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Overview. This document describes methods used for detection and correction of sudden pixel sensitivity
drops (SPSDs) in the PDC CSCI. SPSDs appear as step drops in the signals from pixels caused by damage
from energetic particle interaction on the CCD. They are often accompanied by a recovery period, but
may exhibit a persistent step. They affect 5-10% of light curves per quarter.

Recommendations. None.

Applicable Documents. None.

Open Items/Action Required. None.

TBDs/TBRs. None.
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1. Introduction

PDC 8.0 includes implementation of a new algorithm to detect and correct step discontinuities appearing
in roughly one of every twenty stellar light curves during a given quarter. An example of such a discontinuity
in an actual light curve is shown in fig. 1. The majority of such discontinuities are believed to result from
high-energy particles (either cosmic or solar in origin) striking the photometer and causing permanent
local changes (typically -0.5% in summed apertures) in quantum efficiency, though a partial exponential
recovery is often observed [1]. Since these features, dubbed sudden pixel sensitivity dropouts (SPSDs), are
uncorrelated across targets they cannot be properly accounted for by the current detrending algorithm.
PDC de-trending is based on the assumption that features in flux time series are due either to intrinsic
stellar phenomena or to systematic errors and that systematics will exhibit measurable correlations across
targets. SPSD events violate these assumptions and their successful removal not only rectifies the flux
values of affected targets, but demonstrably improves the overall performance of PDC de-trending [3] .

Long Cadence

e-

SPSD

Figure 1. Example sudden pixel sensitivity dropout (SPSD). The observed ∼ 2% drop in signal
is essentially instantaneous, occurring in one of the 270 co-added frames of a long cadence. The drop
is often initiated by a detected cosmic ray (CR), which deposits most of its secondary charge in or near
the pixel exhibiting the step drop. This suggests that SPSDs result from CR damage, but in some cases
the CR-induced charge is deposited in a pixel adjacent to the aperture while the damage is to one or
more pixels in the aperture. The time series also exhibits a slow increase in relative signal during the first
∼ 100 long cadences following the step drop, which we define as the recovery period. This is Q5 data
for KID 8414961.

1.1. Implementation.

Context. As part of the SOC pipeline, depicted in fig. 2, PDC receives raw light curves and centroids
from PA, then corrects systematic and other errors, removes excess flux due to aperture crowding, and
conditions light curves for the transiting planet search (TPS). The execution of PDC is managed by
the module pdc_matlab_controller, which maintains the ability to run the pre-MAP version of PDC.
The algorithm described herein, whose execution is managed by the module spsd_controller, is only
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called from the PDC-MAP module presearch_data_conditioning_map, which maintains the ability to
alternatively call the pre-8.0 discontinuity module. See fig. 3.

Figure 2. Pipeline data flow. These SPSD detection and correction algorithms are imple-
mented in PDC. PDC receives raw light curves and centroids from PA, then removes systematic
errors to produce corrected light curves for input into TPS.

2. Algorithms

The algorithm consists of three components: filtering, detection, and correction. The first component
uses a Savitzky-Golay [4] inspired detection filter which accounts for the step and higher order discontinu-
ities and implements a multi-scale approach to improve localization of the peak response. Detection and
correction are performed on all targets in a given channel in an iterative process whereby the maximal
detector response for each target is evaluated and, if an SPSD is detected, a correction is applied. For the
current iteration, targets in which SPSDs were found and corrected are retained in a list and the process
is repeated until the list is empty.

Fig. 4 contains a flow diagram charting the process of deriving the detection filter, detecting the SPSDs
and deriving time series corrections based on

• a set of input parameters,
• typically full-quarter flux time series for all targets, which have undergone preliminary systematic-

error-corrected using coarse MAP, and
• the co-trending vectors used in coarse MAP, Û .

In this and later flow diagrams the shaded boxes represent items which are described in more detail
elsewhere. The part of the algorithm represented by the box labeled “Derive detection filter” is detailed
in §2.1, while the “Detect SPSDs” and ”Correct SPSDs” boxes are described in §§2.2 and 2.3. The legend
at the bottom of the figure applies to all subsequent flow diagrams in this document. Since the algorithm
has not yet been adapted to short cadences, we imply “long cadence” when using “cadence.”
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Figure 3. Context of new SPSD algorithm within PDC. These algorithms are available
only when the MAP approach is chosen for PDC, and then only if selected as an alternative to
the discontinuity module employed prior to SOC pipeline version 8.0.

2.1. Detection Filter.

Overview. We apply a filter to the data to enable the detection process. The light curves exhibit a wide
variety of features in all frequency bands due to stellar behavior, transits, and various systematic errors.
Therefore, we first need to identify what distinguishes an SPSD from other features. We assume that the
signature we are looking for in the SPSDs really has only four distinguishing characteristics:

• it is instantaneous, i.e, a discontinuity,
• it is negative going,
• it is not accompanied by a similar positive-going close-proximity feature indicative of a transit or

flare,
• it is relatively uncommon and uncorrelated among targets, occurring in a small percentage of targets

at most only a few times per quarter.
• it is common for the discontinuity to to exist, not just in the values (0th polynomial order), but in

the slope (1st polynomial order) and quadratic behaviors (2nd polynomial order) of the light curve
as well. In fact, the exponential recovery that often follows SPSDs suggests that all polynomial
orders are affected.

A conceptual starting point for identifying an SPSD is to imagine fitting a full N -cadence time series to a
set of basis vectors which includes a unit step at a specified time, ti, and a generic orthogonal set, which is
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Start

Stop

 # of detections > 0 
and 

iter < iteration LIMIT
?

Figure 4. Top-level SPSD process flow. The algorithm requires a set of parameters, flux time
series, and a set of cotrending vectors (possibly ∅). As its principal results, it produces a set of identified
SPSDs, time series corrections, and a list of clean targets. Detection and correction occur iteratively,
with at most one SPSD identified and corrected in any time series per iteration. Only time series with
identified SPSDs proceed to the next iteration in search of multiple-SPSD time series. Processes in
shaded boxes are detailed in following sections, along with associated parameters and intermediate results.
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not quite complete, but spans the non-noise frequency components that would still be present in the light
curve if the SPSD was absent. If we fit the light curve N − 2 times, each using a different step component
generated by allowing i to increment over {2, . . . N − 1}, then the coefficients of the step component from
each fit combine to represent a time series of N − 2 step height estimates. The one occurring at the SPSD
location is the best estimate of the step height, and has the largest value assuming the step height is
significantly larger than the noise. Typical values away from the SPSD represent 0 + noise unless the light
curve includes other step-like features, such as transits or flares. This would be an effective but inefficient
process for detecting SPSDs. The inefficiency results from a lack of information about the SPSD in data
far from the step and the fact that more orthogonal basis vectors are required to fit variations in a given
frequency band in a long time series than a shorter one.

Alternatively, we could apply a minimal filter by calculating the first or second differences of the time
series to estimate the first or second derivative at the shortest possible time scale. The SPSDs would again
stand out, as long as the step height is significantly larger than the noise. This would be a much more
efficient but less effective method since the only the information immediately surrounding each time is
used, so the noise would be larger. The relative noise increase depends on the frequency content of the
light curve.

In the algorithm described below, we have strived to strike a balance between the effectiveness of
modeling and the efficiency of filtering. We use a model to derive a set of filter coefficients which give
a step height estimate when applied to the data. The model is linear, and the component of the left
inverse or pseudo-inverse of the design matrix which corresponds to the unit step component of the model
provides the coefficients. Unlike the model described above, the length of the filter is limited to a range
which contains information about the SPSD step, and the filter only measures the step height rather than
fitting the entire set of model coefficients. Since the filter takes other model components into account, it
include the information from a wider range of data in the step height estimate and therefore provide better
signal-to-noise than the minimal filter.

Any filter has a step response function, which introduces a transient response into the filtered time series
around the location of the step. In addition, there are a variety of relevant time scales and models which
may be more effective for one light curve than another and even from one time to another within a single
light curve. To address both of these issues we have introduced a multi-scale approach for calculating the
filter parameters. Starting with a given time-scale and model, the algorithm iteratively calculates a series
shorter time scales and simpler models and weights, whose weighted sum of associated filter coefficients
reduces the transient step response as much as possible, while maintaining the signal-to noise at the original
scale. The result of applying the weighted average of these multi-scale coefficients is equivalent to fitting
the time series locally to all the model-scale combinations for the step heights and then taking the weighted
average of the step heights, only much more efficient to calculate. The resulting filter has a step response
function which is much closer to the ideal (a δ function) than that derived from any single model, and it
maintains its effectiveness in the vast majority of light curves. The output of the filter is still simply a
time series of modeled step heights.

Parameters. The input filter parameters define 3 bounding models used in the generation of the filter
coefficients. The values are either a length, a polynomial order, or a discontinuous polynomial order. The
models are described below. Table 1 lists them and cross-references with variable names in the code.
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Parameter Description Default MATLAB Name
NLongWindow length of long-window(LW) model 193 .windowWidth
nLWpoly polynomial order of LW model 3 .sgPolyOrder
nLWdiscontinuity polynomial order of discontinuity in LW model 2 .sgStepPolyOrder
NShortWindow length of short-window(SW) model 11 .shortWindowWidth
nSWpoly polynomial order of SW model 1 .shortSgPolyOrder
nSWdiscontinuity polynomial order of discontinuity in SW model 1 .shortSgStepPolyOrder
Nmin length of minimal model 9 .minWindowWidth

Table 1. Detection Filter Parameters. These parameter specify three bounding models,
long-window, short-window and minimal, in the algorithm described below. The minimal model
polynomial order and polynomial order of discontinuity are both set to 1. The dot in front of
the MATLAB name is to indicate the variables are a contained in structures.

Input/Output. The algorithm has no inputs, its principle output is a vector of filter coefficients, K. It
also outputs the design matrix, generically M , and left inverse, A, of both the short- and long-window
models for use in the validation process. See Table 2.

Output Variable Description MATLAB Name
K NLongWindow-vector of filter coefficients .kernels
ML long-window model design matrix .longModel.designMatrix
AL left inverse of ML .longModel.pseudoinverse
MS short-window model design matrix .shortModel.designMatrix
AS left inverse of MS .shortModel.pseudoinverse

Table 2. Detection Filter Outputs. The algorithm outputs the multiscale filter coefficients,
K as a vector of length, NLongWindow cadences. If n is the number of linear terms, and therefore,
coefficients in a model, and n is the length scale of the model, e.g. NLongWindow or NShortWindow,
then M is m× n and A is n×m.

Description. The design of the linear shift-invariant detection filter is based on the method of Savitzky
and Golay [4]. The algorithm’s flow diagram is shown in fig. 5. We model each Nwin-cadence window
(Nwin, odd) of the light curve as y = Mc, where M is a matrix formed by assembling the n Nwin-element
basis vectors of the model into columns of an Nwin row × n column model component matrix or design
matrix, and c is an n-element column vector. For the purposes of this document we always let the first
column of M represent an antisymmetric unit up-going step function with zero center value, to model
the SPSD’s step discontinuity. Under this construction, we compute the left inverse of M, which is a
pseudoinverse obtained by multiplying from the left, (MTM)−1MTMc = c = (MTM)−1MT y, so letting
A = (MTM)−1MT , means c = Ay. A is a n×Nwin matrix and we identify the detection filter coefficients
as the first row of A, A1,j , because for a given Nwin cadence range of the light curve indexed by j, yj ,
the best fit step height at the window center is

∑
j A1,jyj . Model specifics are discussed in the paragraph

labeled “Model” below.
We generate filter coefficients at multiple scales, where scale is simply the length of the filter. The

scales are selected to reduce the step response of the combined filter as it scans across a step while still
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measuring the step height when centered at the location of the step. When combining a shorter scale with
a longer scale, we symmetrically pad the ends of the shorter coefficient vector with zeroes, keeping the
centers aligned, and we weight the coefficients in the shorter scale model by a relative factor w to prevent
an increase in the ratio of filter response to white noise far from a step, to the filter response to a unit step
at the step. This multi-scale segment of the process, defined by the shaded boxes encompassing circular
markers A-B-C in figs. 5 and 7, is discussed further in the paragraph labeled “Multiscale Segment”
below.
Model. At each point ti in time, we model the data within an Nwin-length window centered at ti as a
linear combination of basis functions f0, f1, . . . , fn. At each point we find the coefficients a0, a1, . . . ,
an that yield the best fit in the least squares sense. One of the basis functions, fs, is a unit step and its
corresponding coefficient, as, is a measure of the step function’s contribution to the best-fit mixture. The
value of this coefficient is our basic detection statistic.

The basis for the model we use to derive the filter coefficients consists of vectors designed to describe
three main elements of a Nwin-cadence-length window of the light curve centered at time ti. These elements
are

a step discontinuity at ti: This is simply the discrete, antisymmetry step function, Θj , where

Θj =

 −0.5 ∀ i− bNwin/2c ≤ j < i
0 ↔ j = i

0.5 ∀ i < j ≤ i+ bNwin/2c

 .

