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ABSTRACT
Machine learning techniques are essential components of medical imaging research. 
Recently, a highly flexible machine learning approach known as deep learning has 
emerged as a disruptive technology to enhance the performance of existing machine 
learning techniques and to solve previously intractable problems. Medical imaging has 
been identified as one of the key research fields where deep learning can contribute 
significantly. This review article aims to survey deep learning literature in medical imag-
ing and describe its potential for future medical imaging research. First, an overview of 
how traditional machine learning evolved to deep learning is provided. Second, a sur-
vey of the application of deep learning in medical imaging research is given. Third, well-
known software tools for deep learning are reviewed. Finally, conclusions with limita-
tions and future directions of deep learning in medical imaging are provided.
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INTRODUCTION

Machine learning techniques have been widely used in medical imaging research in the form 
of many successful classifier and clustering algorithms [1,2]. Many clinicians are well aware of 
the effectiveness of classifiers, such as support vector machine (SVM), and clustering algo-
rithms, such as k-nearest neighbor (k-NN) [3]. Recently, deep learning (DL) has emerged as the 
go-to methodology to drastically enhance the performance of existing machine learning tech-
niques and to solve previously intractable problems. In addition, DL is a generic methodology 
that has a disruptive impact in other scientific fields as well. Thus, it has become imperative for 
medical imaging researchers to fully embrace DL technology. This review article is borne out of 
that necessity.

Medical image processing refers to a set of procedures to obtain clinically meaningful infor-
mation from various imaging modalities, mostly for diagnosis or prognosis. The modalities are 
typically in vivo types, but ex vivo imaging could be used for medical image processing as well. 
The extracted information could be used to enhance diagnosis and prognosis according to the 
patient’s needs. Distinct medical imaging modalities, such as magnetic resonance imaging 
(MRI), computed tomography (CT), and positron emission tomography (PET), could provide 
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distinct information for the patient being imaged. Structural 
and functional information could be extracted as necessary, 
and these are used as quantitative features for future diag-
nosis and prognosis. Research in medical image processing 
typically aims to extract features that might be difficult to as-
sess with the naked eye. There are two types of features. The 
first is the well-known semantic feature defined by human 
experts, and the other is the agonistic feature defined by 
mathematical equations [4]. The agonistic features suffer 
from less operator bias than the semantic features. Still, se-
mantic features are well recognized in radiology research, 
which is an accumulation of years of human expertise. How-
ever, many semantic features are time-consuming to com-
pute and sometimes there are inconsistencies among ex-
perts. The extracted agonistic features might be used as im-
aging biomarkers to explain various states of the patient. A 
recent research approach known as the “radiomics” ap-
proach employs hundreds or thousands of agnostic features 
to obtain clinically relevant information for diagnosis and 
prognosis [5,6]. 

Machine learning approaches are applied to associate im-
aging features obtained from medical image processing with 
relevant clinical information. Machine learning started as a 
field in computer science to endow algorithms to solve prob-
lems without being explicitly programmed. It typically learns 
representations from training data, which are generalized in 
separate test data. The technology has been applied to com-
puter-aided diagnosis (CADx) and computer-aided detection 
(CADe) in medical imaging [7,8]. The CADx system can identi-
fy a disease-related region and quantify the properties of 
that region, which could be used as a guidance for surgeons 
and radiologists. Despite their usefulness in analyzing medi-
cal imaging, machine learning approaches have several lim-
itations. They show excellent performance when applied to 
training data but typically suffer losses in performances 
when applied to independent validation data [9]. This is part-
ly due to the overfitting of the training data. Performance of 
machine learning techniques must be evaluated with both 
training and independent validation data. Many machine 
learning studies have demonstrated great technical potential 
but only a few have shown actual clinical efficacy including 
gains in survival. Machine learning techniques also have is-
sues related to feature definition. For example, they rely on a 
pre-defined set of features. Additionally, sometimes the fea-
tures are difficult to define for a given problem. Researchers 
need to choose from different combinations of features, al-
gorithms, and degrees of complexity to sufficiently solve a 

given problem, and many studies depend on trial-and-error 
to find the right combination. A major challenge in particular 
is choosing the right features to correctly model a given 
problem. 

