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Abstract

Towards the Use of the Readily Available Tests from the Release Pipeline as
Performance Tests. Are We There Yet?

Zishuo Ding

Performance is one of the important aspects of software quality. In fact, performance issues exist
widely in software systems, and the process of fixing the performance issues is an essential step in the
release cycle of software systems. Although performance testing is widely adopted in practice, it is
still expensive and time-consuming. In particular, the performance testing is usually conducted after
the system is built in dedicated testing environment. The challenge of performance testing makes it
difficult to fit into the common DevOps process in software development. On the other hand, there
exists a large number of tests readily available, that are executed regularly within the release pipeline
during software development. In this paper, we perform an exploratory study to determine whether
such readily available tests are capable of serving as performance tests. In particular, we would
like to see whether the performance of these tests can demonstrate the performance improvements
obtained from fixing real-life performance issues. We collect 127 performance issues from Hadoop
and Cassandra, and evaluate the performance of the readily available tests from the commits before
and after the performance issue fixes. We find that most of the improvements from the fixes to
performance issues can be demonstrated using the readily available tests in the release pipeline.
However, only a very small portion of the tests can be used for demonstrating the improvements. By
manually examining the tests, we identify eight reasons that a test cannot demonstrate performance
improvement even though it covers the changed source code of the issue fix. Finally, we build random
classifiers determining the important metrics influencing the readily available tests (not) being able
to demonstrate performance improvements from issue fixes. We find that the test code itself and the
source code covered by the test are important factors, while the factors related to the code changes
in the performance issues fixes have a low importance. Practitioners should focus on designing and
improving the tests, instead of fine-tuning tests for different performance issues fixes. Our findings
can be used as a guideline for practitioners to reduce the amount of effort spent on leveraging and

designing tests that run in the release pipeline for performance assurance activities.
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Chapter 1

Introduction

Performance is one of the most important aspects of software quality. Performance can directly
affect the user experience of large-scale systems, such as Amazon, Ebay, and Google [MHH13|. A
prior study finds that field issues reported in such systems are more associated with the performance
of the system, instead of functional issues [WV00].

Performance issues exist widely in software systems [Jin+12], and are difficult to avoid during
the software development processes [Nis+13]. These performance issues have various effects on
the system. Some lead to high resource (like CPU or memory) utilization, and some can cause
a long response time to user requests. An example performance issue excerpt from Hadoop issue
tracking system ! describes that when NetworkTopology calls add() or remove(), it calls toString()
for LOG.debug() which requires extra resources. As indicated in the issue report, the toString()
method is used for logging messages, which can lead to the unnecessary slowdown of the operation
and extra resource utilization.

Performance testing is challenging. It is often an expensive and a time-consuming process [JH15;
Alg+16]. Performance tests often need to run with carefully designed sophisticated test plans, on
top of the support of special software (like JMeter [Apa]) and are executed for a long period of time
(days) [JH15]. On the other hand, such performance tests typically exercise the entire system as a
whole instead of an optimized “Targeted Therapy”. In particular, such long-running and un-targeted
performance testing is difficult to fit into the widely adopted DevOps process, when releases are
frequent and contain smaller changes between two releases.

On the other hand, there exists a large number of tests that are typically executed regularly
during every build in the release pipeline of software development [TS06]. For instance, in a recent

release of Cassandra, 564 tests are executed by default in a regular build process during the release

Thttps://issues.apache.org/jira/browse/HADOOP- 14369
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pipeline; while 4,183 tests are executed in a recent release of Hadoop?. Prior studies find that such
tests are often complex, covering various scenarios of the usage of the software [Rei05; BGZ15;
Ath+14]. More importantly, these tests are readily available and are executed by default on a
regular basis.

Due to the expensive performance testing as well as the wide availability and maturity of tests that
run in the release pipeline, recent research has been advocating the use of such tests in performance
assurance activities|Hor+13; Hor-+15; Ste+17; Bul+17]. However, there exists little knowledge
about to what extent can the tests in the release pipeline behave as a performance test. Therefore,
in this paper, we study the use of the readily available tests in the release pipeline of two open-source
projects, i.e., Hadoop and Cassandra, as performance tests. We identify 163 performance issues that
are fixed in the two subject systems and the snapshots of the source code before and after the fix of
each performance issue. By evaluating the performance of the tests with the snapshots of the source

code, we aim to answer the following research questions®:

RQ 1: Can the readily available tests from the release pipeline demonstrate performance improve-

ments from performance issues fixes?

Most of the performance improvements after an issue fix can be demonstrated by at least one
test. However, for each performance issue, only a very small (9.2% and 20.6%) portion of the

tests can demonstrate the performance improvement.

RQ 2: What are the reasons that some tests in the release pipeline cannot be used as performance

tests?

We identify eight reasons that a test from the release pipeline cannot demonstrate perfor-
mance improvement from a performance issue fix. The reasons can be used as a guideline for

practitioners to design micro-performance tests.

RQ 3: What are the important factors for a test to be useful as a performance test?

We build classifiers to model whether a test can demonstrate the performance improvement of
a particular performance issue. By exploring the important factors in our classifiers, we find
that the factors related to the test itself and the covered source code of the test are important
in the classifiers. On the other hand, the factors related to the code changes in the performance
issue fixes have a low importance. Our results imply that practitioners should spend effort
on designing and selecting the tests, while optimizing tests specially for different performance

issues may not be cost-effective in practice.

’https://github.com/apache/hadoop/releases/tag/rel/release-3.1.2
3The data from our study is shared at https://t.1ly/kMDPJ
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Our findings demonstrate the capability and challenges of the readily available tests from the
release pipeline in performance assurance activities. Our paper calls for future research that assist
in designing and selecting tests that can be used in various (e.g., functional and non-functional)
scenarios for the development of software systems.

Thesis organization. The rest of this thesis is organized as follows: Section 2 presents the
prior research that is related to this thesis. Section 3 presents our approach for collecting the
performance data from the readily available tests and manual labelling the tests with performance
metrics. Section 4 presents our three research questions and our results to answer the three research
questions. Section 5 presents the threats to the validity of our study. Finally, Section 6 concludes

this thesis.