We specify that all other basis vectors in the model be continuous at zero-order so that the coefficient
corresponding to this step is the least-squares fit estimate of the instantaneous SPSD step height.
The filter output is a weighted average of step height coefficients from a series of models.

recovery-related higher order discontinuities at ti: If an SPSD occurs at ti, then in most cases
an exponential transient recovery period begins at ti, resulting in not just a step, but a discontinuity
at all Taylor series orders of the light curve at ti. Since the Taylor series expansion terms are
falling as 1/(∆tnn!) with order, n and time constant ∆t � 10, it is generally sufficient to model
only the first few terms, e.g. a slope and quadradic discontinuity, to produce a good measure of
the instantaneous step height. For the general case of ndiscontinuity orders, we model the the recover
with ndiscontinuity terms, Φn

j , where n is the order and j is the time index, as follows

Φn
j =

{
0 ∀ i− bNwin/2c ≤ j ≤ i

Pn

(
2(j−i)
Nwin−1

)
− Pn(0) ∀ i+ 1 < j ≤ i+ bNwin/2c

}
,

with Pn, the Legendre polynomials of order n. The range is scaled to span [−1, 1] across the full
window width and the offset −Pn(0) to ensure zero order continuity at ti. Without these terms,
the step height would generally be underestimated and the SPSD signal-to-noise of the filtered
data would be worse. The continuity at ti minimizes the bias these terms can contribution to the
zero-order step.

the unaffected continuous component: When no SPSD is present we model the segment of the
light curve as a smooth continuous function composed of npoly polynomial terms, Ψn

j , defined by:

Ψ0
j = 1

Ψn
j = Pn

(
2(j−i)
Nwin−1

)
− Pn(0)

∀ i− bNwin/2c ≤ j ≤ i+ bNwin/2c.
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Parameters

NLongWindow

nLWpoly

nLWdiscontinuity

Nmin, odd
NShortWindow, odd
nSWpoly

nSWdiscontinuity

Savitzky-Golay + Discontinuity Model Definition

M =



−0.5 1 P1(x1) . . . Pnpoly(x1) 0 . . . 0
...

...
...

...
...

...
−0.5 1 P1(xCwin−1) . . . Pnpoly(xCwin−1) 0 . . . 0

0 1 P1(xCwin) . . . Pnpoly(xCwin) 0 . . . 0
0.5 1 P1(xCwin+1) . . . Pnpoly(xCwin+1) P1(xCwin+1) . . . Pndiscontinuity(xCwin+1)
...

...
...

...
...

...
0.5 1 P1(xNwin) . . . Pnpoly((xNwin)) P1(xNwin) . . . Pndiscontinuity(xNwin)


A = (MT M)−1MT

Where M = M(Nwin, npoly, ndiscontinuity)
Cwin = (Nwin + 1)/2,
xi = 2 i−Cwin

Nwin−1 , 1 ≤ i ≤ Nwin, and
Pi is the Legendre polynomial of order i, offset so Pi(0) = 0.

Generate Initial Savitzky-Golay + Discontinuity Models, 
M, Left Inverses, A, and zero crossings of 1st column of 

A, Z, and zero crossing signs (direction), S

Initialize filter coefficients, K, with component of left 
inverse that measures step height in the presence of 
other model components (column 1 defined below).
K = Ai,1(NLongWindow, nLWpoly, nLWdiscontinuity),
1 ≤ i ≤ NLongWindow

scale ≤ NLongWindow and
scale ≥ NLongWindow/2φ−1 and

scale > 2Nmin?

Calculate filter coefficients at new scale, add 
weighted values to existing ones, K,  and 
calculate new zero-crossings, Z, and signs, S.

A B

Initialize scale and weights
scale = NLongWindow, φ = 1,
npoly = nLWpoly, ωsum = 1

Start

Stop

C

M1(NLongWindow, nLWpoly, nLWdiscontinuity)
M2(NLongWindow, nLWpoly − 1,min(nLWpoly − 1, nLWdiscontinuity))

...
MnLWpoly−1(NLongWindow, 2,min(2, nLWdiscontinuity))

A1(NLongWindow, nLWpoly, nLWdiscontinuity)
A2(NLongWindow, nLWpoly − 1,min(nLWpoly − 1, nLWdiscontinuity))

...
AnLWpoly−1(NLongWindow, 2,min(2, nLWdiscontinuity))

AL(NLongWindow, nLWpoly, nLWdiscontinuity)
AS(NShortWindow, nSWpoly, nSWdiscontinuity)

ML(NLongWindow, nLWpoly, nLWdiscontinuity)
MS(NShortWindow, nSWpoly, nSWdiscontinuity)

Z1, Z2, . . . ZnLWpoly−1 S1, S2, . . . SnLWpoly−1

Initialize locations and signs of zero crossings in K, 
ZX and SX. ZX = Z1, SX = S1

Y Derive a new scale, polynomial order, discontinuity 
order and weights. (see multiscale details A-B-C)

scale, npoly, ndiscontinuity, ω, φ

K = K + ωAX
i,1, ZX , SX

Calculate filter coefficients at minimum scale, 
and pad with (NLongWindow −Nmin)/2 zeros at 
each end. MMin(Nmin, 1, 1), AMin(Nmin, 1, 1),
ω =

�
Nmin

NLongWindow
, ωsum = ωsum + ω, K = K + ωAMin

i,1

K = K
ωsum

K, ML, AL, MS , AS

Figure 5. Detection filter derivation algorithm. The algorithm requires a set of parameters de-
scribing 3 Savitzky-Golay + discontinuity models from which the filter is derived. Each model requires
a length in cadences, Nwin, a polynomial order for the S-G components, npoly, and a polynomial order
for the discontinuity, ndiscontinuity. The parameter sets {NLongWindow, nLWpoly, nLWdiscontinuity} and
{NShortWindow, nSWpoly, nSWdiscontinuity} specify long and short window models, respectively, and Nmin

is the length of a minimal model with npoly = ndiscontinuity = 1. The algorithm produces a multiscale
filter kernel, K, NLongWindow cadences long, along with model component matrices ML and MS and
left inverses (pseudo-inverses) AL and AS for the long and short cases. Detection filter construction
occurs recursively using a multiscale approach designed to maintaining good SPSD signal-to noise with
highly localized response in a wide variety of light curves. Processes in shaded boxes (A-B-C) are detailed
in following sections. See figs. 4 and 7.
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Here again, we choose to offset by −Pn(0), which leads to interpretation of the constant term, which
is the only non-zero term at the window center, as the least-squares fit estimate of the light curve
window’s central value. This has no effect on the step height, but we use the constant coefficient
of this fit to estimate noise in the algorithm’s validation segment.

As indicated in more detail in the box at the bottom of fig. 5, These basis elements are combined to
form a design matrix, M = {Θ,Ψ,Φ}. We then proceed to calculate A, and the desired filter coefficients
A1,j as discussed above and illustrated graphically in fig 6. If the polynomial orders and window length
are appropriately chosen, this model produces a good fit for nearly all light curve and times. Far from an
SPSD the step height coefficient is estimating zero, and as a result is measuring the noise-induced error
in the fit step height. At the exact time of the SPSD, the step height coefficient is an estimate of the
instantaneous step, with any other potentially biasing features accounted for by the other model terms.
When an SPSD is in the window but not at the center the model is incorrect. There is some mixing
between other terms in the model and the unit step, which results in a smaller absolute step height. The
maximum absolute step height will, therefore, always occur at the true time that the SPSD occurred, but
there will be a signal from the filter in the range equal to the filter window width around the step which
corresponds to the filter’s step response function.

To account for the fact that all light curves are not the same, we could generate a bank of filters with
different length scales, and orders, and apply them individually to the data, and then combine the results in
some sort of weighted average to find the SPSDs. We could have used a shotgun approach for the parameter
and weight determination, selecting somewhat arbitrary values for each to sample the parameter space at
a variety of time scales, or a wavelet approach which discretely reduces the scales by successive factors of
two. However, to maintain processing efficiency we have developed the multiscale approach discussed in
the following paragraphs. This method selects and combines various scales into a single filter with reduced
step response when the SPSD is in the window but not at the center, while maintaining the centered SPSD
signal-to-noise ratio (SNR) at the level attained at long time scales. In other words the method drives the
step response function toward being a delta-function without completely ignoring data more remote from
the step.

In addition to multiscale coefficients, the algorithm generates the full model matrices and left inverse
for both the long and short cases, which are used in the SPSD validation process. For these we add three
additional basis vectors which are simply discrete (Kronecker) δ-functions located at the center and ±1
cadence from the center. Their purpose is to exclude the central three data points from affecting the other
fit coefficients when applied during the validation phase. (Equivalently, we could have excluded the central
three points from the fit.)
Multiscale Segment. The final SPSD detection filter is produced by constructing filters using the method
described above at multiple scales and adding them together to improve localization of the peak response.
The segment A-B-C in fig. 5 determines the model parameters and weights for the succession of scales.
The details of the process are include in fig. 7. During initialization we derive a set of filter coefficient
vectors at the longest time scale, NLongWindow with various polynomial and discontinuity orders.

We observe that the filter response for a given set of filter coefficients has peaks and valleys with the
peaks corresponding to places where the filter coefficents cross zero from minus to plus with time and
the valleys corresponding to where they cross from plus to minus. A way to drive the the step response
function toward a delta-function is to choose parameters for the new filter so that the outermost valley
of the new step response function lines up with the outmost peak of the initial one. The information
we need to make this choice comes from a catalog of the filter coefficient zero crossing locations, Zik and
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Coefficients generated 
from a single scale=193,
polynomial order=3,
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Figure 6. Conversion of model basis vectors for a time series window to filter coefficients. A
time series segment y is modeled by basis vectors assembled as columns in a matrix, M , and a coefficient
vector a. The pseudoinverse of M , U provides the least-squares solution for a when multiplied by y. The
coefficient, as, of the unit step basis vector is the step height, and the row of U which give as when
multiplied by y contains our filter coefficients.

signs (minus-to-plus= +1, or plus-to-minus= −1) of zero crossings, Sik, where i is the index to a filter
coefficient vector, and k is the index to a discrete zero crossing within a filter coefficient vector. The index
i corresponds to specific values for the pair of parameters {npoly, ndiscontinuity} as shown in the upper right
in fig. 5. We always maintain ndiscontinuity ≤ npoly to reduce the size of the catalog. Since the model always
produces filter coefficients which are antisymmetric with respect to the center, only the zero-crossings on
one side of the center need to be catalogued.

For each multiscale loop iteration, we have a current state X which includes the addition of a set of
filter coefficients AX1,j from the previous scale and calculated zero-crossing locations, ZXj , and zero-crossing
signs, SXk , of the combined filter coefficient vector at that state. To determine what scales of a given model,
i1, would improve the step response function, we assemble a ratio matrix, R, where

Rjk = 2

⌊
NLongWindowZ

X
j S

X
j

2Zi1k S
i1
k

⌋
+ 1,

representing all the integer scales where zero-crossings of the candidate model align with those of the current
state. We chose from R a subset, R′, whose elements are negative, meaning zero crossings are in opposite
directions, and larger in absolute value than NLongWindow/2φ, where φ is the multiscale iteration number
starting at 1. This admits shorter scales with increasing iteration. When possible we consider 2 candidate
models one with the current value of npoly and one with decremented polynomial order, unless the current
state is already the minimum to be considered, npoly = 2. We select the least negative (maximum) value
from these candidates as the new scale and if it comes from the lower order set we reduce npoly by one, and
if necessary, reduce ndiscontinuity as well. The parameters {scale, npoly, ndiscontinuity} specify a new model
from which a new set of filter coefficients are derived. The process iterates as long as a scale can be found
in the range [NLongWindow/2φ, NLongWindow], and finally stops once scale falls below 2Nmin. It then adds a
final step at scale= Nmin with 1st order polynomials.
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The noise level of the filter output is approximately proportional to 1/
√

scale. It is therefore possible to
maintain the SNR of the multiscale filter by weighting coefficients at each scale by a factor ω/ωsum, where
ω =

√
scale/NLongWindow and ωsum is the sum of ω over all scales used. The result therefore represents a

weighted average of least-squares fit step heights yielding a combined multiscale step height estimate. The
construction of the filter using default parameter values is illustrated in fig. 8, and the final filter is plotted
in fig. 9. Refer to §3.1 for discussion of performance characteristics of this filter.

2.2. Detection Algorithm.

Overview. The detection process begins with preconditioning of each time series by filling gaps and
padding endpoints. Conditioned time series are then convolved with the detection filter and responses are
normalized across all targets and cadences on the current channel. The maximum normalized detector
response for each target is evaluated by applying succession of threshold-based decisions to determine first
whether it is a feasible candidate and finally whether it should be labelled an SPSD. Fig. 10 is a flow
diagram of the detection algorithm described below. The shaded boxes are further diagramed in figs. 12
13, and 14, with some details relegated to Appendices.

Parameters. The input detection parameters are either thresholds or used to calculate thresholds. The
values are either ratios or probabilities. The threshold calculations are described in Appendix B. Table 3
lists the parameters and cross-references with variable names in the code.

Parameter Description Default MATLAB Name
fFP The specified rate of false positives

due to noise
0.005 .falsePositiveRateLimit

Rsteps Tolerance for ratio of long- to short-
model step height estimates

0.7 .discontinuityRatioTolerance

Rmin:max Tolerance for | log min/max | within
a window for transit veto

0.7 .transitSpsdMinmaxDiscriminator

Table 3. Detection Parameters. These parameter specify constraints on SPSD acceptance.
The false positive rate is used to calculate detection thresholds for identifying candidates (see
Appendix B). The other two parameters are used for validation of SPSDs as discussed below.

