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NATIONAL Al3RONAUTICS AND SPACE ADIINISTRATION 

EXPERIMENTAL INVESTIGATION OF FLUTTER 

OF BUCKJXD CURVED PANELS HAVING LONGITUDINAL STRINGERS 

AT TRANSONIC AND SUPERSONIC SPEEDS* 

By W. J. Tuovila and Robert W. Hess 

SUMMARY 
j y d  V 3 -  

Panel - f lu t te r  t e s t s  have been made at t ransonic  and supersonic 
speeds With pa r t i cu la r  reference t o  buckled curved panels with longi tu-  
d ina l  s t r ingers .  Other panel configurations were a lso t e s t e d  i n  an 
attempt t o  determine e f f ec t s  of skin thickness,  curvature, s t r i nge r s ,  
buckling, pressure d i f f e r e n t i a l ,  and Mach number on the  dynamic pressure 
necessary t o  start f l u t t e r .  

For buckled curved panels with longi tudinal  stringers, the  dynamic 
pressure required t o  start f l u t t e r  was increased by increasing the  skin 
thickness and increasing the  pressure d i f f e r e n t i a l  across  the panel.  
There was no apparent e f f e c t  of Mach number va r i a t ion  from 1.3  t o  2.0. 
None of the  curved panels f a i l e d  because of f l u t t e r  although the  dynamic 
pressure a t  t h e  start of f l u t t e r  was exceeded by a f a c t o r  of 3 i n  many 
cases. 
curved panels and four  f la t  panels f a i l e d  because of f l u t t e r .  

The f la t  panels f l u t t e r e d  at  lower dynamic pressures  than the  

INTRODUCTION 

Analytical  s tud ies  of t h e  pane l - f lu t te r  problem have been made by 
many inves t iga tors  but,  as yet, there  i s  no r e l i a b l e  so lu t ion  f o r  t he  
case of buckled panels of thin-walled cylinders with longi tudina l  s t iff-  
eners. Furthermore, experimental da t a  (refs. 1 t o  5 )  a re  scarce and, i n  
order t o  obtain addi t iona l  data  t h a t  might be applicable t o  the  f l u t t e r  
of thin-walled s t i f f ened  cylinders (simulating m i s s i l e  construct ion)  
buckled by axial compression (simulating miss i le  loading),  some experi- 
ments were performed i n  the  Langley 9- by 18-inch supersonic a e r o e l a s t i c i t y  

T i t l e ,  Unclassified. * 
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tunnel. Cylinders with axial airflow over the outside only were simu- c) 
l a t e d  by mounting curved panels as pa r t  of the  tunnel s ide wall. 

Ef fec ts  of panel curvature, s t i f f ene r s ,  thickness, buckling, pres- 
sure d i f f e r e n t i a l ,  and Mach number were investigated a t  Mach numbers 
from 0.85 t o  2.0. Most of the  t e s t i n g  was done a t  M = 1.3 
curved panels having longi tudinal  s t i f f ene r s .  

with buckled 

SYMBOLS 

a 

E Young's modulus, p s i  

speed of sound i n  t es t  section, f t / s ec  

2 panel length, in .  

M Mach number 

4 pressure d i f f e r e n t i a l  across panel, pos i t ive  when tunnel  s t a t i c  
pressure i s  less than sealing-chamber pressure, p s i  

9 dynamic pressure, p s i  

R radius  

t panel thickness, in . .  

W panel width, 

P air  density,  

i n .  

slugs /f t 3  

Q 

APPARATUS AND TEST METHODS 

Models 

All the  models were made from standard-gage sheet aluminum 202LT81 
a l l o y  having unsupported dimensions of 9.62 inches wide by 11.62 inches 
long. 
0.010 inch (measured near ly  0,011 inch), and 0.012 inch. 

The nominal skin thicknesses of t he  models were 0.008 inch, 

Figure 1 shows a sketch of the  f l a t  and curved s t r ingered panels. 
The s t r inge r s  were the same s i ze  f o r  both skin thicknesses. They were 
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glued t o  the  sk ins  but after run 11 flush  r i v e t s  were added because the  
glued j o i n t s  failed when t h e  panels were put under enough compression t o  
produce buckling. 
up t o  about 1/8 inch were induced by forcing the f ron t  and rear clamps 
toward each other.  
buckling operation. The compression loads were t ransmit ted t o  t h e  
stringers through the  skin since the  clamps acted only on t h e  skins.  

The panels were clamped on four edges and buckle depths 

A l l  four  edges of the  panels were clamped during the  

Figure 2 shows a rear view of a curved panel and i t s  instrumentation 
held i n  a mounting that i s  a removable pa r t  of t h e  wind-tunnel w a l l .  Not 
shown i n  f igure  2 i s  the  cy l indr ica l  a i r t i g h t  chamber t h a t  enclosed the  
rear of the  panel and allowed the pressure behind the panel t o  be con- 
t ro l l ed .  The vent holes on the r i g h t  s ide  of f igure  2 were used t o  
equalize the  pressure i n  the chamber behind the  panels with the  tes t -  
sect ion s t a t i c  pressure. F igure .3  shows a f ron t  view of the same panel 
p r i o r  t o  a tes t  run. 

