure 1 represents a vehicle-damper configura-
tion.  The X-, )=, and Z-axes are prineipal vehiele
axes.  The vehiele spins about the N-axis to
provide basic gyroscopie stability.  The damper
consists of a single gimbal, mounted with the
gimbal axis along the Z-axis, and a rotor mounted
in the gimbal. When the gimbal angle is zero,
the rotor (shown as a sphere in the figure) spins
about the X-axis.

Figure 2 lustrates the detail of o gimbal dis-
placenent.  In position (a), the gimbal displace-
ment is zero and the rotor spins about the .\-axis.
In position (b), the gimbal has been rotated
through the angle 8, in the positive sense. The

X

Damper rotor-

Damper gimbal

Y

Frauvre 1. Illustration of vehicle-damper eonfiguration,
X, Y, and Z indicate the prineipal vehicle-fixed axes
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X

Position (a)

Damper
rotor <= X
Domper
gimba! < S
. s,
/ /Y
e
A

Position (b)
Ficure 2.— Detail of gimbal displacement.,

vector S is the spin veetor of the rotor.

The function of the damper may be deseribed
qualitatively in the following way. Suppose that,
initially, the gimbal is locked with 6.=0. Also
suppose that the vehicle has experienced some
disturbance and that the N-axis is not alined with
the total-angular-momentum veetor.  From refer-
ence 2, it ean be seen that in this condition, the
vehicle would cone around the angular-momentum
veetor (which would be fixed in space) with a
maximum angular deflection from a space-fixed
reference which would be greater than the deflec-
tion of the angular-niomentum veetor from that
axis. Since the total angular momentum ol the
vehiele plus damper must be constant (no external
torques acting after the disturbance, for example),
a change in the angular-momentum vector of the
damper requires an equal and opposite change in
the angular-momentum veetor of the vehicle.
The purpose of the damper in this case would be
to eliminate the coning motion by alining the
X-axis with the total-ungular-momentun vector.

EQUATIONS OF MOTION

Basic equations.—The analysis is restricted to
cases with no coupling from the foree to the
moment equations. The basic equations to bhe

used are the five moment equations corresponding
to five degrees of angular freedom ol the vehicle-
damper system. The coordinate systems used 1n
the study are illustrated in figure 3. The five
sariables used in the Lagrangian formulation of
the equations are necessarily ¢, 8, ¥, 6, and 8.
However, the Lagrangian and the final form of the
equations will be in terms of é,, 4., and the angular
rates about the principal vehicle axes, p, ¢, and 7.
A method for making the appropriate changes in
variables is given in the appendix.

The following definitions are used to obtain the
equations of motion:

Ef:d)u 9) l//y a:g 62

(for i=1, 2, 3, 4, 5, respeetively) (D)

The Lagrangian veetor operator I'is given by

I‘Zi U, ;([[f (02’)_02'] @)

i=1

where g, is a unit base vector of the five-
dimensional space defined by the five degrees of
freedom of the system.  The Lagrangian funetion

L is defined by
L=T—-V (3)

where 7 and V' oare the kinetic and potential
encrgies of the system, respectively. The general-

ized foree veetor Q is defined by

i=1

Fravre 3.-—Orientation of x, y, and z damper axes, and
X, Y, and Z vehicle axes relative to Xy, Yy, and Zy
inertial axes.  The relationships are described by the
Fuler aungles ¢, 8, and ¢, the gimbal angle é., and the
damper spin angle 8.
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where @:; is the generalized foree or moment
corresponding to &.  With these definitions, the
equations of motion are obtained by setting

rL=Q (5)

For the present problem, V'is taken to be zero.
If the center of mass of the damper is located on a
principal axis of the vehicle, the appropriate
moment of inertia of the vehicle can be defined so
as to inelude the damper as a point mass located
at the damper center of mass.  This case iz the
one considered herein. With these considerations,
the Lagrangian funetion is given by