Input/Output. The inputs for the algorithm include the filter coefficients and models listed in Table 2
as outputs of the detection filter generation algorithm and a set of time series, listed in the short Table
4. The first time the algorithm is called, time series for all targets output from coarse map are used. On
subsequent calls only time series in which SPSDs have previously been found and corrected are input. The
algorithm’s principle output is a list containing the subset of input targets in which SPSDs were identified,
and its complement the list of “clean” targets, as well as some parameters which characterize the SPSDs.
See Table 5.
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Figure 7. Multiscale segment (A-B-C) of detection filter derivation algorithm. This algorithm
segment determines a new length in cadences, scale, a polynomial order for the S-G components, npoly,
and a polynomial order for the discontinuity, ndiscontinuity with which to build the next in a series of
weighted summed filter components. It then generates the model component matrices MX and and
left inverse AX and AS for specified cases. It selects the scale by matching the zero crossing points
at the current state of the summed detection filter with the opposite-going zero-crossings of a pair of
candidate models, one of current polynomial order and one of reduced order. These zero-crossing ratios
are tabulated in the matrices R1jk and R2jk and the scale selected is the largest one identified in a range
which is reduced from the full length, NLongWindow, by a factor of 2 on each iteration, φ. See fig. 5.
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Knew ∗ θ,
where θ is a step function

Figure 8. Illustration of multiscale filter construction.

Input Variable Description MATLAB Name
ts set of flux time series .fluxResiduals
g gap indicators for time series .gaps

Table 4. Detector Inputs. The algorithm requires a set of flux time series and associated gap indicators.

Description. The main steps in the algorithm shown in fig. 10 occur serially and only once per call.
After an initial check to ensure that input time series contain valid data, we propagate the {OK} time
series through a chain of operations:

ts
precondition−→ tsP

filter−→ tsD0 standardize by target−→ tsD1 standardize by cadence−→ tsD2 restandardize by target−→ tsD3.

The preconditioning operation, segment D-E, is described below. Once preconditioned, tsP are padded
by bNLongWindow/2c cadences and de-gapped in a manner which enables effective filtering, and therefore
effective sensitivity to SPSDs near the start, end and gaps. The filter is applied by convolution where
tsP ⊗K = tsD0(i) =

∑
j u(j)K(i+ 1− j) so a given time series segment is multiplied by the antisymmetric

filter coefficient vector, K, in the reverse of the order it would be applied in matrix multiplication used
in a fit. So, the sign of the step height is reversed and a SPSD’s downward step leads to a positive filter
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Figure 9. Resulting filter coefficients using default parameter values.

Output Variable Description MATLAB Name
k, {SPSDs} index to identified SPSD-affected targets .spsds.index

tεk occurrence time of SPSD for target k .spsds.spsdCadence
cLk long-window model (LW) fit coefficients .spsds.longCoefs
hLk LW step height .spsds.longStepHeight
σLk LW MAD of residuals .spsds.longMADs(1,:)
ηLk LW MAD of residual differences .spsds.longMADs(2,:)
cSk short-window model (SW) fit coefficients .spsds.shortCoefs
hSk SW step height .spsds.shortStepHeight
σSk SW MAD of residuals .spsds.shortMADs(1,:)
ηSk SW MAD of residual differences .spsds.shortMADs(2,:)

k, {clean} index to clean targets .clean.index
Table 5. Detector Outputs. The algorithm outputs a list of parameters for every confirmed
SPSD identifying which target, when and a set of parameters derived from the short-model and
long-model fits that are performed on each candidate SPSD. This algorithm finds no more than
one SPSD in any input time series per call and its called iteratively to detect multi-SPSD cases.

output value. We keep only those elements of the convolved time series where the filter coefficients vector
was applied in full, in other words j in the sum spans the full range of K. As a result the detection time
series, tsD0, returns to the original time series length, N . The interpretation of tsD0(t) is the negative of
the fit step height at time t, in flux units. Fig. 11 illustrates the filter application on an actual time series.
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Figure 10. SPSD detection algorithm. The algorithm requires both the input parameter and the
output of the detection filter derivation algorithm shown in fig. 5, as well as an additional set of detection
parameters, and a set of flux time series, ts. As implemented, ts have been partially corrected with a
coarse PDC-MAP pass [2]. The detection parameters are: a tolerance for the ratio of steps measured using
the long:short window models, Rsteps; the window length in cadences for modeling the time series ends
used in generating padding data, Nends; the accepted fractional rate of false positive SPSD detections,
fFP; a tolerance for the ratio of maximum detection statistic to nearby minimum detection statistic for
transit rejection, Rmin:max; and the threshold for measured step height detection in units of the 1σ shot
noise limit σvalid. It produces a set of identified SPSDs, and a list of clean targets. Processes in shaded
boxes (D-E, F-G-H, and I-J) are detailed in following sections. See fig. 4.
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Figure 11. Illustration of filter application. The filter results in a clear SPSD detection (positive
spike), with little evidence of the neighboring step response function.

We want to select SPSD candidates on the basis of the probability that they are real SPSDs and not
false positives resulting from statistical fluctuations. To facilitate this, we perform a series of standard-
ization steps on the detection time series. Because Poisson and other sources of noise vary from target
to target, we first robustly standardize each detection time series by subtracting the median, µ1/2(tsD0

i ).
and dividing by a robust estimate of the standard deviation, π

2× the median absolute deviation (MAD),
µ1/2(

∣∣tsD0
i − µ1/2(tsD0

i )
∣∣). This also tends to de-weight SPSD detection for targets with a strong compo-

nent at higher frequencies in the filter bandpass. At the same time we zero the values in a short buffer
zone of 5 cadences from each end, and around gaps longer than 1 cadence. These are regions which are
prone to residual systematics, which would lead to an unacceptable level of false positives, and by “zeroing
them out”, we are eliminating the possibility an SPSD will be detected there. This buffering process only
amounts to ∼ 30 cadences per quarter, affecting the detection efficiency by < 1%. The resulting tsD1 all
have ∼ 0 median and standardized noise levels.

The systematic error removal at this stage of pipeline processing in incomplete and leaves common
mode features in the time series. To prevent these features from producing false positives, we perform a
cadence-by-cadence standardization step across targets. If the median and standard deviation of the tsD1

values across all targets at a given time are significantly different from 0 and 1 respectively, it suggests
that systematics are biasing the step height estimates, so we repeat the process described above on the
transposed matrix of targets × cadences to equalize the noise across time, yielding tsD2. The final step,
yielding tsD2, is just a repeat of the first target-by-target standardization step, typically resulting in
only a small incremental adjustments to median and σ changes induced by the tsD1 → tsD2 step. Note
that it is implicit in this algorithm that the input set contains only a small fraction of targets which
exhibit variability with a strong high frequency component, otherwise these can bias the standardization
parameters and lead to unpredictable results. Also, the second and third steps can only be effective if
there is a statistically meaningful sample of targets, so if the number of targets in the set {OK} is ≤ 3 we
simply set tsD1 = tsD2 = tsD3.

We use the standardized detection time series, tsD3, to identify candidate SPSDs based on extreme value
theory. The details of this algorithm segment, labeled F-G-H in fig. 10, are discussed in the paragraphs
below and diagrammed in fig. 13. A part of the algorithm differentiates between SPSDs and transits,
enabling the detection of SPSDs which are smaller than transits in the light curve. The result is a set of
candidates, k ∈ {SPSD candidates}, who probability of being a false positive due to statistical fluctuations
is < fFP , along with the maximum values, εk, and cadences of occurrence, tεk.

To further reduce the risk of misidentifying an SPSD because of a rapidly, but not instantaneously
changing stellar signal, we include a final validation step. This examines and compares the characteristics
of a fit of data in a short window surrounding the candidate SPSD with that of a long window, using the
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models defined in §2.1. Candidates that survive these consistency checks are confirmed SPSDs and are
output along with the quantities listing in the Input/Output section above. Further details are included
below and in fig. 14.
Preconditioning. Fig. 12 is a flow diagram of the preconditioning segment (D-E) of the detection algo-
rithm. To simply notation for this discussion we consider the process with input time series for the kth
target, and set Fi = tsk(ti) and output padded time series P = tsPk . The purpose of preconditioning is
to minimize SPSD detector response near time series continuity breaks. The preconditioning algorithm
accepts

• a flux time series vector, Fn,
• a logical gap map vector, gn,
• and a padding length, Lpad(= bNLongWindow/2c),

and produces
• a padded time series vector, Pm,
• and a logical exclusion mask list {exclude},

where
• n runs from 1 to the length of Fn, N ,
• m runs from 1 to N + 2Lpad.

Preconditioning is achieved by dividing elements of Pm into several categories, each of which is generated
by a distinct algorithm. These are described in appendix A and summarized below:

Not Gaps: Direct transfer of data for non-gap cadence intervals such that Ping = Fing−Lpad
where

ing are non-gap indices (gn = false) offset by the length of the pad interval prior to the start of the
flux time series.

Length = 1 Gaps: For each gap of length 1 long cadence we proceed as in fig. 33, producing values
Pj , where j ∈ {ig1} the list of offset one-cadence gap indices.

Length > 1 Gaps: For each multi-cadence gap we proceed as in fig. 34, producing the set of values
{Pgap:start, , . . . Pgap:end}, where gap ∈ {igap} the list of offset multi-cadence gap indices.

End Padding: We pad the start and end of P as shown in fig. 36, producing the set of values
{P1, . . . , PLpad

, PN+Lpad+1, . . . , PN+2Lpad
}.

Outliers: We perform a simple differential 3σ outlier detection and correction as shown in fig. 35,
producing Pj , Pj+1,where j ∈ {out}, the list of detected outliers.

The outlier correction is designed to leave steps associated with SPSDs in place, while removing smaller
cosmic ray and noise spikes which increase the noise in the filtered output, but are not associated with
SPSDs.

The algorithm also produces a list of cadences to exclude when searching for SPSDs. This is formed
from the union of the first 5 cadences, last 5 cadences, and windows encompassing a range from 5 cadences
before- to 5 cadences after- each multi-cadence gap. As discussed in the Description section above, these
cadences are later set to zero in the detection time series to prevent false positives due to systematic errors
which often appear at or near data gaps.
Extreme Values and Candidate Identification. Fig. 13 is a flow diagram of the extreme value deter-
mination and SPSD candidate identification segments (F-G-H) of the detection algorithm. The method
is based on the observation that SPSDs are relatively rare events, occurring on average less than once in
every 105 long cadences, or 5 years, for any one target at typical radiation levels. Because of this, we can
just examine the extreme values for the detection statistic, tsD3, for any target and quarter, and evaluate
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Figure 12. Preconditioning segment (D-E) of SPSD detection algorithm. The algorithm requires
an N -cadence input time series, F , with pre-identified gap locations, and parameters defining the window
length in cadences for modeling the time series ends used to generate padding data, Nends, and the window
length of the detection filter, NLongWindow. It produces an N+2bNLongWindow/2c cadence padded, gap-
filled and outlier-corrected time series, P and set of cadence times, t{exclude}, to exclude as a result of
their < 5-cadence proximity to multi-cadence gaps or the time series ends. Processes in shaded boxes
represent the distinct algorithms associated with single-cadence gap-filling, multi-cadence gap-filling, end
pad generation and outlier detection/correction, and are detailed in following sections. See figs. 10, 33,
34, 35, and 36.
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whether they are noise-induced, astrophysical in origin, or SPSDs. (To identify multi-SPSD time series,
we simply iterate the process with only with those targets in which SPSDs were previously found.) The
evaluation requires that we know what to expect, so before starting we calculate a set of detection thresh-
olds, which depend only on three quantities: the number of long cadences in the time series, N , the length
of a window around the maximum to search for an accompanying minimum, suggestive of an astrophysical
cause for the maximum, which we set at NLongWindow, and the false positive rate, fFP , which specifies
how deeply we are willing to dive into the noise distribution to bring up true SPSDs, at the expense of
increasing numbers of false positives. The details of these calculation are provide in Appendix B and fig.
37 therein.

The first step in the process is to produce a set of quantities which characterize the extreme value
properties of each detection time series, tsD3. For the kth time series, we determine the following quantities:

• εk, the maximum of tsD3
k ;

• tεk, the cadence when the maximum occurred;
• ζk, the minimum in a window ±bNLongWindow/2c around tεi ; and
• Σk, the sum of εk and ζi.

Next, the algorithm checks for a companion negative extremum in close proximity to any potential SPSD
candidate which would indicate a transiting body, rather than an SPSD. If a comparable minimum is
detected, the searched interval is zeroed out like the gap buffers, and the next maximum is calculated,
and the process continues until an isolated maximum is found. It is obvious that this process will reduce
the detection efficiency in proportion to the number of excluded cadences. Finally, the algorithm collects
isolated maxima, εk, and extrema sums, Sigmai, for all the targets, applies the SPSD acceptance criteria
described below, forming the subset {SPSD candidates}.

The SPSD acceptance criteria requires that the maximum, εk, exceed the threshold u (N, fFP) and the
criteria indicating a astrophysically-induced associated minimum are not met. The probability is fFP,
that the maximum of a standardized normal distribution with the N samples would be larger than the
threshold u (N, fFP). The veto criteria, indicating a possible transit, are the same as those used to find the
isolated maximum, so this criteria is never met in the currently implemented version of the algorithm. It is
a vestige of an earlier version, which only detected SPSDs that were larger than the deepest transit signal
in the time series. Nevertheless, since the criteria is now used in the maximum determination described
above, we discuss it here.