Instrument a t  ion 

The motion of the  s t r i p  of panel between t h e  upper and middle 
s t r inge r s  was detected by s i x  e s sen t i a l ly  equally spaced inductance c o i l s .  
The ends of the c o i l s  were kept about 0.2 inch away from the panel i n  
order t o  prevent t he  panel from contacting the  c o i l s  during f l u t t e r .  
The s t r a i n  at  the  f ron t  and rear of the s t r i p  of panel below the center  ’ 

s t r inge r  was detected by two s t r a i n  gages glued t o  the  back of the  panel. 
High-speed motion p ic tures  were a l so  taken and a sheet of heat-absorbing 
g lass  was used between the  photographic l i g h t s  and the panels t o  prevent 
heating t h e  panels. The pressure difference between t h e  tes t  sect ion and 
the  back of t h e  panel was measured wi th  a fl p s i  pressure c e l l .  
s igna ls  from the co i l s ,  s t r a i n  gages, and d i f f e r e n t i a l  pressure c e l l  were 
recorded by an oscil lograph which also recorded the  tunnel  conditions.  

\ 

The 

Wind Tukel 

The tests were run i n  the  Langley 9- by 18-inch supersonic aero- 
It i s  a two-dimensional blowdown-type tunnel  t h a t  e l a s t i c i t y  tunnel. 

operates at  a maximum stagnation pressure of 95 p s i a  and exhausts i n t o  
a vacuum vessel.  
M = 1 . 3  and 2.0 
transonic nozzle i s  used. 

The tes t - sec t ion  s i z e  i s  9 by 18 inches when t h e  
nozzles are used and 9 by 14 inches when t h e  s l o t t e d  

For the  tests of the curved panels at  M = 1 . 3  and a t  t ransonic  
speeds, a f a i r i n g  was extended along t h e  tunnel s ide wall upstream of 
the model i n t o  t h e  stagnation tank. This f a i r i n g  was used t o  prevent 
tunnel” choking and t o  eliminate shock vaves tha t  would be generated by 



a ramp type of fairing. Static-pressure measurements made over the 
area of the panel indicated t h a t  the  f a i r i n g  introduced no appreciable 
gradients  over the panel. A t  M = 2.0 a ramp type of f a i r i n g  was used 
because r e f l ec t ed  shock waves were swept behind the panel and tunnel 
choking was not a problem. The downstream end of t he  panels was f a i r e d  
i n t o  t h e  s ide w a l l .  

The vent holes, shown i n  f igure  2, kept t h e  panels at  near ly  zero 
pressure d i f f e r e n t i a l .  By opening a valve on the back of the chamber 
t o  e i t h e r  t h e  atmosphere o r  the  tunnel  d i f fuser ,  t he  pressure differen-  
t i a l  could be made pos i t ive  o r  negative, respectively.  The amount of 
pressure d i f f e r e n t i a l  could be controlled by adjust ing the  valve se t t i ng .  

Testing Technique 

Preliminary t o  a test ,  the  e n t i r e  tunnel system up t o  the valve a t  
the tunnel air-supply tank w a s  evacuated t o  about 1 psia. The tes ts  w e r e  
made by manually control l ing the opening of the pressure valve t o  ge t  
the  desired tunnel  conditions. The duration of established flow w a s  
2 t o  5 seconds. For the shor te r  running t i m e s  t he  control  of t h e  panel 
pressur iza t ion  w a s  a matter of prese t t ing  the valve on the chamber and 
taking whatever pressur iza t ion  resul ted.  During the longer runs the  
chamber valve opening was changed during the  run i n  an attempt t o  con- 
t r o l  the  f l u t t e r  by changing t h e  panel pressurizat ion.  
t i v e l y  shor t  durat ion of t h e  runs the  stagnation temperature remained 
e s s e n t i a l l y  constant.  

During the  rela- 

RESULTS AND DISCUSSION 

The da ta  obtained from these panel tes ts  are presented i n  t a b l e  I. 
I n  t h e  table the re  are l i s t e d  an ident i fying t e s t  run number, t h e  Mach 
number M, and the speed of sound a. The dynamic pressure q, air  
densi ty  p, and pressure d i f f e r e n t i a l  4 across the  panel are given 
a t  t h e  start of f l u t t e r  ( i f  it occurred), at  the  m a x i m u m  value of q 
of the test  run, regardless  of whether f l u t t e r  occurred or not, and when 
f l u t t e r  stopped during r e l a t i v e l y  few t e s t  runs. The frequencies l i s t e d  
are ,  first,  t h e  frequency at  the start of f l u t t e r  and, second, any other  
predominant frequency tha t  appeared during a t e s t  run. 

parameter L(g B)l/j is  given f o r  the start of f l u t t e r .  Listed under 

the heading "Remarks" are t h e  following categories: 
ter ,  "oilcanning" osc i l l a t ion ,  and no f l u t t e r .  During traveling-wave 
f l u t t e r  a region o r  regions of maximum deflect ion moved more o r  less 
s t ead i ly  downstream, much as a f l a g  f l u t t e r s  i n  the  breeze, and no node 

The panel f l u t t e r  

1 9  
traveling-wave f l u t -  
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l i n e s  were present.  In  contrast ,  during oilcanning o s c i l l a t i o n  regions 
of the panel vibrated i n  and out as standing waves wi th  node l i n e s  of no 
motion occurring between regions of motion. The traveling-wave f l u t t e r  
and oilcanning o s c i l l a t i o n  were distinguished primarily by viewing i n  slow 
motion t h e  high-speed motion pictures  taken during,each run. In  a nun- 
ber of cases, designated oilcanning osc i l l a t ion ,  there was a clean sinus- 
o i d a l  s igna l  near the start of the record, before the  flow i n  the  tunnel 
s tab i l ized ,  which continued throughout the run. This type of o s c i l l a t i o n  
was a t t r ibu ted  t o  noise, but i n  cases where the osc i l l a t ion  s t a r t e d  after 
the  flow was s t ab i l i zed  it was not possible t o  d is t inguish  between noise 
and oilcanning f l u t t e r .  A l l  the panels tested with t h e  t ransonic  noz- 
z l e  exhibited an oilcanning type of o sc i l l a t ion ,  with the exception of 
two tests. 
gradually that  it was d i f f i c u l t  t o  determine the  s t a r t i n g  point i n  terms 
of q.  
t o  the  Mach 1 . 3  and Mach 2 data .  
traveling-wave o s c i l l a t i o n  (run 107) i s  presented i n  f igure  &(a). 
ure 4(b) i s  a port ion of a record (run 164) of an oilcanning o s c i l l a t i o n  
tha t  started from essen t i a l ly  zero amplitude and continued throughout t he  
run. 