Chapter 2

Related work

In this section, we discuss the prior research that is related to this paper.
Empirical studies on performance issues

Empirical studies are conducted in order to gain a deep understanding of the nature of perfor-
mance issues. Jin et al. [Jin+12] conducted an empirical study on 109 real-world performance issues
that are collected from five representative software projects. Zaman et al. [ZAH12| study a random
sample of 400 performance and non-performance issues from Mozilla Firefox and Google Chrome.
Huang et al. [Hua+14] study 100 randomly selected real-world performance regression issues from
three open source systems. Based on the study results, prior research found that that it is difficult
to reproduce performance issues and more time is spent on discussing performance issues than other
kinds of issues [ZAH12|. Therefore, automated approaches are designed in order to assist in de-
tecting performance issues [Jin+12] and prioritizing performance tests [Hua-+14] based on the study
results. Prior research illustrates the importance of addressing performance issues in practice. Our
work can be adopted by practices in tandem with the prior research on the topic of performance
issues.
Performance issues detection

Prior research builds predictive models in order to predict performance issues [Lim+14; Xio+13].
Lim et al. [Lim+14| formulate the performance issue identification as a Hidden Markov Random Field
based clustering problem. Xiong et al. [Xio+13]leverage statistical models to model the system per-
formance in the cloud. Luo et al. [LPG16b]| propose a recommendation system, called PERFIMPACT
to identify code changes that may potentially cause performance regressions. Such approaches are
applied with a new version of the software in order to detect performance issue. However, such
prior research on performance issue modeling depends on a large amount of performance data with

complex modeling techniques. Such approaches, although proven to be effective, are difficult to



adopt in practice [Bez+19], due to their extra overhead and the required resources. Moreover, such
approaches are often conducted at the last stage of the release. Leveraging these approaches to
detect every performance issue is difficult and impractical. Therefore, our findings in this paper may
complement existing approaches in order to detect performance issue fixes more frequently during
the rapid development processes.

Micro-scale performance tests

Extensive prior research has proposed automated techniques to design, execute and analyze
large-scale performance testing [JH15]. Due to the complexity and the resources needed for such
large-scale performance testing, in recent years, research has been conducted in order to study and
design performance testing in a small sizes (micro-scale performance test).

Leitner et al. [LB17] conduct a study on 111 open-source java projects to understand the state of
art of performance testing. Similarly, Stefan et al. [Ste+17] conduct a study on the practices of using
performance unit testing frameworks, including Caliper, ContiPerf, Japex, JMH, JunitPerf. Both
studies show that most of the performance tests are smoke tests and the projects often use JUnit
to test the performance combined with functional test; while only few open source projects use any
performance unit testing framework. These prior papers motivate our work in order to support a
more flexible and low-friction performance testing practice.

Approaches are designed to improve the existing micro-performance testing. Bulej et al. [Bul+17]
present a statistic approach to express performance requirements on unit testing. In addition, Horky
et al .[Hor+15] propose an approach to use performance unit tests to increase performance awareness.

The prior research on micro-performance testing motivates the need of knowing the effectiveness
of the readily available test in performance assurance scenarios. Our findings can complement prior

research in order to advance the practice of testing system performance in a targeted manner.



Chapter 3

Case study setup

In this section, we first present the subject systems of our study and the collection of performance
issues from the subject systems. Then we present our approach and experiment to collect perfor-
mance data and we also present the experimental environment. Figure 1 shows an overview of these

steps.

3.0.1 Subject systems

We base our study on two open-source projects, Hadoop and Cassandra. Hadoop is a distributed data
processing system. Cassandra is a free and open-source distributed NoSQL database management
system. We choose Hadoop and Cassandra since they are highly concerned with their performance

and have been studied in prior research in mining performance data [Sye+17; Che+14].
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Figure 1: An overview of our case study setup and performance data collection.



3.0.2 Collecting performance issues

We first collect the performance issues in the two subject systems. We follow an approach similar
to the one used in prior studies [ZAH12] for performance issues collection. In order to ensure that
there exists a performance improvement after the issue fixes, we only focus on the issue reports that
have the type Bug and are labeled as Resolved or Fized.

We use keywords as the heuristics to identify performance issue reports. We start by using the
keywords that are used in prior research [ZAH12; Jin+12]. In order to avoid missing performance
issues, we expand our list of keywords by using word embedding. We adopt a word2vec model
trained over 15GB of textual data from Stack Overflow posts [ECS18]| to identify the words that are
semantically related to the existing list of keywords. Examples of the uncommon words that related
to performance issues include “sluggish”, and “laggy”, which may not be used in previous research,
but can help collect performance issue reports.

By expanding the list of keywords, we gathered a total of 953 and 966 issue reports in Hadoop
and Cassandra, respectively. Intuitively, not all issue reports are indeed related to performance
issues. Therefore, two authors manually examine every issue report independently to confirm that
the issue report is related to a performance issue. The two authors achieve an agreement of 73.9%.
Afterwards, the two authors discuss each disagreement to reach consensus. When the consensus
cannot be reached, a third author examines the issue report and makes a final decision. Finally,
we collect 88 and 121 performance-related issue reports in Hadoop and Cassandra, respectively.
The amount of issue reports is comparable to prior study on performance issues [Jin+12; ZAH12;

Hua+14].

3.0.3 Labeling performance issues with performance metrics

Each performance issue has its corresponding performance metrics that can be measured and used to
demonstrate the symptom of the performance issue and the improvement after fixes. For example,
issue HADOOP-6502, has a description of “. .. DistributedFileSystem#listStatus is very slow when
listing a directory with a size of 1300 ... ”. Based on the description, we know that the performance
issue can be observed by measuring elapsed time of the execution and the elapsed time should
decrease after the issue is fixed. Two of the authors manually label all of the collected performance
issues with their corresponding performance metrics. In total, we identify five performance metrics
in our labeling of the performance issues in our subject systems, i.e., including elapsed time, CPU
usage, memory usage, I/0O read and I/O write. For Hadoop, 70, 19, 17, 6, and 4 issues are labeled
with elapsed time, CPU usage, memory usage, I/O read and I/O write, respectively. 77, 32, 29, 33,

and 29 issues from Cassandra are labeled with elapsed time, CPU usage, memory usage, I/O read



and I/O write, respectively. Note that an issue report can have performance issues with multiple
performance metrics. The two authors have an agreement of 89.0% on the labeling and a similar

approach as the last step is followed when labeling disagreement occurs.