There are 2 main astrophysical phenomena which might induce a rapid drop in the stellar flux, a transit
due to eclipsing binary or planet, or a flare. Either will partner the flux drop with a similar flux increase.
In the case of a flare, the the drop is not likely to be instantaneous, and therefore probably less likely to
be confused with an SPSD. But, because an SPSD accidentally occurring close to a sudden rise in flux
is comparably surprising, we chose to search for a minimum in a window which encompasses both sides
of the detection time series maximum. The 2 day window half-width is 4× longer than an earth transit,
however again we have weighed the likelihood of astrophysical origin of 2 similar opposite-going events in
close temporal proximity against an uncommon SPSD occurring by chance around the time of a sudden
rise in detected flux. We exclude a maximum which exceeds the noise criterion above from consideration
as an SPSD, if either of the following holds regarding the sum, Sigmak, of the maximum and neighboring
minimum:

• Σk < u∆ (N,NLongWindow, fFP), where u∆ (see App. B) is the difference threshold for a false
positive rate of fFP OR
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• Σk < Rmin:maxεk − u (NLongWindow, 0.5), where Rmin:max is the specified min:max ratio tolerance,
and the probability is 50%, that the minimum of a standardized normal distribution with the
NLongWindow samples would be less than the threshhold u (NLongWindow, 0.5)

Note that for a perfectly symmetric transit signature, the sum of the maximum and minimum would be
zero. The first criterion constrains the accidental occurrence of the observed sum, and the second is on the
equivalence of the absolute values of the maximum and minimum. If either the maximum and minimum
agree within tolerance, or the probability is less than fFP of the sum occurring by accident, then the
possibility that the maximum is due to an SPSD is vetoed. See Appendix B for a more detailed derivation.
Candidate Validation. Fig. 14 is a flow diagram of the validation segment (I-J) of the detection algo-
rithm. The algorithm performs fits of candidate SPSDs using 2 different window lengths and examines
the step height obtained in the two cases to verify that the detected feature is negative and statistically
significant at both scales and that the ratio of estimated step heights is within a specified tolerance, Rsteps

of each other.
The input data for the fits are segments of the preconditioned time series, tsP{candidates}, where {candidates}

is the set of targets with identified SPSD candidates. The segments are centered on the SPSD candidate
time, tε and of length NLongWindow for the long window fit and, NShortWindow for the short window fit.
The model design matrices, M and pseudoinverses, A are described in §2.1. For each case, we apply the
pseudoinverse to the data segment to produce coefficient vectors cL,J , and cS,J where L and S indicate
long and short and the J indicates the coefficient applies to the Jth model component. We then apply the
coefficients to the model matrix to generate the model estimates, tsLest,k and tsSest,k (k is a target index).
Next, we calculate step heights, hL and hS , based on the estimated differences in values ±2 cadences
from the window center. We do this instead of just taking the coefficent corresponding to the step term
in the model because it accounts for small contributions of the other terms in the model and avoids the
three delta-function terms at the center and ±1 cadence. We want to know whether these step heights
are statistically significant so we need to estimate the uncertainty. The shot noise per value is estimated
as simply

√
F , where F is the mean flux in e−/long cadence. F is estimated in the fits by cL,2, and cS,2

assuming the second component of the model is a constant as defined in fig. 5. Ignoring the 3 central
values in a window X, where X is L(long window) or S(short window), the uncertainty in the flux estimate
due to shot noise on each side of the step is σshot =

√
2cX,2/(NX − 3), scaling as the inverse of the square

root of the number of points in the average, (NX − 3)/2. The shot noise limit on the difference between 2
such values, i.e. a step height measured with such a window, is just

√
2σshot. The SPSD step height is a

small fraction of the flux, so we can define a step height standardized to shot noise, ĥX,k, which measures
the significance of the step relative to shot noise limit,

ĥX,k =
hX,k√
2σshot

=

√√√√(NX − 3)h2
X,k

4cX,2k

.

This quantity is used to verify that the step height is significant relative to the shot noise limit at both
scales, and thereby help to validate that the candidate is an SPSD. For this purpose, we ignore read noise
which is not dominant until ∼ 16th magnitude.

Although they are not currently used in the validation process, we also calculate two diagnostic quantities
regarding the goodness of fit, based on the residuals, rXk = tsPk − tsXest,k. We robustly estimate the standard
deviation of the residuals as the median absolute deviation of rXk using, σXk = π

2µ1/2(
∣∣rXk − µ1/2(rXk )

∣∣) and
a noise estimate, ηXk , from residual first differences, ∆rXk , using ηXk = π

2µ1/2(
∣∣∆rXk − µ1/2(∆rXk )

∣∣). These
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Figure 13. Extreme value and candidate ID segments (F-G-H) of SPSD detection algorithm.
The algorithm requires both the input parameter and the output of the extreme value threshold calcula-
tions (shaded box) shown in fig. 37, and a set of standardized detection time series, tsD3. It produces
a set of SPSD candidates. The process first calculates a set of quantities which characterize the ex-
treme value properties of the detection time series: εk, the maximum of tsD3

k ; tεk, the cadence when the
maximum occurred; ζk, the minimum in a window ±bNLongWindow/2c around tεk; and Σk, the sum of
εk and ζk. It implements a transit veto loop to select only maxima which do not have close-proximity
matching minima, and then choose only time series with threshold-crossing maxima as candidate SPSDs.
We detect at most one candidate per target in an iteration of this segment. See figs. 10 and 37.
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parameters are output as potential downstream V&V diagnostics for both the long window and short
window models.

We confirm that a candidate is a valid SPSD on the basis of 5 criteria. The steps must be downward-
going in time in both fits, hL < 0 and hS < 0. The steps must be 3× larger than the shot noise limits,
ĥL > 3 and ĥS > 3. Finally, the ratio of the steps determined by the two models must be within a
specified tolerance. To formulate this criterion, we use the quantity Λ =

∣∣∣log
∣∣∣hLhS ∣∣∣∣∣∣ (here log is the natural

logarithm) because it is always real, positive and symmetric with respect to exchange of hL and hS . If ∆h
is the uncertainty in h, then the uncertainty in Λ is

∆Λ =

√
∆hL
hL

2

+
∆hS
hS

2

≈
√

1

ĥ2
L

+
1

ĥ2
S

,

where we have simple substituted the shot noise limits for ∆hL,S . To account for uncertainty in the
criterion we specify the tolerance with respect to the 1σ lower limit on Λ, so Λ − ∆Λ < Rsteps. For the
default tolerance Rsteps = 0.7, this criterion is perhaps more easily stated: the 1σ lower limit of the ratio
of the larger step height to the smaller step height is less than two. The fit coefficients, step heights, and
fit diagnostics are output for all confirmed candidates.

2.3. Correction Algorithm.

Overview. We assume an input flux time series, ts(t) may be decomposed as

ts(t) = T (t)εT (t) +B(t)εB(t) + β(t) + η(t)

where T (t) is the time varying target flux, εT (t) is the time varying aperture throughput for the target, B(t)
is any remaining time varying flux from background sources, εB(t) is the time varying aperture throughput
for this background flux, β(t) is any uncorrected time varying offset from the flux values, which may also be
viewed as correlated noise, and η(t) is the uncorrelated white noise. From the viewpoint of signal processing
β(t)+η(t) may be combined into a colored noise component, however from the instrument design perspective
they are distinct. β(t) can be further broken into a correctable part, βc(t), and an uncorrectable part, βu(t),
and it makes more sense to call βu(t)+η(t) the colored noise component. We will not delve into what makes
something correctable or uncorrectable, but note that correlation with other observables or having a unique
time signature enable correction. We would like to also account for SPSDs in this picture, but the SPSD
might impact either the ε factors or the βc(t) term, where we optimistically assume that they are correctable.
We further decompose εT = εT0(1 + δTSPSD), εB = εB0(1 + δBSPSD), and βc = βc0 + βSPSD, with implicit
definitions. Note that typically (X(t) − X)/X(t) � 1 and (εX(t) − εX)/εX(t) � 1), where X ∈ {T,B}
and {X, εX} are time averages of {X, εX}, so we assume we can ignore terms (X(t) −X)(εX(t) − εX) in
comparison to X(εX(t) − εX) or (X(t) −X)εX . Because Kepler is concerned with variations at the 10−5

level, this assumption is not always valid, nevertheless, it is pervasive throughout PDC. Taking all this
into account we rearrange into

ts(t) = (T (t)εX +B(t)εB) (= flux)
+ (T (εT0(t)− εT ) +B(εB0(t)− εB) + βc0(t)) (= systematics)
+ (TεT δTSPSD(t) +BεBδ

B
SPSD(t) + βSPSD(t)) (= SPSD)

+ (βu(t) + η(t)) (= noise),

where we have also assumed εX0(t)δXSPSD(t) = εXδ
X
SPSD(t) + (εX0(t)− εX)δXSPSD(t) ∼= εXδ

X
SPSD(t), because,

like (εX0(t)− εX)/εX , δXSPSD(t)/εX � 1.
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Figure 14. SPSD validation segment (I-J) of SPSD detection algorithm. The algorithm requires
both the input parameter and the output of the detection filter derivation algorithm shown in fig. 5,
as well as an additional validation parameter, and a set of preconditioned flux time series from SPSD
candidates, tsP{candidates}. The validation parameter is Rsteps, a tolerance for the ratio of steps measured

using the long:short window models. It produces a set of identified SPSDs and associated long and
short model fit coefficients, c, step heights, h, residual σ (derived for median absolute deviation), and
residual noise, eta. The validation is based on results of model fits in a short and long window around the
candidate. To be a valid SPSD, the models must indicate negative step heights (h) and a 3σ detection

above the shot noise limits (ĥ) for both scales. The ratio of the step heights hL/hS must also be within
the specified tolerance after accounting for uncertainties. See fig. 4.
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The purpose of the correction algorithm is to extract the SPSD term shown above from the input flux
time series as a correction term. Our SPSD model has two main components, a persistent step function
and a recovery function, and correction is a two stage process. The first stage estimates a persistent step
height from analysis of the entire flux time series, excluding a short recovery window following the SPSD,
which typically contains a transient signal. The second stage models the recovery window using a series
of exponentials of varying time constant. The algorithm also detects and preserves sinusoids in the signal
while removing only the step and recovery transient components. The persistent step correction is refined
in each stage in the process. Fig. 15 is a flow diagram of the correction algorithm described below. The
shaded boxes are further diagramed in figs. 18 19, and 21, with some details relegated to Appendix C.

Parameters. The input correction parameters specify various aspects of the models used in the correction
process. Table 6 lists the parameters and cross-references with variable names in the code. The window
lengths define modeled regions of interest used in all correction stages. The polynomial order is only used at
the first stage which provides an initial estimate of the persistent step height. The false positive rate is for
the sinusoid detection algorithm, specifying the signal above the amplitude spectrum noise level required
for inclusion in the model. The last three parameters specify the start, end, and increment of a series of
exponential time constants (τ) corresponding to the exponential basis elements used to model the SPSD
recovery. These are specified logarithmically because linear specification of time constants often results in
a basis of exponential functions which are too similar to each other, i.e., too highly correlated, and which
tend to degenerate further when combined with the polynomial nuisance components of the model.

Parameter Description Default MATLAB Name
NW Half-width of close-proximity model-

ing window in long cadences
480 .polyWindowHalfWidth

NR Width of recovery window following
SPSD in long cadences

240 .recoveryWindowWidth

nBPp The polynomial order used in the big
picture model

6 .bigPicturePolyOrder

fHFP The specified rate of false positive si-
nusoids due to noise

0.01 .harmonicFalsePositiveRate

log10 τmin Minimum value of log10(time con-
stant) for exponential terms in the
recovery mode

-2.0 .logTimeConstantStartValue

log10 τmax Maximum value of log10(time con-
stant) for exponential terms in the
recovery model

0.0 .logTimeConstantMaxValue

∆ log10 τ Increment of log10(time constant) for
exponential terms in the recovery
model

1.0 .logTimeConstantIncrement

Table 6. Correction Parameters. These parameters specify SPSD correction models. The
false positive rate is used to calculate detection thresholds for identifying sinusoidal signals in
the flux time series (see Appendix C).



KPO@AMES DESIGN NOTE

Design Note No: KADN-26304 Rev: Draft Date: 31-Jan-2012

Title: Methods for Detection and Correction of Sudden Pixel Sensitivity Drops

Author: J. Kolodziejczak & R. Morris

Form KADN-26000 Rev - 1 Page 28 of 60

Cotrending 
Vectors Û
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Figure 15. SPSD correction algorithm. The algorithm requires a set of correction parameters,
and a set of uncorrected SPSD-containing flux time series, ts{SPSDs} and associated occurrence times,
tε{SPSDs}. As implemented, ts have been partially corrected with a coarse PDC-MAP pass [2] and the

resulting co-trending basis vectors (CBV), Û , are also used by the algorithm. The correction parameters
are: the window half length in cadences for modeling the time series in close proximity to the SPSD, NW;
the window length in cadences for modeling the recovery following occurrence of the SPSD, NR; the
polynomial order for modeling the time series distant from the SPSD, nBPp ; the accepted fractional rate

of false positive sinusoid detections, fHFP; a set of parameters used to specify the basis for modeling the
recovery interval, which define a set of exponential time constants, τ , in terms of the base-10 logarithm
of the minimum value, maximum value, and difference between consecutive values. τ is specified as a
fraction of the full recovery window length. It produces sustained step corrections, recovery corrections,
and corrected time series for each input time series. Processes in shaded boxes are detailed in following
sections. See figs. 4, 18, 19, and 21.
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Input/Output. The inputs for the algorithm include flux time series with detected but not yet corrected
SPSDs, the gap indicators and corresponding SPSD occurrence times of these, and the coarse PDC-MAP
co-trending basis vectors (CBV), as listed in Table 7. Each time the algorithm is called, only one SPSD
from each time series is known and corrected. The algorithm’s principle outputs are the 2 components of
the calculated correction: the sustained step and the recovery, and a corrected flux time series to which
these have been applied. See Table 8.

Input Variable Description MATLAB Name
ts{SPSDs} SPSD-containing un-

corrected time series
.timeSeriesStruct.fluxResiduals(iDedStruct.index,:)

g{SPSDs} gap indicators for time
series

.timeSeriesStruct.gaps(iDedStruct.index,:)

tε{SPSDs} cadence-of-occurrence
for each SPSD

iDedStruct.spsdCadence

Û coarse PDC-MAP co-
trending basis vectors

.timeSeriesStruct.parameters.U hat

Table 7. Correction Algorithm Inputs. The algorithm requires the index set, {SPSDs}, to

SPSD-containing flux time series, the occurrence times, tε{SPSDs} and the CBV, Û .

