
 1 

PASSIVE THERMAL COATING OBSERVATORY OPERATING IN 
LOW-EARTH ORBIT (PATCOOL) – CUBESAT DESIGN TO TEST 

PASSIVE THERMAL COATINGS IN SPACE 

Carlos Ojeda,* Tanya Martin,† Sanny Omar,‡ Michael Kennedy§, Brandon 
Paz**, Riccardo Bevilacqua††, and Brandon Marsell‡‡ 

The PATCOOL is a NASA sponsored, University of Florida developed 3U Cu-

beSat meant to investigate the feasibility of using a cryogenic selective surface 

coating as a new, more efficient way of passively cooling components in space. 

Initial tests on the ground demonstrate that this coating should provide a much 

higher reflectance of the Sun’s irradiant power than any existing coating, while 

still providing far-infrared power emission. The ultimate validation of this tech-

nology requires on-orbit testing. PATCOOL hosts a 4-sample housing, with the 

samples shaped as thin cylinders (coin-like). Two samples are coated with state-

of-the-art material, while the other pair uses the new coating to be evaluated. The 

temperatures of all samples during the mission (minimum 72 hours of data col-

lection) are measured via thermistors. The samples are connected via thin Kevlar 

strings to the housing, to minimize heat transfer. The housing is designed to shield 

the samples from Earth’s thermal radiation, and the CubeSat is attitude stabilized 

and controlled via a gravity gradient boom, magnetorquers and a reaction wheel 

set. Thermal Desktop simulations show PATCOOL’s ability to thermally isolate 

the samples from heat exchanges other than with Sun and deep space, thanks to 

its thermal design and the chosen attitude profile. 

INTRODUCTION 

For the past several decades, extensive research has been performed to study selective surfaces, 

which are materials whose thermal-optical properties are such that thermal radiation is emitted and 

absorbed predominantly in specific ranges of wavelengths, as opposed to the broad spectrum of 

emission and absorption typical of most standard materials and coatings.1 In the 1960s, work by 

Hibbard and Liebert suggested a unique property of a specific selective surface; this material could 
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theoretically achieve and maintain a steady state temperature as low as 40 K when exposed to the 

orbital-thermal environmental conditions present in space at 1 AU from the Sun, or the distance of 

the Earth’s orbit around the Sun.2 This property, if functionally demonstrated, could enable unprec-

edented in-space capabilities, such as long-term on-orbit cryogenic propellant storage and super-

conductor operation on-orbit.3  

The ADvanced Autonomous MUltiple Spacecraft (ADAMUS) Laboratory at the University of 

Florida (UF), with funding from NASA Launch Services Program (LSP), is currently developing 

a CubeSat, the PAssive Thermal Coating Observatory Operating in Low-earth orbit (PATCOOL), 

to serve as a platform to characterize the performance of experimental selective surface samples in 

a low-Earth orbit (LEO) environment. To characterize the experimental selective surface’s perfor-

mance on orbit, two small metallic samples coated with the experimental surface shall be prepared 

as well as two samples coated with the current state of the art in passive thermal coating technology. 

The temperature of these four samples will then be recorded over the mission duration of at least 

72 hours and compared to assess the ability of the selective surface to achieve and maintain low 

temperatures in comparison to the current state of the art.  

This paper discusses the design and planned operation of the PATCOOL CubeSat and mission, 

which shall involve the development and launch of a 3U CubeSat to serve as the testbed for the 

cryogenic selective surface in LEO. An overview of the CubeSat design, analysis, and component 

selection is provided, followed by a discussion of planned testing and qualification procedures for 

the PATCOOL CubeSat. Lastly, an overview of the mission including the success criteria and mis-

sion concept of operations is presented. 