This type of o sc i l l a t ion  developed from zero amplitude so 

For t h i s  reason there  are no t ransonic- f lu t te r  r e s u l t s  comparable 
A sample oscil lograph record of a 

Fig- 

The various panels are iden t i f i ed  by a simple code as follows: 
number 8, 10, or 12 indicates  the nominal skin thickness i n  thousandths 
of an inch; the l e t t e r  refers t o  t h e  material, aluminum al loy;  the 
le t te r  F refers t o  f la t  panels o r  the le t te r  C refers t o  curved 
panels; the  l e t t e r  S indicates  t h a t  t h e  panel had longi tudinal  s t r ingers ;  
the le t te r  B ind ica tes  that  the panel was under compression t o  produce 
buckling; the l e t t e r  R indicates  that  t he  s t r inge r s  were res t ra ined  by 
r ings.  Thus, the designation lOACSB indicates  a curved panel with 0.010- 
inch-thick aluminum-alloy skin, longitudinal stringers, and i n  a buckled 
condition. Most of the t e s t i n g  Was done using models lOACSB and 8ACSB 
since curved panels with stringers were of primary i n t e re s t .  The test  
r e s u l t s  of these two configurations are plot ted,  f o r  conditions at  the 
start of f l u t t e r ,  i n  f igure  5 i n  terms of the panel f l u t t e r  parameter 

The 

A 

and 4 / q .  The panel f l u t t e r  parameter groups the data by 

Ma'ch humber; however, the value of 
same f o r  M = 1.3 and M = 2. A conservative value of the f l u t t e r  
parameter f o r  M = 1.3 is  approximately 0.095 and fo r  M = 2 it i s  
approximately 0.13. 

q f o r  f l u t t e r  was p r a c t i c a l l y  t h e  

The e f fec t  of panel pressurizat ion was investigated by making rela- 
t i v e l y  long runs (104 t o  109 and ll7 t o  120) at a value of 
enough t o  produce f l u t t e r .  
sur iza t ion  was increased u n t i l  f l u t t e r  stopped. Figure 6 shows q 
plo t ted  against  4 

q high 
A s  soon as f l u t t e r  started the panel pres- 

from the start of f l u t t e r  t o  the end of f l u t t e r  f o r  



8ACSB and lOACSB panels f o r  various tunnel runs at 
show t h a t  pos i t ive  pressure d i f f e r e n t i a l s  on the  order of 0.5 p s i  were 
su f f i c i en t  t o  stop the  f l u t t e r  of these panels. 

M = 1 . 3 .  The r e s u l t s  

A deep buckle appears t o  s t i f f e n  the  panel and raise t h e  f l u t t e r  
dynamic pressure. This i s  indicated when the  r e s u l t s  of t he  lOACS and 
lOACSB panel t e s t s  are compared a t  M = 1.3 i n  f igure  7. "he lOACS panel 
f l u t t e r e d  a t  an appreciably lower value of 
Although there  was no del iberate  attempt t o  form buckles, s l i g h t  i r regu-  
l a r i t i es  were present .in t he  lOACS panels because of fabr ica t ion  and 
mounting. A similar t rend may be noted i n  the  comparison of t he  8ACSB 4 
and the  8ACSBR data  a t  M = 2.0. 
t h e  8ACSBR panael prevented the  s t r inge r s  from moving i n  tors ion  and 
res t ra ined  the  formation of deep buckles. 
had deeper buckles and f l u t t e r e d  a t  higher valges -of 
t i o n  of t he  significance of ;the depth of t he  buckle of a panel clamped 
on four  edges on the f l u t t e r  dynamic pressure i s  the  same as that  m a d e  
i n  reference 3 .  

q than did the  lOACSB panel. 

The r ings connecting the  s t r inge r s  of 

Consequently t h e  8ACSB panels 
q. This observa- 

The e f f e c t  of curvature and s t r ingers  f o r  aspect r a t i o )  i s  not ea s i ly  
separated from the  e f f ec t  of buckling. 
dynamic pressures f o r  panels lOAFSB and lOACSB a t  
tha t ,  a t  least f o r  panels with compression buckles, t he  e f f e c t  of curva- 
ture i s  favorable ( f i g .  7 ) .  If the  r e s u l t s  of mode$s lOAC and,lOACS are- 
compared, it would appear t h a t  the  addition,of str-l"hgws t o  unbuckled 
panels i s  unfavorable. 
ered panels and they had high negative pressure d i f f e ren t i a l9  which pro- 
duced buckling during t h e  runs. 
Peep buckles, t h e  10AC-panel r e s u l t s  camot  be Compared with the  10ACS- 
panel r e s u l t s  f o r  the  e f f ec t  of s t r ingers  only. 