Output Variable Description MATLAB Name
∆S
{SPSDs} persistent step correction for each time series ..persistentStep

∆R
{SPSDs} recovery correction for each time series .recoveryTerm

tsC{SPSDs} corrected flux time series .correctedTimeSeries

Table 8. Correction Algorithm Outputs. The algorithm outputs correction time series for
both a persistent step and a recovery function, ∆S and ∆R, and corrected flux time series
tsC = ts−∆S −∆R.

Description. The three main stages in the algorithm shown in fig. 15 occur serially and only once per
call. (We use the word “stage” instead of “step” to avoid confusion with one of the correction components
which is a step function.) The purpose of the various stages is to efficiently arrive at good estimates for
the corrections in the presence of a wide variety of stellar behaviors. The empirically derived SPSD model
consists of two components:

a persistent step function: This term accounts for the observation that in many cases the mea-
sured flux in quiet stars never returns completely to values detected prior to the SPSD. We assume
that this is caused by permanent radiation damage in the photosensitive region of the CCD pixels
which results in permanently reduced quantum efficiency. As a result, we constrain the step height
to a value ≤ 0.

a recovery function: As discussed above, if an SPSD occurs at ti, then in most cases an exponential
transient recovery period begins at ti. The recovery function described below effectively models this
transient behavior. Presumably, this transient behavior results from temporary radiation damage
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in the photosensitive region of the CCD pixels, which heals with a time constant which depends
on some unobserved characteristics of the damage.

Fig. 16 illustrates the effect of these two terms on a flux time series.

Figure 16. SPSD model. Our SPSD model consists of an instantaneous sensitivity drop, an expo-
nential partial recovery of sensitivity, and a persistent sensitivity differential. This model both informed
the algorithms design and provided a basis for simulation testing.

We found in the development process that attempts to fit all the necessary components of the whole
light curve at once required a large basis. This often resulted in poor results because the basis needed
to fit the stellar behavior, either also fit a large fraction of the SPSD effects, or was highly degenerate
with the SPSD model terms and resulted in nonsensical model coefficients. Instead, we adopted a three-
stage approach where we operate on specific time segments or windows of the time series at each stage
to extract incrementally better estimates of the persistent step at each stage while removing components
that confound recovery determination. These three stages are:

big picture modeling: Here we extract an initial estimate of the persistent step by modeling the
light curve, excluding the recovery-encompassing period after the SPSD. The model is a step, a
polynomial of order nBPp , and the CBV. The resulting coefficient of the step component is the initial
estimate of the persistent step height. The details of this segment of the algorithm are discussed
below and diagramed in fig. 18.

sinusoid removal: Here we detect the presence of sinusoidal features in the big picture step-corrected
time series, and if detected, model a region in close proximity before and after the SPSD occurrence
time. The model includes another step and a series of sinusoids as described below, in fig. 19 and
fig. 39 in Appendix C. The resulting coefficient of the step component is an incremental additive



KPO@AMES DESIGN NOTE

Design Note No: KADN-26304 Rev: Draft Date: 31-Jan-2012

Title: Methods for Detection and Correction of Sudden Pixel Sensitivity Drops

Author: J. Kolodziejczak & R. Morris

Form KADN-26000 Rev - 1 Page 31 of 60

adjustment to the persistent step height. The flux time series with both steps and the sinusoids
removed is used in the next processing stage.

recovery modeling: Here we extract and estimate of the recovery function by modeling a region in
close proximity before and after the SPSD occurrence time. The model includes a step, a polynomial
series, a series of exponential functions, 3 delta-functions, and the CBV as described below and in
fig. 21. The order of the polynomial is determined by a preliminary process from data in this close
proximity window, but excluding the recovery time interval. The process uses Akaike’s Information
criterion to select the optimal polynomial order. The resulting coefficient of the step component is
another incremental additive adjustment to obtain the final persistent step height correction. The
combination of the series of exponential functions and 3 delta-functions represent the final recovery
correction.

Fig. 17 illustrates the regions of interest, relationships and products of these stages. The combined process
provides satisfactory results on a much larger fraction of light curves than simpler approaches that we
have tried. We found that ∼ 10% of light curves have a sinusoidal component with period greater than
the detection filter cutoff at 70 long cadences. Many more have rather complex low frequency or red noise
components at periods longer than 300 long cadences. We found in trying to implement these simpler
models that a number of difficulties arose:

• the sustained step was often biased,
• the recovery was partially removed by the large number of components required to model the wide

variety of stellar behaviors leading to an underestimate of the recovery,
• the recovery model components were often highly degenerate with the remaining components lead-

ing to an unnaturally large recovery correction and corresponding opposite distortion in the cor-
rected light curve,
• the fit was slow due to the large number of time series values and large number of components

required for the model,
• the presence of sinusoidal signals in the light curve required nonlinear fitting of multiple frequencies

in the data, which was slow, and it was difficult to guarantee convergence without a fairly complex
implementation,
• we don’t know in advance which harmonics or subharmonics of a detected frequency are needed

to model the full periodic waveform, so we must either include many or implement a complex
detection algorithm,
• the sinusoidal signals were often time varying, requiring additional nuisance model parameters

which exacerbate many of the problems listed above.

In the context of determining the SPSD corrections, the model parameters describing the stellar and
systematic variations in the light curve are nuisance parameters. In fact for the default input parameters,
even though we fit for dozens of model coefficients, only 9 are actually used in the corrections. We fit
for the others in the order described here simply to get reasonable estimates for these 9. The paragraphs
below describe the three stages in more detail and explain how they help resolve the problems listed above.

Big Picture Modeling. We named this “big picture” modeling because, conceptually, we stand back and
look at the big picture to derive a first estimate the sustained step. The parameter of interest is the step
coefficient. The polynomial, and CBV terms are nuisance parameters. We exclude the recovery window
because the recovery does not constrain the sustained step, but instead the instantaneous step, which is
the sum of the sustained step and the additional instantaneous step we include in the recovery as shown
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Figure 17. SPSD correction algorithm roadmap. An input flux time series, ts, undergoes big
picture modeling over a region of interest which excludes t{R}, producing a big picture step correction,

∆BP , and big picture step corrected time series, tsBP . tsBP then undergoes sinusoid removal in the
region of interest, t{W}, to produce an increment to the step correction, ∆H , and a sinusoid-corrected

time series, tsH . Recovery modeling is then performed on tsH(t{W}), to produce the recovery correction,

∆R, and the final step correction, ∆S from the sum of ∆BP , ∆H and an incremental step adjustment
from the recovery modeling. The SPSD-corrected time series is tsC = ts −∆S −∆R. The big picture
window, t{BP}, close proximity window, t{W}, and the recovery window, t{R}, are indicated for ts by
the blue intervals at the top.
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in fig. 16. By excluding this time interval at the first stage, we avoid introducing any bias in the step
coefficient due to the recovery, and we don’t need to include the recovery terms and all the high frequency
terms which are needed to accurately model the non-SPSD behavior in order to accurately estimate the
recovery. Polynomials are used because a smaller basis will fit the partial low frequency sinusoids which are
often encountered in the single quarter light curves in comparison to using sinusoidal functions. A partial
sinusoid produces a continuum in its Fourier spectrum and therefore requires a large basis of sinusoidal
functions for linear modeling.

We find that this approach works well even if we significantly underrepresent any higher frequency
components that may exist in the light curve, because these high frequencies tend to average over the
typically long time intervals of interest. We found satisfactory results by selecting a relatively low order,
nominally 6, for the polynomial component. The 6th order polynomial crosses zero roughly every 2 weeks
for quarterly processing, which is a ∼ 3× the nominal 5 day length of the recovery window. If the time
between zero crossing gets much closer than this to the length of the model gap due to the excluded recovery
interval, then the polynomial terms can sum to introduce a step degeneracy which would bias our step
estimate. To summarize, we model the stellar behavior with low order polynomials, the systematic behavior
with the CBV, and exclude the recovery to get a reasonably unbiased initial estimate of the sustained step
caused by the SPSD. We find that we can leave the high frequency stellar behavior unmodeled at this stage
without harming the step estimate. An exception is when the SPSD occurs near the beginning or end of
the time series, where we are unavoidably limited in our knowledge of the stellar behavior either before or
after the step. In these cases it is often more difficult to determine, even by eye, the degree to which the
step estimate is biased.

Fig. 18 is a flow diagram of the big picture modeling segment of the algorithm. We model the input flux
time series, tsk, with SPSD identified at time, tεk, in a time window, t{BP}, where {BP} is the included
set of cadence indices and k is a target index in {SPSDs}. {BP} includes all indices except data gaps
and the recovery gap, which is defined as the closed interval from 1 cadence before tεk to Nρ cadences after
tεk, where Nρ = min(NR + 1, tN−t

ε
k

δ1
− 4), with tN , the time of the last long cadence; δ1, the duration of a

long cadence; and NR, the input parameter specifying the length of the recovery window. The length Nρ

assures at least 4 cadences after the recovery gap for determining the step coefficient when the SPSD is
near the time series end. The 5-cadence detection exclusion zone (see § 2.2 ) at the beginning of the time
series ensures at least 4 cadences are included before the recovery gap for determining the step coefficient
when the SPSD is near the time series start.

The linear model includes nBPp + m + 2 terms, where nBPp is the input parameter specifying the big
picture polynomial order, and m is a count of CBV provided by coarse PDC-MAP. The 2 additional terms
are a constant (= 1 for all included cadences) and a step (= 0 before tεk, and = 1 after tεk). The polynomial
terms are represented by the Legendre polynomials Pj(x) for j ranging from 1 to nBPp . Here x, which
ranges from -1 to 1, is a scaled time variable determined from the cadence index, i, by xi = 2 i−1

N−1 − 1,
where i is an index in {BP} which will range between 1 and N . The least-squares fit results in a set
of coefficients cJk with a J corresponding to each term. The J corresponding to the step term (J = 1 in
fig. 18) is our initial estimate of the sustained step height. The resulting correction is then defined as
∆BP
k = c1

k Θ(t, tεk), where

Θ(t, t′) =

 0 t < t′

0.5 t = t′

1 t > t′

 .
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The resulting big picture corrected time series is tsBPk = tsk −∆BP
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,

Pj is the Legendre polynomial of order j.

Figure 18. Big picture modeling segment of SPSD correction algorithm. This segment requires
one of the flux time series, tsk to be corrected along with its SPSD occurrence time, tεk, the coarse MAP

CBVs, Û , and the parameter defining the rate of false positive sinusoid detections, fHFP. The algorithm
models the entire flux time series, i.e the big picture, excluding the recovery window, to obtain an initial
estimate of the sustained step component of the correction. The model includes a step, a constant,
Legendre polynomial components, and the CBVs, but all except the step are nuisance parameters, and
ignored in later steps. The best-fit step component, ∆BP

k and and the flux time series corrected by the
step, tsBPk , are the only outputs. See fig. 15.
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Sinusoid Removal. In development, it was planned that the SPSD detection would follow a harmonic
removal algorithm, so we almost decided to ignore issues which arose in light curves with periodic behavior.
Concern that the harmonic removal might be incomplete in the presence of SPSDs and the detection of a
small but significant number of SPSDs in light curves with periodic behavior, prompted us to develop a
joint step-sinusoid removal algorithm. This was a fortunate decision since it gave the flexibility to reverse
the order of the SPSD correction and stand-alone harmonic removal modules, which was deemed necessary
as PDC-MAP was developed. The algorithm takes a rather brute-force approach since the number of light
curves where it is needed is small, usually < 20 per module output per quarter. If the final order of SPSD
detection and harmonic removal algorithms had been known, prior to development, we may have spent
somewhat more time searching for a more efficient nonlinear technique than the approach discussed below,
e.g. a Markov Chain Monte Carlo algorithm.

The parameter of main interest is again the step coefficient which is applied as an adjustment to the
initial big picture estimate. The sinusoid harmonic and subharmonic corrections are applied to produce
the output sinusoid-corrected time series, but this is only used by the recovery modeling segment and is not
a part of the SPSD corrections or corrected time series produced as final output of the overall algorithm.
Thus, these too are nuisance parameters. Fitting sinusoids requires frequencies as model parameters, and
these are nonlinear. Furthermore, the frequencies are often changing slowly with time over a quarter so the
rate of change is also a model parameter, and we don’t know how many sinusoids to model, so this number
is also a free parameter. Our initial attempts to simultaneously fit the whole time series to numerous
sinusoids and the recovery, and other terms had were unsuccessful. The selected approach has features
specifically designed to address the identified problems and these are discussed below.

The big picture modeling extracts all the SPSD correction information we need to know about data
far from the SPSD occurrence time, so in subsequent steps we are able to focus primarily on data in
close-proximity to the SPSD initial step. This smaller data set can be fit much faster, and since there is
much less time for a time-varying frequency to change, we can model the frequencies as constant. We also
need fewer model components since we can ignore those with long periods compared to the window length.
We only use full time series in the detection segment, where we search for peaks in the FFT of the full
partially-corrected time series to identify candidate frequencies.

By obtaining initial frequency estimates from the FFT we can use a series of linear fits where we scan
over a narrow frequency range to refine the frequency to the level needed for the next stage, thereby
avoiding the risk of non-convergent nonlinear modeling. The scanning approach is not the most efficient
but because we are working with a time series of reduced length, and we are simultaneously fitting many
harmonics and subharmonics of a given base frequency, performance has not been an issue.