The development of an artificial neural network (ANN) 
largely circumvents this problem by learning feature repre-
sentation directly from the raw input data, skipping the fea-
ture extraction procedure [10]. ANN attempts to mimic hu-
man brain processes using a network composed of intercon-
nected nodes. The initial ANN model was a simple feed-for-
ward network known as perceptron that could perform lin-
ear classification tasks [11]. The early perceptron models re-
quired complex computation power beyond what was typi-
cally available at that time. Multilayer perceptron (MLP) was 
proposed to improve the simple perceptron model by adding 
hidden layers and developing learning techniques, such as 
back-propagation [12]. MLP formed the basis for the modern 
DL approaches. The “deep” portion of DL refers to having 
many layers whose structures are suitable to model big data. 
On a practical side, the DL approach requires a high compu-
tational load. With the recent developments of computation-
al infrastructure, such as graphical processing units (GPUs) 
and cloud computing systems, DL has become practical and 
has achieved groundbreaking results in many fields. In par-
ticular, the visual recognition challenge based on large-scale 
data (ImageNet) performs the task of classifying among 
1,000 objects leveraging 1,200,000 training and 100,000 test 
images. Since the initiation of the challenge in 2010, the per-
formance of DL algorithms gradually increased, and it began 
to exceed human accuracy beginning in 2015 (Fig. 1). 

DL has been successfully applied to many research fields 
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and has become ubiquitous. As such, many studies have al-
ready adopted DL to improve medical imaging research, and 
increasingly more studies will adopt DL for medical imaging 
research in the future. This review article aims to survey DL 
literature in medical imaging and describe its potential for 
future medical imaging research. First, we provide an over-
view of how traditional machine learning evolved to DL. Sec-
ond, we survey the application of DL in medical imaging re-
search. Third, software tools for DL are reviewed. Finally, we 
conclude with limitations and future directions of DL in med-
ical imaging. 

FROM TRADITIONAL MACHINE  
LEARNING TO DEEP LEARNING

Machine learning involves building data-driven models to 
solve research problems [13]. There are two categories: su-
pervised learning and un-supervised learning. In supervised 
learning, we train models using input data with matched la-
bels [14]. The model is a mathematical model that can asso-
ciate input data with the matched labels and a predictive 
model, which is validated using unseen test data. For exam-
ple, we start with MRI images labeled either as a normal con-
trol or diseased, and machine learning would lead to a math-
ematical model that could associate MRI images with diag-
nosis in both training and test data. Supervised learning is 
commonly used in the following two tasks. In classification, 

the model associates input data with pre-defined categorical 
results (i.e., normal vs. diseased) [15-17]. The output is a dis-
crete categorical variable in classification. In regression, the 
model associates input data with often continuous results 
(i.e., the degree of symptoms) [18]. The output is typically a 
continuous variable in the regression. In un-supervised 
learning, we use unlabeled input data to learn intrinsic pat-
terns in the input data. Un-supervised learning is commonly 
used in clustering. With clustering, we might identify sub-
groups within a given group of patients diagnosed with the 
same disease. Supervised learning is more costly to prepare, 
as it involves annotating input data with labels, which often 
requires human intervention.

ANN is a statistical machine learning method inspired by 
brain mechanism from neuroscience (Fig. 2) [19]. Research-
ers designed a learning algorithm that resembles how the 
brain handles information. A neuron is the basic unit of the 
brain mechanism. The neuron is an electrically excitable cell 
that receives signals from other neurons, processes the re-
ceived information, and transmits electrical and chemical 
signals to other neurons. The input signal to a given neuron 
needs to exceed a certain threshold for it be activated and 
further transmit a signal. The neurons are interconnected 
and form a network that collectively steers the brain mecha-
nism. ANN is an abstraction of an interconnected network of 
neurons with layers of nodes, and it consists of an input layer 
aggregating the input signal from other connected neurons, 
a hidden layer responsible for training, and an output layer 
[20]. Each node takes the input from nodes from the previ-
ous layer using various weights and computes the activation 
function, which is relayed onto the next layer of nodes. The 
activation function approximates the complex process of a 
physical neuron, which regulates the strength of the neuro-
nal output in a non-linear manner. The mathematical pro-
cessing in a node can be represented using the following 
equation:

Output=φ(WTx+b).
A node takes in an input value ‘x’ and multiplies it by weight 

‘W,’ and then a bias of ‘b’ is added, which is fed to the activa-
tion function ‘φ.’ Differences between the output of ANN and 
the target value (i.e., ground truth) are called errors or losses. 
The training of the ANN is a procedure to update weights that 
interconnect different nodes to explain the training data, 
which is equivalent to minimizing the loss value. The losses 
are back-propagated through the network, and they are used 
to modify the weights and biases [21,22]. As a result, compo-
nents of ANN are updated to best explain the target values.

