NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL REPORT

R-137

USE OF AN INERTIA SPHERE TO DAMP THE ANGULAR MOTIONS OF SPINNING SPACE VEHICLES

By JERROLD H. SUDDATH

TECHNICAL REPORT R-137

USE OF AN INERTIA SPHERE TO DAMP THE ANGULAR MOTIONS OF SPINNING SPACE VEHICLES

By JERROLD H. SUDDATH
Langley Research Center
Langley Station, Hampton, Va.

TECHNICAL REPORT R-137

USE OF AN INERTIA SPHERE TO DAMP THE ANGULAR MOTIONS OF SPINNING SPACE VEHICLES

By Jermodd M. Siddath

Abstract

SUMMARY A theoretical study was made of a device which might be used to damp the angular motions of spinstabilized space vehicles with constant moments of inertia. The device was assumed to comsist of a rate gyro, a servo control, and a rotor mounted in a single gimbal. The investigation was comducted by considering the general equations of motion of the wehicle-damper system and noting that simplification would result if the damper had a spherical inertia distribution. Such a distribution was assumed thereafter, and a control command was defined so that the gimbal angle would be proportional to the angular velocity of the vehicle about the gimbal aris. The resulting equations were linearized, and the Routh-Hurwitz criterion was applied to determine the conditions. for stability. The study included two numerical examples shoming possible applications of inertia-sphere rate dampers.

The general conditions for stability were found to be feasible for practical applications. A simplified stability criterion covers a large class of practical problems.

INTRODUCTION

Spiming satellites which experience disturbance torques may develop precessional and nutational motions which interfere with scientific experiments and/or crew comfort in the case of mamed missions. Therefore, a device which could reduce or eliminate such motions would have a real, practical value in some space missions.

A system which could control the attitude of a spinning space vehicle is discussed in reference 1 . The purpose of this study was to investigate analytically the properties of a device which would damp the angular motions of spimning space vehicles with constant moments of inertia. The
assumed device consists of a spinning body, a rate gyro, and a servo control mounted in the space vehicle. The center of mass of the spinning body would be located on a principal vehicle axis, and mounted in a gimbal with the gimbal axis parallel to a principal vehicle axis normal to the spin axis. The rate gyro would sense vehicle angular rates about the gimbal axis and supply a control command to the servo control. The servo control would apply a torque to the gimbal, and the reaction torgues would damp the angular motions of the vehicle.

The general equations of motion of a vehicle with such a device were considered, and it was noted that a great deal of simplification would result if the spimning device had a spherical inertia distribution. Such a distribution was assumed thereafter, and a servo control command was defined. The resulting equations ol motion were linarized, and the Routh-Hurwitz stability criterion was applied to the characteristic equation of the system. The study included two numerical examples of possible applications of inertia-sphere rate dampers.

SYMBOLS

A,B,C,D	constants used in characteristic
	equation (defined by eqs. (32) to (35))
a, b, c	coefficients (defined by eqs. (43) to (45))
$\underset{\sim}{E}$	identity matrix
H	angular-momentum vector, slu sec
$I=I^{*}$	g-ft ${ }^{2}$
I^{*}	transverse moment of incrtia vehicle when $I_{Y}=I_{Z}$, slug- ft^{2}

$\underset{\sim}{1}$	moment-of-inertia matrix, slug-ft ${ }^{2}$
I_{1}	motment of itertia of damper when $I_{2}=I_{i}=I_{z}$, slugr- ft^{2}
I_{N}, I_{r}, I_{Z}	noments of jnertia of vehicle about principal vehiele N_{-}, Y_{-}, and Z-unes, respectively, slug-ft ${ }^{2}$
I_{2}, I_{y}, I_{z}	moments of inertia of damper about principal damper x-, y-, and z-axes, respectively, slug-ft ${ }^{2}$
$I_{1}=I_{x}+I_{D}$, slug-li ${ }^{2}$	
i	imaginary numb
i, j,k	unit vectors along principal X, Y-, and Z-axes, respectively
K	control sensitivity, see
L	Lagrangian function, $T-V$, ft-lb
P	period, see
p, q, r	angular velocities about principal K^{-}, I^{-}- and Z-axes, respectively, radians/sec
p o	positive constant spin rate of vehicle about X-axis, molims/see
Q	generalized force or moment vector
Q_{X}, Q_{Y}, Q_{Z}	rolling. pitching, and yawing moments, respectively, in principal vehicle-axis coordimate system, ft-lb
$Q_{\delta_{r}}, Q_{\delta_{z}}$	extemal torque acting upon rotor athe gimbal, resperdively, f - ll ,
Q_{i}	component of external torque along ξ_{i}-uxis
S	rotor spin vector, radians/ser.
$S-\dot{\delta}_{x}$, radians/ser	
$\stackrel{3}{*}$	Laplace 1 mansform variable, per see
T	kinetice energy, fi-lb
t	time, see
$t_{1 / 2}$	time to damp to one-hall amplitude, sec
$\mathbf{u}_{\xi_{i}}$	unit base vector of five-dimemsional space
1	potential chergy, ft-lb
S, 1, \%	principal vehicle-axis coordimates
$\mathrm{X}_{I}, Y_{1}, Z_{I}$	inertial-axis coordimates
x, y, z	principal damper-axis coordinates
Γ	Lagrangian vector operator
$\stackrel{1}{\sim}$	orthogonal matrix which transforms vectors from principal vehicle-axis coordinate system to the principal damper-axis coordinate system
δ_{r}	angle generated by spin of damper about damper x-axis, radiams