In some cases, many sinusoids are modeled and including these along with the exponential recovery
terms, CBVs and polynomials which model the non-periodic part of the windowed time series at the
next stage would occasionally produced internal degeneracies the model basis which produce nonsensical
coefficients and inaccurate SPSD corrections. This is a result of degeneracy with the model components
and not the time series data. By fitting the sinusoids separately we do not need to limit ourselves to
those harmonics which have significant amplitudes, we can fit all harmonics and subharmonics of the base
frequency in a given range of interest. The result might be improved slightly by excluding the recovery
range from the close-proximity modeled range at this stage, however results are satisfactory without this
exclusion, so it has not been implemented.

To summarize, in this stage we model only the periodic component of the stellar flux, if any, with a basis
set of sinusoids which are harmonics and subharmonics of identified base frequencies, and a step component
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for the SPSD. The step represents a refinement of the step determined in the big picture modeling stage.
The sinusoid modeling occurs in a close-proximity window around the SPSD occurrence time.

Fig. 19 is a flow diagram of the sinusoid removal segment of the algorithm. We model the big picture-
corrected flux time series, tsBPk , with SPSD identified at time, tεk, in a time window, t{W}, where {W} is the
included set of cadence indices and k is a target index in {SPSDs} as before. {W} includes indices in close
proximity to the index of the cadence when the SPSD occurred, excluding data gaps. Close proximity is
defined as the closed interval from NW cadence before tεk, or the cadence 1 if greater, to NW cadences after
tεk, or cadence N if smaller, where NW , the input parameter specifying the half-length of the close-proximity
window. The default close-proximity window half-width is chosen to be twice the recovery window width
or roughly 10 days, to assure sufficient data after the recovery to constrain the refinements to the sustained
step which occur in both the sinusoid removal and recovery modeling stages.

Prior to modeling, we identify a set of candidate frequencies, ν{detected}, based on an FFT of the full
input time series which we rename, tsHk . We also initialize the sinusoid step correction, ∆H

k to zeros. The
algorithm segment which does this is described in Appendix C and diagramed in fig. 38. We select the
detected frequency with the maximum detection statistic as the base frequency, νmax, for our first modeling
pass. The FFT frequency resolution is limited to δν = 1/(Nδ1) Hz, where δ1 is the cadence duration in
seconds and N is the time series length, and this is not precise enough to effectively remove the sinusoidal
features, so the next step is a series of refinements.

In each base frequency refinement step we construct a set of nν models, where each model has a different
base frequency, νX , and the base frequencies span the range [νX −∆ν−, νX +∆ν+]. Each model includes a
range of harmonics and subharmonics of the base frequency and a step component as described in Appendix
C and diagramed in fig. 39. Once constructed, we perform a least-squares fit of each model to windowed
time series data, tsHk (t{W}) and calculate a robust standard deviation, σH , of the fit residuals using the
median absolute deviation. The refined frequency, νY is the base frequency corresponding to the model
with the smallest value for σH . We use this scanning method because it is not unusual to have multiple
local minima when modeling frequencies, and we desire the best fit in the range. Also this approach is
deterministic, without the risk of divergent results as often happens in packaged nonlinear fitting routines.

This frequency refinement process is represented by the dark gray boxes in fig. 19, where it is applied
7 times. The first time we take nν = 26, νX = numax, ∆ν− = δν, and ∆ν+ = 2δν to obtain a refined
frequency, ν1. The reason for the this range is that the frequencies are often slightly time varying over
the full interval so the spectral feature may be broadened and the peak frequency in the detection FFT
may not be the peak in our time window. The range is asymmetric because our detection statistic is
the first difference of the amplitudes and and the maximum first difference of a broadened feature may
occur slightly before the peak frequency. Next, we define ∆ν1 = 3δν/25 and take nν = 21, νX = nu1,
∆ν− = ∆ν+ = deltaν1 to obtain a refined frequency, ν2. Subsequently, for j ranging from 2 to 6, we define
∆νj = ∆νj−1/10 and take nν = 21, νX = nuj , ∆ν− = ∆ν+ = deltaνj to obtain a refined frequency,
νj+1. So, if a sinusoidal signal is detected, the algorithm constructs 152 models, each containing numerous
subharmonics and harmonics, in order to refine the base frequency from numax to ν7. This may see like a
large amount of processing, but if the periodic signal has sharp features, which correspond to strong high
harmonics, then this level of precision is necessary to effectively remove the periodic waveform.

Upon completion of the refinement process the model corresponding to ν7 is fit to tsHk (t{W}), to ob-
tain coefficients cH . We the calculate sinusoid correction estimates for the entire time series δ tsH =∑

j c
H
j M

H
j (ν7, t

ε
k, t), and incrementally apply the correction, tsHk = tsHk − δ tsH , removing the sinusoids

from the time series. Assuming the first component of the model is the step, we also incremental adjust the
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sinusoid step correction, ∆H
k = ∆H

k +cH1 M
H
1 (ν7, t

ε
k, t). The entire process of detection via FFT, refinement

and incremental correction is repeated for up to 2 more base frequencies, if detected, to produce final
results: the sinusoid step correction, ∆H

k and sinusoid corrected time series, tsHk . Note that if no sinusoids
are detected, the output is tsHk = tsBPk and ∆H

k is a zero vector.

Recovery Modeling. The recovery is modeled with a series of modified exponential functions specified by
the recovery window length, NR and the 3 logarithmic parameters defining the fractional time constant, τ .
The parameters of interest are the coefficients of these terms along with those of the three delta-functions
at the SPSD and ±1 cadence, and if found to improve the fit, a final adjustment to the sustained step term.
The model encompasses the same window as the sinusoid model and includes polynomials to account for
any remaining non-periodic stellar variation, and CBV to account for systematics.

Selecting a polynomial order that is too high increases risk that these terms bias our estimates of the
recovery coefficients either by accounting for a significant fraction of the time series recovery themselves,
which produces an underestimate of the recovery term coefficients, or by exhibiting a strong degree of
degeneracy with the recovery model terms, which results in unpredictable, and often nonsensical recovery
term coefficients. To select a polynomial order which balances good representation of the underlying stellar
behavior while limited the risk of suffering from these problems, we use the MATLAB library function
polydeg [10] to model a set of cadences, {Poly}, which spans the close-proximity window used for sinusoid
modeling, but excludes the recovery window. The function polydeg provides the optimal polynomial order
for fitting the selected data based on Akaike’s Information criterion (AIC) , which we interpret as the
minimum order which well represents the stellar behavior.

The interval very near (±1 cadence) the SPSD occurrence time is unpredictable. We imagine SPSD
occurs instantaneously at one of 270 frames which are accumulated to produce the long cadence data, so
the ratio of time at the top or bottom of the step discontinuity is unobserved and thus requires a free
parameter in the model. The cadence where the SPSD occurs could include the initiating cosmic ray,
in which case the summed value may be above the top level of the step discontinuity and the detection
occurs at the following cadence and the last cadence before sometimes contains a cosmic ray which may
have been inadequately removed because the nearby SPSD fools the detection algorithm. It also appears
that there is occasionally a very short term change in the first cadence after the SPSD. Since the range is
so small, we allocate three delta-functions in the recovery model, one centered at each of these cadences.
The delta-functions prevent these cadence data from affecting any of the other model coefficients and they
ensure that we avoid residual outliers in these cadences after the recovery correction.

The modified exponential recovery function depends only on a time constant, τ . The modification results
from the fact that a simple (1− e−yτ ) function in a finite window would introduce a step discontinuity and
a slope discontinuity at the end of the window. To alleviate this we simply add a constant and a linear
term to form the function fR(y), where y spans the range [0, 1] over which we scale the recovery range,
with the constraints fR(1) = 0, and dfR

dy (1) = 0. To fully define the function, we choose in addition that
fR(0) = 1 and find the general form,

fR(y, τ) =
τ − τe 1−y

τ + 1− y
τ − τe 1

τ + 1

We find that a linear combination of a small number of these functions with a range of discrete time
constants can adequately approximate a continuum of time constants. The lefthand plot in Fig. 20
shows the functions generated for the recovery model using the default τ -related input parameters and
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Figure 19. Sinusoid removal segment of SPSD correction algorithm. This segment requires a
big picture-corrected flux time series, tsBPk along with its SPSD occurrence time, tεk, the close-proximity
modeling time window, t{W}, and a parameter defining the recovery window length, NR and polynomial

order, nBPp . The algorithm iterates through a process of detection modeling and frequency refining to
remove sinusoids. The model includes a step, a constant, subharmonics and harmonics of each base
frequency sinusoid. The best-fit step component, ∆H

k and and the model-corrected flux time series, tsHk ,
are output, however only the step component is used in the final overall correction. Appendix C describes
the detection steps (light gray blocks) and modeling steps (dark gray blocks). See fig. 15, 38, and 39.
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the righthand plot shows a set of examples of the function calculated over a finer range of time constants,
along with best-fit approximations to these using the three component basis on the left. These functions
perform better in the recovery model than a series of discontinuous polynomials, since they more are more
constrained to the expected recover behavior and they do not tend to correlate as much with the stellar
component of the data. The use of the linear basis, rather than a nonlinear fit for τ avoids the issues
mentioned above regarding nonlinear modeling.
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Figure 20. Recovery model basis and completeness. The figure on the left shows the 3 basis
functions produced by the default input parameters which generate τ = {0.01, 0.1, 1}. In the figure on
the right we simply fit this basis to the same function with a range of time constants to indicating that
the 3-component basis is sufficient to represent a continuum of time constants. The blue curves show
the original model with indicated τ values, and the red curves are the fits. The agreement indicates that
the basis is reasonably complete for representing the modeled effect of the SPSD in the recovery window.

The recovery model is applied to the close-proximity window {W} for 2 cases. The first case uses the
model including the step function and the second case excludes the step function. We select the case where
the standard deviation of the detrended sum of the fit polynomial terms is smaller. We do this to avoid
cases where the polynomial components cause the incremental step estimate to be biased. If the selected
case is the second case then the final sustained step is only the sum of the components from the first two
processing stages, and the final recovery correction is that obtained from the stepless model, otherwise the
step-inclusive model results are used in the final output.

Fig. 21 is a flow diagram of the recovery modeling segment of the algorithm. We first model the
sinusoid-corrected flux time series, tsHk , with SPSD identified at time, tεk, in a time window, t{Poly}, where
{Poly} is the included set of cadence indices and k is a target index in {SPSDs} as before. {Poly} spans
the same range as the sinusoid set {W}, except data gaps and the recovery gap, which is defined in the
big picture modeling section above. The model, which includes just polynomials, is fit using the function
polydeg for the singular purpose of determining the AIC-derived optimal polynomial order, nRp . This is
the final ingredient required to enable construction of the recovery model over the close proximity range
t{W}.

The linear model includes nHp + nτ + m + 5 terms, where nBPp is the input parameter specifying the
big picture polynomial order, nτ is the number of modified exponential terms, and m is a count of CBV
provided by coarse PDC-MAP. nτ is determined by the τ -related input parameters as the length of the set
of time constants,

{τ1, τ2, . . . τnτ } = 10{log10 τmin, log10 τmin+∆ log10 τ,... log10 τmax}

The 5 additional terms are a step (= 0 before 1 cadence prior to tεk, and = 1 during and after 1 cadence
prior to tεk) a constant (= 1 for all included cadences), and 3 δ-function terms (= 1 for {1 cadence prior
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to tεk, t
ε
k, 1 cadence after tεk} and = 0 elsewhere). The polynomial terms are represented by the Legendre

polynomials Pj(x) for j ranging from 1 to nBPp . Here x, which ranges from -1 to 1, is a scaled time variable
determined from the cadence index, i, by xi = 2 i−1

Lw−1 − 1, where i is an index in {W} which will range
between 1 and Lw. The modified exponential terms are represented by the functions fRj (y) = fR(y, τj) for
j ranging from 1 to nτ . Here y, which ranges from 0 to 1, is a scaled time variable determined from the
cadence index, i, by yi = i−Cεk−1

LR−1 , where i is an index in {W} in the range [Cεk + 2, Cεk + Nρ], where Cεk
is the index in {W} corresponding to tεk, and Nρ is the length of the recovery window after the SPSD as
defined in the big picture modeling section.

Least-squares fits are performed for this model M and a similar model with the step term excluded M ′,
resulting in sets of coefficients cJ and c′J with a J corresponding to each term. We decide between M and
M ′, by calculating the polynomial component of each, e.g.

∑
j cjMj , j ∈ {polynomial terms}, detrending

these using the built-in MATLAB function detrend, and then calculating the standard deviations σ, and
σ′. The selected model is the one with smaller variation in its polynomial component. If M is the selected
model, then the J corresponding to the step term (J = 1 in fig. 21) identifies the coefficient which gives a
final adjustment of the sustained step height, yielding the result,

∆S
k = ∆BP

k + ∆H
k + c1

k Θ(t, tεk − δ1),

otherwise the sustained step correction is just ∆S
k = ∆BP

k + ∆H
k . In this case we define

Θ(t, t′) =
{

0 t < t′

1 t ≥ t′

}
.

The recovery correction is

∆R
k =

∑
j

cxjM
x
j , j ∈ {δ−function terms} ∪ {exponential terms}

where Mx = M and cx = c if M is selected, and Mx = M ′ and cx = c′ if M ′ is selected. The resulting
SPSD corrected time series is tsCk = tsk −∆R

k −∆S
k .