Fig. 2. Overview of artificial neural network. (A) In a biological neuron, 
the nucleus transforms the chemical inputs from the dendrites into 
electric signals. The signals are transmitted to the next neurons 
through the axon terminals. (B) In a node (perceptron), the input 
values are transformed by the weights, biases, and activation 
functions. The output values are transmitted to the next perceptron. 
(C) Multilayer perceptron consists of multiple perceptrons.
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A deep neural network (DNN) is an expanded ANN incorpo-
rating many hidden layers to increase the flexibility of the 
model [23-26]. DNN consists of an input layer, many hidden 
layers, and an output layer. The added layers afford solving 
more complex problems but can cause other issues. The first 
issue is the vanishing gradient problem [27]. This occurs be-
cause the input information cannot be effectively used to 
update the weights of deep layers, as the information needs 
to travel the many layers of the activation function. This 
leads to under-training of the deep layers. Another issue is 
over-fitting, which occurs frequently when the complexity of 
the model increases [25]. A complex model might explain the 
training data well, but it does not necessarily explain the un-
seen test data well. The increased complexity of many layers 
requires a high computational load and thus degrades the 
training efficiency. The issues of vanishing gradient and 
over-fitting have been mitigated by enhanced activation 
function, cost function design, and drop-out approaches. 
The issue of the high computational load has been dealt with 
by using highly parallel hardware, such as GPUs and batch 
normalization. 

Modern DL approaches employ dedicated topology of 
deeply stacked layers to solve a given problem. There are 

many variants of DL architecture, and an exhaustive review 
of them is outside the scope this paper. In this paper, we 
mention three well-known DL architectures: convolutional 
neural network (CNN), auto-encoder (AE), and recurrent neu-
ral network (RNN). 

Convolutional neural network
CNN refers to a network architecture composed of many 
stacked convolutional layers [28]. Convolution is a mathe-
matical operation based on two functions, addition and mul-
tiplication. For a given input image, convolution is applied to 
the input image based on a receptive filed (i.e., extents of 
convolution operation), which is analogous to the extents of 
the response region of human vision. The convolution proce-
dure is well-suited for image recognition because it considers 
locally connected information (i.e., neighboring voxels or pix-
els). There are pooling layers between convolution layers. 
The pooling layer is essential to increasing the field of view of 
the network. It takes a portion of the locally connected nodes 
of the input layer and results in an output that has a smaller 
spatial footprint. For example, we might take the maximum 
value of the outputs of four neighboring nodes. It can control 
the over-fitting problems and reduce the computational re-

Fig. 3. Overview of convolutional neural network (CNN). (A) The output of the convolutional layer is obtained by convolving its input layer 
and kernel weights. (B) The max-pooling layer outputs a down-sampled layer by extracting the maximum values from the partially 
windowed area of the input layer. (C) A general CNN consists of a series of convolutional layers, pooling layers, and fully connected layers.
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quirements. In general, the max-pooling algorithm is used 
for many architectures, extracting the highest values from 
the receptive sliding window (Fig. 3).

As the last component of CNN, a series of fully connected 
layers follow. The fully connected layer combines all activa-
tions of the previous layers. This layer works the same as in 
the general ANN. After the series of fully connected layers, 
the model outputs the final set of feature values appropriate 
for the given problem. CNN was the initial catalyst for wide-
spread adoption of DL. LeNet-5 is one of the early architec-
tures that drastically improved existing machine learning ap-
proaches for recognizing hand-written digits [29], and there 
are other well-known architectures, including AlexNet, Goo-
gLeNet, VGG-Net, and ResNET [28,30-32]. Further details of 
the architecture are found in the references.

Auto-encoder and stacked auto-encoder
AE is a network that is used to derive an efficient representa-
tion of the input data [33,34]. As the name suggests, this net-
work reduces the input layers to a layer with a small number 
of nodes (i.e., encoding) and then restores them via the up-
scaling process (i.e., decoding), as shown in Fig. 4. By this 

process, the hidden layer can represent its input layer with a 
reduced dimension that minimizes the loss of input informa-
tion. This model generally has an hourglass-shaped structure 
with a dimension of the hidden layer being smaller than the 
input layer.

Stacked auto-encoder (SAE) is made by stacking the AEs so 
that the output of an AE layer is treated as an input layer for 
another AE (Fig. 4) [35]. Vincent et al. [36] used this SAE struc-
ture to obtain a denoised image of input data. The model 
used the greedy training method to learn several SAEs inde-
pendently. 

Recurrent neural network
General ANN is a feed-forward network where input informa-
tion starts from the input layer, travels through many hidden 
layers, and finally arrives at the output layer. RNN has a dif-
ferent topology for its layer configuration. The output of hid-
den layers is fed back to an input layer using feedback (Fig. 5) 
[37,38]. RNN considers both current input data and feedback 
data from previous states and thus is well-suited for model-
ing sequential data, including both temporal and spatial in-
formation. 