δ_{z}	angle of deflection of damper gimbal measured about Z-axis, radians
ϕ, θ, ψ	Euler angles, radians
$\begin{gathered} \xi_{i}=\phi, \theta, \psi \\ \delta_{x}, \delta_{z} \end{gathered}$	(for $i=1,2,3,4$, , resperdively)
ω	angular-velocity vector, radians/sec
Subscripts:	
I)	damper
i	integer
o	initial value
V	vehicle

A bar over a symbol indicates the Laplace transformation. Vectors are denoted by boldface letters. Dots over symbols indicate differentiation with respect to time. A tilde below a symbol denotes a matrix. A primed vector or matrix indicates the transposed vector or matrix.

ANALYSIS

description of system

Figure 1 represents a vehiclo-damper configuration. The X^{-}, Y^{F}, and Z-axes are principal vehicle axes. 'Ther vehicle spins about the X-axis to provide basic groseopic stability. 'The damper consists of a single gimbil, momed with the gimbal axis along the Z-axis, and a rotor mounted in the gimbal. When the gimbal angle is zero, the rotor (shown as a sphere in the figure) spins about the X-axis.

Figure 2 illustrates the detail of a gimbal disphacement. In position (a), the gimbal displacement is zero and the rotor spins about the X-axis. In position (b), the gimbal has been rotated through the angle δ_{2} in the positive sense. The

Fugene 1. Illustration of whicle-damper configuration. A, Y, and Z indicate the principal vehicle-fixed axes

Figure 2.-- Detail of gimbal disjeamement.
vector \mathbf{S} is the spin vector of the rotor.
The function of the damper may be described qualitatively in the following way. Suppose that, initially, the gimbal is locked with $\delta_{i} \equiv 0$. Also suppose that the vehicle has experienced some disturbance and that the X-axis is not alined with the total-angular-momentum vector. From relerence 2 , it can be seen that in this condition, the vehicle would cone around the angular-momentum vector (which would be fixed in space) with a maximum angular deflection from a space-fixed reference which would be greater than the deflection of the angular-momentum vector from that axis. Since the total angular momentum of the vehicle plus damper must be constant (no extemal torques acting after the disturbance, for example), a change in the angular-momentum vector of the damper requires an equal and opposite change in the angular-momentum vector of the vehirle. The purpose of the damper in this case would be to eliminate the coning motion by alining the X-axis with the total-ingular-momentum vector.

EQUATIONS OF MOTION

Basic equations.-The analysis is restricted to cases with no coupling from the fore to the moment equations. The basic equations to be
used are the five moment equations corresponding to five degrees of :angular freedom of the vehicledamper system. The coordinate systems used in the study are illustrated in figure 3. The five variables used in the Lagrangian formulation of the equations are necessarily $\phi, \theta, \psi, \delta_{x}$, and δ_{z}. However, the Lagrangian and the final form of the cquations will be in terms of δ_{x}, δ_{z}, and the angular rates about the principal vehicle axes, p, q, and r. A method for making the appropriate changes in variables is given in the appendix.

The following definitions are used to obtain the equations of motion:
$\xi_{i}=\phi, \theta, \psi, \delta_{x}, \delta_{z}$
(for $i=1,2,3,4,5$, respertively)
The Lagrangian vector operator Γ is given by

$$
\boldsymbol{\Gamma}=\sum_{i=1}^{\dot{s}} \mathbf{u}_{\xi_{i}}\left[\begin{array}{c}
d \tag{2}\\
-\frac{d t}{d t}\binom{\partial}{\partial \dot{\xi}_{i}}-\partial \xi_{i}
\end{array}\right]
$$

where $\mathbf{u}_{\xi_{i}}$ is a unit base vector of the fivedimensional space defined by the five degrees of freedom of the system. The Lagrangian function L is defined by

$$
\begin{equation*}
L=T-V \tag{3}
\end{equation*}
$$

where T and V are the kinetic and potential energies of the system, respertively. The generalized force vector \mathbf{Q} is defined by

$$
\begin{equation*}
\mathbf{Q}=\sum_{i=1}^{5} \mathbf{u}_{\xi_{i}} \chi_{\xi_{i}} \tag{4}
\end{equation*}
$$

