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ABSTRACT

In the oil and gas industry, drilling fluids play an important role in the success o f drilling 

operations. Hence, it is vital to predict accurately and maintain drilling fluid properties. Drilling 

fluids have multitude o f functions, including but not limited to balancing the formation pressure, 

transporting cuttings, lubricating the bit, minimizing formation damage and maintaining well 

stability. Efficient completion o f any drilling operation is governed by the selection o f the proper 

drilling fluid. Growing hydrocarbon demand is driving the industry to explore unconventional 

resources such as shale formations and deep water and ultra-deep water areas where high- 

temperature high pressure (HTHP) conditions persist. Generally, oil-based muds have been widely 

used in HTHP operations, as they can withstand high temperatures while offering high lubricity, 

but they are expensive and have an environmental impact. W ater-based muds offer a cost-effective 

and environment-friendly option, but they have limited HTHP application, as they tend to break 

down, resulting in increased fluid loss and viscosity reduction. Also, upon exposure to high 

temperatures, they also face the issue o f gelation and degradation o f weighing materials and 

additives. Due to these issues with both oil-based muds and water-based muds, new drilling fluids 

are formulated regularly and the existing systems are tailored to curtail drilling operation costs. 

M ost recently, nanoparticles have been recognized as an effective additive to improve the 

performance o f drilling fluids, having the potential to overcome the limitations o f current drilling 

fluid systems in challenging conditions. In this study, experiments have been conducted to 

investigate the impact o f different nanoparticles on various drilling fluid properties, including 

rheology, filtration, and lubricity, considering a wide range o f influence factors, such as 

nanoparticle concentration, particle size, nanoparticle type, temperature, and aging. The effect of 

nanoparticle concentrations (0.01 wt% ~ 1wt%) on drilling fluid properties has been first 

investigated using SiO2 nanoparticles with and without coating. Then the effect o f nanoparticle 

size (5 nm ~ 50 nm) on drilling fluid properties has been examined using TiO2 nanoparticles. 

Subsequently, the impact o f nanoparticle type, including four different nanoparticles, on drilling 

fluid properties has been tested. Moreover, the effects o f temperature and aging on the 

nanoparticle-based drilling fluid properties have been investigated.
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Chapter 1. 

INTRODUCTION

Advancements in drilling and drilling fluid techniques have led to the rapid development o f drilling 

challenging wells, such as ultra-deep wells and high temperature and high pressure (HTHP) wells. 

Drilling fluids, also known as drilling muds, have many essential functions, such as suspending 

and carrying cuttings to the surface; controlling formation pressure; stabilizing the wellbore; 

sealing permeable formations; cooling, lubricating and supporting the drill string and bit; and 

ensuring drilling efficiency and safety. The cost o f drilling fluids can be about 5% to 15% of the 

total cost o f drilling a well, which is expensive (Bloys et al., 1994), though the consequences of 

not maintaining proper mud properties may result in severe drilling accidents which would require 

significant time and costs to resolve. Therefore, efforts have been made to improve the properties 

o f the drilling fluids to make the drilling process more efficient, economical, and safe.

W ater was used as a drilling fluid as early as the third century BC in China, while mud mixed 

with water and clay became the definite part o f a drilling system in Spindletop Field, Texas, in 

1901 (Nasser et al., 2013). In the 20th century, drilling fluid performance was recognized as a 

primary factor in efficient, economical and safe drilling processes. Therefore, with advancements 

in drilling technology, more and more additives have been developed and added to the drilling 

fluids to improve their performance in order to satisfy the requirements o f the more advanced 

drilling techniques. For example, soluble potassium salts along with water-based drilling fluid 

have been used to mitigate challenges o f wellbore instability associated with drilling in shales 

(Mondshine, 1973). In addition, issues related to HTHP wells have been proven to be harder to 

mitigate, while drilling fluids such as lignite/polymer mud have been developed to handle these 

issues (Mitchell et al., 1990). Furthermore, challenges met in drilling depleted reservoirs and 

underpressure zones have promoted the development o f wellbore strengthening techniques. 