DEEP LEARNING APPLICATION IN  
MEDICAL IMAGING

In this section, we review representative applications of DL in 
medical imaging. First, CADx/CADe tasks are covered with 
topics of classification, detection, and prediction. Second, 
image processing tasks are covered with topics of segmenta-
tion, registration, and generation. CADx/CADe has many criti-
cal usages in radiology, such as finding an altered structural/
functional area (detection or localization), predicting the 
state of the object of interest based on a probabilistic model 
(prediction), and classifying binary or multiclass categories 
(classification). In contrast, image processing is the prerequi-
site for subsequent clinical tasks, such as diagnosis or prog-

Fig. 4. Overview of auto-encoder (AE). (A) An AE consists of 
multiple perceptrons that mimic the input layer. (B) A stacked 
auto-encoder (SAE) can be built by stacking the AEs. (C) A general 
SAE is trained to reconstruct the output that is similar to the 
given input.
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nosis, and they can be categorized into the following tasks: a 
segmentation task assigns voxels with similar properties into 
labels, a registration task spatially aligns two or more images 
onto a common spatial frame, and an enhancement task im-
proves the image quality for the given task. Each topic is de-
scribed in terms of the network architecture (e.g., CNN, RNN, 
or SAE) and its clinical application. 

Applications using CNN architecture
CNN computes features from locally connected voxels (i.e., 
neighborhood voxels); hence, it is widely used as the refer-
ence model for medical image analysis. In general, a given 
image goes through many convolution layers, and the fea-
tures are extracted from different layers. The extracted fea-
tures are further used for various tasks.

CADx/CADe application using CNN architecture 
CADx/CADe applications based on CNN are shown in Table 1. 

Detection: The detection task refers to finding the region as-
sociated with the diseased condition. The detection task is 
sometimes referred to as the localization task, as it involves 
finding voxel positions associated with the disease. The task is 

often a pre-requisite for therapy planning. Many studies ad-
opted CNN and reported precise detection performance. Dou 
et al. [39] applied three-dimensional (3D) CNNs to localize the 
lesion of cerebral microbleeds from MRI. Zreik et al. [40] pro-
posed an automatic detection method for identifying left ven-
tricle myocardium in coronary CT angiography using CNN. Us-
ing both PET/CT imaging, whole body multiple myeloma de-
tection showed better performance than traditional machine 
learning approaches, such as the random forest classifier, 
k-NNs, and SVM [41]. Apart from the common imaging modal-
ities (i.e., MRI, CT, and PET), retinal and endoscopy images, as 
well as histology images, were analyzed for finding the dis-
eased region of interest (ROI) in other studies [17,42,43].

Prediction: The prediction task involves forecasting proper-
ties (often not evident to the naked eye) of an object using 
imaging analysis results. Prediction often occurs in a longitu-
dinal setting, where baseline imaging findings are used to 
predict properties of the object in the future. Many studies 
attempted to compute the likelihood of clinical variables, 
such as drug or therapeutic response, patient’s survival, and 
disease grading, using imaging analysis results. Kawahara et 
al. [44] proposed a novel CNN framework, BrainNetCNN, to 

Table 1. CADx/CADe applications using convolutional neural network architecture			 

Task Modalities Object Clinical goal

Detection MRI Brain Lesion detection [39]

CT Heart Disease detection [40]

PET/CT Bone Lesion detection [41]

Retina image Retina Lesion detection [17]

Endoscopic image Stomach Disease detection [42]

Histology image Breast Lesion detection [43]

Prediction MRI Brain Disease prediction [44]

MRI Liver Disease prediction [45]

PET Esophagus Treatment response prediction [46]

OCT Retina Treatment response prediction [47]

MRI Brain Survival prediction [48]

CT Lung Survival prediction [49]

Classification CT Brain Disease classification [50]

CT Lung Disease classification [51]

CT Liver Lesion classification [52]

Mammography Breast Lesion classification [53]

RGB Skin Disease classification [54]

Fluorescent image Cell Cell classification [55]

CADx, computer-aided diagnosis; CADe, computer-aided detection; MRI, magnetic resonance imaging; CT, computed tomography; PET, positron 
emission tomography; OCT, optical coherence tomography; RGB, red green blue. 		
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predict a cognitive and motor developmental outcome score 
by using structural brain networks of diffusion tensor imag-
ing. Yasaka et al. [45] assessed the performance for predict-
ing the staging of liver fibrosis using a CNN model on gadox-
etic acid-enhanced hepatobiliary phase MRI. In the above 
two published papers, the predicted scores derived from 
CNN correlated well with the ground-truth. Some studies ad-
opted CNN to predict treatment response [46,47]. Further-
more, CNN-based approaches have shown potential in the 
prediction of a patient’s survival and thus could be promising 
tools for precision medicine [48,49].