On tihe basis of the f l u t t e r  
M = 1.3 i,t appears 

However, only a few tests were made with unstring- 

Because of t he  s ta$ i l iz ing  effect of 

I 

The benef ic ia l  e f f ec t  of thickness on t h e  f l u t t e r  dynamic pressure 
i s  demonstrated only f o r  t'ne buckled pane l spy  the  difference i n  the  
minimum f l u t t e r  dynamic pressure of t he  lOACSB and the  8ACSB panels a t  
M = 1 . 3 .  A s  may be noted i n  figure 7, f o r  these pa r t i cu la r  paneJs the  
minimum value of 
f o r  t he  lOACSB panel;. 

q f o r  t h e  8ACSB panels was approximately half  t h a t  

* 

None of the  curved panels f a i l e d  during fMt ter  although the  dynamic 
pressure a t  the  start of f l u t t e r  was exceeded by a f ac to r  of 3 on many 
runs. Each run was only 2 t o  5 seconds long; however, some panels were 
run as mapy as 28 times. Destructive f l u t t e r  was obtained i n  four runs 
(1, 5 ,  6, and 9) with f la t  panels. 
having s t r inge r s  but t he  s t r ingers  were not f u l l y  e f fec t ive  because the  
bond between s t r inge r s  and skin f a i l e d  locally'where the  buckling 
occurred. R u n s  1 and 6 were made with unstringered panels. 
therefore,  t h a t  panel f l u t t e r  can be immediately destruct ive or  it can 
lead to ' fa t igue  failure depending on the panel configuration and operating 
conditions. 

R u n s  5 and 9 were made with panels 

It appears, 



It i s  of i n t e r e s t  t o  superimpose i n  f igure  8 the  r e s u l t s  of the  
present tests on f igure  14 of reference 3 ,  although the  $esul ts  of ref- 
erence 3 are f o r  f l a t  panels clamped on four edges with zero pressure 
d i f f e ren t i a l .  The crosshatched areas include a l l  the  present t e s t  
r e s u l t s  a t  M = 1.3 and 2.0. The range of the  r e s u l t s  i s  a t t r i bu ted  t o  
var iables  a f fec t ing  panel f l u t t e r  tha t  are not accounted f o r  i n  the 
f l u t t e r  parameter, such as pressurizat ion and buckle condition. Without 
s t r inge r s  t he  panels  had a value of 

s t r inge r s  were assumed t o  have a value of 

s ides  were not f u l l y  f ixed i n  the  instrumen%ed panel section. 
present r e s u l t s  f e l l  within o r  near t h e  f l u t t e r  boundary of reference 3. 

Reference 6 and t h i s  report  are based on the  same experimental pro- 

2 = 0.83 
2 

and the  papels with 

= 0.208 although the long 
2 

A l l  the 

gram and any differences are due t o  var ia t ions  i n  the  in te rpre ta t ion  of 
the data .  

* 

CONCLUDING REMARKS 
li 

Panel - f lu t te r ' t es t s  have been made a t  transonic and supersonic 
speeds w i t h  pa r t i cu la r  reference to buckled curved panels wi th  lonei tu-  
d ina l  s t r ingers .  The fol loying observations based on t h e s e  tes ts  can 

, be made: 

The r e s u l t s  obtained are s i m i l a r  t o  those found i n  previous f l a t -  
panel tes ts  i n  t h a t  t he  f l u t t e r  dynamic pressure of t he  panels t e s t ed  
was increased wi th  increase i n  thickness and d i f f e r e n t i a l  pressure,  
The curved panels had a higher f l u t t e r  dynamic pressure than the  f la t  
panels. 

The e f f ec t  of Mach number var ia t ion  from 1.3 t o  2.0 on the  f l u t t e r  
dynamic pressure was negligible.  

There i s  evidence that  deep buckling W i l l  inorease t h e  f l u t t e r  
dy-namic pressure.  
f l u t t e r  dynamic pressure when the  buckle depth is  increased by edge 
compression. 

A panel with small i r r e g u l a r i t i e s  w i l l  have a higher b 

5 

Panel f l u t t e r  i s  generzll.3- nondestructive and appeass t5 3e a prbb- 
lem main1y"from the fat igue standpoint; however, destruct ive f l u t t e r  is  
possible.  

LanQey Research Center, 
National Aeronautics and Space Administration, 

Langley Field,  Va. ,  March 12,-19'39. 0 '  
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TAmB I.- FLuTpw-TEsr RESVLTS 

[Explanation of panel desieplations: hnber 8, 10, or 12 indicates nominal skin thickness 
in thousandths of an inch; letter A refers to the material, aluminum alloy; letter 
F refers to flat panelm or letter C refers to c u m d  panels; letter S indicates 
that panel had longitudinal stringers; letter B indicates that panel was under 
compression to product buckling; letter R indicates that stringers were restrained 
by rings] 

Flutter stops Marinrm dynamic 
pressure Flutter starts 

M 
ftfaec P I  PI 0 8  

9, slugs &, q, slugs 4, 9, slugs 4, 
psi .,3 P s i  Psi ,J Psi Psi 7 Psi 

9 

8.4 0.001502 
10.5 .wl& 
14.6 .~2646<-1.0 
5.5 .rn 

-0.638 17.95 0 . O o p i  160, 200 0.0876 Traveling-wave flutter 
.081j Traveling-wave flutter 

Oilcanning oscillation 
-.36 18.3 .00326 <-1.0 118, 270 .lo09 Travelingrave flutter 

-.w 18.8 .w33 <-LO 170, 200 
17.9 .0032 -.76 350 

3311.3 I 978 

-0.85 
-.65 
-.lo 
.12 

20.4 0.00362 <-1.0 260, 240 0.0%3 Traveling-wave flutter 
15.7 .W278 -.63 370, 375 .0742 hveling-wave flutter 
15.5 .002n -.4 110, 340 .lo71 Traveling-wave flutter 
18.3 .W327 -.66 280, 350 .lo15 Traveling-wave flutter 