Figlefe 3.--Orientation of x, y, and z damper axes, and $X, Y_{\text {, and }} Z$ vehicle axes relative to X_{I}, Y_{I}, and Z_{I} inertial axes. The relationships are deseribed by the Euler angles ϕ, θ, and ψ, the gimbal angle δ_{z}, and the damper spin angle δ_{x}.
where Q_{s} is the generalized loree or moment corresponding to ξ_{t}. With these definitions, the equations ol motion are obtained by setting

$$
\begin{equation*}
\boldsymbol{\Gamma} L=\mathbf{Q} \tag{5}
\end{equation*}
$$

For the present problem, V is taken to be zero. If the center of mass of the damper is located on a principal axis of the vehicle, the appropriate moment of inertia of the vehicle can be defined so as to include the damper as a point mass located at the damper center of mass. This case is the one considered herein. With these considerations, the Lagrangian function is given by

$$
\begin{equation*}
L=\frac{1}{2}\left(\omega_{V}^{\prime} I_{v} \omega_{V}+\omega_{D}^{\prime} I_{D} \omega_{D}\right) \tag{6}
\end{equation*}
$$

where ω_{V}^{\prime} is the transpose of ω_{V} which is the column angular-velocity vector of the vehicle-axis system. Similarly, ω_{D}^{\prime} is the transpose of ω_{D} which is the column angular-velocity vector of the damper-axis system. The quantities ${\underset{\sim}{v}}$ and ${\underset{\sim}{D}}$ are the moment-of-inertia matrices of the vehicle and damper, respectively. The forms of ω_{v} and I_{v} are as follows:

$$
\boldsymbol{\omega}_{\mathrm{V}}=\left[\begin{array}{l}
p \tag{7}\\
q \\
r
\end{array}\right]
$$

nnd

$$
\underset{\sim}{I_{V}}=\left[\begin{array}{lll}
I_{X} & 0 & 0 \tag{8}\\
0 & I_{Y} & 0 \\
0 & 0 & I_{Z}
\end{array}\right]
$$

Let the notation $\left(\omega_{D}\right)_{V}$ denote the fact that ω_{D} is written in the vehicle-axis system. Then, it is easily seen that

$$
\left(\boldsymbol{\omega}_{D}\right)_{\mathrm{V}}=\left[\begin{array}{c}
p+S \cos \delta_{z} \tag{9}\\
q+S \sin \delta_{z} \\
r+\dot{\delta}_{z}
\end{array}\right]
$$

where $S \equiv \dot{\delta}_{x}$ is the x-component of the angularvelocity vector of the damper-axis system relative to the vehicle uxes. In other words, if S und δ_{z} were identically zero, the inertial angular velocity of the damper axes would be the same as that of the vehicle.

In general, the moment-of-inertia matrix I_{D} for
arbitrary damper-rotor configurations is diagonal and constant only if it is determined relative to a set of principal damper axes. Therefore, the term $\omega_{D}^{\prime} I_{D} \omega_{D}$ will be written relative to the damper-axis system. Let the notation $\left(\omega_{D}\right)_{D}$ denote the fact that ω_{D} is written in the damper-axis system; then,

$$
\begin{equation*}
\left(\omega_{D}\right)_{D}=\Delta\left(\omega_{D}\right)_{V} \tag{10}
\end{equation*}
$$

where $\underset{\sim}{\Delta}$ is the orthogonal transformation matrix defined by

$$
\underset{\sim}{J}=\left[\begin{array}{ccc}
\cos \delta_{z} & \sin \delta_{z} & 0 \tag{11}\\
-\sin \delta_{z} \cos \delta_{x} & \cos \delta_{z} \cos \delta_{x} & \sin \delta_{x} \\
\sin \delta_{z} \sin \delta_{x} & -\cos \delta_{z} \sin \delta_{x} & \cos \delta_{x}
\end{array}\right]
$$

Finally, the second term in the lagrangian function (eq. (6)) can be written as

$$
\begin{equation*}
\boldsymbol{\omega}_{D}^{\prime} I_{D} \boldsymbol{\omega}_{D}=\left(\omega_{D}\right)_{V}^{\prime}{\underset{\sim}{x}}^{\prime} I_{\sim} I_{\sim}^{\Delta}\left(\omega_{D}\right)_{V} \tag{12}
\end{equation*}
$$

where I_{D} is of the form

$$
I_{D}=\left[\begin{array}{ccc}
I_{x} & 0 & 0 \tag{13}\\
0 & I_{y} & 0 \\
0 & 0 & I_{z}
\end{array}\right]
$$

Thus, the complete five-component vector equation of this study can be written as

$$
\begin{equation*}
\boldsymbol{\Gamma}\left\{\frac{1}{2}\left[\boldsymbol{\omega}_{V}^{\prime} I_{\sim}^{v} \cdot \boldsymbol{\omega}_{V}+\left(\boldsymbol{\omega}_{D}\right)_{V}^{\prime} \Delta_{\sim}^{\prime}{\underset{\sim}{l}}^{\prime}{\underset{\sim}{\Delta}}_{\Delta}\left(\boldsymbol{\omega}_{D}\right)_{V}\right]\right\}=\mathbf{Q} \tag{14}
\end{equation*}
$$

General spherical damper equations.-Attention is now returned to the right-hand side of equation (12). In particular, the factor ${\underset{\sim}{~}}^{\prime}{\underset{\sim}{\sim}}_{D}^{\Delta} \underset{\sim}{\Delta}$ is to be considered. Clearly, this fuctor is an orthogonal transformation of the matrix I_{D} (see ref. 3), but more important is the fact that a spherical inertia distribution of the damper reduces this term to a scalar times the identity matrix $\underset{\sim}{E}$; thus, many terms are eliminated from the Lagrangian function.