Classification: The classification task determines which 
classes the imaging data belong to. The classes could be bi-
nary (e.g., normal and diseased) or multiple categories (e.g., 
subclasses within the given diseased condition) depending 
on the task. Many studies successfully applied CNN to classi-
fy the severity of disease for different organs (i.e., brain, lung, 
and liver) using CT imaging [50-52]. Mohamed et al. [53] ap-
plied CNN to mammogram imaging and categorized data 
into a few classes proportional to breast density. Esteva et al. 
[54] classified skin cancer photographs into binary classes 
and even suggested that such operation could be performed 
using portable devices such as smartphones. In histology, 
one study showed that cell differentiation could be classified 
with CNN, and the results have the potential to identify tissue 

or organ regeneration [55]. 

Image processing applications using CNN architecture 
Image processing applications based on CNN are shown in 
Table 2. 

Image segmentation: The segmentation task partitions the 
imaging data into the target and background region. In med-
ical imaging, this typically amounts to finding regions that 
are related to a disease condition (i.e., finding the tumor re-
gion). The task assigns voxels to binary classes using intensi-
ty, texture, and other derived information. Many studies suc-
cessfully used CNN to segment the target region using CT 
and MRI for various organs, such as the brain, liver, kidney, 
and prostate [56-61]. Fang et al. [62] proposed an automatic 
segmentation algorithm of retina layer boundaries using 
CNN for high-resolution optical coherence tomography im-
aging. Xu et al. [63] adopted CNN architecture for segmenting 
epithelial and stromal regions in histology images.

Image registration: The image registration task spatially 
aligns one image with another so that both can be compared 
to a common spatial framework through a geometric trans-
form. Many studies adopt multimodal imaging and thus reg-
istration is necessary to extract spatially aligned features in 
those studies. Registration requires a long computational 
time as it involves a high degree of freedom (DOF) optimiza-

Table 2. Image processing applications using convolutional neural network architecture			 

Task Modalities Object Clinical goal

Segmentation MRI Brain Tissue segmentation [56]

MRI Prostate Organ segmentation [59]

CT Liver Organ segmentation [57] 

CT Bladder Organ segmentation [58]

MRI Heart Lesion segmentation [60]

CT Kidney Organ segmentation [61]

OCT Retina Tissue segmentation [62]

Histology image Cell Tissue segmentation [63]

Registration X-ray Knee Organ registration [64]

MRI Abdomen Region registration [65]

MRI Brain Organ registration [66]

Enhancement, generation, and reconstruction X-ray Brain Image enhancement [67]

MRI CT Image generation [68]

MRI CT Image generation [69]

Diffusion MRI Diffusion MRI Image enhancement [70] 

MRI (3T) MRI (7T) Image reconstruction [71]

MRI, magnetic resonance imaging; CT, computed tomography; OCT, optical coherence tomography.		
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tion problem. The CNN-based approaches could be used as 
an alternative for the difficult registration problem by finding 
landmarks or control points through CNN architecture. Miao 
et al. [64] improved the registration in terms of the computa-
tion time and capture range using a real-time 2D/3D registra-
tion framework based on CNN. Another study proposed a tech-
nique for correcting respiratory motion during free-breathing 
MRI using CNN [65]. Yang et al. [66] introduced a novel registra-
tion framework based on CNN, Quicksilver, which performed 
fast predictive image registration.

Image enhancement: The image enhancement task aims to 
improve the image quality of the objects of interest. Depend-
ing on the application, enhancement might occur in the con-
text of image generation or reconstruction. Nonetheless, the 
goal is to improve the image quality. Two studies proposed 
algorithms to generate a high-quality image (e.g., high dose 
CT) from a low quality image (e.g., low dose CT) using CNN, 
which reduced noise and provided more structural informa-
tion than the low-quality images [67]. Image generation 
based on the synthesis of different modalities contributed to 
the improved image quality by combining the distinctive in-
formation in each modality [68,69]. Golkov et al. [70] pro-
posed a reconstruction model based on CNN for shorter 
scanning time in diffusion MRI. This model allowed accelera-
tion of the scan time and obtaining quantitative diffusion 
MRI. Bahrami et al. [71] explored the generation of 7 Tesla 
(T)-like MRI from routine 3T MRI based on CNN, where recon-
structed images benefited from both resolution and contrast 
compared to the 3T MRI. 