Accordingly, Gilsonite or cellulose fibers, which act as bridging agents, have been developed and 

applied in the drilling o f depleted reservoirs to seal micro-fractures and reduce transmission of 

pore pressure (Newhouse, 1991).
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Entering the 21st century, depletion o f conventional oil and gas reserves and increasing energy 

demand have attracted much more attention to drilling more challenging wells, such as shale/tight 

formation drilling, ultra-deep drilling, and HTHP drilling. However, the conventional drilling fluid 

systems have met their limitations in drilling these challenging wells. For example, regular water- 

based muds (WBM) can cause significant swelling in shale formations, which would result in 

severe wellbore instability (Van Oort, 2003). Although KCl-based W BM  can inhibit shale swelling 

and improve well stability effectively, they may cause severe environmental impacts, so their 

applications have been limited significantly. In addition, W BMs are known to deteriorate when 

exposed to HTHP conditions commonly associated with deep well drilling and extended reach 

drilling operations (Abdo and Haneef, 2013). Besides, ultra-deep wells associated with HTHP have 

been facing the challenges o f narrow operating windows, which cause changes in rheology and 

lead to ECD control issues resulting in potential lost circulation (Ravi, 2011). The non-aqueous 

muds, such as oil-based muds (OBM), are more lubricious, less corrosive, better at shale swelling 

inhibition, and better able to withstand lower and higher temperatures as compared to WBM 

(Growcock and Patel, 2011). However, the OBMs have distinct disadvantages, such as 

environmental impacts, high costs, and safety and health issues (Patel et al., 2007), limiting their 

wide applications in some particular areas, such as offshore and Arctic drilling (Neff, 2010). 

Therefore, more efficient and cost-effective drilling fluid systems are required for drilling these 

challenging wells successfully.

In the last two decades, nanoparticles have been applied widely in various fields, such as medicine, 

electronics, food processing, and materials manufacturing, due to their unique physicochemical, 

thermal, electrical, hydrodynamic and interaction properties (Ravichandran, 2010). M ost recently, 

nanoparticles have been recognized as an effective additive to improve the performance o f drilling 

fluids, having the potential to overcome the limitations o f current drilling fluid systems that are 

met in drilling more challenging wells (Al-Yasiri and Al-Sallami, 2015). Cai et al. (2011) tested 

the influence o f seven different non-modified commercially available silica nanoparticles with 

sizes between 7 nm to 20 nm on the performance o f bentonite drilling fluid. They found that the 

nanoparticles reduced the permeability o f the Atoka shale by 99.3% at 10 wt% concentration. 

Thus, the water invasion can be reduced significantly, and the shale swelling can be inhibited, 

which has been commonly recognized (Sensoy et al., 2009; Sharma et al., 2012; Pham and Nguyen, 

2014; M oslemizadeh and Shadizadeh, 2015). However, the conclusions about the influence of
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nanoparticles on API standard filtration are inconsistent (Zakaria et al., 2012; Fakoya and Shah, 

2014; Kang et al., 2016; Salih et al., 2016). For example, Vryzas et al. (2015) tested the effect of 

iron oxide and silica nanoparticles on the performance o f bentonite-based drilling fluids. They 

found that iron oxide nanoparticles can enhance filtration properties at an optimal concentration 

o f 0.5 wt%, whereas silica nanoparticles adversely affected fluid loss characteristics. Also, they 

found that both nanoparticles can modify the m uds’ rheological properties, which has been widely 

recognized (Jung et al., 2011; Sharma et al., 2012; Nasser et al., 2013; Fakoya and Shah, 2013). 

Until now, limited studies have been conducted to investigate the influence o f nanoparticles on 

mud lubricity, and their findings are not consistent (Abdo and Haneef, 2013; Nasser et al., 2013; 

Wrobel, 2016). Besides, although extensive studies have been carried out on nanoparticle-based 

muds, each single study is not very comprehensive: the influence o f only a few nanoparticles on 

specific mud function has been tested and limited influence factors, such as only temperature 

and/or concentration, have been investigated. This is why some findings about the influence of 

nanoparticles on some mud properties, such as filtration and lubricity, are not consistent.