In order to prove this statement, let $I_{x}=I_{y}=$ $I_{z}=I_{D}$. Then

$$
\begin{equation*}
\underline{I}_{D}=I_{D} \stackrel{L}{\sim} \tag{15}
\end{equation*}
$$

and, since $\underset{\sim}{\Delta}$ is orthogonal,

$$
\begin{equation*}
{\underset{\sim}{v}}^{\prime}{\underset{\sim}{D}}_{D} \Delta=I_{\sim}{\underset{\sim}{x}}^{\prime} \underset{\sim}{\Delta} \underset{\sim}{\Delta}=I_{D}{\underset{\sim}{\prime}}^{\prime} \underset{\sim}{\Delta}=I_{D} E \underset{\sim}{E} \tag{16}
\end{equation*}
$$

Thus, the proof is complete.

Hereinafter, the inertia distribution of the damper is taken to be spherical so that $I_{D}=I_{D} E$ and equation (14) is reduced to

$$
\begin{equation*}
\Gamma\left\{\frac{1}{2}\left[\omega_{V}^{\prime}{\underset{\sim}{r}}^{1} \omega_{V}+I_{D}\left(\boldsymbol{\omega}_{D}\right)_{V}^{\prime}\left(\omega_{D}\right)_{V}\right]\right\}=\mathbf{Q} \tag{17}
\end{equation*}
$$

The amalysis is restricted to vehicle configurations with

$$
\begin{equation*}
I_{X} \neq I_{Y}=I_{Z}=I^{*} \tag{1s}
\end{equation*}
$$

By going through the Lagrangian formulation with the change in variables diseussed in the appendix, equation (17) may be written as the five following scalar equations:

$$
\begin{align*}
& I_{1} \dot{p}+I_{D}\left(\dot{S} \cos \delta_{z}-S \dot{\delta_{z}} \sin \delta_{z}\right)+I_{D} \dot{\delta_{z}} \\
&-I_{D} S r \sin \delta_{z}=Q_{\mathrm{x}} \tag{19}
\end{align*}
$$

where

$$
\begin{equation*}
I_{1}=I_{X}+I_{I\rangle} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
I=I^{*}+I_{D} \tag{25}
\end{equation*}
$$

It should be noted that the left-hand side of equation (23) is contained in the left-hand side of equation (21). This is due to the fact that from familiar rigid-body dynamics,

$$
\begin{equation*}
I^{*} \dot{r}+\left(I^{*}-I_{X}\right) p q=Q_{Z}-Q_{\delta_{z}} \tag{26}
\end{equation*}
$$

where Q_{z} is the extermal torque acting on the vehicle, and $-Q_{\delta_{z}}$ is the reaction torque due to the damper. By taking $Q_{\delta_{z}}$ to the left-hand side in equation (26) and replacing it with the lefthand side of equation (23), equation (21) is obtained identically.

Linearized spherical damper equations.-The following assumptions are made in determining the linearized spherical damping equations:

1. $Q_{X}=Q_{\delta_{x}}=0$
II. The gimbal angle δ_{z} is always small enough to consider $\cos \delta_{z}=1$ and $\sin \delta_{z}=\delta_{2}$.
III. Terms containing the protucts $\dot{\delta}_{z} \delta_{z}, q \dot{\delta}_{z}$, $r \delta_{z}$, and $q \delta_{z}$ are small quantities and may be neglected.
IV. The spin rate of the vehicle p is constant and positive; that is, $\dot{p}=0$ and $p-p>0$.
V. The servo control is ideal in the sense that $\delta_{z}(t)$ will have whatever value is called for.

With assumptions I to IV, equations (19) and (22) simply give $S=$ Constant. With assumption V, equation (23) simply gives the torque output. of the servo control. Thus, the lincar amalysis is based on the following two equations:

$$
\begin{align*}
& I \dot{q}+\left[\left(I_{1}-I\right) p_{0}+I_{D} S\right] r=Q_{Y}+I_{D}\left(p_{o}-S\right) \dot{\delta}_{z} \tag{27}\\
& I \dot{r}-\left[\left(I_{1}-I\right) p_{o}+I_{D} S\right] q=Q_{Z}-I_{D} \ddot{\delta}_{2}-I_{b} S p \delta_{z} \tag{28}
\end{align*}
$$

In order to determine a value of $\delta_{z}(t)$ which will provide damping, assume that the terms containing $\delta_{z}(t)$ and its derivatives provide damping, and then make the following considerations:
(a) The left-hand sides of equations (27) and (28) have the functional form of a vehicle with no damper.
(b) The damping moment in pitch is proportional to $\dot{\delta}_{z}$.
(c) If the $\ddot{\delta}_{z}$ term in equation (28) is small compared with the δ_{z} term, then the damping moment in yaw is proportional to δ_{z}.
(d) In reference 2 , it was pointed out that damping can be introduced by a pitching moment proportional to \dot{r} and a yawing moment proportional to r.