PAYLOAD SUMMARY 

The PATCOOL CubeSat’s primary payload is comprised of an aluminum housing containing 

four small aluminum samples. The samples are disks with a diameter of 25 mm and a thickness of 

10 mm which are held to the housing with Kevlar string (chosen due to its high tensile strength and 

low thermal conductivity). Within the aluminum disks lies a thermistor to periodically measure the 

temperature of each sample during the mission. Two additional thermistors will be included to 

record the temperature at two other locations within the CubeSat to monitor the temperature re-

sponse during the mission. Two of the aluminum disks are coated in an experimental cryogenic 

selective surface coating and the other two thermal samples are coated with AZ-93 white thermal 

paint, the current state-of-the-art passive thermal coating technology. The purpose of both coatings 

is to reflect radiant heat from the Sun while providing some far-infrared heat emission to maintain 

cryogenic temperatures, but off-the-shelf white thermal coatings still have significant absorption in 

nonvisible radiation bands. The goal of the experimental coating is to reach much lower tempera-

tures than what is currently achievable with existing technology.4  

The samples are housed within an in-house manufactured thermal sample housing or payload 

housing. This housing leverages aluminum’s high conductivity to ensure that all four samples ex-

perience identical heat by radiation or conduction from the housing. It is also designed to minimize 

the conductive and radiative heat input to the samples from the CubeSat itself. It is important to 

note that the outside of the sample housing is painted in AZ-93, which allows the aluminum housing 

to radiate heat to deep pace more effectively. An adapter made of Ultem serves as the interface 

between the PATCOOL housing and the CubeSat structure. Mounted atop the housing structure is 

a top cover with four circular cutouts for each sample, which is also coated in AZ-93. The payload 

components are shown in Fig. 1. 
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3U CUBESAT DESIGN 

The PATCOOL CubeSat is designed to test the thermal samples when completely isolated from 

all sources of heat transfer aside from the Sun and deep space. A secondary objective is to test the 

ADAMUS Laboratory’s drag de-orbit device (D3), which can modulate the drag area of a host 

CubeSat while maintaining passive 3-axis stabilization using aerodynamic and gravity gradient 

torques. The PATCOOL design will be manufactured completely in-house, but off the shelf com-

ponents will be purchased from space heritage companies such as AAC Clyde Space, CubeSpace, 

BeagleBoard, and others, whenever possible. The PATCOOL design is comprised of the payload 

housing, CubeSat structure, deployables, solar panels, and avionics.  

CubeSat Structure, Deployables, and Solar Panels 

The PATCOOL CubeSat is designed to test the performance of the experimental selective sur-

face for an application in LEO when exposed only to direct solar radiation and radiative heat ex-

change with deep space. This thermal environment emulates that which exists at an orbital distance 

of 1 AU from the Sun, neglecting the thermal loads incurred from the Earth and the internal heat 

generated from the CubeSat. A secondary objective is to test a novel attitude control system devel-

oped by the ADAMUS Laboratory, which incorporates a modified drag de-orbit device (D3) to 

serve as a gravity gradient boom. The components of the PATCOOL CubeSat will be primarily 

manufactured in-house; however, off the shelf components will be purchased from vendors with 

space heritage, such as AAC Clyde Space, CubeSpace, and BeagleBone among others, whenever 

possible.  

The PATCOOL design utilizes a 3U structure to house its avionics, deployables, and payload.  

The vertical dimension of the structure adheres to Cal Poly’s standardized CubeSat deployment 

system for 3U CubeSats of 340.5 mm.5 Mission requirements specify that the CubeSat’s attitude be 

controlled to orient it in such a way that the payload is protected from any radiative heat transfer 

other than with the Sun and deep space. Therefore, the design of the CubeSat structure takes an 

asymmetric shape to ensure that only one side continually absorbs all radiation while the other side 

rejects heat (see Fig. 2). As shown, the CubeSat structure has an asymmetric cut in the upper loca-

tion where the payload housing is. However, it is important to note that the payload housing is 

isolated from all heat captured by the CubeSat and produced from the avionics. This is done by the 

payload housing adapter which is made from Ultem plastic. This is adapter is made so that the 

payload housing does not physically touch the CubeSat structure at all. In addition to the payload 

housing, the design utilizes multi-layer insulation (MLI) sheets to protect the payload housing from 

radiative heat in the upper portion of the CubeSat.   