]‘:.l; w{v‘_[va—f-w;,!bwg\) (6)
where wy is the transpose of w;, which is the
column angular-velocity vector of the vehicle-axis
system.  Similarly, @, is the transpose of w,
which is the column angular-velocity vector of
the damper-axis system. The quantitics Iy, and
Ip are the moment-of-inertia matrices of the
vehicle and damper, respectively.
@, and {y ure as follows:

The forms of

1)
”
and
I+ 0 0
{1': 0 Iy 0 (8)
0 0 I,

Let the notation (w,)y denote the fact that wp
1s written in the vehicle-axis system.  Then, it is
easily seen that

p+S cos 8,
(wp)y=| ¢+ sin 8, (9)

r=+6.

where S=3§, is the z-component of the angular-
velocity vector of the damper-axis system relative
to the vehicle axes. 1In other words, if S and &,
were identically zero, the inertial angular velocity
of the damper axes would be the same as that of
the vehicle.

In general, the moment-of-inertin matrix I, for

arbitrary damper-rotor configurations is diagonal
and constant only if it is determined relative to a
set of principal dammper axes.  Therefore, the term
wpdpw,y will be written relative to the damper-axis
system.  Let the notation (wy); denote the fact
that wp is written in the damper-nxis system; then,

(wp)p="~2(wp) (10)
where 4 is the orthogonal transformation matrix

defined by

COs 6, sin 8, 0

A=| —sin 8, cos §, cos §, cos &, siné; | (11)

8in 8, sin 6, —cos 8. sin 8, cos &,

Finally, the second term in the Lagrangian func-
tion (eq. (6)) can be written as

wl)luwu: (wl)){él‘{ué(“’h) v (12)

where I, is of the form

I, 0 0O
l,=|0 I, 0 (13)
0 0 I,

Thus, the complete five-component veetor equa-
tion of this study can be written as

1 I3 1 ? ’
I‘{§ [wy‘{;-w v (wn)ré il)%(wD)l'J} :Q (14)

General spherical damper equations.—Atten-
tion 1s now returned to the right-hand side of
equation (12). In particular, the factor 471 ,4 is
to be considered.  Clearly, this factor is an orthog-
onal transfornution of the matrix I, (see ref. 3),
but more important is the fact that a spherical
inertin distribution of the damper reduces this
term to a scalur times the identity matrix £;
thus, many terms are eliminated from the
Lagrangian [unction,

In order to prove this statement, let I,=/[,=
I.=1,. Then

Iy=1ok (15)
and, sinee A s orthogonal,
A’Iuézll)élfjé:[ué’éllnlf (16)

-~ ~

Thus, the proof is complete.
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Hereinafter, the inertia distribution of the
damper is taken to be spherical so that Ip=/1,1¢
and equation (14) is reduced to

1 , . , .
r{’z [‘*)V[I"-UVT[1)((‘01))1*(,0-’1))1’]}WQ (1 7)

The analysis is restricted to vehicle configura-
tions with
Tos#l,=1,=1* (1%)

By going through the Lagrangian formulation
with the change in variables discussed in the
appendix, equation (17) may be written as the
five following scalar equations:

IljJ+]D(S’ COS 6;—S6.z sin §,) +]Dq6-z
—I,8rsin 8,=Qy (19

Ly (I — I pr-+15(S sin 5.+ 85, cos 8.,)
S 1pSreos 8.—Ipd.p=Qy (20)

T+ (I— 1) pg-+T b4 InS(p sin 8,—q cos 8,) =10,
21

Iogt— (S—+ p cos §,+4-¢ sin §,) =0, (22)

I i+ T o+ IpS(p sin 8,—q cos §,) =Qs, (23

where
ILh=1iv34-1, (24)
and

I=I*+1, (25)

It should be noted that the left-hand side of
equation (23) is contained in the left-hand side of
equation (21). This is due to the fact that from
familiar rigid-body dynamies,

T*r - (I*— I pq=0Q,— s, (26)

where @, is the external torque acting on the
vehicle, and —®s, is the reaction torque due to
the damper. By taking @s, to the left-hand side
in equation (26) and replacing it with the left-
hand side of equation (23), equation (21) is
obtained identically.