In this study, experiments have been conducted to investigate the impact o f different nanoparticles 

on various drilling fluid properties including rheology, filtration, and lubricity, while a wide range 

o f influence factors, such as nanoparticle concentration, nanoparticle size, nanoparticle types, 

temperature, and aging, have been considered. The effect o f nanoparticle concentrations (0.01 wt% 

~ 1wt%) on drilling fluid properties was first investigated using SiO2 nanoparticles with and 

without coating, and then the effect o f nanoparticle size (5 nm ~ 50 nm) on drilling fluid properties 

was examined using TiO2 nanoparticles. Subsequently, the impact o f nanoparticle type, including 

four different nanoparticles, on drilling fluid properties was tested. Moreover, the effect of 

temperature and aging on the nanoparticle-based drilling fluid properties has been investigated.
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Chapter 2. 

LITERATURE REVIEW

The selection o f the proper drilling fluid for the required job is an integral part o f the drilling 

process. The drilling fluid selection process comprise o f selecting an appropriate type o f drilling 

fluid and deciding its composition in accordance with the kind o f formation and conditions in 

which it will be used. Broadly, drilling fluids are classified on the basis o f their base fluids. They 

classified into three major types: liquids, gases and gas-liquid mixtures, and selected on the basis 

o f their need and functionality. Fig. 1 represents a hierarchal classification o f drilling fluids.

Figure 1: Drilling Fluids Classification
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2.1 Types of Drilling Fluids

2.1.1 W ater-Based Muds (WBM)

As the name suggests, this mud type uses water or brine as its base fluid. They are also referred as 

aqueous drilling fluids. Due to their environment-friendly nature, easy disposal and cost efficient 

operation, they are used widely in the industry. Based on the type o f additives used to enhance 

their properties, they are further classified into salt water muds, dispersed muds, non-dispersed 

muds, low solids muds, polymer muds and calcium muds. They have a tendency to cause well 

stability issues by causing swelling in shales. Also, they provide limited lubrication to drill bits, 

which restricts their use in extended reach drilling.

2.1.2 Oil-Based Muds (OBM)

These type o f drilling muds have oil in the continuous phase, which could be mineral oil, diesel 

oil or low-toxicity linear olefins and paraffins. Compared to WBM, their formulation is complex 

and expensive. They are known to provide sufficient lubrication to drill bits, restrict shale swelling, 

provide excellent cutting carrying and have good filtration control. Even though they have the edge 

over WBMs, their use is limited due to environmental and disposal issues. Depending on the type 

o f continuous phase, they are further classified into invert emulsion muds and emulsion muds. 

They are classified as invert emulsion muds if  they have water in oil emulsions, with a continuous 

phase comprising diesel or mineral oil. Emulsion muds have oil dispersed in water, with water as 

the continuous phase.

2.1.3 Gas Drilling Muds

Gas drilling muds find their application in underbalanced drilling where the pressure in the 

wellbore is kept lower than the fluid pressure in the formation being drilled 

(https://petrowiki.org/PEH%3AUnderbalanced_Drilling). They provide the advantage o f no solid 

contamination, as there are no solids and contact involved. Their other benefits include no lost 

circulation, no formation damage and high rate o f penetration. Depending upon the type o f gas 

used, they are classified into air and natural gas drilling muds.
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2.1.4 Foam Drilling Muds

Foam drilling muds find their application in underbalanced, deep water and ultra-deep water 

drilling. They are mostly used in places which have narrow operating pressure windows, which 

means that a slight decrease in mud density would allow the formation fluids to influx into the 

wellbore and a slight increase in mud density would be enough to initiate micro or macro fractures 

in the formation. Usually, foam drilling muds comprise 75-95% gaseous phase, 5-25% liquid phase 

and about 5% surfactant, which is used as a stabilizer (Shah et al., 2010). The gaseous phase is 

usually an inert gas such as nitrogen, and the liquid phase can be either brine or fresh water. Foam 

drilling muds are also classified as stable foam drilling muds and stiff foam drilling muds.