978 8.34 0.00149 

978 2.5 .ooO45 
978 10.8 .Wl9l 
978 10.7 .00191 
978 4.2 .00074 
978 8.13 .00143 1; 978 9.1 m i 6 2  

978 6.55 mi17 

978 10.25 .ooi82 
9 P  1.96 . m 3 5  

0.0878 

. 09p  

.ljU 

.11o4 

Traveling-wave flutter 
Ao flutter 
Traveling-wave flutter 
Travelingrave flutter 
Oilcanning oscillation 
Oilcanning oscillation 
Travelingrave flutter 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 

6.7 

6.22 

8.7 

u . 9  

7.6 
7.5 

14.1 
9.3 

6.7 

5.4 - 

Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 
oilcanning osciLlation 

oilcanning oscillation 
Oilcanning oscillation 
oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 

oilcann-ing oscillation 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcaming oscillation 
Oilcanning oscillation 

.OW Traveling-wave flutter 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscilldtion 

Oilcanning oscillation 
Oilcanning oscillation 

.Om8 hveling-vave flutter 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 
Oilcanning oscillation 

0.0024 

.OW18 

.00304 

.003ll 

-00141 
.00154 
.00245 
.00174 

.00115! 

. m 9 3  - 

bo 

62 
.70 
.72 
63 
6 5  

66 
61 
.68 
69 
64 
TI 
73 

74 
75 
76 

61 

& 
84 
h 
SJ 
81 

86 
81 
e43 

90 
91 
93 
9.2 
91 

0.B l o 5 6  
-86 (055 .e5 1,056 
.ej 1,056 .e 1,056 
.86 1,055 
-86 1,055 

.86 1,055 
-86 1,055 
.% 1,055 
-85 1,055 
.93 1.w 
-99 1,033 

1.0 1.031 

1.0 1,031 
1.02 1 0 2 8  
1.01 1’030 
1.15 1’005 
1.15 1’005 
1.16 1‘003 
1.16 1:003 

1.15 1,005 
1.19 1,ooO 
1.23 99Q 
1-25 % 
1.28 983 

941.30 978 
031.30 978 

1.31 976 
1.3 9’78 
1-35 9ll 
1.33 W 
1-31 976 

95l.U 994 
961.9 9% 

4.15 

-.24 

-.22 

-.13 

-.59 
-.25 
-.47 
-.60 

-.66 

-.52 

- 
8.2 
6.1 
10.8 
6.7 
6.2 

13.6 
7.4 

11.8 
9 

12.2 
8.3 
12 
13.1 
5-6 

10.4. 
U.9 
10.7 
15.3 
18.2 
8.9 
12.7 

17.9 
19.9 
14.1 
12.7 
15.0 
10.5 
15.0 

15.6 
17.1 
13.1 
16.4 
11.9 
17.0 
14.2 - 

- 
1.00292 
. w 3 7  
.00378 
.ow4 
.-35 
.00479 .e 
.oabl8 
.W314 
. a 2 6  
.0O29l 
.oO408 
.00362 
.00151 

.om33 

.m3ll 

.om86 

.m327 

.00392 

.00leS 

.OM72 

.003f% 

.00425 

. m 7 5  

. m 4 5  

. e 9  

.COW 

.0O269 

.-I5 

.@w5 

.om38 

.m84 

.a10 

.OOW 

. a 5  - 

L1.0 

-1.0 
:-1.0 

-.55 

-.98 
-.% 
-1.0 

Panel l0ACsB - 
4.22 
-.15 
-.15 
-.15 
-.14 
-.13 
-.15 

-.24 
-.16 
-.19 
-.l6 
-.24 
0 
-.05 

-.O& 
-.13 
-.01 

,065 
.27 
.u 
.14 

* 17 
.29 

-.47 
-.66 

-2.55 
-.13 

-1.16 

-1.2 
-1.06 
-1.05 
-.a 
-.39 

-1.1 
-1.0 

220, 220 

375 
120, 255 
366, 340 
360, 360 
330, 360 

350 
383 
250 
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0.0824 
.0936 
.ow7 
.087J 
.08j7 

.O&% 

.0945 

.Om, 

.0957 

.08$ 

.0853 

.0878 

.084@ 

.O784 

.0&7 

.0839 

.0839 

.115 

.1153 

.lo98 

.lo62 

. E 9 8  

.lo54 

.lo84 

.lo90 

.llgo 

.1125 

.lllj 

.I130 

.lo97 

. l l l 5  

e. * a .  e * * e  .e e. e . e.. .e 
a .  .. e .  e .  e . .  . . a  .. e . .  . . a  0 . *  . ..*. .. . e  a * *  . a * .  . ... .. .*. * a *   .e. .a * * a  *. 