3.0.4 Evaluating the fixes of performance issue

In this subsection, we present how do we study the use of the readily available tests from the release
pipeline to evaluate performance. We first identify the performance issue fixing commits, in order
to identify the two snapshots of the source code, i.e., before and after fixing each performance issue.
We then present the selection and execution of the associated functional tests that cover the issue
fixing source code. Finally, we present the performance evaluation for each test in order to study

whether each test can demonstrate a performance improvement for the performance issue fixes.

Identifying performance issue fixing commits

We clone the git version control repositories of our subject systems, and use git log to extract all the
code commits together with the corresponding commit messages. The commit messages typically
contain an issue ID, indicating the issue that each commit addresses. With this information, we
collect all the associated commits for each collected performance issue.

We note that there may exist multiple commits for fixing one issue. One reason is that an issue
may be too complex to fix in one commit. Therefore, developers may divide the fix of an issue into
several commits. In addition, developers might have thought that the issue is fixed, while actually
is found not fixed, reopened [Xia+15] and fixed in a later commit. In these cases, we consider the
chronological last commits as the issue fixing commit. We also exclude the commits that do not
have any code changes. Finally, if an issue ID is not contained in any commit messages, we remove
the issue from our study.

After this step, we can collect two snapshots of source code for each performance issue, i.e., one
before issue fixing, and one after issue fixing. We checkout both snapshots of the source code for

each performance issue.

Executing associated tests

Both of our subject systems have a large number of tests that are available in the release pipeline. We
first search for all tests based on their build files. Hadoop has four different sub-modules. We select
the tests by each sub-module to minimize the large amount of irrelevant tests to save computational
resources. For Cassandra, we include all the retrieved tests.

Intuitively, not all tests execute the source code that is changed by the performance bug fixes.

Hence, for each performance issue, we identify the tests that execute the source code that is changed



by the fixes (impacted tests) and the tests that do not (un-impacted tests). We leverage code
coverage tools to identify the executed lines in the source code for each test. Different code coverage
tools are used in the subject systems. In particular, Cobertura and JaCoCo are used for Cassandra.
Hadoop depends on Atlassian Clover to calculate code coverage. Since Atlassian Clover needs
licenses to execute, and all support was discontinued at April 11, 2018, we turn to OpenClover,
which is an open-sourced version of Atlassian Clover, to measure the code coverage in Hadoop. If a
test executes the added or modified lines in the source code between two versions (before and after
the performance issues fixes), we consider the test impacted. In addition, for deleted lines of code,
we consider a test covering the code if the test executes the lines before and after the deleted lines.

Afterwards, we run every test (both impacted and un-impacted) individually to evaluate per-
formance that is associated with each test. In particular, the tests for each performance issue are
executed one virtual machine with 8GB memory and 16 cores CPU hosted by Google Compute
Engine (GCE) !. Each test is independently executed with 30 repetitions to minimize noise. Prior
research studies the use of cloud environment on performance evaluation and shows the successful
use of such a number of repetitions [LSL19]. Note that we also exclude the commits and the issues
where the project fails to build and run. In total, we spent more than 11,642 machine hours for

executing all the tests for the 127 performance issues in our subject systems.

Evaluating the performance of each test

To evaluate the performance that is associated with each test, we collect the five performance metrics,
including the elapsed time, CPU usage, memory usage, I/O read and I/O write, as the labeling of
performance issues. We use psutil (python system and process utilities) [Rod16] for monitoring the
CPU usage, memory usage, I/O read, and I/O write of the process that executes the tests. Psutil has
been used widely in prior research on software performance [CS17; Yao+18]. We use test summary
reports generated via Ant/Maven and Junit to measure the elapsed time of each test. After this
step, we have collected performance data for all the tests (both impacted and un-impacted) that
are associated with two versions of source code (before and after each performance issue fix) of each

performance issue. We then use this data to answer our research questions.

Thttps://cloud.google.com/compute/
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Chapter 4

Case study results

In this section, we aim to answer the following research questions:

RQ1: Can the readily available tests from the release pipeline demonstrate

performance improvement from performance issues fixes?
Motivation

Performance issue reports are often used as a great source of knowledge in system performance as-
surance activities in prior research [Jin+12; Hua+14]. The certainty of having performance improve-
ment, the description of the report and the available patches makes performance issues great subject
for prior research software performance. This research question concerns whether the performance
of the readily available tests from the release pipeline can demonstrate performance improvement
from performance issue fixes. If not, the readily available tests would not be capable of serving as

performance tests for other performance assurance activities with even higher difficulty.

Approach

Analyzing performance evaluation results. For each test, we leverage statistical tests on
the performance evaluation results to determine whether the performance of the test has changed
after fixing the performance issue. In particular, for each performance issue, we first select only
the tests that are impacted by the performance issue fixes. Afterwards, we check the label of the
performance metrics (e.g., elapsed time) (see Section 3.0.3) that are associated with the symptoms of
the performance issues. We would like to determine whether the corresponding performance metrics
have different statistical significance values before and after the performance issues fixes.

Due to the non-normality of the performance data, we use Mann-Whitney U test, as does prior

work [Che+16; Zha+19]. Our null hypothesis and alternative hypothesis are given below,

10



Hj : The two performance result populations (i.e., test and control group — the same test before

and after performance issue fixes) are the equal.
H; : The two compared tests do not have the same performance.

and we run the test at the 5% level of significance (i.e., & = 0.05). That is, if the P-value of the test
is not greater than 0.05 (i.e., P —value < 0.05), we would reject the null hypothesis in favour of the
alternative hypothesis. In other words, there exists a statistically significant performance change
between the performance metrics, and the change is unlikely by chance.