This design incorporates two deployable operations: The magnetometer and the tip mass, which 

deploys via the D3. The magnetometer deploys after detumble to quantify Earth’s magnetic field, 

which helps the magnetorquers actuate appropriately. A tip mass is positioned at the bottom of the 

CubeSat and it is attached to a retractable tape-spring boom that serves to de-orbit the satellite after 

25 years per NASA requirements.6 The boom and tip-mass deploy one meter out of the CubeSat. 

By modulating the drag area of the satellite, orbital maneuvering can be performed, and the satellite 

can de-orbit to a desired location. The tip mass and the boom create an aerodynamic and gravity 

gradient torque that allows the satellite to de-tumble and burn on re-entry, preventing the satellite 

from being a hazard to ground or space assets.7 

Standard 3U and 2U solar panels manufactured by Clyde Space are used for this mission. The 

3U solar panels are located on the sides where the asymmetric cut on the 3U CubeSat structure is 

not located on, while the 2U solar panels are located on the sides where the cut is also on. The solar 

panels and their respective locations on the PATCOOL CubeSat design are shown in Fig. 2. 
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Avionics 

Commercially available avionics are used in the PATCOOL satellite with the exception of two 

custom-made driver boards: one to contain the thermistor circuit and mount the transceiver, and 

the other to contain the BeagleBone Black processor and control the D3 device.  

COTS Avionics. The commercial off-the-shelf (COTS) avionics are shown in Fig. 3 and include 

the Iridium 9602 Transceiver, the Pulse W3228 Ceramic Patch Antenna, the Clyde Space 3G EPS 

and 20 Whr Battery, the BeagleBone Black processor, the CubeSpace Attitude Determination and 

Control System (ADCS), four Clyde Space solar panels, and six Cernox CX-SD 1070 thermistors. 

These components were chosen for their flight heritage and ease of integration with hardware. The 

battery, EPS, ADCS are compatible with one another using PC104 headers and will be connected 

to the custom-made boards via PC104 header as well. The CubeSpace ADCS contains the magne-

tometers and magnetorquers to perform attitude stabilization. 

Custom-Made PCBs. The satellite will include two custom-made PCBs. One of which will host 

the BeagleBone Black and will serve as the driver board for the D3 device. It will also contain two 

TI SN754410 quad half h-bridge chips to control the D3 deployer motor and a cable connector to 

route signals from the D3 board to the stepper motor. The other board will contain the thermistor 

circuit as well as the transceiver its connector to the board, since that and the antenna are the only 

components of the satellite that are not PC104 compatible. The antenna is a patch with an adhesive 

that can stick to the side of the CubeSat structure and use a wire to connect with the avionics stack-

up. The two custom made PCBs will interface with the battery, EPS, and ADCS using PC104 

headers. 

Mass, Power, and Financial Budget 

The Cal Poly CubeSat mechanical requirements state that the maximum mass of a 3U CubeSat 

shall be 4 kg. The total mass of the PATCOOL 3U satellite is 3.4 kg, which satisfies the mass 

requirement. The CAD model of the full satellite assembly in SOLIDWORKS was used to verify 

center of mass requirements. The mass budget is shown in Table 1. Table 2 denotes the power 

consumption of each control mode of the satellite during the 72-hour mission during both nominal 

and maximum cases.  

ANALYSES 

Detailed Power Analysis 

AGI’s System’s Toolkit (STK) was utilized to model a mockup of the PATCOOL CubeSat and 

its solar panels to simulate the power generated by the solar panels while orbiting the Earth in an 

ISS orbit (400 km circular at 51.9° inclination and 0° right ascension of ascending node) with the 

attitude constraints of the PATCOOL mission enforced. These constraints include maintaining one 

face of the CubeSat to be pointing towards the local nadir at all times as well as maintaining the 

CubeSat edge between the two 3U solar panels to be always pointing towards the Sun. To evaluate 

the power consumed versus power generated, a nominal power-draw as well as a worst-case sce-

nario power -draw, including solar panel efficiencies of 26.7%, and a power draw equal to the 

maximum possible for all components were considered. 