Therefore, it seems straightforward to choose

$$
\begin{equation*}
\delta_{z}=K r \tag{29}
\end{equation*}
$$

where the constant K will be referred to as the control sensitivity, or guin. With this choice of δ_{z}, equations (27) and (28) are rewritten as

$$
\begin{gather*}
\dot{q}+A \dot{r}+B r=\frac{Q_{r}}{I} \tag{30}\\
-B q+(\dddot{r}+\dot{r}+I)_{r=}=\frac{Q_{Z}}{I} \tag{31}
\end{gather*}
$$

where

$$
\begin{equation*}
A=\frac{I_{D}\left(S-p_{o}\right) K}{I} \tag{32}
\end{equation*}
$$

$$
\begin{gather*}
B=\frac{\left(I_{1}-I p_{n}+I_{m} S\right.}{I} \tag{33}\\
\left(=I_{t} K\right. \tag{34}\\
l \tag{35}\\
D=\frac{I_{D} S p_{p}}{I} K
\end{gather*}
$$

Taking the Laplace transformations of equations (30) and (31) gives

$$
\begin{array}{r}
s \bar{q}+(A s+B) \bar{r}=\frac{\bar{\eta}_{r}}{l}+q_{u}+A r_{v} \\
-B \bar{q}+\left(\left(s^{2}+s+I\right) \bar{r}=\frac{\bar{O}_{z}}{I}+(r s+1) r_{u}+\left(\dot{r}_{0}\right.\right. \tag{37}
\end{array}
$$

from which the cubic characteristic equation is

$$
\begin{equation*}
\left(x^{3}+x^{2}+(A B+I) x-B^{2} \quad 0\right. \tag{3N}
\end{equation*}
$$

SYSTEM STABLLITY
Derivation of general system stability crite-rion.--The Routh-Hurwitz stability riterion (see rel. 4) states that all the roots of equation (38) will have negative real parts if the following conditions hold:

$$
\begin{aligned}
& \text { 1. } C^{2}>0 \\
& \text { II. } B^{2}>0 \\
& \text { III. } A B+I)-\left(B^{2}>0\right.
\end{aligned}
$$

Condition I: From equation (34), $(>0$ holds only if $K>0$. Hereinafter K is taken to be positive.

Condition II: Since B is real, $B^{2} \geqq 0$; therefore, the case where $B=0$ must be avoided. It can be noted that B is zero when

$$
\begin{equation*}
S=\frac{I^{*}-I_{X}}{I_{D}} \tag{39}
\end{equation*}
$$

hence, this value of S must be avoided in the design of a stable system.

Condition III: For $B \neq 0$, the remaining condition which must be satisfied is given by

$$
\begin{equation*}
A B+I-\left(B^{2}>0\right. \tag{40}
\end{equation*}
$$

By substituting the expressions for $A, B,($, and D given in equations (32) to (35) into inequality
(40), the following inequality is obtained:

$$
\begin{align*}
& I_{D}\left(I-I_{D}\right) S^{2}+\left(I I_{1}!I I_{D}-2 I_{1} I_{D}\right) \mu_{n} S \\
&-I_{1}\left(I_{1}-I\right) \mu_{0}^{\prime 2} 0 \tag{41}
\end{align*}
$$

Now consider the left-hand side of inequalits (41) as a quadratic function ol S defined by

$$
\begin{equation*}
F(S)-a S^{2}+b S-c \tag{42}
\end{equation*}
$$

where

$$
\begin{gather*}
a:=I_{D}\left(I-I_{D}\right)=I_{D} I^{*} \tag{4:3}\\
b \cdots\left(I_{1}+-I I_{D}-2 I_{I} I_{D}\right) p_{\prime \prime} \tag{44}\\
c--I_{1}\left(I_{1}-I\right) p_{\theta}^{\prime 2} \tag{45}
\end{gather*}
$$

Since $a>0$, us $|S|>\infty, F(S) \cdots+\infty$; thus, there are two cases to consider: (1) Eithor $F(S)>0$ for all real values of S or (2) there are two values of S, suy $S^{(1)}$ and $S^{(2)}$ with $S^{(1)} \leqq S^{(2)}$, such that $S^{(1)} \leqq S \leqq S^{(2)}$ implies $F(S) \leqq 0$.

In the first case, $F(S)>0$ for all real values of S. If $F(S)>0$ for all real values of S, then solving $F(S)=0$ for S must qive romplex solutions, a fact which implies

$$
\begin{equation*}
b^{2}<4 a c \tag{46}
\end{equation*}
$$

By substituting expressions for a, b, and c given in equations (43), (44), and (45), the following inequality is obtained:

$$
\begin{equation*}
I_{x^{2}}<0 \tag{47}
\end{equation*}
$$

Which ramot be true. Therefore, $F^{\prime}(S)$ amot be positive for all real values of S.