However, a statistical significance test does not contain the information about the size of the

effect [Coe02], and when the performance data points under study are formed by a great number of
items, the statistically significant differences are more frequently observed [CSF12; LSL19]. There-
fore, we further adopt the effect size as a complement of the statistical significance test. Considering
the non-normality of our data points, we utilize Cliff’s Delta [Cli96], which does not require any
assumptions about the shape or spread of the two distributions [LSL19]. The effect size is assessed
using the thresholds provided in prior research [Rom+06],
Filtering false-positive results. To avoid the False Positives, and eliminate the influence of the
negligible or small changes of the performance, we only consider the performance changes that have
a large effect size. In short, if the performance metric of an impacted test is changed, in particular
improved (e.g., lower CPU usage), after the performance issue fixes, with statistically significant
difference and large effect size, and the performance metric is also labelled for the performance
issue, we consider the test to be capable of verifying the performance issues fixes.

In order to further avoid false positive results, we would like to understand the patterns of false-
positive results and use such patterns to filter out our data. In order to identify the most obvious
false-positives, we check the largest ten performance changes (in effect sizes, c.f., Section 4) in the
un-impacted tests (no modification committed on the source code covered by the tests) in each
subject system. We manual study on the possible causes of the false positive changes that reside in
the source code. We find two reasons: 1) some functional tests contain random operations, which
can lead to the unstable performance and 2) frequent I/0 operations. Therefore, we do not consider
the results of a test if the test is corresponding to either of these two reasons.

Finally, we manually examine all the cases of each performance issue (c.f., Section 4) to ensure

that the tests indeed demonstrate a performance improvement after a performance issue fix.

Results

Most performance fixes’ improvement can be demonstrated by at least one readily

available test. We find that for 56 out of 60 of the performance issues in Hadoop and 46 out

11



of 67 performance issues in Cassandra, at least one test from the release pipeline can be used to
demonstrate performance improvement with all their associated performance metrics. In addition,
for seven additional performance issues in Cassandra, performance improvement with part of the
performance metrics can be demonstrated. For example, the commit #9afc209 fixes the issue
CASSANDRA-7401, which describes an endless loop in the source code. Based on the report, there
should be an improvement on both elapsed time and CPU usage from the issue fix. Among all
the impacted tests, elapsed time and CPU usage are indeed improved significantly with large effect
size in three tests. Such results show the potential capability of the readily available tests from the
release pipeline to serve as performance tests.

Only a small portion of the tests from the release pipeline can be used to demonstrate
performance improvements. Figure 2 shows the percentage of tests that can or cannot be used
to demonstrate the improvement from performance issues fixes. The results show that it would
be challenging for practitioner to directly use the readily available test in the release pipeline as
performance tests. In particular, on average, only 9.2% and 20.6% of the tests in Cassandra and
Hadoop, respectively, can demonstrate performance improvement fixes for all associated performance
metrics. 13.9% and 5.1% of the tests in Cassandra and Hadoop, respectively, can demonstrate
performance improvements with part of the associated performance metrics. On the other hand,
76.9% and 74.3% of the tests in Cassandra and Hadoop, respectively, cannot demonstrate any
performance improvement, even though these tests all executed the changed source code for the
issue fixes. For example, to fix issue CASSANDRA-33/4, 25 tests are impacted by the code change;
while only two tests can demonstrate the performance improvement from the issue fix. Due to the
large number of total available tests in the release pipeline, practitioners may be overwhelmed by
the influx of performance results from the tests in the release pipeline and the difficulty of selecting

the useful ones.

On one hand, most of performance improvements from performance issue fixes can be
demonstrated using the readily available tests in the release pipeline. On the other hand,

it is challenging to use these tests in practice since only a very small portion of the tests

can demonstrate the improvements.

12



Cassandra Hadoop

1004 1004
o
80 801
]
[e]
[e]
60 1 601
2 8
5 5 9
=4 = o
s .
o o
® 8 = o
40 4 40
o]
o
201 20 4 g
o] [e]
§ o
0 04 _—
T T T T T T
Partially verify Completely verify Unable to verify Partially verify Completely verify Unable to verify

Figure 2: The percentage of tests that can or cannot be used to demonstrate performance improve-

ment from issue fixes for each issue.

RQ2: What are the reasons that some tests in the release pipeline cannot

be used as performance tests?
Motivation

In the last research question, we find that many of the readily available tests in the release pipeline
cannot demonstrate a performance improvement from the performance issue fixes, even though
the changed source code for the issue fixes is executed by these tests. Therefore, in this research
question, we would like to understand the reason that these tests cannot serve as performance tests.
The findings of this research question can assist practitioners in avoiding the use of certain tests in

performance assurance activities and in improving tests to serve as performance tests.

Approach

We follow a four-step open coding approach to analyze the reasons that can cause a test to not be
able to demonstrate performance improvements, even though the test is impacted by the issue fix.
Based on the results from RQ1, we collect all the impacted tests for the performance issues, i.e.,
the tests that cover the changed source code of the corresponding issue fix, but do not demonstrate
performance improvement on the performance metrics of the issue. Two authors independently
examine each test to uncover reasons of not being about to demonstrate performance improvements.
In particular, the authors examine the following information that is associated with each test: 1)

the performance issue report, which contains the high-level information for the issues’ description,

13



2) the test code, which contains the low-level information of the tests and the changed parts of the
committed files and 3) the source code covered by the test, which tells us which lines have been
executed by the tests.

Step 1. The two authors independently generate categories of reasons that a test cannot demon-
strate performance improvements. In particular, each author iteratively investigates all the tests to
identify the reasons, until no more new reasons can be found. The outcome of the first step is the
different category of reasons by each of the two authors.

Step 2. Intuitively, the two authors would not generate identical categories. Hence, the two
authors meet and discuss their categories. The goal is to generate final categories of reasons that
both of the two authors agree on. The two authors discuss each of their generated categories of
reasons and reach consensus on the final categories.