Oilcanning osc i l la t ion  
Oilcanning osc i l la t ion  
Traveling-wave f l u t t e r  
Traveling-wave f lu t t e r  
Traveling-wave f l u t t e r  
Traveling-ware f l u t t e r  
Traveling-wave f l u t t e r  

No f lu t t e r  
Traveling-wave f l u t t e r  
Traveling-Wave f l u t t e r  
Traveling-wave f l u t t e r  
Traveling-wave f l u t t e r  
Traveling-wave f lu t t e r  
Traveling-wave f l u t t e r  

Traveling-wave f l u t t e r  
Traveling-wave f l u t t e r  
No f l u t t e r  
No f l u t t e r  
Traveling-wave f l u t t e r  
Traveling-wave f l u t t e r  
Traveling-wave f l u t t e r  

Traveling-wave f l u t t e r  
Oilcanning osc i l la t ion  
No f l u t t e r  
No f lu t t e r  
Traveling-wave f l u t t e r  
Traveling-wave f l u t t e r  
Traveling-wave f l u t t e r  

No f l u t t e r  
Traveling-wave f l u t t e r  
Traveling-wave f l u t t e r  
Traveling-Wave f lu t t e r  
Traveling-wave f l u t t e r  
Traveling-wave f lu t t e r  
Traveling-wave f lu t t e r  

Traveling-wave f l u t t e r  
Traveling-wave f lu t t e r  
Traveling-wave f l u t t e r  
No f lu t t e r  
Traveling-wave f l u t t e r  
No f l u t t e r  
Traveling-wave f lu t t e r  

F lu t te r  starts 

0.12 

-.195 
-.09 
-.282 

.06 

-.355 
-.05 
.18 

-.016 
.1J 

-.115 

-.15 
--OS 

-.)O 

-.06 

-.05 
-.02 

-.05 

-.165 
-.01 
-.085 

-.13 
-.lo 

.17 

.07 

-.08 
-.oj 

.03 

.21 

.31 

-.05 

.28 

I I 

8 
12.3  
19.1 
7 

13.Of 
10.8 
15.7: 

8.7: 
10.9: 
8.5: 

21.5 
22.8 
10.8: 
21.U 

9.3 
10.4 
7.01 
8.1 

11.2 
14 

11.9 

11.3 
10.1 
11.7 
18 
21.3 
20.2: 
23.0: 

11.6: 
12.9 
15.8 
15.9 
15.9 

16.2: 
12.8 

16.9: 
16.9 
19.3 
13.2 
17.6 
14 
14.1 

 

178 
179 
53 
54 
55 
56 
57 

58 
59 
60 
61 
62 
111 
112 

113 
114 
115 
116 
117 
118 
119 

120 
121 
122 
I23 
124 
lz5 
126 

127 
128 
129 
130 
131 
132 
133 

134 
135 

137 

139 
140 

136 

138 

TABLE I.- F--TEST RESULTS - Continued 

1.1' 
l . Y  
1.3 
1 . 3  
1.3 
1.3 
1.3 

1.3 
1.3 
1.3 
1.3 
1.3 
1.3 
1.3 

1.3 
1.5 
1.3 
1.3 
1.3 
1.3 
1.3 

1.3 
1.3 
2.0 
2.0 
2.0 
2.0 
2.0 

2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

2.0 
2.0 

2.0 

2.0 
2.0 

2.0 

2.0 

,000 
.,om 

978 
978 
978 
978 
978 

978 
978 
978 
978 
978 
978 
978 

978 
978 
978 
978 
978 
978 
978 

978 
978 
842 
842 
842 
842 
842 

842 
842 
842 
842 
842 
842 
842 

842 
842 
842 
842 
842 
842 
842 

Flu t te r  starts F lu t te r  stops Maximum dynamic 
pressure 

Frequency, 
P I  P, CPS 

Psi - 
P, 

9, slugs I%, 9, slugs I%, 9, slugs np, 
ft) P s i  p s i  ~ psi p s i  - f t 3  psi f t )  

10.1 
6.9 

10.73 
8 . 5 .  
9.61 

8.3 
6.7 
7.95 
6.45 
9.0 
9.10 

8.35 
9.2 

11.7 
10.0 
9.4 

9.4 
7.9 

7.63 
7.58 
8.77 

9.75 
5.30 
9.9 
9.1 
8.95 
6.9 

8.14 
8.40 
8.05 

P.8 

8.4 

13 1.3 978 2.107 0.00038 -0.205 7.92 0.00140 -0.185 7.74 0.00138 -0.09 270, 450 0.1393 
14 1.3 978 3.01 .00054 -.135 9.6 .OOl7l -.095 500, 500 .I233 
15 1.3 978 9.02 .00161 -.23 14.5 .00233 -.15 400 .OBE? 
16 1.3 978 5.13 .00092 -.48 17.2 .GO306 -.4 420, 440 .lo32 
17 1.3 978 3.02 .00054 -.01 6.2 .00111 .025 210, 450 .I232 

I. 00180 . 00123 
.0019 
.0015 
.0017 

.00148 

.00118 

.0014 

.00ll4 

.00160 

.00160 

.00148 
m i 6 5  

.00207 

.00177 

.00167 

.mi67 

.00140 

.00077 

.OW88 

.00o76€ 

.OW98 

.OW53 

.00100 

.OW92 
,00093 
.00069 

.00082 

.00085 

.00080 

.OW88 

.00085 
~ 

Traveling-wave f l u t t e r  
Traveling-wave f lu t t e r  
Traveling-wave f l u t t e r  
Traveling-wave f l u t t e r  
Traveling-wave f l u t t e r  

Maximum dynamic 
pressure 

2 1.37 970 5.5 O.OWg5 ------- 
3 1.37 970 11.5 .00192 .6 
4 1.37 970 12.0 .00201 -.3 