In the second case, $S^{(1)} \leqq S \leqq S^{(2)}$ implies $F(S) \leqq 0$. Solving $F^{\prime}(S)=0$ for $S^{(1)}$ and $S^{(2)}$ gives

$$
\begin{align*}
& S^{(1)}=-p_{0}\left(1+\frac{I_{X}}{I_{D}}\right) \tag{48}\\
& S^{(2)}-p_{u}\left(\frac{I_{X}}{I^{*}}-1\right) \tag{49}
\end{align*}
$$

The general stability requirements are:
I. K is positive.
II. $S \neq \frac{I^{*}-I_{X}}{I_{D}} p_{0}$

1II. Either $S \ll S^{(1)}$ or $S>S^{(2)}$.
Simplified stability criterion.--If S^{*} is restricted to positive values, the following conditions are sufficient for stability.
I. For vehicles with $I^{*}<I_{X}$ (disklike configuration),

$$
\begin{equation*}
S>p_{0}>0 \tag{50}
\end{equation*}
$$

implies stability. This condition follows from the fact that the sum of my two principal moments of inertia of a body must be greater than or equal to the third principal moment of inertia, so $I_{X} \leqq 2 I^{*}$, and from equation (49) $S^{(2)} \leqq p_{p}$. Also, equation (39) does not hold since the righthamel side is negative.
II. For vehicles with $I_{X}=I^{*}$ (spherical configuration),

$$
\begin{equation*}
S>0 \tag{51}
\end{equation*}
$$

implies stability. This condition follows from the fact that $S^{(2)}=0$, and the righthamel side of equation (39) is zero.

ILI. For vehicles with $I^{*}>I_{x}$ (pencillike ronfiguration),

$$
\begin{equation*}
0<S \neq \frac{I^{*}--I_{x}}{I_{n}} p_{n} \tag{52}
\end{equation*}
$$

implies stability.

NUMERICAL EXAMPLES

Two cuses were selected to illustrate applications of spherical dampers. The first case, a pencillike vehicle configuration, was taken to be representative of the spinning payloads of some state-ol'theart space vehicles. The second case, a toroidal vehicle configuration, was taken to represent the type of vehicle which might be used for a mamed space station.

PENCILLIKE VEHICLE

The assmoption $Q_{Y}=Q_{Z}=r_{a}=\dot{r}_{u}=0$, equations (30) and (31), and the data given in table I were used to calculate the time histories of q / q_{0} and r / q_{0} ploted in figure 4 . The damper rotor for the pencillike vehicle was assumed to be a spherical

TABLE I.-VALUES OF PARAMETERS VSEI FOR NUMERICAL EXAMPILS

l'arimeter	Configuration	
	Pencilike	'Torobial
1, slug-ft ${ }^{\text {2 }}$ -	41.21	3×9.207
It, stug- It^{-1}	6. 26	754, 207
To, slug-11*....	(1.) 0	20%
K, ser	0.25	0. 1.25
p_{0}, radians per sec.	23.3	1.27
40, radians per sec-	(1. 42	0. 401
S, radians der sece....-. - . .	1,409	120

Figune 4. Time histories of q / q_{0} and r / q_{0} for numerical example of pencillike vehicle with spherical damper. $t_{12}=3.95$ seconds; $P=0.325$ second.
shell with a 6 -inch radius and a weight of 2 pounds. If the spherical shell were made of a high-grade sted, the structural integrity of the shell should be adequate for the spin rates S and p_{0} used in this mumerical example. The total weight of the damper system (excluding power supply) was estimated to be about 3.5 pounds whereas the vehicle weight (without damper) was considered to be about 350 pounds.

In this example, the real root had a large negative value so that q and r appear as damped oscillations with a time to damp to one-half amplitude of 3.95 seconds and a period of 0.325 second.

TOROIDAL, VEHICLE

The assumption $Q_{Y}=\left(Q_{Z}=r_{o}=\dot{r}_{0}=0\right.$, equations (30) and (31), and the data given in table I were used to calculate the time histories of q / q_{0} and r / q_{n} plotied in figure 5 . The damper rotor, located at the center of the toroid, was assumed to be a high-grade-steel spherical shell with a radius of 6.58 feet and a weight of 223 pounds. The total weight of the damper system would be

Figure 5.--Time histories of q / q_{o} and r / q_{o} for numerical example of toroidal vehicle with spherical damper. $t_{1 / 2}=34.76$ secondr; $P^{\prime}=5.1$ seconds.

300 to 350 pounds. The toroidal vehicle configuration was assumed to be generated by revolving a cirele with a 5 -foot radius about an axis 20 leet from its center. The total vehicle weight was considered to be 29 tons.
In this example, the real root had a large negative value so that q and r appear as damped oscillations with a time to damp to one-half amplitude of 34.76 seronds and a period of 5.1 seconds.

GENERAL DISCUSSION OF NUMERICAL EXAMPLES

Since both numerical examples of this study demonstrated a large separation between the real and oscillatory roots, it seemed reasonable to assume that there should be some simple method for estimating the roots of the characteristic equation (eq. (38)). This approximation was made in the following mamer. Consider the cubic expression

$$
\begin{align*}
&(C s+1)\left[s^{2}+\right.\left.(A B+D) s+B^{2}\right] \\
& \quad=\left(s^{3}+[1+C(A B+D)] s^{2}\right. \\
& \quad+\left[(A B+D)+\left(B^{2}\right] s+B^{2}\right. \tag{53}
\end{align*}
$$

If $\left(B^{2} \mid \lll A B+l\right)$ and $|(C A B+I)| \ll 1$, then setting the left-hand side of equation (53) equal to zero gives a good approximation of the characteristic equation and a simple means of estimating the roots. For the two numerical cases of this study, the roots estimated in this manner are compared with the actual roots of equation (38) in table II, and they are seen to be in good agreement.