The data for power generated over the course of three days were inputted into Excel and com-

bined with the worst-case power draw per time step to produce a plot as presented in Fig. 4, which 

shows the battery charge over a period of four days following the orbital epoch. It is shown that the 

battery never discharges below 80% as recommended by the supplier to prevent possible damage 

to the battery cells. 
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Table 1. Table of CubeSat Components with Masses and Cost 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Component 
Quan-

tity 
Mass (kg) 

Thermal samples 4 0.052 

Thermistor 6 0.000 

Analog to digital converter chip 1 0.000 

Constant current chip 6 0.000 

Resistors for current chips 12 0.001 

H-bridge driver chip 1 - 

PC104 pin header 2 - 

Spectra strings 1 0.000 

Multilayer insulation 1 0.002 

Beagle Bone Black Industrial + Board 1 0.096 

Iridium 9602 Transceiver + Board 1 0.057 

Pulse W3228 Ceramic Patch Antenna 1 0.010 

CubeSpace CubeADCS 3-Axis 1 0.530 

D3 Deployer 1 0.239 

Deployer Tip Mass 1 0.500 

Clyde Space 3G EPS 1 0.086 

20Whr CubeSat Battery 1 0.160 

Clyde Space 3U Solar Panel 1 0.276 

Clyde Space 2U Solar Panel 2 0.184 

3U CubeSat structure 2 0.629 

Avionics/flight stack adapter 0 0.122 

Sample housing 1 0.156 

Housing adapter 1 0.169 

Housing cover 1 0.039 

Heat shield 1 0.058 

Total  3.366 
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Table 2. CubeSat Power Budget 

  

Nominal Case Maximum Case 

Control 

Modes 

Component Voltage 

(V) 

Current 

(A) 

Power 

(W) 

Voltage 

(V) 

Current 

(A) 

Power 

(W) 

Detumble 

 

 

 

 

 

  

EPS - - 0.200 - - 0.200 

Battery - - 0.100 - - 0.100 

BeagleBone 5.000 0.210 1.050 5.000 0.210 1.050 

CubeComputer - - 0.200 - - 0.200 

CubeSense S - - 0.100 - - 0.200 

CubeTorquer 2.500 0.150 0.375 2.500 0.150 0.375 

Tranceiver 5.000 0.035 0.175 5.000 0.170 0.850 

Total Power (W) - - 2.200 12.500 0.530 2.975 

Pointing 

 

 

 

 

 

  

EPS - - 0.200 - - 0.200 

Battery - - 0.100 - - 0.100 

BeagleBone 5.000 0.210 1.050 5.000 0.210 1.050 

CubeComputer - - 0.200 - - 0.200 

CubeSense S - - 0.100 - - 0.200 

CubeWheel S - - 0.150 - - 0.650 

Tranceiver 5.000 0.035 0.175 5.000 0.170 0.850 

Total Power (W) - - 1.975 - 0.380 3.250 

Science 

 

 

 

 

 

 

  

EPS - - 0.200 - - 0.200 

Battery - - 0.100 - - 0.100 

BeagleBone 5.000 0.210 1.050 5.000 0.210 1.050 

Thermistor circuit 5.000 0.001 0.005 5.000 0.001 0.005 

CubeComputer - - 0.200 - - 0.200 

CubeSense S - - 0.100 - - 0.200 

CubeWheel S - - 0.150 - - 0.650 

CubeTorquer 2.500 0.150 0.375 2.500 0.150 0.375 

Tranceiver 5.000 0.035 0.175 5.000 0.170 0.850  
Total Power (W) - - 2.355 17.5 0.531 3.630 
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Link Analysis  

AGI’s STK was utilized to assess the CubeSat’s ability to maintain contact with the Iridium 

communication satellite constellation. For the purpose of a worst-case analysis, a standard antenna 

with an efficiency of 50% (the actual antenna’s efficiency is roughly 84%) was modelled, and the 

number of satellites in the Iridium constellation with which contact was maintained over time was 

plotted as shown in Fig. 5. The bit error rate was also 1.17×10-17 on average throughout a four-day 

period. There were never fewer than six contacts within the constellation over the time analyzed. 