Step 3. The two authors use the agreed categories from the second step. The two authors
independently put each test into one category.

Step 4. Finally, the two authors examine the results where the two authors do not agree. The
two authors discuss their rationale to try to reach consensus. If consensus cannot be made, a third

author will examine the corresponding test to make the final decision.

Results

We identify eight possible reasons that a test cannot be used to demonstrate perfor-
mance improvements. We discuss each reason in detail with examples in the rest of this RQ.

Too light workload (185 tests). We find that some performance issues can only be triggered
with a rather large data size. However, functional tests may not be written with such a large data
size as input, making it impossible to demonstrate the issue fixes. For example, the issue reported in
CASSANDRA-581, can be triggered with a very large number of sstables. It is fixed in the commit
#2b62df2. However, the impacted tests do not have a large enough amount of sstables as input to
reproduce the performance issue.

Not enough repetition (9 tests). Some performance issues have a rather small effect, while
becoming impactful with a large number of repetitions. For such performance issues, the tests often
can detect the performance improvement but only with a small or medium effect size, which are
not considered in our experiments to minimize noise. However, with more repetitions, the effect can
increase. For example, in the report of performance issue CASSANDRA-581, developers mention
that the method convertFromDiskFormat using split is slow only when being tested with more than
1,000 keys. Although a test RandomPartitionerTest covers the code changed by the issue fix, the
method convertFromDiskFormat is called only once in the test and the elapsed time is slightly

improved with a small effect size. Based on the description of the issue report, if there were more
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repetitions around this method, the performance improvement would be demonstrated by the test.

Deadlock (2 tests). The dead lock related performance issues can only happen when given a
certain set of circumstances. For example, the commit #6158c64 fixed the deadlock issue in the
streaming code. With the description provided in the report, CASSANDRA-5699, we find that we
need a specific execution condition to trigger the deadlock.

Limited coverage of the performance related codes (24 tests). We notice that developers
may change a large amount of source code to fix performance issues, but the test only covers a small
portion of the committed changes. In this situation, the performance of the test can be misleading
since it does not tell the full picture of the issue fixes. For example, the commit #67ccdab fixed a
performance issue in the streaming code. By using the git diff command, we know that there are 10
files changed with 437 additions and 243 deletions. However, among these changes, only one line is
covered by the test SessionInfoTest. Moreover, the covered line is a refactoring operation (Rename
Variable), and the performance sensitive operations are never performed by the tests to demonstrate
the performance improvement.

Partial branch coverage (34 tests). If the performance issue is caused by the code inside the
if statement, and without the 100% coverage of the conditions, the code snippets cannot be tested,
and thus, the tests cannot demonstrate the fix to the performance issue. A representative example
can be found in the fixing process of issue CASSANDRA-323. The performance issue is caused
by the echoedRow function, while this function cannot be invoked as it lies inside the if statement
without a 100% branch coverage.

Indirect performance influence (1 test). In this situation, the behavior of performance issue
related code is based on the return value of another function. Therefore, covering the fix locations
of the issue may not be useful to demonstrate the fix to the performance issue. For example, in
the fixing process of the issue CASSANDRA-8550, while benchmarking CQL3 secondary indexes,
developers noticed substantial performance degradation as the volume of indexed data increases.
The issue is caused by the page size selection, which is returned by another function. We notice that
the tests can cover the use of the return value while missing its caller. Therefore, the tests cannot
demonstrate the performance changes as expected.

Frequent access of external resources (31 tests). Frequent access operations of external
resources may introduce noise into the performance evaluation of the tests. We find tests that may
have 1) frequent I/O operations, including tables’ creation, deletion, update and data insertion and
selection, or 2) frequent memory operations, like the flush operations. For example, test DefsTest
covers the fix in commit #3ad3e73 for the issue CASSANDRA-323. However, the test cannot
demonstrate the improvement due to the noise from its large number of flush operations.

Idle during execution (6 tests). Some tests may proactively wait for a period of time,
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introducing an idle time that is much longer than the actual execution time, which reduces the
observed performance improvement after issue fixes. For example, in the commit #3ad3e73 that
fixes issue CASSANDRA-3234, test CleanupTest contains a 10-second Thread.sleep operation with
a total 11.685s elapsed test time. In this case, the elapsed time is dominated by the sleep time,

hiding the performance improvement after the issue fixes.

We identify eight possible reasons that a test in a release pipeline cannot serve as a perfor-

mance test. The reasons can be used as a guideline for practitioners to avoid and improve

the use of certain tests from the release pipeline.

RQ3: What are the important factors for a test to be useful as a perfor-

mance test
Motivation

Prior research has studied the use of micro-scale performance tests in performance evaluation [Hor+13;
Hor+15; Ste-+17; Bul+17]. However, the findings in our prior research questions illustrate the chal-
lenges and show the reasons why we cannot directly adopt those tests in performance evaluation. On
the other hand, there exist tests from the release pipeline that successfully demonstrate performance
improvements. By understanding the characteristics of tests that are able to demonstrate perfor-
mance improvements, we may gain a better understanding of these tests and thus can provide more
general guidance to a developer for writing new tests that run in the release pipeline for performance

assurance activities.

Approach

To answer this research question, we adopt random forest, an ensemble learning method [Bre0la],
as it is one of the most used machine learning algorithms for its performance and has been adopted
in various software engineering research [TSH19]. We build a binary classifier to identify whether a

test can be used to demonstrate performance improvements.

Step 1: raw data collection

In RQ1, we have identified the impacted tests of each performance issue, and whether the test can
demonstrate performance improvements. However, the ability of a test to serve as a performance
test may vary among different performance metrics. For example, a test that can successfully
demonstrate memory usage improvement may not be able to show the improvements with elapsed

time. Therefore, in this step, we separate the data based on each performance metric, i.e., we build
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one classifier for each performance metric. For example, to collect the raw data of elapse time for
project Cassandra, we first only take all the performance issues that are manually labelled with
elapsed time. Then we collect the impacted tests of each performance issue. For each impacted test,
we use the results shown in RQ1 to check if the test can demonstrate a performance improvement,

as the ground truth data for our classifier for elapsed time.