It should be noted that the term ($A B+D$), which governs the damping of the oscillation in cases for which equation (53) (can be used, can be written as

$$
\begin{equation*}
A B+D=K S p_{p} \frac{I_{D} I_{1}}{I^{2}}\left[\left(1-\frac{p_{0}}{S}\right)\left(1+\frac{I_{D} S}{l_{1} p_{o}}\right)+\frac{I p_{0}}{I_{1} S}\right] \tag{54}
\end{equation*}
$$

It is seen that the damping of the oscillation is proportional to the gain constant K. On the other hand, the real root is approximated by

$$
\begin{equation*}
-\frac{1}{l}=-\frac{I}{l_{n} K} \tag{55}
\end{equation*}
$$

and is inversely proportional to K. Therefore, one might draw the rather obvious conclusion that for a given vehicle-damper system, there should be an optimum value of the gain. This facet of the problem is not treated herein. However, equations (54) and (55) indicate that for some practical applications, the sustem designer has a good degree of latitude in the selection of system performance and weight through the choice of values for K, S, and I_{D}.

TABLE II. ('OMPARISON OF ROOTS OF (HARACTERISTIC RQLATION OIBTAINED) BY WNACT AND APPROXIMATE MHTHODS FOR NUMERICAL DNAMPLES

CONCLUDING REMARKS

A theoretical study was made of a device which might be used to damp the angular motions of spin-stabilized space vehicles. The device was
assumed to consist of a rate gyro, a servo control, and a single grimbal-mounted rotor. The basic moment equations for an axially symmetric vehicle with a spherical damper were derived and linearized. A rontrol command signal was defined so that the gimbal deflection was made proportional to vehicle yaw rate, and the general conditions for stability were obtained. These conditions
were found to be feasible for most problems of interest. The general stability criterion can be simplified and still cover a large class of practical applications.

Langley Research Cexter,
Natioxal Aeronautics and space: Administration, Langley Station, Hampton, Va., December 1, 1961

APPENDIX

LagRangian formulation of equations with change of variables

The problem of elimmating the Euler angles and their fates from the Lagrangian formalation of the moment equations is discussed in reference 5 . However, reference 5 deals with a three-degree-of-freedom system wherens the system considered in this study has five degrees of rotational freedom. Therefore, this appendix is devoted to presenting some of the details of the formulation of the equations used in the study.

Consider first the Lagrangian equation

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\phi}}\right)-\frac{\partial L}{\partial \phi}=U_{0} \tag{AI}
\end{equation*}
$$

with the Euler angles defined as shown in figure 3. The expressions relating p, q, and r to the Euler ungular motes (see ref. 6) are

$$
\begin{gather*}
\mu=\dot{\phi}-\dot{\psi} \sin \theta \tag{A2}\\
q=\dot{\theta} \cos \phi+\dot{\psi} \sin \phi \cos \theta \tag{A;3}\\
r \dot{\psi} \cos \phi \cos \theta-\dot{\theta} \sin \phi \tag{14}
\end{gather*}
$$

from which

$$
\begin{equation*}
\frac{\partial L}{\partial \dot{\phi}}=\frac{\partial L \cdot \partial p}{\partial p, \partial \dot{\phi}}+\frac{\partial L}{\partial q} \partial \underline{\partial} \dot{\phi}+\frac{\partial L}{\partial r} \partial r=\frac{\partial L}{\partial \dot{\phi}} \frac{\partial p}{\partial p} \tag{A5}
\end{equation*}
$$

It is casy to show that

$$
\begin{gather*}
\partial q=r \tag{A6}\\
\partial \phi \tag{A7}\\
\frac{\partial r}{\partial \phi}==-\eta \tag{As}\\
\frac{\partial p}{\partial \phi}=0
\end{gather*}
$$

Thus,

$$
\frac{\partial L}{\partial \phi}=\frac{\partial L \frac{\partial p}{\partial p} \frac{\partial \phi}{\partial \phi}+\frac{\partial L}{\partial q} \frac{\partial q}{\partial \phi}+\frac{\partial L}{\partial r} \frac{\partial r}{\partial \phi}=r}{\partial L} \frac{\partial L}{\partial q}-q \frac{\partial L}{\partial r}
$$

Simee $Q_{\phi} \equiv Q_{x}$, equation (Al) can be replaced by the equivalent expression

$$
\frac{d}{d t}\binom{\partial L}{d p}+q \frac{\partial L}{\partial r-r} \frac{\partial L}{\partial q_{f}}=Q_{x}
$$

Note that by using the Lagrangian function written in terms of $p, g, r, \delta_{x}, \dot{\delta}_{x}, \delta_{z}$, and $\dot{\delta}_{z}$, equation (A10) is independent of the Euler angles. That is to say, equation (A10) involves only quantities which are moasured relative to the XVZ system; therefore, it must be independent of the order in which the Euler motations are taken. Thus equation (Alo) will not be afferted if the order of rotations is changed.