Applications using RNN architecture
RNN integrates results from the previous states and current 
input and thus is suitable for tasks involving sequential or 
dynamic data. In medical image analysis, spatial information 

is exploited using CNN, and temporal information is often ex-
ploited using RNN. Studies using dynamic imaging adopted a 
combination of CNN and RNN so that joint modeling of spatial 
and temporal information was possible references [72-77]. 

CAD application using RNN architecture 
CADx/CADe applications based on RNN are shown in Table 3. 

Detection: Xu et al. [72] proposed an end-to-end DL frame-
work to accurately detect myocardial infarction at the pixel 
level. In this framework, the location of the heart was found 
based on CNN and the detected ROI was further analyzed us-
ing the dynamic cardiac MRI incorporating temporal motion 
information using RNN. In the same manner, Chen et al. [73] 
used the combined CNN and RNN for a fetal ultrasound, 
where ROI was found using CNN, and temporal information 
was processed by RNN based on the features of the ROIs in 
consecutive frames. 

Prediction: Han and Kamdar [74] proposed convolutional 
recurrent neural networks (CRNN) for predicting methylation 
status in glioblastoma patients. In the CRNN architecture, the 
convolution layer extracted sequential feature vectors from 
each MRI slice and RNN was used to predict the methylation 
status integrating sequential feature information.

Classification: Gao et al. [75] designed a combined architec-
ture of CNN and RNN for classifying the severity of nuclear 
cataracts in slit-lamp images, where hierarchical feature sets 
were extracted from CNN, and then the features were hierar-
chically merged into high-order image-level features. Xue et 
al. [76] proposed a deep multitask relationship learning net-
work for quantifying the left ventricle in cardiac imaging, 
where cardiac sequence features were extracted using CNN 
and then temporally learned by RNN.

Image processing applications using RNN architecture
Imaging processing applications based on  RNN are shown in 
Table 4. Table 3. CADx/CADe applications using recurrent neural network 

architecture

Task Modalities Object Clinical goal

Detection MRI Heart Lesion detection [72]

US Infancy Object detection [73]

Prediction MRI Brain Status prediction [74]

Classification OCT Eye Disease classification [75]

MRI Heart Lesion classification [76]

CADx, computer-aided diagnosis; CADe, computer-aided detection; 
MRI, magnetic resonance imaging; US, ultrasound; OCT, optical coher-
ence tomography. 		

Table 4. Image processing applications using recurrent neural 
network architecture			 

Task Modalities Object Clinical goal

Segmentation MRI Brain Lesion segmentation [77]

US Prostate Organ segmentation [78]

E�nhancement, 
generation, and 
reconstruction

MRI MRI Image reconstruction [79]

MRI, magnetic resonance imaging; US, ultrasound.		
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Image segmentation: Zhao et al. [77] proposed a tumor 
segmentation method based on DL using multimodal brain 
MRI. They used a network composed of the combination of 
CNN and RNN architectures in which CNNs assigned the seg-
mentation label to each pixel, and then RNNs optimized the 
segmentation result using both assigned labels and input 
images. Yang et al. [78] proposed an automatic prostate seg-
mentation method using only the RNN architecture. The 
static ultrasound image was transformed into an interpreta-
ble sequence and then the extracted sequential data was 
used as input to the RNN.

Image enhancement: Qin et al. [79] suggested a framework 
to reconstruct high-quality cardiac MRI images from un-
der-sampled k-space data. They adopted CRNN to improve 
reconstruction accuracy and speed by considering both spa-
tial and temporal information.

Applications using SAE architecture
SAE encodes the input data using a small number of features 
and then decodes them back to the dimension of the original 
input data. In medical imaging, SAEs are commonly used to 
identify a compact set of features to represent the input data. 
The learned features could be used for specific image en-
hancement and reconstruction tasks.

CAD application using SAE architecture 
CADx/CADe applications based on SAE  are shown in Table 5. 

Detection: One study showed that a stacked sparse AE could 
be used for nuclei detection in breast cancer histopathology 
images [80]. This architecture could capture high-level fea-
ture representations of pixel intensity and thus enabled the 
classification task to be performed effectively for differenti-
ating multiple nuclei.

Prediction: He et al. [81] adopted a variant of SAE to predict 
cognitive deficits in preterm infants using functional MRI data.

Classification: Chen et al. [82] proposed an unsupervised 
learning framework based on the convolutional AE neural 
network in which the patch images from raw CT were used 
for feature representation and classification for lung nodules. 
Cheng et al. [83] applied a stacked denoising AE to two differ-
ent modalities, ultrasound and CT. The aim was to classify 
benign and malignant lesions from the two modalities.