1 

No f lu t t e r  
No f l u t t e r  
No f l u t t e r  

.mi67 

.00258 

.00339 

.00127 

.00232 

.00192 

.00281 

.001% 

.00381 

.00406 

.00193 

.00216 

.00169 

.00185 

.mu5 

.00144 

.00249 

.OOl99 

.00212 

.00200 

.00180 

.00118 

.0018l 

.00215 

.00205 

.00218 

.00155 

.00151 

.mi17 

.00130 

.00159 

.00160 

.00160 

.00lz9 

.00164 

.00171 
,00170 
.00196 
.00133 
.00178 
.00135 
.00142 

Flu t te r  stops 
Frequency, 

Panel lOACSB 

0.05 
.11 

-1.0 
0 
-.09: 
-.OB -.a 
.01: 
-.18 
-.03 
-1.0 
-.28 

.07 
-.17 

-07: 
.66 
.11: 

0 
-.14 
.4 
.25 

.10 
-.03 

.02 

.11 

.01 

.24: 

.14 

.01 

.02: 

.01: 

.23 

.18 

.02: 

.04: 

.16 

.w 

.47 

.40 

.43 

.I5 
-.01: 

- 

6.8 

L0.8 

8.3 

t3.1 
L1.2 
L1.9 

U.3 

u .9  

- 
Panel lOAFSB 

__ 

1.00121 

.W192 

.00147 

.00233 

.00199 

.00212 

.00200 

.001303 

- 

3.0: 

-.OE 

.51 

.u 

.4 

.2: 

.1c 

.02 

- 

170, 270 
300 
300 
125 

200, 300 

161, 300 
97, 270 

100, 450 
115, 300 

193 
174, 220 

150 
175, 200 

154 
134, 110 
152, 105 

175 

150, 450 
150 
420 

225 
93 

450, 500 
200 

zoo, 800 
400, 440 

300, 400 
350 

300, 380 

250, 550 

400 
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R U ~  

TABLE I.- FLVPPW-TEST RFSULTS - Continued 

Flu t te r  stops Maximum dynamic 
pressure Flutter starts 

M f,”i;ec P, PI P, 

psi psi psi ps i  Psi - - 
f t 3  f t 3  f t J  

5 

I Panel 10- I 
I 0.09 Broke 1.31 978 5.8 0.00095 4 . 4  10.5 0.00lb -1.0 

10 1.3 sf33 2:43 0.00043 -0.06 6.3> 0.0012 0.06 
11 1.3 980 3.82 .00066 -.E 9.10 .mi6 -.07 

0.1315 Traveling-wave f l u t t e r  
. l l j 2  Traveling-vave f l u t t e r  

19 1.3 978 5.9 0.00105 0.016 8.1 0.001362 -0.02 175 0.0788 haveling-vave f l u t t e r  

69 1 . 3  978 
70 1.3 978 
71 1.3 978 
72 1.3 978 
B 1.3 978 
74 1.3  978 

20 
21 
22 

7.6 0.00137 0.15 No f l u t t e r  
12.65 .00224 .03 No f l u t t e r  
10.55 .00187 o No f l u t t e r  

8.65 .mi53 -.07 No f l u t t e r  
8.7 .m154 .08 No f l u t t e r  

8.4 . oo iy~  .015 No f l u t t e r  
11.3 .mol -.lo No f l u t t e r  

4.36 11.3 .OM02 -.36 10 0.00178 -0.56 215, 175 0.0634 Traveling-wave f l u t t e r  

.I8 11 .00193 -.14 10.5 .00186 -.06 175, 300 .076 Traveling-vave f l u t t e r  
-.24 11.9 .00211 -.36 200, 200 .0726 Traveling-uave f l u t t e r  
-.Og 10.5 .OOlffi -.18 10.5 .001ffi -.18 200, 150 .O7U Traveling-vave f l u t t e r  

3.4 .00060 0 No f l u t t e r  

1.3 978 5.7 0.00101 0.02 8.9 0.00159 0.14 8.0 0.00143 0.48 55, 373 0.0797 Traveling-wave f l u t t e r  
1.3 978 2.39 .OW42 .08 8.75 .W155 .22 70, 100 .lo64 Traveling-wave f l u t t e r  
1.3 978 8.9 .00159 .61 No f l u t t e r  

7.6 0.00137 No f l u t t e r  I 112.651 10.55 .00187 1 ::A; I I 1 I I No f l u t t e r  
/No f l u t t e r  .00224 

No f l u t t e r  

-.24 11.9 .00211 200, 200 .0726 TraveliG-uave f l u t t e r  
Traveling-vave f l u t t e r  -.Og 11;:; I :gg 1 ::% 110.5 1 .001ffi 1 -.I8 1200, 150 1 .0712 I No f l u t t e r  1 
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Flut ter  stops 
Maximum dynamic 

Flut ter  s t a r t s  pressure 
Frequency, E R u n  M r t l sec  P, P, P, Cp8 i(c b)”? 

a, 

9, slugs 4, 9, Slugs &, 9, Slugs 4, 
ps i  psi  - pS% ,,J Psi Psi  - 

f t J  

     

Remarks 

TABU I.- FLUPTEX-TESP RESULTS - Concluded 

Flut ter  stops 
Maximum dynamic 

Flut ter  s t a r t s  pressure 
Frequency, E R u n  M r t l sec  P, P, P, Cp8 i(c b)”? 

a, 

9, slugs 4, 9, Slugs &, 9, Slugs 4, 
ps i  psi  - pS% ,,J Psi Psi  - 

f t J  

Remarks 

. 