3. Performance

3.1. Detection Filter Performance.
Comparison with alternatives. We apply the multi-scale SPSD filter described above, and several others
to the sample SPSD-containing time series shown in fig. 1, and compare the signal-to-noise obtained in
the various cases. For the comparison, we used the filter coefficients derived from the Savitzky-Golay +
discontinuity models described in §2.1 with the default long-window and short-window parameters from
Table 1. These are shown as the left-most plots in the top 2 rows in fig. 22. We also compare a pair
of simple examples inspired by the use of gaussian derivatives in optimal edge detection by Canny.[5] For
these we use curves calculated from first derivatives of Gaussians. In one case we use a single gaussian
width parameter, which is 1/3 of our 96-cadence long-window half-width. For the other case, in addition
to the σ = 32 term, we combine first derivatives of Gaussian curves with widths of 16, 8, 4, and 2 cadences
by simple sum. The resulting filter kernels are shown in the third and fourth rows in fig. 22.

The second column of plots in fig. 22 shows the result of applying each filter to the time series shown
in fig. 1. The third column, labeled “step response function” is the local response, as nonzero filter
coefficients interact with the step in that same light curve. As such, it is not the ideal step response, but
an illustrative response to a step + noise + a small exponential recovery. For quantitative comparison, we
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Figure 21. Recovery modeling segment of SPSD correction algorithm.. This segment requires
a sinusoid-corrected flux time series, tsHk along with its SPSD occurrence time, tεk, , the coarse MAP

CBVs, Û , three modeling time windows, t{W}, t{R}, and t{Poly}, the parameters defining window
lengths, NW and NR, and three parameters defining the sequence of exponential time constants, τ ,
{log10 τmin, log10 τmax,∆ log10 τ}. The first step in the algorithm determines an optimal polynomial
order. It then fits a model with and without a step to evaluate whether including an additional term in
the final step correction is necessary. The model includes a step, a constant, polynomial components,
exponential recovery components, three recovery δ-functions, and the CBVs, but all except the step
and recovery terms are nuisance parameters. The sustained step correction ∆S

k and and the recovery
correction, ∆R

k , are the only outputs. See fig. 15.
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list the signal-to-noise ratios (SNR), where the signal is the measured response at the step location and the
noise is the standard deviation of selected other filter output. The fourth column shows the SNR results
when we select only filter output more than ±96 cadences from the step for the noise estimate, i.e. where
the response is not affected by the step. For the right-most column, we include all the data except the step
cadence in the noise calculation.

We selected the multi-scale SPSD filter because:

• for most light curves it maintains a SNR comparable to a longer time-scale filter, making it sensitive
to the smaller SPSDs, and therefore a larger quantity,
• it produces a highly localized response, improving performance near potentially confounding fea-

tures and increasing transit perception for vetoing purposes.
• it accounts for almost all red noise sources in the modeled components, and
• it is efficient to implement requiring only a single pass to generate detection statistics across a light

curve.

In comparison, the short S-G filter is less effective at reducing noise, while the long SG-filter, although
having the best SNR far from the step, has a complex step response function. This complexity would limit
our ability to find SPSDs near long gaps affected by other systematics, or lead to difficult-to-interpret
results for transits and flares because of the interference between responses to upward and downward going
features. The lack of localization of the Gaussian derivatives results in similar limitations. In addition, the
fact that the coefficients of these all have the same sign on a given side of the center implies they respond
to nonzero light curve slopes, which are a common systematic as well as astrophysical features, thus to
implement these kernels would require additional steps of high-pass filtering, and there is no systematic
means of selecting scales to add for the multi-scale case. Algorithms implementing automatic scale selection
have been developed [6] for 2D image processing, but again would introduce more complexity, especially
in dealing with the discrimination among features of systematic or astrophysical origin and SPSDs. The
derivative of gaussian is optimal for white noise. We have substantial red noise, trends and features in
the data, requiring whitening before application of such a filter, and whitening itself is problematic in
the presence of SPSDs. That is partly why they need to be removed before later whitening steps in the
pipeline. The multi-scale SPSD filter kernel is robust against red noise sources in the data.
Period Response. At the start of development of this algorithm, we planned that sinusoids would be
removed in advance of SPSD-detection. Therefore, the filter was not designed to find SPSDs comparable or
smaller than the amplitude of a high frequency signal, it is essentially a high pass filter. Later the sinusoid
removal step was moved after SPSD detection, leading to reduced SPSD sensitivity for targets containing
a large fraction of power in the high frequency portion of the power spectral density distribution(PSD).
Fortunately, very few targets exhibit this characteristic and so the reduction in SPSD detection efficiency
is very small. In this section we discuss the period response of the multi-scale SPSD filter.

The uppermost plot in fig. 23 shows the period response and indicates that a filter cutoff of 70 long
cadences or ∼ 1.5 days. A sinusoid with amplitude 1 has standard deviation, and therefore an equivalent
noise contribution of 1/sqrt2. Taking this into account, the three other plots in fig. 23 indicate the noise
contribution in the filter output of a sinusoidal input of unit amplitude. The second plot covers the range
out to > 2 month periods, after which the filter response is < 140 db. The third plot covers the period
range of the nominal filter length, 4 days, and the bottom plot shows the rather complex response to
frequencies above the Nyquist frequency. Any target exhibiting strong variation in a band with period
< 70 long cadences is likely to suffer diminished sensitivity to SPSDs. The degree of reduction is plotted
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Figure 22. Comparison of a sample of detector filters. The multiscale SPSD filter used in this
algorithm is shown at the bottom and compared with 4 others as labeled. The filter is applied to the time
series shown in fig. 1. The signal to noise ratio columns indicate the noise response and localization.
Both compare favorably with the other filters which act on similar time scales. The high frequency
variations in this target are far above the shot noise limit, but the large size of the SPSD makes it a good

illustration.

as a function of the size of the sinusoidal signal above noise in fig. 24. The value 1 indicates no drop and
0 indicates no sensitivity in this plot.

A survey of targets indicates that that only 1-2% have significant signal above noise in the transmitted
band, so this is the reduction in detection efficiency. On average this amounts to < 1 missed SPSD per
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channel per quarter. While this suboptimal feature of the detection algorithm could be improved, there
are currently no plans to do so.

Period Magnitude Response

Equivalent Noise out /Amplitude In

Equivalent Noise out /Amplitude In
Aliased Period Range

Equivalent Noise out /Amplitude In
Short Period Range

period, LC

period, LC

period, LC

Figure 23. Period response of the multiscale SPSD Filter. Signals at high frequencies,
> 0.7 days−1 pass through the filter, acting as a noise source. The response is a complicated func-
tion above the Nyquist frequency.

3.2. Detection Algorithm Performance. The three plots in figure 25 summarize the results of the
detection algorithm for all targets on Channel 7.3 during Q5. The upper left plot is simply the maximum
detection statistic, εk (labeled MxDS), as a function of the target index, k. It indicates a noise floor,
predicted by extreme value theory as described in Appendix B, with numerous SPSDs rising above it. The
lower left plot shows the distribution of these in logarithmic bins. The peak is ∼ 4σ, which is the expected
value, and the gaussian distribution around the peak, are the result of the filter response to noise. A tail is
evident in the distribution above 6σ representing SPSD candidates, and this extends down into the noise.
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Figure 24. Effect of high frequency sinusoids on SPSD sensitivity. The plot shows the fraction
of full sensitivity as a function of the ratio of an in-band sinusoid amplitude over noise. It approaches an
inverse function for sinusoid amplitude/noise level > 2.

The scatter plot on on the right shows εk vs. the sum, Σk, of εk and the the minimum in a ±96 cadence
window around the maximum. The blue points are non-candidates, the red points are candidates that were
rejected in validation, and the green points are confirmed SPSDs. Many blue points which have large εk do
not become candidates because they are accompanied by a nearby minimum which substantially reduces
the sum, Σk. The validation primarily discriminates among candidate near the noise floor, as indicated by
the locations of the red points. As expected, the confirmed SPSDs cluster around the line εk = Σk.

All Targets
Confirmed Candidates
Rejected Candidates

Figure 25. Maximum Detection Statistic Distribution. The upper left plot shows the maximum
detection statistic, εk, vs. target index, k. The lower left is a histogram showing the distribution of εk.
The scatter plot on the right shows εk(max) vs. the sum, Σk (max+min), with colors representing the
candidate and confirmed candidate discrimination.
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Performance evaluation on data containing real SPSD signatures requires access to ground truth. Since
manual identification of all SPSDs in an entire channel is extremely costly and somewhat unreliable we
supplemented limited manual evaluation (see above) with simulations. Simulated data sets were created by
injecting artificial SPSDs into a ”clean” channel of Q7 flight data from which all targets containing visually
identifiable SPSD signatures had been removed. Six such data sets were created by randomly injecting
sets of 100 SPSDs into the time series of 12th magnitude targets (11.5 ≤ m ≤ 12.5). Simulated sensitivity
drops ranged from 0.1% to 2% and were constant within each test case. The fig. 26 shows estimated
performance as a function of discontinuity step size in parts per million (ppm). The fall-off occurs as the
SPSD distribution extends into the noise distribution, as can be seen from the distributions of hits and
misses shown in fig. 27.

Figure 26. Detection Algorithm Performance. The estimated performance as a function of dis-
continuity step size is shown for simulated steps.

A manual survey of maximum detection statistic locations was performed to classify ground truth for
module output 13.1 during Q10 using Version 8.1 pipeline code and the default values for fFP = 0.005.
The results are shown in Table 9. The 2 off diagonal entries represent false positives (lower left) and
false negatives (upper right). The observed false positive rate of 0.007 is in good agreement with our
specification, suggesting that the three- step standardization process is successfully producing a standard
noise distribution, ∼ N(0, 1). We cannot predict the false negative rate a priori. If one weighs a false
negative as being equally undesirable as a false positive, then setting fFP to a value where the two rates
are measured to be the same is likely to be the the best we can achieve. Therefore, the table suggests that
0.005 is a reasonable value to use.

3.3. Correction Algorithm Performance. Correction performance is difficult to quantify using real
SPSDs because of the often complex light curves. We perform visual inspection on large numbers of
corrected time series to search for potential flaws in the algorithm. To illustrate we include some examples.
Figure 32 contains 3 examples from Q5 from prototype runs on module outputs 7.3 and 13.4. Figure 31 is
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Figure 27. Detection performance against simulated ground truth. Simulation testing allowed
for quantification of detection performance relative to ground truth. The distributions illustrated are
consistent with our expectations that SPSDs begin to blend into noise at the ∼ 4.5σ level. This figure
is an output of pipeline ver. 8.1testing on Q7 data.

SPSD detected SPSD not detected
SPSD 47 15

no SPSD 14 1913
Table 9. Detection Algorithm Confusion Table. The results of a manual tally of SPSDs
are tabulated with the observed “ground truth” in rows and detector results in columns. This
is derived from Q10 data from channel 13.1.

an example from a Q7 pipeline run. For a more quantitative ground truth evaluation we used the injected
simulated SPSDs described in § Section:detectPerf.

Some example injected SPSDs are shown in fig. 28 for a sampling of signal-to-noise ratios. The correction
algorithm satisfactorily corrects the light curves as shown in the ground truth example in fig. 29. To
evaluate the correction over the injected set we calculate the RMS error introduced by the injected SPSD,
e.i. the RMS of the injected SPSD signal itself for each target, RMSEinjected. After correction we repeat
the calculation to get RMSEcorrected. Fig. 30 shows the distribution of the V&V performance metric,
percent RMSE reduction, which is (RMSEinjected − RMSEcorrected)/RMSEinjected × 100. The correction
algorithm is quite effective with < 2% of the light curves showing a small percentage improvement.

The plot also shows correction performance for targets with false alarms, but this turns out to be a bit
counterintuitive. We would expect a well-populated bin at zero, since targets containing only false alarms
have an undefined RMSE reduction which gets set to zero by the analysis code. However, there are few
counts in the zero bin of the histogram. This is because false alarms seem to occur mostly in targets
that have already been corrected for an SPSD. For the simulated case, there appears to be an increase
the likelihood of a false alarm on successive iterations, however the corrections in these cases are minimal
and benign, as indicated by the fact that for most targets containing false alarms, there is a significant
improvement in the RMSE relative to ground truth.
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Figure 28. Example simulated SPSDs ground truth. Simulations required a process of removal
of SPSDs from a sample of light curves followed by injection of simulated SPSDs to establish a ground
truth. The figure illustrates some example injected signals at various SNR levels.
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Figure 29. SPSD ground truth correction example. Simulation testing allowed for quantifica-
tion of correction performance relative to ground truth. The figure illustrates the typically high-quality
reconstruction of the original signal.

Figure 30. SPSD ground truth correction summary. The RMS error introduced by a simulated
SPSD is known. After correction the RMS error is recalculated and a percent reduction for each target
is derived. The distribution indicates that the correction is effective for over 98% of targets. Despite the
distribution of false positives, the corrections associated with these are quite benign.
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Figure 31. SPSD correction examples from Q7. 1984 light curves from a single Q7 channel were
manually inspecting and the results compared with the SPSD detector’s output. The figure shows an
example Q7 correction.
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Figure 32. SPSD correction examples from Q5. Examples of algorithm performance on 3 Q5 flux
time series. The top shows a time series with 2 SPSDs, the middle example has a clean sinusoidal signal,
and the bottom has a more irregular time series. In each case the corrections appear reasonable.
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Appendix A. Details of Preconditioning

The flux time series, F , input the SPSD detection algorithm, undergo a series of preconditioning steps
summarized in fig. 12, to produce a preconditioned time series, P , padded by length bNLongWindow/2c on
each end. This processing permits effective filtering near ends and gaps where sudden signal changes could
otherwise result is spurious output. The following figs. 33, 34, 35, 36 provide details regarding various
segments in this algorithm. Fig. 33 and caption describe single cadence gap filling.