With such a high link margin even in the worst-case scenario, the team can be confident that reliable 

communication may be maintained between the CubeSat and the operators on Earth at any time 

during the mission via the Iridium constellation. 

Orbital Analysis 

AGI’s Systems Toolkit was utilized to perform orbital analyses for the PATCOOL CubeSat in 

a space station orbit (400 km circular at 51.9° inclination and 0° right ascension of ascending node) 

to estimate the operational lifespan of the satellite in orbit. Using a drag coefficient of 2.2, a mass 

of 3.5 kg, and a drag area of 0.04 m2, the time to decay was computed for the satellite using a 

January 1. 2021 orbital epoch as well as epochs at July 1, 2021, January 1, 2022, and July 1, 2022. 

These dates were chosen to provide a variety of possible solar conditions possible during a pro-

spective mission.  

The shortest orbital duration for the satellite was 307 days, or 4815 orbits, when launched on 

July 1, 2022. The longest duration was achieved at approximately 1.5 years, or 8758 orbits, when 

launched on January 1, 2021. 

Thermal Analysis 

For the PATCOOL mission, it is imperative that the thermal behavior of the CubeSat during 

operation be well-understood such that proper thermistors may be acquired for data collection. 

Furthermore, the temperature distribution within the CubeSat must be enforced, to the extent pos-

sible, such that all the experimental samples within the payload experience the same thermal load-

ing conditions; this property can be computationally verified by performing a detailed thermal anal-

ysis. Thus, a comprehensive thermal analysis was performed using Thermal Desktop to simulate 

the anticipated orbital-thermal case. This process allowed for robust and accurate modelling of the 

CubeSat and of the orbital-thermal environment in a simulation environment such that the temper-

ature response over time within the CubeSat could be quantified.  

To reduce the computational cost of performing thermal simulations, a simplified model of the 

PATCOOL CubeSat was created within Thermal Desktop, shown in Fig. 6. An ISS orbit was then 

imported to Thermal Desktop to define the orbital-thermal environment the CubeSat would en-

counter. A representation of this orbit is shown in Fig. 7. A simulation was then performed to assess 

the temperature response within the thermal samples and the CubeSat sample housing component 

over the anticipated duration of the PATCOOL mission of 72 hours, or 259,200 seconds. The re-

sults of this analysis are shown in Fig. 8. From the simulations, it is demonstrated that the temper-

ature of the samples coated with the experimental selective surface reach the lowest temperature 

out of the entire CubeSat system at 166.1 K, and the CubeSat housing component and white-painted 

samples achieve higher temperatures of 199.6 K and 212.2 K respectively. 

TEST PLAN AND PROCEDURES 

According to LSP Dispenser and CubeSat Requirements (LSP-REQ-317.01), the PATCOOL 

CubeSat will require shock, vibration, and thermal vacuum (TVAC) testing.8 To simulate the 

launch environment, the CubeSat and dispenser must be tested to four times the maximum predicted 
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shock, sinusoidal vibration, and random vibration. Since the launch platform has not yet been de-

termined, the vibration values for now will depend on the likely scenario that a NanoRacks dis-

penser will be used to deploy from the International Space Station (ISS).9 Preliminary vibration 

testing has shown that the spacecraft design concept is sound and can withstand the required shock 

and vibration test levels of 9.47 grms for one minute along each axis. A photograph of the prelim-

inary vibration testing is shown in Fig. 9. Additionally, the CubeSat must be brought to a tempera-

ture greater than 70°C and a pressure less than 10-4 Torr simultaneously as part of the TVAC test 

which will ensure that the satellite will operate properly in the space environment. After thermal 

stabilization, the CubeSat must be maintained at that temperature and pressure for at least three 

hours.  