Now suppose that the order of the Euler angular rotations is defined as shown in figure (i) (a). With this definition, the following relationships are true:

$$
\begin{gather*}
Q_{\theta}=Q_{V} \tag{A11}\\
q=\dot{\theta}-\dot{\phi} \sin \psi \tag{A12}
\end{gather*}
$$

$$
\begin{equation*}
r=\dot{\psi} \cos \theta+\dot{\phi} \cos \psi \sin \theta \tag{A1B}
\end{equation*}
$$

$$
\begin{equation*}
p=\dot{\phi} \cos \psi \cos \theta-\dot{\psi} \sin \theta \tag{A14}
\end{equation*}
$$

$$
\frac{\partial p}{\partial \theta}=-r
$$

$$
\frac{\partial r}{\partial \theta}=p
$$

'Thus

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \bar{\theta}}\right)-\frac{\partial L}{\partial \theta}=Q_{\theta} \tag{A20}
\end{equation*}
$$

can be replaced by the equivalent expression

$$
\frac{d}{d t}\left(\begin{array}{l}
\frac{\partial L}{\partial q} \tag{A21}
\end{array}\right)+r \frac{\partial L}{\partial p}-p \frac{\partial L}{\partial r}=Q_{r}
$$

By the same argument as used previously, equation (A21) is independent of the Euler angles and the order in which the rotations are taken.

Finally, if the order of rotations is defined as shown in figure $6(\mathrm{~b})$, the same procedure used

Figure 6. Illustration of altermate choices of the order in which the Euler rotations may be akem.
before would lead to the following equation:

$$
\begin{equation*}
\frac{d}{d t}\binom{\partial L}{\partial r}+p \frac{\partial L}{\partial q}-q \frac{\partial L}{\partial p}=Q_{Z} \tag{A22}
\end{equation*}
$$

Thus the equations of the study may be derived by writing the Lagrangian function in terms of $p, q, r, \delta_{x}, \dot{\delta}_{x}, \delta_{z}$, and $\dot{\delta}_{z}$ and using the following expressions:

$$
\begin{align*}
& \frac{d}{d t}\binom{\partial L}{\partial p}+q \frac{\partial L}{\partial r}-, \frac{\partial L}{\partial q}=Q_{r} \tag{A23}\\
& \frac{d}{d t}\binom{\partial L}{\partial q}+r \frac{\partial L}{\partial \rho} \rho^{\prime}, \frac{\partial L}{\partial r}=\ell_{r} \tag{A24}\\
& \frac{d}{i l}\binom{\partial L}{\partial r}+p \frac{\partial L}{\partial q}-q \frac{\partial L}{\partial p}=Q_{Z} \tag{A25}\\
& \frac{d}{d t}\binom{\partial L}{\partial \dot{\delta}_{x}}-\frac{\partial L}{\partial \delta_{x}}=\left(\partial_{\delta_{x}}\right. \\
& { }_{d t}^{d}\binom{\partial L}{\partial \dot{\delta}_{z}}-\frac{\partial L}{\partial \delta_{z}}=O \delta_{z} \tag{A27}
\end{align*}
$$

It is of interest to mote that if $\nabla \omega$ is defmed so that

$$
\nabla_{\omega} L \equiv\left[\begin{array}{l}
\partial L / \partial \rho \tag{A2S}\\
\partial / / \partial q \\
\partial L / \partial r
\end{array}\right]
$$

then equations ($A 23$), ($A 24$), and ($A 25$) can be written as

$$
\begin{equation*}
\frac{d}{d t}\left(\nabla_{\omega} L\right)+\omega_{1} \times \nabla_{\omega} L=Q_{x} \mathbf{i}+\ell_{\cdot} \mathbf{j}+\ell_{z} \mathbf{k} \tag{A29}
\end{equation*}
$$

If L were simply the kinctic energy of a vehicle with no damper, given by

$$
\begin{equation*}
L_{1}=\underset{2}{1} \omega_{1}^{\prime}{\underset{\sim}{r}}^{I_{1}} \boldsymbol{\omega}_{1} \tag{A30}
\end{equation*}
$$

thet

$$
\begin{equation*}
\nabla_{\omega} L=I_{v} \cdot \boldsymbol{\omega}_{V}=\mathbf{H}_{V} \tag{A;3}
\end{equation*}
$$

and equation (A29) would be Euleres equations (see ref. 5) in vector lorm.

REFERENCES

1. Adams, J. J.: Study of an Aotive Control System for a Spiming Body. NASA TN D-905, 1961.
2. Suddath, Jerrold F.: A Theoretiend Study of the Anguhat Motions of spinting Bodies in Space. NASA TR K-83, 1961.
3. Margenan, Henry, and Murphy, George Moseley: The Mathomaties of Physies and Chemistry. Seconded., 1). Van Nostramd Co., Ine., c. 1956, p. 317.
4. Anon.: Fundamentals of Design of Piloted Aircraft Flight Control Sisteme. Vol. I -Methode of Analy-
sis and Synthesis of Piloted Areraft Flight Control Systems. Rep. AE-61-4, Bur. Aero., Oet. 1952, p. A-50.
5. Goldstein, Horbert: Chasical Mechanics, AddisonWesley Pub. (o., Inc. (Rading, Mass.), c.1959, pp. $156-158$.
6. Anon.: Fundamentals of Dexign of Piloted Aircraft Flight Control Systems. Vol. II -I)ynamies of the dirframe, Rep. Ali-61-4, Bur. Aero., Feb. 1953, 1). II-10.