Linearized spherical damper equations.—The
following assumptions are made in determining
the linearized spherical damping equations:

T o=, =0

I[. The gimbal angle 6. is always small enough
to consider cos 8.=1 and sin §,=34,.

1. Terms containing the products 5.6,. qé:,
ré,, and ¢, are small quantities and may be
neglected.

1V. The spin rate of the vchicle p is constant
and positive; that is, p=0 and p-—p,>0.

V. The servo control is ideal in the sense that
8.() will have whatever value is called for.

With assumptions 1 to IV, equations (19) and
(22) simply give S=Constant. With assumption
V, equation (23) simply gives the torque output
of the servo control. Thus, the linear analysis
is based on the following two equations:

LG+, —Dpo= 1pSlr=Qy+1n(p,—S)s.  (27)
]]— [([l_' I:)po—% [!)S]([:(\)Z—Ipsg—lnspas (28)

In order to determine a value of 8.(f) which will
provide damping, assume that the terms con-
taining 8,(1) and its derivatives provide damping,
and then make the following considerations:

(a) The left-hand sides of equations (27) and
(28) have the functional form of a vehicle with
no damper.

(b) The damping moment in pitch is propor-
tional to 8,.

(e) 1f the §, term in equation (28) 1s small
compared with the § term, then the damping
moment in yvaw is proportional to é..

(d) In reference 2, it was pointed out that
damping can be introduced by a pitching moment
proportional to 7 and a yawing moment propor-
tional to ».

Therefore, it seems straightforward to choose
5,=Kr (29)
where the constant K will be referred to as the

control sensitivity, or gain. With this choice of
8,. equations (27) and (28) are rewritten as

i+ Ai 4 Br= ’j‘ (30)

— Byt Ci i Dr= 31)

where

4 LoS—p)K
T I
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L= Dp+ LS

3= 7 (33)
(! ’;1 * (34)
/):[ff)is—]’"'l‘~ (35)

Taking the Laplace transformations of equations
(30) und (31) gives

- e v .

sy s+ Byr= i + g, (36)

i o . —.HAGZ v : Y )y

— By (O 517 = 7 +(Cs+ e, +Cr,  (37)

from which the cubie characteristic equation is

(LAl (AB4 D=0 (38)

SYSTEM STABILITY

Derivation of general system stability crite-
rion,-—The Routh-Hurwitz stability eriterion (see
ref. 4) states that all the roots of equation (38)
will have negative real parts if the following
counditions hold:

L. ("0
1. B* >0
I AB+D—0'B >0

Condition [: From equation (334),
only 1if K>0. Hereinalter K
positive,

Condition II: Since B is real, B*=0; therefore,
the case where B=0 must be avoided.
noted that B is zero when

"0 holds

is taken to be

It can bhe

I*—1Ix

S= i

” (39)

hence, this value of S must be avoided in the
design of a stable system.

Condition IIT: For B=0, the remaining condi-
tion which nust be satisfied is given by

AB+D—('B*>0 (40)

By substituting the expressions for .1, B, ¢/, and
D given in equations (32) to (35) into inequality

AF
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(40), the following inequality is obtained:
Toll =108 (11 H =201, p,S

LT —Dip 0 (41)

Now consider the left-hand side of inequality (41)
as a1 quadratic function of S defined hy

F(S)=—a8*+ bS--¢ {(42)

where
w=1,I—1,)=1,1* (43)
b (11 11,—21,1,)p, (44)
c——0L(L—1p} (45)

Since >0, ns |8 so, F(8)-++o; thus, there
are two cases to consider: (1) Either F(8) >0 for
all real values of S or (2) there are two values of
S, say S oand $9 with SW <8, sueh  that
S =S58 implies F(8) £0.