An operational test will be performed on the CubeSat after the shock, vibration, and TVAC 

testing to ensure that it will still perform nominally after launch. Hardware in-the-loop testing will 

be formed to verify the functionality of the avionics hardware and flight software, attitude deter-

mination and control and temperature readings. The ClydeSpace battery and EPS will be ac-

ceptance tested comprehensively to verify their performance. If in-the-loop testing is successful, 

then the radio will be tested to ensure that the ground station is properly configured for data uplink 

and downlink, and to verify the connection to and from the CubeSat.  

MISSION CONCEPT OF OPERATIONS 

Fig. 10 illustrates the phases of the mission and the requisite criteria for each phase. The 

PATCOOL CubeSat will have the ability to receive and execute commands from operators on Earth 

during the mission. This capability will allow for diagnosis and correction of the CubeSat software 

through patches if any issues arise during the mission. Presently, PATCOOL is intended to deploy 

from the International Space Station (ISS) from a NanoRacks deployer, and the CubeSat has been 

designed accordingly. However, to accommodate any potential deployment configuration, the Cu-

beSat designers have consulted the Cal Poly CubeSat Design Specification, which is generally the 

most stringent CubeSat standard, in the design of the PATCOOL CubeSat. Accounting for a launch 

from the ISS, the team plans to apply to the CubeSat Launch Initiative (CSLI) to acquire funding 

for launch and deployment of the PATCOOL CubeSat. 

MISSION SUCCESS CRITERIA 

The primary goal of the PATCOOL mission is to characterize and demonstrate the performance 

of the experimental selective surface as a passive thermal coating, and as such the success of the 

mission is largely contingent upon the successful thermal isolation of the experimental samples 

from the Earth’s and the CubeSat’s thermal influences, and the recording and transfer of the sam-

ples’ temperature data during the mission. Fig. 11 demonstrates the individual mission success 

criteria and their respective quantitative weight towards the overall success of the mission. 
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Figure 1. PATCOOL Payload and CubeSat Adapter 

 

 

Figure 2. PATCOOL Structure and Payload with Solar Panels 
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Figure 3. Avionics Components and Interfacing  

 

 

Figure 4. COTS ADCS Worst-Case Battery Capacity, RAAN = 0 deg 
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Figure 5. STK Link Assessment 

 

 

Figure 6. Simplified PATCOOL CubeSat Model for Thermal Analysis 
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Figure 7. ISS Orbit Used for Thermal Analysis in Thermal Desktop 

 

 

 

Figure 8. PATCOOL Temperature Response over Time 
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Figure 9. Vibration Testing of the PATCOOL CubeSat Prototype 

 

 

Figure 10. PATCOOL Mission Concept of Operations 
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Figure 11. PATCOOL Mission Success Criteria 

CONCLUSION 

This paper presents the design of the PAssive Thermal Coating Observatory Operating in Low-

earth orbit (PATCOOL) mission, which will incorporate a 3U CubeSat to characterize and demon-

strate the performance of an experimental selective surface as a passive thermal coating for in-

space applications. The CubeSat will use commercially available components for the avionics, an-

tennas, and MLI blanket while the PATCOOL payloads and adapters, D3 device, CubeSat and 

avionics structures, and tip mass will be manufactured externally and assembled in-house. The use 

of-space tested avionics boards will increase reliability of the satellite and increase the change of 

mission success. After launch, the spacecraft will perform thermal measurements of thermal coat-

ings in space and demonstrate the operation of the drag device and tip mass concept to perform 

controlled re-entry using aerodynamic drag. After a successful mission, it should be possible to 

passively cool a component to significantly low temperatures and store cryogens in space for an 

extended period of time. 
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