Traveling-vave f l u t t e r  
Traveling-vave f l u t t e r  
No f l u t t e r  
No f l u t t e r  
Travelingrave f l u t t e r  
Traveling-wave f l u t t e r  

No f l u t t e r  
Traveling-wave Plut ter  
No f l u t t e r  
Traveling-vave f l u t t e r  
Travelingrave f l u t t e r  
Traveling-wave f l u t t e r  

Traveling-vave f l u t t e r  
Traveling-wave f l u t t e r  
Traveling-uuave f l u t t e r  
Traveling-vave f l u t t e r  
Traveling-wave f l u t t e r  
No f l u t t e r  

Travelingrave f l u t t e r  
Traveling-wave f l u t t e r  
Traveling-wave f l u t t e r  
Traveling-wave f l u t t e r  
Traveling-vave Plut ter  
Traveling-uave f l u t t e r  

Travelingrave f l u t t e r  
Traveling-wave f l u t t e r  
Travelingrave f l u t t e r  
No f l u t t e r  
Traveling-wave Plut ter  
Traveling-vave f l u t t e r  
Traveling-wave f l u t t e r  

81 
8 
83 
84 
97 
9a 

978 
978 
978 
978 
978 
978 

978 
978 
978 
978 
978 
9-76 

978 
978 
978 
978 
978 
978 

842 
842 
842 
842 
842 
842 

842 
842 
842 
842 
842 
842 
842 

1.3 
1.3 
1 .3  
1.3 
1.3 
1.3 

4.7 
h4 

5.64 
4.25 

4.47 

4.6 
3.45 
3.95 

2.7 
4.14 
4.03 
4.45 
5.7 

7.7 
5.6 
3.4 
4.78 
3.62 
3 . 1  

6.0 
5.6 
4.1 

4.4 
2.63 
4.76 

0.12 
.05 

. o j  
-.035 

.19 

-.018 
.07 
-.2 

-2 
-.14 
-.01 
.07 
.11 

.06 

.12 
-.og 
.01 -.w 
.035 

.og 

.12 
-.03 

-.O5 
.01 

I.OO086 
.000g 

.00100 

.OW75 

.m79 

. 0 0 O f f i  

.oo060 

.OW69 

.00048 . m 7 4  

.OO072 
-00079 
.00102 

.00077 

.00034 

.OW47 

.ooO36 

.0003l 

.ow61 

.m56 

,00056 

.OW42 

.00042 

.00027 

.OO048 

5.2 
4.7 
4.3 
5.3 
10.2 
10.2 

10.4 
17.1 
5.2 
5.3 
10.0 
4.0 

5.1 
5.4 
7.5 
9.6 
10.8 
10.0’ 

15.4 
7.3 
16.0 
16.1 
12.7 
8.5 

6.0 
7.3 
7.4 
7.7 
9.1 
11.7 
13.9 

99 
100 
101 
102 

104 

105 

107 
108 
109 
110 

141 
142 
143 
144 
145 
146 

147 
148 
149 
150 
151 
152 
153 

103 

106 

- 
.00092 
.OO092 
.OW77 
.m93 
.00183 
.a3182 

.001ffi 

.@Jjo5 . W 9 2  

.00095 

.om81 

. W 7  

.0009 

.00097 

.00133 

.00172 

.ml93 

.00177 

.00151 

.ooO74 
.W16 
.00168 
.00128 
.OM)% 

.00061 

.m74 

.00076 

.om76 

. O W  

.00118 

.0014 

1 .3  
1.3 
1.3 
1.3 
1.3 
1.3 

1.3 

1.3 
1.3 
1.3 
1.3 

2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 

1.3 

- 
0.10 
0 
0 
0 
-.05 
-21: 

-.lo 
-.45: 
0 
-.l 
-.12 
-.05 

0 
.07: 
.04: 
.08 
.08 
-.09 

.I7 

.2 
-.02 
.16 
.04 
.10 

.09 

.20 
-.03 
.lc 

0 
.1 

154 2 842 2.45 0.00025 -0.04 13.7 0.00138 0.065 
155 2 842 1.165 .mu .u 13.73 .00138 .15 
156 2 842 1.95 .wax) .27 15.5 .00157 .36 
157 2 842 2.47 .OW25 .45 15.4 .00155 .50 
158 2 842 1.8 .00018 .02 13.8 .00139 .04 
159 2 842 2.3 .OW24 -.04 14.4 .00146 0 

- 
5.2 

5.1: 

4.0( 

4.9 
5.11 
7.1 
9.4: 
0.5 

7.3 

8.5 

5.9t 
7.3 

- 

400, P O  0.1345 Traveling-vave f l u t t e r  
300, 450 .1723 Travelingrave f l u t t e r  
2a0, 600 .1446 Travelingrave f l u t t e r  

300 .lj4O Traveling-wave f l u t t e r  
300, 600 .14W Traveling-uave f l u t t e r  
300, 600 .13P Traveling-vave f l u t t e r  

Panel 8ACSBR 

1 11.0 

3.10 165, 250 
1170, 170 

0.00195 0.25 No Plut ter  T 

.13 340, 2m 

.155 4%’ 380 .= ,320: 500 

-15 300 350 

.22 350, 300 

I 5 0 0  

.02 200 

300 
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Figure 1.- Sketches of panel configurations. All dimensions are in 

inches . 
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Figure 2.- Rear view of curved panel showing instrumentation. 
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Figure 3.- Front 'fiew of curved panel mounted in tunnel sidewall. 
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(a) Traveling-wave oscillation at M = 1 . 3 .  Run 107; 8ACSB panel. 

(b) Oil-canning oscillation at M = 0.93. Run 164; lOACSB panel. 

Figure 4.- Sample oscillograph records for two types of oscillations. 
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Current flutter tests 
0 Panel buckled by heating 
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Figure 8.- Current data plotted on figure 14 of reference 3 .  Mach nun- 
ber fo r  current data  var ies  from M = 1 . 3  t o  M = 2.0. Dashed line 
indicates estimated f l u t t e r  boundary. 
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