Step 2: metrics extraction

To build classifiers, we extract metrics for the raw data collected from the previous step. The
effectiveness of a test can be associated with many metrics. In this work, we extract metrics from

three aspects of the tests:
e test code, which contains the information about the test itself.

e source code covered by the test, where we can find the test coverage rate and the characteristics

of covered source code.

e source code impacted by the issue fix, which measures the characteristics of committed changes

of the source code while fixing the performance issue.

The intuition behind the selection of the three aspects is straightforward, as we are running the
test to evaluate the performance of the covered source code and the performance improvement from
issues fixes should be caused by the committed changes.

Inspired by the work on defect prediction [MWO00; Kam-13; NB07; NBZ06], and the prior
findings on performance issues and performance regressions [CS17; Jin+12; Hua+14; Ala+17; SL17;
Cos+17|, we extract metrics from each of the three aspects. Some metrics exists in multiple aspects.

The details of the metrics are shown in Table 1.
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Table 1: An overview of our extracted metrics to build random forest classifiers.

Category Metrics Level Description
FanOut Method | Number of unique methods that are called by the method mod-
ified during the commit.
Complexity and size| Fanln Method | Number of unique methods that call the method modified during
the commit.
CyclomaticComplexity Method | McCabe Cyclomatic complexity of the method that is modified
during the commit.
SLOC File Number of source code lines in the unit test.
CodeElementsSize Method | Code Elements Divided by Size
Diffusion Entropy Commit | Distribution of modified code across files in one commit
DeveloperCount Commit | Number of developers that changed the modified code in one
History commit
Timelnterval File Average time interval between the last and the current change of
the file that is modified during the commit
DeveloperCommitCount File Average number of commits of the developers who modified the
Human factor file that is modified during the commit.
RecentDeveloperCommitCount | File Average number of commits made in last 12 months of the devel-
opers who modified the file that is modified during the commit.
Code elements Condition Method | Number of modified condition statements of the method modified

during the commit.
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Table 1 (Continued)

Category Metrics Level Description
Loop Method | Number of modified loop statements of the method modified dur-
ing the commit.
ExceptionHandling Method | Number of modified try-catch statements of the method modified
Code elements during the commit.
Synchronization Method | Number of modified synchronization statements of the method
modified during the commit.
FinalStatic Method | Number of modified final or static statements of the method mod-
ified during the commit.
ExpensiveVariableParameter Method | Number of modified expensive parameters/variables of the
method modified during the commit.
ExternalCall Method | Number of modified external function call of the method modified
during the commit.
Control Method | Number of modified control statements of the method modified
during the commit.
CodeChurn File Total sum of lines added into and deleted from the unit test
Code Change across all the commit history.
LineAdded File Total sum of lines added into the unit test across all the commit
history.
LineDeleted File Total sum of lines deleted from the unit test across all the commit
history.
Coverage Criteria LineCoverage File Line coverage ratio of the unit test




Table 1 (Continued)

T S F | Category Metrics Level Description

° Coverage Criteria BrahchCoverage File Branch coverage ratio of the unit test

0¢

Note: T, S and F in the heading are abbreviations for the three aspect of metrics: test code, source code covered by the test and source code

impacted by the issue fix. ® means that the metric is calculated for the corresponding aspect.



Step 3: Training and testing random forest classifiers

In this step, we build random forest classifiers to model whether a test can demonstrate performance
improvement or not. In particular, we build five classifiers, each predicting for one performance
metric (i.e., elapsed time, CPU usage, memory usage, I/O read and I/O write). For each classifier,
we use a 10 x 10-fold cross-validation implementation scikit-learn ! with random shuffle [Ped+11].
We fit a classifier on the training data, and use the validation data to test the classifier. For our
binary classification problem, we use the area under the receiver operating characteristic (ROC)
curve (AUC) as a performance measurement for the trained classifier [Bra97]. AUC ranges in value
from 0 to 1, showing the capacity of the classifier on distinguishing between classes. A higher AUC
means a better classifier at predicting. Finally, we have 10 x 10 models and corresponding AUC
values. In this study, we use the random forest implementation ? and roc_auc_score 3 function
in scikit-learn [Ped+11] to train and evaluate our classifiers. Note that for I/O read of project
Hadoop, we only have 13 and 345 functional tests that can and cannot demonstrate performance
improvements. The dataset is small for training a classifier, resulting in the misleading conclusions.

Therefore, we do not train our classifier for I/O read with Hadoop.

Step 4: Determining importance of each group of metrics

In this step, we examine the importance of each group of metrics. In particular, we extract three
groups of metrics, i.e., fix impacted source code, test code, and test covered source code. We remove
each group of metrics from our data and rebuild the classifiers. Afterwards, we measure the AUC
values of each classifier and compare with the AUC values of the original classifiers with all metrics.

The more the AUC values decrease, the more important the group of metrics are.

Step 5: Determining the importance of each metric

To evaluate the importance of each metric on our random forest classifiers, we adopt the Mean
Decrease Impurity (MDI) (also called Gini importance) [BreOlb; Bre02]. In a tree algorithm, it
calculates each metrics importance as the sum over the number of splits that include the metric,
proportionally to the number of samples it splits. For our random forest, the importance is averaged
over all trees of the ensemble. We use the function feature importances of the scikit-learn *
[Ped+11] in Python to compute the metrics importance values.

After we repeat the 10-fold cross-validation for 10 times, each metric has 100 importance scores.

We then perform Scott-Knott Effect Size Difference (ESD) test [SK74] on the metrics importance.

Ihttps://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
Shttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
4nttps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#
sklearn.ensemble.RandomForestClassifier.feature_importances_
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The Scott-Knott ESD test uses hierarchical clustering analysis to partition different metrics into
distinct groups. With this analysis, each metric has a rank. In this study, we use the sk_esd
function of the ScottKnottESD package 5 in R [Tan+17].