Image processing applications using SAE architecture 
Image processing applications based on SAE are shown in 
Table 6. 

Image segmentation: Zhao et al. [84] applied SAE to learn 
compact feature representation from cryosection brain im-
aging and then classified voxels into white matter, gray mat-
ter, and cerebrospinal fluid. 

Image enhancement: Janowczyk et al. [85] applied sparse 
AE to reduce the effects of color variation in histology imag-
es. Benou et al. [86] adopted SAE to model the spatiotempo-
ral structure in dynamic MRI, which led to denoised MRI. The 
denoised MRI resulted in a more robust estimation of phar-
macokinetic parameters for blood-brain barrier quantifica-
tion. Some adopted SAE to generate pseudo-CT scans from 
MRI, which were used to reconstruct PET imaging with better 
tissue characteristics [87].

Among the discussed three network architectures, CNN is 
the most widely used. Many studies adopted CNN for various 
target organs (brain, lung, breast, etc.) using various imaging 
modalities (MRI, CT, etc.). This is partly due to the fact that 
CNN processes information in a hierarchical manner similar 
to visual processing in the human brain. RNN is typically 
used in conjunction with CNN, where the learned CNN fea-
tures were sequentially handled through the RNN. SAE has 
strengths in compact feature representation, which is useful 
in denoising and reconstruction tasks. In summary, there is 
no one network structure that solves all the medical imaging 

Table 5. CADx/CADe applications using stacked auto-encoder 
architecture

Task Modalities Object Clinical goal

Detection Histology image Breast Lesion detection [80]

Prediction MRI Brain Risk prediction [81]

Classification CT Lung Lesion classification [82]

US, CT Breast Lesion classification [83]

CADx, computer-aided diagnosis; CADe, computer-aided detection; 
MRI, magnetic resonance imaging; CT, computed tomography; US, 
ultrasound. 

Table 6. Image processing application using stacked auto-encoder 
architecture			 

Task Modalities Object Clinical goal

Segmentation RGB Brain Tissue segmentation [84]

Enhancement, 
generation, and 
reconstruction

Histology 
 image

Tissue Image enhancement [85]

MRI Brain Image enhancement [86]

MRI CT Image generation [87]

RGB, red green blue; MRI, magnetic resonance imaging; CT, comput-
ed tomography.



46 http://pfmjournal.org

Deep learning for medical imaging

problems, and thus, researchers should choose the appro-
priate network architecture suitable for a given problem. 

SOFTWARE TOOLS FOR DEEP LEARNING

Researchers need dedicated software tools to perform DL re-
search. Fortunately, much of the DL software is open-source; 
thus, the studies are more reproducible and cost effective. 
We review commonly used open-source DL software tools in 
this section.

Caffe is one of the early DL tools developed by Berkeley Vi-
sion and Learning Center [87]. The tool emphasized modu-
larity and speed based on C++ and Python. Many early CNN 
works have been performed with Caffe. Researchers could 
easily transfer the learned models (i.e., layer structure and 
weights) from other research projects and use them to initial-
ize their own DL model. Such procedures are often referred 
to as transfer learning, and they typically save computation 
time in training the model. Theano is another early DL tool 
[88]. Theano is Python-based and is efficient in computation 
using a GPU and central processing unit together. 

Tensorflow is one of the most widely used tools for DL and 
it is backed by the internet search giant Google [89]. The 
Google Brain Team developed the software and it is based 
on Python. Users are free to leverage the vast software library 
available in Python. The software is well-maintained and up-
dated frequently for additional functionality. 

Torch is a DL tool that aims to facilitate the procedures to 
build complex models. It was originally based on non-Python 
Lua, but recently it added Python support via PyTorch for im-
proved user friendliness [90]. 

LIMITATIONS AND FUTURE DIRECTIONS

Modern DL methods learn very high DOF models (i.e., mil-
lions of weights) from the training data. Hence, the sheer 
number of required training data is very high compared to 
conventional machine learning methods. Recent DL applica-
tions in brain MRI learned models from more than 1.2 million 
training data [91]. There are algorithm enhancements, such 
as augmentation, to artificially boost the number of training 
samples, but the quality of the DL methods directly rely on 
the number and quality of training samples. This is one of 
the biggest hurdles of DL research in medical imaging and is 
one of the reasons why large corporations such as Google 
can produce high-quality DL models, as they already have a 
huge number of training samples in-house. In medical imag-

ing research, the large sample requirement could be partly 
alleviated by multisite data acquisition. Researchers need to 
apply a standardized protocol to acquire data so that they 
can be effectively combined into one set of training data for 
DL. Another way to boost training samples is to use an open 
research database. The Human Connectome Project houses 
thousands of high-quality brain MRI that are open to the re-
search community. A potential issue with mixing data from 
different sites or research databases is the heterogeneity in 
image quality. One can render high-quality data into low- 
quality data so that all data are of similar quality. This is the 
practical approach because rendering low-quality data into 
high-quality data is difficult.