Pig1

Gap?

Gap?

Gap?

Gap?

F{before}

F{after}

nb=Length

na=Length

nm= Min > 2?

= 0?

= 0?

Median of next 3

Median of previous 3

2nd order polynomial fit vs. 
cadence number (time)

Median of nm  before 
and nm after

F

F

F

F

T

T

T

Generate random index 
to residual list, rand

Exclude 2 cadences with 
largest abs(residual) and 

repeat 2nd order polynomial 
fit vs. cadence number

Polynomial evaluated at gap 
cadence + residual(rand)

Fig1−Lp−7

...
Fig1−Lp−1

Fig1−Lp+1

...
Fig1−Lp+7

Figure 33. Single-cadence gap filling for preconditioning segment. The algorithm determines
the fill-value for a single cadence gap, Pig1 , using the input time series data, F , in a window at most
±7 cadences around the gap. We choose ig1 as the index to the location in the padded time series, so
the corresponding input time series location is ig1 − Lp, where Lp is the single-side padding length in
cadences. These data, excluding other gaps, are fit to a second order polynomial. The algorithm then
locates and excludes the two largest residuals, and repeats the fit. Pig1 is the fit value at the cadence plus
a randomly selected residual value which prevents the noise level from dropping at each single cadence
gap. The exceptional cases are: if the gap is at the beginning or end of the time series, then Pig1 is the
median of the 3 nearest valid data points; and if either side of the gap has ≤ 2 valid points, then Pig1 is
the median of an equal quantity of values before and after the gap. See fig. 12.

Fig. 34 describes the filling of multi-cadence gaps.
Fig. 35 describes the process for padded the ends of the time series.
Fig. 36 describes the 3σ outlier detection and removal process.
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Figure 34. Multi-cadence gap filling for preconditioning segment. The algorithm determines the
fill-values for multi-cadence gaps, of length, Lgap cadences {Pigap:start , . . . Pigap:end}, using valid or single-
cadence-filled data in a window at most Lgap cadences around the gap. The data before and after are fit
to second order polynomials separately with 2 point exclusion as in the single-cadence case to extrapolate
estimates for the starting and ending fill-values, Pstart and Pend. We apply a weighting function, w,
ranging linearly from 1 at the start to 0 at the end of the gap, to time-reversed pre-gap data with offset
to begin at value, Pstart. These are added to a similar term derived from time-reversed post-gap data with
weighting function 1−w and offset to end at value, Pend, to produce smooth fill-values with consistent
noise levels. The exceptional cases are: if the gap is nearer than Lgap to either another multi-cadence
gap, or the beginning or end of the time series, and this leads to a different quantity of pre- and post-
gap data points, then w is adjusted as indicated to account for the difference; and if either side of the
gap has ≤ 2 valid points, then the polynomial order and number of exclusion points is reduced to avoid
rank deficiency in the fit. See fig. 12.
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Figure 35. End-pad generation for preconditioning segment. The algorithm generates values
for padding the initially N -cadence time series start and end, of length, Lpad cadences, {P1, . . . PLpad},
and {PN+Lpad+1, . . . PN+2Lpad}, using valid, single-cadence-filled, or multi-cadence-filled data in a Lpad-
cadence window at the time series start and end, respectively. For each of the start and end cases, the
nearest bLpad/2c data are fit to second order polynomials with 2 point exclusion as in the single-cadence
case to extrapolate estimates for the initial pad-values, Pstart and Pend. The full-Lpad-cadence time series
data is time-reversed and offset to the initial pad-value, to produce smooth pad-values with consistent
noise levels. See fig. 12.
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Figure 36. Outlier detection and correction for preconditioning segment. The algorithm replaces
3σ outliers and values immediately following outliers with corrected values, using valid, single-cadence-
filled, multi-cadence-filled, or padded data in a ±10 cadence window around and including the values to
be replaced. It estimates σ from half the difference between the 84th and 16th percentiles of the time
series first differences. The correction is a simple median of the window data which preserves the location
of any step discontinuity in the time series. See fig. 12.
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Appendix B. Details of Detection Threshold Calculation

In the detection algorithm, we need to understand the expected distribution of the detection statistic,
which is the thrice-standardized detection filter output, so that we can distinguish among fluctuations due
to noise, astrophysically induced flux variations, and SPSDs. In this appendix we derive the thresholds
that define these discriminations. Fig. 37 is a flow diagram of the algorithm. This derivation is based on
extreme value theory [7] [8] [9].

We assume that the filter output away from actual SPSDs samples a Gaussian noise distribution, and
that, as a result of our standardization steps, the detection statistic for all targets samples the standard
Normal distribution, N(0, 1). Any observation of the standardized filter output, xobs which is not an SPSD
is assumed to sample this distribution, xobs ∼ N(0, 1). The probability density function (PDF) is f(x) =

1√
2π
e
x2

2 , and the cumulative distribution function (CDF) for xobs is P (xobs | xobs ≤ x) =
∫ x
−∞ f(x′)dx′.

We next observe that SPSDs occur on average �once per time series so it is sufficient to test only the
maximum value of each time series, to find most SPSDs, then iterate to find any remaining time series
with > 1. To evaluate whether the max value is consistent with noise we first calculate the probability
that the maximum value in an Ns-sample time series will be ≥ ε.

P (max(xobs) ≥ ε | Ns samples) = 1− P (xobs | xobs ≤ ε)Ns
Here P (max(xobs) ≥ ε | Ns samples) gives the distribution of maxima expected from repeatedly finding the
maximum of Ns-long samples from N(0, 1). Then, given a desired false positive rate, fFP , the threshold
for saying a maximum is consistent with noise, versus identifying it as an SPSD candidate is

u (Ns, fFP) = (ε | P (max ≥ ε | Ns samples) = fFP) .

The false positive rate sets the threshold because it is the probability level at which we are willing to
accept an upward fluctuating noise as an SPSD candidate. for the default, fFP = 0.005, and Ns = 4634,
the numerical solution obtained by the algorithm is u = 4.74σ. The median, fFP = 0.5, of the maxima
distribution in a window,Ns = 193, is also used in the criteria, giving u = 2.69σ.

Since Kepler is all about transits, we take steps to ensure we do not misidentify any transits as SPSDs.
Assuming the maximum exceeds the 0.005 false positive probability threshold, we address transits in two
ways, both of which involve identifying the minimum detection statistic in a NLongWindow-cadence-long
window, centered at the cadence when the maximum occurred:

• if the probability of accidental occurrence of the observed sum of the maximum and minimum is
smaller than our selected false positive rate, then the SPSD is vetoed, or
• if the minimum is statistically equal and opposite in sign to the maximum, then the SPSD is vetoed.

These criteria are discussed in §2.2. The first of these criteria requires an additional threshold calculation
involving joint probabilities. We note, as above that the cumulative distribution function for a maximum
in N1 samples is

P (max(xobs) ≥ x | N1 samples) = 1− P (xobs | xobs ≤ x)N1 .

Likewise, because the PDF is symmetric, the cumulative distribution function for a minimum in N2

samples is
P (min(xobs) ≤ −y | N2 samples) = 1− P (xobs | xobs ≤ y)N2 .

The joint PDF for given maximum, x and given minimum, −y (y positive), is the 2-dimensional product
of dP (max . . . )/dx×dP (min. . . . )/dy. Given that we’ve already constrained the maximum, we can contract
this product to a one-dimensional distribution on the sum Σ = x + (−y) by setting (−y) = −x + Σ, and
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then integrating over all x. So the probability of the sum of maximum and minimum, being ≥ Σ for a
maximum x in N1 samples and minimum −x+ Σ in N2 samples is

P (max(xobs1) + min(xobs2) ≥ Σth | N1(N2) samples in obs1(obs2)) =∫∞
−∞

dP (max(xobs)≥x|N1 samples)
dx

dP (min(xobs)≤−x+Σ|N2 samples)
dx dx

.

So, as above, the threshold on the sum Σ (or difference x− y) for a give false positive rate is

u∆ (N1, N2, fFP) = (Σ | P (max(xobs1) + min(xobs2) ≥ Σ | N1(N2) samples in obs1(obs2)) = fFP) .

For defaults {N2 = NLongWindow = 193, fFP = 0.005}, and Ns = 4634 we obtain numerically, u∆ = 2.28.
If the sum Σ is less than this, the SPSD is vetoed as a candidate.

u (N, fFP) , u (N, 0.5) ,
u (NLongWindow, fFP) , u (NLongWindow, 0.5)

u∆ (N,NLongWindow, fFP) , u∆ (N,NLongWindow, 0.5)

xobs ∼ N(0, 1), normal distribution

PDF : f(x) = 1√
2π

e
x2
2

CDF : P (xobs | xobs ≤ x) =
� x

−∞ f(x�)dx�

Probability of max value, ε, in N samples :
P (max(xobs) ≥ ε | Ns samples) = 1− P (xobs | xobs ≤ ε)Ns

Max. value threshold for a specific false positive rate, fFP:
u (Ns, fFP) = (ε | P (max ≥ ε | Ns samples) = fFP)

Probability of max value, x, in N1 samples and min value − x + Σ, in N2 samples :
P (max(xobs1) + min(xobs2) ≥ Σ | N1(N2) samples in obs1(obs2)) =�∞

−∞
dP (max(xobs)≥x|N1 samples)

dx
dP (min(xobs)≤−x+Σ|N2 samples)

dx dx

Difference threshold for a specific false positive rate, fFP:
u∆ (N1, N2, fFP) = (Σ | P (max(xobs1) + min(xobs2) ≥ Σ | N1(N2) samples in obs1(obs2)) = fFP)

N = N1,
N2, fFP

Figure 37. Extreme value threshold calculations for candidate identification segments. The
algorithm requires a set of parameters: the time series length, N or N1 cadences; a window length
N2(= NLongWindow) cadences; the accepted fractional rate of false positive SPSD detections, fFP.
The algorithm produces 6 extreme value thresholds for 3 sample conditions and 2 false positive rates:
u (N, fFP) is the fFP probability extreme (max) value for N -sample series; u (N, 0.5) is the 50% probabil-
ity extreme (max) value for N -sample series; u (NLongWindow, fFP) is the fFP probability extreme (max)
value for NLongWindow-sample series; u (NLongWindow, 0.5) is the 50% probability extreme (max) value for
NLongWindow-sample series; u∆ (N,NLongWindow, fFP) is the fFP probability difference in extreme values
(max-max or max+min) for one value in an N -sample series and the other in an NLongWindow-sample
series; and u∆ (N,NLongWindow, 0.5). is the 50% probability difference in extreme values (max-max or
max+min) for one value in an N -sample series and the other in an NLongWindow-sample series. The
detection thresholds are derived from a Gaussian probability distribution. See fig. 13.
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Appendix C. Details of Sinusoid Correction Algorithm

In the correction algorithm described in § 2.3, we identify sinusoids using the algorithm segment dia-
gramed in fig. 38. This shares the false positive statistics derived in Appendix B. We find candidates based
on a robust standardized distribution of the Fourier amplitude first differences, (e.i. xi+1 − xi). This is
followed by a confirmation step which reevaluates the noise in a 100 FFT-bin band around each candidate.
The result is a list of candidates ordered by frequency.

We model sinusoidal component using the algorithm segment diagramed in fig. 39. The algorithm tries
to model a complete waveform at given period rather than just a single sinusoid. Starting with a reference
frequency, νX , it models harmonics of νX up to the maximum candidate frequency and subharmonics down
to frequency, 1/(window length). The subharmonics help to cover the cases where the waveform period is
longer by some integral number than 1/νX . The algorithm performs a nonlinear fit to a precision specified
by the range and number of frequencies in a scan of the base frequency to find the best-fit frequency, νY
which minimizes the robust standard deviation of residuals.

Fig. 19 indicates how these two segments are applied within the overall algorithm.
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Figure 38. Sinusoid identification for sinusoid removal segment. This segment requires an input
parameter, fHFP , which specifies the acceptable rate of false positive sinusoid detections, and a partially
corrected flux time series, tsHk . It produces a set of confirmed sinusoid signals, {detected}. The process
first identifies candidate frequencies based on the standardized first difference of FFT amplitudes exceed-
ing a threshold for the full amplitude spectrum, uF . It then confirms or rejects the candidates based
on re-standardizing in a ±50 FFT-bin band surrounding each candidate. Confirmation requires that the
re-standardized amplitude at a candidate frequency exceed a threshold for the band, uB . Both uF and
uB are derived from fHFP based on the equation for u (Ns, fFP) in Appendix B. µX(data) represents the
X quantile of data. The list of detected frequencies are limited in precision by the FFT bin-width and
are refined in later steps of the sinusoid removal algorithm. See fig. 19.
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Figure 39. Sinusoid modeling for sinusoid removal segment. This segment requires a reference
frequency, νX , a scan range, [νX −∆ν−, νX + ∆ν+], consisting of nν frequencies, the set of candidate
frequencies, ν{candidates}, from the FFT segment described in fig. 38 the frequency in ν{detected} with
the largest detection above threshold, νmax, the fitted time window, t{W}, and a partially corrected flux

time series, tsHk with SPSD occurence time, tεk. It produces a selected frequency, νY , which gives the
best fit among the frequencies scanned, and the model, MH

Y , associated with νY . The process first
constructs a bank of models, each of which includes a range of both subharmonics and harmonics of the
base frequency as well as a step. It then fits the models to the data in a window around the SPSD,
calculating a robust standard deviation of the fit residuals, σHj for the jth base frequency in the scan

range. Finally, it selects νY as the frequency with the smallest σHj . This algorithm segment is applied
multiple times for each of up to 3 separate frequencies. See fig. 19.
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