Finally, to examine the direction of the relationship between each metric and the likelihood of
a test being successful on demonstrating performance improvements, we measure the correlation
between each metric and the targets/classes using a Spearman rank correlation (rho). A positive
Spearman rank correlation indicates that the metric shares a positive relationship with the likelihood
of a test being successful on demonstrating performance improvement, whereas a negative correlation

indicates an inverse relationship.

Results

Our random forest classifiers achieve high AUC values, considerably outperforming
a random classifier. For project Cassandra, Table 2 shows that, our random forest classifiers
achieve an average AUC of 0.86, 0.59, 0.69, 0.72, and 0.73 for elapsed time, CPU usage, memory
usage, I/O read and I/O write, respectively. Similarly, for project Hadoop, our classifiers achieve
an average AUC of 0.90, 0.68, 0.66, 0.79 for elapsed time, CPU usage, memory usage, and 1/0
write, respectively. These results indicate that our random forest classifiers outperform random
classifiers when determine whether a test can be used for demonstrating performance improvement.
By analyzing the results, we find that the higher AUC value of elapsed time than the CPU usage,
Memory usage, I/O read and 1/O write classifiers may be due to the larger number of functional
tests that can be used to demonstrate improvement in elapsed time over other performance metrics.
In addition, we find that the AUC values of all the classifiers are stable, especially the models from
the elapsed time. The stable AUC values of our classifiers suggest that our classifiers achieve stable
performance in determining the effectiveness of using these readily available tests in the release
pipeline in performance assurance activities.

The metrics extracted from the source code covered by the test play an important
role in the usefulness of a test. Table 2 shows that for Cassandra, the metrics from the source
code covered by the tests always have a strong influence on the AUC values among the classifiers
for all performance metrics. Table 3 and Table 4 present the top three most important metrics
to the classifiers. To have a better understanding of these metrics, we also present their metrics
importance measured using MDI, the direction (i.e., the sign of p) of the relationship between these
metrics and the likelihood of a test being successful on demonstrating performance improvements.
By examining Table 3, we find that for Cassandra, the metrics from the source code covered by the

test always have the largest MDI for all classifiers. The LineCoverage and BranchCoverage metrics

Shttps://github.com/klainfo/ScottKnottESD
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Table 2: An average of AUC, and AUC changes after removing some metrics. —, 4+, and 0 means

there is a decrease, increase and no change of AUC.

All Metrics without Metrics without Metrics without

Metrics fix impacted test code test covered

source code source code
AUC AUC Change AUC Change AUC Change
Elapsed time 0.86 0.79 -0.07 0.85 -0.01 0.8 -0.06
_g CPU uasge 0.59 0.58 -0.01 0.57 -0.02 0.56 -0.03
S Memory usage 0.69 0.67 -0.02 0.67 -0.02 0.64 -0.05
% I/0 read 0.72 0.68 -0.04 0.68 -0.04 0.68 -0.04
O 1/0 write 0.73 0.73 0 0.67  -0.06 0.7 -0.03
o Elapsed time 0.9 0.9 0 0.87 -0.03 0.86 -0.04
S CPU uasge 0.68 0.68 0 0.59 -0.09 0.68 0
E Memory usage 0.66 0.66 0 0.61 -0.05 0.67 0.01
I/0 write 0.79 0.79 0 0.74 -0.05 0.8 0.01

lie in the top two ranks across all the classifiers. The results also show that these two metrics have
a positive impact on the unit usage, I/O read, and I/O write performance metrics. It indicates that
a test tends to successfully demonstrate a performance improvement from a performance issue fix,
if the test has a relatively higher line or branch coverage. These findings confirm the results in our
preliminary manual study in RQ2, i.e., the tests with a lower line or branch coverage have difficulty
triggering the performance issues, thus cannot demonstrate the improvement from the performance
issues fixes. This finding suggests the importance of coverage criteria in developing performance
tests.

The metrics of the test itself play an important role in the usefulness of a test. Shown in
Table 2, for Hadoop, the metrics related to the test code have a large influence on all the classifiers. By
examining the top three most important metrics to the classifiers (see Table 3 and Table 4), the Size
and Time Interval metrics from test code and are also important on whether a test can demonstrating
performance improvements. For project Cassandra, Table 3 shows that SLOC metric of the test
code ranks first in the I/O write classifier. This SLOC metric is also one of the top three important
metrics in the elapsed time, CPU usage, memory usage, and I/0 read classifiers. The SLOC metric
has a positive impact in all the five performance metrics. It indicates that a test tends to successfully
demonstrate performance improvement, if it has a relatively higher source lines of code. Meanwhile,
for project Hadoop, the metric Timelnterval also lie in the top three most important metrics. The

negative sign indicates that if a test code is updated long time ago, it may be updated and result in
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a low likelihood demonstrating the performance improvements. Finally, for Hadoop, the importance
of the metric RelativeEzpensive VariableParameter, from test code, indicates that a functional test
tends to successfully demonstrate the performance improvement from performance issues, especially
memory issues , if it has a relatively higher call of expensive variables in the test.

The metrics of the changed source code by a performance issue fix do not often play
an important role in the usefulness of a test. We find that for Hadoop the average AUC our
random forest classifiers do not change when the metrics extracted from the fixes impacted source
code category (see Table 2). In addition, none of the metrics that are related to the changed source
code of the performance issues fixes are in the top three important metrics of the classifiers. These
findings suggest that developer can pay more attention to the test code and the source code covered
by the test. Some practitioners may like to fine tune the tests for every performance issue fix.
However, our results suggest that such fine-tuning may not be cost-effective since the characteristics
from the changed source code of a performance issue do not typically play an important role in

whether the test can demonstrate the performance improvement from performance issue fixes.

Metrics related to the test itself and the source code covered by the test are important in the
classifiers. On the other hand, the metrics related to the code changes in the performance
issues fixes have a low importance. Practitioners should focus on designing and improving

the tests, instead of optimizing tests for different performance issue fixes.
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Table 3: Average rank of the top 3 influential metrics and the Spearman rank correlation (p). Note:
A + (or —) sign of p indicates a positive (or an inverse) relationship of the metric with the likelihood
that a functional being able to demonstrate the performance improvements. The larger MDI that a

metric has, the more influential the metric is.