In the first case, £(8) >0 for all real values of S.
If #(S)>>0 for all real values of S, then solving
F(S)=0 for 8 must give complex solutions, a fact
which implies

b*<"dae (46)

By substituting expressions for a, b, and ¢ given
in equations (43), (44), and (43), the following
mequality is obtained:

1270 (47}
which eannot be true. Therefore, F(S) cannot be
positive for all real values of S.

In  the sccond case, SMW=8=<8® inplies
F(S) 0. Solving F(S)=0 for 87 and S gives

L —— (l_{_lt‘:) (48)
. »
U (%_ | ) (49)

The general stability requirements are:

I. K is positive,
*_
1y

IT1. Either §<ZSW or §>-8@.

Simplified stability criterion.-—If & is restricted
to positive values, the following conditions are
sufficient for stability.
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I. For vehicles with /*<Iy (disklike configura-
tion),
S>p, >0 (500

implies stability. This condition follows from the
fact that the sum of any two principal moments of
inertin of a body must be greater than or equal to
the third principal moment of inertia, so fy =2/,
and from equation (49) S®=<p,.  Also, equation
(39) does not hold sinee the right-hand side is

negative.
I1. For vehicles with [y=17* (spherieal config-

urationn),
S >0 (51)

implies stability. This condition follows from the
fuet that S®=0, and the right-hand side of
equation (39) is zero.
111. For vehicles with 7>/ (pencillike con-
figuration),
I*—1y .

(}<ASV F — Po {
1y

[}

implies stability.
NUMERICAL EXAMPLES

Two cases were selected to illustrate applications
of spherical dampers. The first case, a pencillike
vehicle configuration, was taken to be representa-
tive of the spinning pavloads of some state-of-the-
art space vehicles. The second case, a toroidal
vehicle configuration, was taken to represent the
type of vehicle which might be used for a manned
space station.

PENCILLIKE VEHICLE

The assumption QY:QZ:I'“iI.‘,,:(), cquations
(30) and (31), and the data given in table [ were
used to calculate the time histories ol ¢/g, and
r/q, plotted in figure 4. The damper rotor for the
pencillike vehicle was assumed to be a spherieal

TABLE I.—VALUES OF PARAMETERS USED FOR
NUMERICAL EXAMPLER

- —

Configuration
Parameter O

Pencillike © Toraidal

1, slug-fe2 . oL oo . 40. 21 389,207
Iy, slug-re? . 6.26 1 754,207
T, slug-it 0.01 | A7
K,see . ... ... 0.25 | (.25
Po, radians per sec A 233 | 1.27
o, radians per s il 0. 42 ‘ 0. 401
S, radians per sec._..__ . 1, 400 i 120

MOTIONS OF SPINNING SPACE VEHICLES

~I

10

2 a 6 8 o 12 14

JAAN
| A

-LO{ e N ! : 1 Lo
o] .2 4 6 8 [Re] 1.2 1.4

/, sec

&)

wn

Fraure 4. Time histories of g/g, and r/g, for numerical
example of pencillike vehiele with spherical damper.
f12=3.95 =econds; £=0.325 second.

shell with a 6-inch radius and a weight of 2 pounds.
If the spherical shell were made of a high-grade
steel, the struetural integrity of the shell should be
adequate for the spin rates S and p, used in this
numerieal example.  The total weight of the
damper system (excluding  power supply) was
estimated o be about 3.5 pounds whereas the
vehicle weight (without damper) was considered
to be about 350 pounds.

In this example, the real root had a large nega-
tive value so that ¢ and r appear as damped
oscillations with a time to damp to one-half
amplitude of 3.95 seconds and a period of 0.325
secotud.