Many DL methods belong to the supervised approach; 
hence, they require manual labeling. Labeling thousands of 
imaging data by human experts is cumbersome. On top of 
that, inter- and intraobserver variability need to be consid-
ered, which makes the labeling procedure even more prob-
lematic. One possible way to tackle this issue is to apply a 
two-tiered semiautomatic approach [43]. An automatic algo-
rithm would perform the first round of labeling and then the 
human experts can either accept or modify the results of the 
first round. Recently, one study proposed a DL method to au-
tomatically retrieve images from a large database that 
matched human set criterion [92-94]. This approach has the 
potential to be used as the initial labeling for further refine-
ment. 

Another issue related to sample size is the lack of balance in 
comparison groups. Many studies compare two groups: the 
normal control group and the diseased group. Many clinical 
sites have many samples of the disease group, while 
matched controls could be lacking. Ideally, DL algorithms re-
quire an equal number of samples in the comparison groups. 
If there is a large imbalance between the comparison groups, 
the DL algorithm would not be able to fully learn the un-
der-represented group. A good practice is to prospectively 
plan research projects to avoid imbalance in comparison 
groups as much as possible. Many diseased conditions we 
explored are in fact quite heterogeneous. A given disease 
condition might consists of many subtypes, and more stud-
ies are aiming to dissect the differences among the subtypes. 
Researchers should make sure that they have appropriate la-
bels for the subtypes and enough samples of each subtype 
so that DL models could be applied effectively.

DL is a highly flexible modeling approach to learn an inher-
ent representation of the input data. It optimizes a loss func-
tion to find millions of weights that can best explain the in-
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put training data. It is very difficult to interpret how certain 
weights contribute to the final model. In many cases, we are 
left with a black box that performs the given task really well 
[95,96]. In traditional machine learning, we could quantify 
how each semantic feature contributes to the final model 
and better understand or improve the model as necessary. 
For example, we know that an irregular tumor boundary is 
strongly linked with malignant tumors [97,98]. However, for 
DL, we cannot say the n-th weight in the j-th layer has a 
strong link with the final outcome. Such interpretability is 
largely lacking in DL. Ribeiro et al. [99] proposed a novel ex-
planation technique, local interpretable model-agnostic ex-
planations, which performs a local approximation of the 
complex DL model. This algorithm carries out linear classifi-
cation based on distinctive features from the simplified mod-
el, which might be interpretable. Some studies surveyed vi-
sual interpretability of various DL architectures and showed 
that the DL model is reliable across many domains [100-102]. 
There is active research tackling this interpretability issue 
and researchers should pay attention to future develop-
ments. 

A DL algorithm requires many tuning parameters to proper-
ly train the model. The hyperparameters include learning 
rate, dropout rate, and kernel functions. A slight modification 
of these parameters might lead to drastically different mod-
els with varying performances. So far, these parameters have 
been chosen based on heuristic approaches relying on the 
experience of human experts. Active research is being per-
formed regarding methods to automatically find optimal hy-
perparameters for DL. Domhan et al. [103] developed a 
method for automatically optimizing the hyperparameters, 
where the process was based on the inference of perfor-
mance using a learning curve from the first few iterations. 
They would terminate the model, leading to bad perfor-
mance based on the few initial data points. Shen et al. [104] 
proposed an intelligent system, including a parameter-tun-
ing policy network, which determines the direction and mag-
nitude for fine-tuning hyperparameters.

CONCLUSION

DL is already widespread, and it will continue to grow in the 
near future in all fields of science. The advent of DL is foster-
ing new interactions among different fields. Experts in ma-
chine learning (mostly from computer science) are actively 
embedded in research teams to solve critical medical prob-
lems. Medical image processing will benefit immensely from 

DL approaches, as DL has shown remarkable performance in 
non-medical regular imaging research compared to conven-
tional machine learning approaches. In this review paper, we 
touched on a brief history from conventional machine learn-
ing to DL, surveyed many DL applications in medical imag-
ing, and concluded with limitations and future directions of 
DL in medical imaging. Despite the limitations, the advantag-
es of DL far outweigh its shortcomings, and thus, it will be an 
essential tool for diagnosis and prognosis in the era of preci-
sion medicine. Future research teams in medical imaging 
should integrate DL experts in addition to clinical scientists in 
their teams so as to fully harness the potential of DL.
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