Cassandra
Rank Aspect::Metrics MDI+SD p
Elapsed time
1 S::LineCoverage 0.068+0.001 +
2 S:BrahchCoverage 0.068+£0.001 +
3 T:RelativeExceptionHandling 0.0444+0.001 +
CPU usage
S::LineCoverage 0.059+£0.002 +
S::BrahchCoverage 0.059+0.002 +
T::Timelnterval 0.046+0.002 +
Memory
1 S::BrahchCoverage 0.051+0.001 —
S::LineCoverage 0.051+0.001 —
T::Timelnterval 0.0454+0.001 —
I/0 read
S::BranchCoverage 0.060£0.001  +
S::LineCoverage 0.059+0.001 +
T::Timelnterval 0.0484+0.001 +
I/0 write
1 S::BrahchCoverage 0.049+0.002 +
S::LineCoverage 0.049+0.002 +
T::SLOC 0.0494+0.002 +
2  T:RelativeExpensiveVariableParameter 0.040+0.001 —
3 T:Timelnterval 0.038+0.001 +

Note: T and S in the aspects are abbreviations for the two aspect of metrics: test code and source code

covered by the test.
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Table 4: Average rank of the top 3 influential metrics and the Spearman rank correlation (p). Note:
A + (or —) sign of p indicates a positive (or an inverse) relationship of the metric with the likelihood
that a functional being able to demonstrate the performance improvements. The larger MDI that a

metric has, the more influential the metric is.

Hadoop
Rank Category::Metrics MDI+SD 1)
Elapsed time
1  S::LineAdded 0.038+£0.001  +
2 S:Timelnterval 0.037£0.001 —
3 S:LineDeleted 0.033£0.001 +
CPU usage
T::Timelnterval 0.036+0.001 —
T::RelativeExceptionHandling 0.033+£0.001  +
T:RelativeExpensiveVariableParameter ~ 0.032+0.001 +
Memory
T::RelativeExpensiveVariableParameter  0.035+£0.001 +
S::Timelnterval 0.0344+0.001 —
T::Timelnterval 0.033+0.001 —
I/0 write
1 S::LineAdded 0.040+£0.002 +
2 T::Timelnterval 0.0304+0.001 —

3 T::RelativeExpensiveVariableParameter  0.030+0.001 +
Note: T and S in the aspects are abbreviations for the two aspect of metrics: test code and source code

covered by the test.
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Chapter 5

Threats to validity

This section discusses the threats to the validity of our study.

External validity. Due to the large amount of time and computing resources for execution to
identify performance regression and the code coverage of test, our evaluation is conducted on two
open-source software systems, i.e., Hadoop and Cassandra. Although our study only focuses on
127 performance issues, the scale of our study is comparable to prior research on performance
issues [Jin+12; ZAH12]. Our findings might not be generalizable to other systems. Future studies
can apply our approach on other systems, such as commercial closed source systems.

Internal validity. Our issue report selection in the JIRA tracking system may be biased by the
keyword definition. Although we use a manual identification process to verify whether the filtered
issue reports are related to performance, we may still miss performance issue that do not contain
any of our listed keywords. Our approach requires performance metrics to measure performance of
functional tests. In particular, we only study five performance metrics while there may be others if
other people study and label other performance issues. Future studies can include more performance
issues and metrics to complement the findings of our study. The manual labeling and manual study
results may be subjective to the two authors. More user studies and surveys on practitioners may
address this threat.

We use software metrics based on the findings from prior research and also extract new metrics
highly related to test. We choose our prediction model (Random Forest), based on its widespread
use in prior software engineering research [GMH15], and since it typically provides a high accuracy
in the modeling. There may exist other metrics and other machine learning models may be leveraged
in our study, which future research can explore and us to complement our findings.

Construct validity. There exist other performance assurance activities, such a performance re-

gression detection [LPG16a; HHF13]. Our study chose to use performance issues because of the
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knowledge and quality of issue reports and the certainty in performance improvement. Future re-
search can complement our study by using readily available tests in other performance assurance
activities as performance tests.

There always exists noise when monitoring performance [Myt+09]. In order to minimize such
noise, for each functional test, we repeat the execution 30 times independently. Then we use a
statistically rigorous approach to measuring performance regressions. Further studies may opt to
increase the number of repeated executions to further minimize the threat based on their time
and resource budget. Our approach is based on the system performance that is recorded by Psu-
til [Che+16]. Further studies may evaluate our approach by varying such performance monitoring
tools, i.e., pidStat.

In our context, we evaluate the performance of tests in a Google Cloud Platform performance
evaluation environment. Although we minimize the noise in the environment to avoid bias, such
an environment is not exactly the same as in-field environment of the users. To minimize the
threat, we only consider the performance regressions that have large effect sizes. In addition, with
the advancing of DevOps, more operational data will become available for future mining software

repository research. Research based on field data from the real users can address this threat.
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Chapter 6

Conclusion

In this thesis, we evaluate the performance of readily available tests in the release pipeline, and
then examine whether these tests can be used as performance tests, in particular, to demonstrate
the performance improvement from performance issues fixes. By performing an exploratory study
on a total of 127 performance issues in two open-source projects, i.e., Hadoop and Cassandra, we
find that most of improvements from performance issues can be demonstrated using the readily
available tests in the release pipeline. Moreover, through a manual study, we identify eight reasons
that may lead a test to not be able to demonstrate the performance improvements. Finally, we build
random forest classifiers to identify the most important metrics that influence the tests’ capability
on demonstrating performance improvements.

To summarize, this thesis makes the following contributions:

e To the best of our knowledge, our work is the first to study the use of readily available tests

in performance assurance activities.
e We uncover reasons why a functional test cannot be used as performance tests.

e We find that a test itself and the source code covered by the test are the important factors for

tests to be able to serve as performance tests.

Our findings shed light on the opportunities and challenges in leveraging the readily available tests
in performance assurance activities. Practitioners can use our uncovered reasons and factors as
guidelines to design and improve tests that run in the release pipeline for performance assurance

activities.
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