TOROIDAL VEHICLE

The assumption Qy=,=r,=r,=0, equations
(30) and (31), and the data given in table I were
used to ealeulate the time histories of ¢/g, and
r/g, plotted in figure 5. The damper rotor,
located at the center of the toroid, was assumed
to be a high-grade-steel spherical shell with a
radius of 6.58 feet and a weight of 223 pounds.
The total weight of the damper system would be
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E 0]
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0 14
¥, seC

AWANWA

qoto— L L . i | . |
0] 2 4 6 8 10 12 14

t, sec

wn
T

I

Fraure 5.--Time histories of ¢/g, and r/g, for numerieal
example of toroidal vehiele with spherical damper.
t12=234.76 xecondx; P =51 sceonds,

300 (o 350 pounds. The toroidal vehicle con-
figuration was assumed to be generated by
revolving a cirele with a 5-foot radius about an
axis 20 feet from its center. The total vehicle
weight was considered to be 29 tons.

In this example, the real root had a large
negative value so that ¢ and » appear as damped
oscillations with a time to damp to one-half
atmplitude of 34.76 scconds and a period of 5.1
seconds.

GENERAL DISCUSSION OF NUMERICAL EXAMPLES

Since both numerical examples of this study
demonstrated a large separation between the real
and oscillatory roots, it seemed reasonable to
assume that there should be some simple method
for estimating the roots of the characteristic
equation {eq. (38)). This approximation was
made in the following manner. Consider the
cubie expression

(Cs+ D4 (AB+ Dys + B
— (¥ +[1+C(AB4 D)
FABHD) 4 OB+ B2 (53)

I OB < -AB- D) oand [CCAB=+ D)< 1, then
setting the left-hand side of equation (53) equal
to zero gives a good approximation of the char-
acteristic equation and a simple means of esti-
mating the roots.  For the two numerieal cases of
this study, the roots estimated in this manner are
compared with the actual roots of equation (38)
m table I, and they are seen to be in good
agreement.

It should be noted that the term (AB+D),
which governs the damping of the oscillation in
cases for which equation (53) ¢an be used, can be
written as

A= (=) (757

(54)
[t is seen that the damping of the oscillation is
proportional to the gain constant K. On the
other hand, the real root is approximated by

1
— (55)

(T LK

and is inversely proportional to K. Therefore,
one niight draw the rather obvious conclusion that
for a given vehicle-damper system, there should
be an optimum value of the gain.  This facet of
the problem is not treated herein. However,
ecquations (54) and (55) indicate that for some
practical applications, the system designer has a
good degree of latitude in the selection of system
performance and weight through the choice of
values for K, 8, and 1.

TABLE II. -COMPARISON OF ROOTS OF
CHARACTLERISTIC EQUATION OBTAINED BY
EXACT AND APPROXNIMATIES METHODS FOR
NUMERICAL EXAMPLES
\ Configuration
i Roots -
Pencillike Toroidal |
—IiUR4, 5% — 3¢
Exact. __ —0.17542£19. 3247 —{. 019930+ 7i
— %4, 48 — 7520, 770
Approximate _ —0. INTH3£19. 324 — 0. 020037 1. 2547{

CONCLUDING REMARKS

A theoretical study was made of a device which
might be used to damp the angular motions of
spin-stabilized space vehicles. The device was
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assumed to consist of a rate gyro, a servo control,
and a single gimbal-mounted rotor. The basic
moment equations for an axially symmetric vehicle
with a spherical damper were derived and line-
arized. A control commuand signal was defined
so that the gimbal deflection was made propor-
tional to vehicle yaw rate, and the general condi-
tions for stability were obtained. These conditions

were found to be feasible for most problems of
interest.  The general stability criterion can be
simplified and still cover a large class of practical
applications.

LanaLEy Ruskarcn CENTER,
NATIONAL AERONAUTICS AND NPACE ADMINISTRATION,
LancLey Station, TameroN, Va., December 1, 1961



APPENDIX

LAGRANGIAN FORMULATION OF EQUATIONS WITH CHANGE OF VARIABLES

The probleni of eliminating the Euler angles and
their rates from the Lagrangian formulation of the
moment equations is discussed in reference 5.
However, reference 5 deals with a three-degree-
of-freedom system whereas the system considered
in this study has five degrees ol rotational free-
dom. Therefore, this appendix is devoted to
presenting some of the details of the formulation
of the equations used in the study.

Consider first the Lagrangian equation

o (oky ol

NTANRY Fole3

= (A1)
5 4 _

with the Euler ungles defined as shown in figure 3.

The expressions relating p and 7 to the Euler
gn4q

angular rates (see ref. 6) arve

p:d‘)—:ﬁ sin @ (A2)
q=0 cos ¢ sin ¢ cos 0 (A3
rog cos ¢ cos 6—6 sin ¢ (A4)

from which
oL dLdp dLdg oL or of .
2% “opostTogoeToroe op MY
It is casy to show that
o Ao
a‘qb—l (AX())
%:—_; 4 (A7)
op -
o (AS)
Thus,
OL_oLop olLog ol or_ oL OL
dp Op O¢+O(/ o6 oroe g Tor (A9)

10

Sinee Qo=x, equation {Al) can be replaced by
the equivalent expression

ol of
)+ Tor™" e}

iy

0 -y (ALY

] o

Note that by using the Lagrangian function
written in terms of p, ¢, 7. 8, 8, 6. and é,, equa-
tion (A10) is independent of the Euler angles,
That is to say, equation (A10) involves only
quantities which are measured relative to the
XY Z system; therefore, it must be independent of
the order in which the Euler rotations are taken.
Thus equation (A10) will not be affected if the
order of rotations is changed.

Now suppose that the order of the Euler
angular rotations is defined as shown in figure

6ia).  With this definition, the following relation-
ships are true:
(p=1)y (A1)
qg=0—¢ sin ¢ (A1)
r=y 08 8-+¢ cos ¢ sin 8 (A13)
p=¢ cos ¥ cos 80—y sin 8 (A14)
oy .
ao~1 (A15)
op or
e Al6
o6 o8 ) (A16)
oq .
00—() (A17)
oy ‘
o= AlR
Y ’ (AIR)
or
05__1) (A19)
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Thus
d (oL ol o
A e =) (A20)

can be replaced by the equivalent expression

oL bl,

1) A2
(/t bq>+ or P or =Wy (A2D)

By the saume argument as used previously,
equation (A21) is independent of the Euler angles
and the order in which the rotations are taken.

Finally, il the order of rotations is defined as
shown in figure 6(b), the same procedure used

A
% :
Q,/L\i’
o / .
/ oé
X
X7 (a)
Z r
v X
i
T ¢ e \J/
P o v
-8 T o X
5 ;
YA
q A
/ [d X}
Y
% (b

(1) @, ¥, 6 order,
(h) 8, ¢, ¢ order.

Froure 6. llustration of alternate choices of the order
in which the Euler rotations may be taken,

VEHICLES 11

before would lead to the following equation:
d ol oL ol ‘

a4 (ol oL _ oL _ .

dt ()1',)+1' oq Lop=" (A22)

Thus the equations of the study may be de-
rived by writing the lLagrangian funetion in
terms of 9, g, r, &, 8, 8., and &, and using the
following expressions:

,(/Lf (g,ll)ﬂao,l ?){1 (s (A23)
:LI/? (?)f,)“L g;, lgll =)y (A24)
GO S G A
o (32)—&!: s, (426)
" (Zﬁ)—iéj:w (A27)

[t is of interest to note that if Vo 1z defined so
that
oLiop

V.L=|0l/oq (A28)
oLior

then equations {A23),
written as

(A24), and (A25) can bhe

[lt (VoL) Fop X Vo L= i+ 0+ 0k (A29)

If 1. were simply the kinetie energy of a vehicle
with no damper, given by

1 1) W)L oy (A30)
then
VwL:[wa:HV (:\3] )

and l‘ql]dti()ll (A29) would be Euler's equations
(see ref. 5) in vector lorm,
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