2.2 Functions of Drilling Fluids

Drilling fluids have various functions, most o f which are essential to every well. Additives can be 

introduced into the drilling fluids to enhance their properties, in order to achieve certain functions 

specific to the well requirements. The primary purpose o f drilling fluids in every well is to control 

formation pressures and remove cuttings from the well (MISWACO, 1998).

Although the importance o f drilling fluid functionality is governed by well operation and 

condition, the most common functions o f drilling fluids are:

1. Control formation pressures.

2. Suspend cuttings when circulation stops.

3. Transport cuttings from the well.

4. Help in sealing permeable formations.

5. Maintain wellbore stability.

6. M inimize formation damage.

7. Help in formation evaluation.

8. Lubricate, cool and support the bit and drilling assembly

9. Transmit hydraulic energy to downhole equipment.

10. Aid in corrosion control.

11. M inimize environmental impacts.
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Even though all the functions o f drilling fluids are necessary, sometimes, in order to adapt and 

perform efficiently in a particular formation, the drilling fluid may not be able to perform all the 

functions. Thus, the best compromise is balancing all the needs and functions o f the drilling fluid. 

During drilling fluid design, preference is given to the most essential functions and the mud is 

designed in accordance with the requirements o f the operation.

2.3 Rheology

Rheology is defined as the study o f deformation and flow o f matter (MISWACO, 1998). Rheology 

is one of the most important properties of drilling fluids; it provides information about how the 

fluid would behave under different conditions and what its viscosity profile would be under 

different shear rates. Information about the viscosity profile aids in predicting friction pressure 

losses and better design of the drilling fluid, and thus better performance. Fluid behavior is 

determined by the relationship between shear stress and shear rate. According to the shear stress 

vs. shear rate relationship, the fluid can be described by a number o f fluid models. If this 

relationship is linear, then the fluid can be termed a Newtonian fluid. Otherwise, if  the relationship 

is non-linear, then it is known as a non-Newtonian fluid. In the oil and gas industry, most drilling 

fluids are non-Newtonian fluids described by non-Newtonian fluid models such as the Bingham 

plastic model, the Power-law model, or the Herschel-Bulkley model (MISWACO, 1998).

Mathematically, shear rate for a fluid flowing between two parallel plates is represented by:

d v

y = ^  eq1

where v  is the velocity o f the moving plate and y  is the distance between the two parallel plates. 

Shear stress is given by:

F
a = -  eq.2

where F is the shear force and A is the area acted on by the shear force.

For a Newtonian fluid, shear stress and shear rate have a linear relationship, which is represented 

by a straight line on a Cartesian plot passing through the origin, described by the equation:

a  =  ^ *  y
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where a  is the shear stress, ^  is the viscosity and y is the shear rate.

As stated before, non-Newtonian fluids do not have a linear relationship between shear stress and 

shear rate. One o f the simplest models to describe non-Newtonian fluids is the Bingham plastic 

model. The Bingham plastic model is also termed as a two-point model as it needs two points, the 

yield point and plastic viscosity, to describe fluid behavior. It also represents a linear relationship 

between shear stress and shear rate, but the straight line does not intercept the origin. The model 

equation is similar to the Newtonian fluid equation with the addition o f the yield point. The 

Bingham plastic model is represented by the equation:

a = oy + * y  eq.4

where is the plastic viscosity and ay is the yield point.

Another common model used to represent non-Newtonian fluids is the Power-law model. The 

fluids described by this model are often termed shear thinning fluids or pseudoplastic fluids. The 

equation that describes the Power-law model is:

a = K * y u eq.5

where K is the consistency index and n is the power law index.

For this model, viscosity is defined by:

^ a = K * Vn-1 eq.6

where |ia is the apparent viscosity, which decreases as the shear rate increases. Due to this 

behavior, the fluids described by this model are termed shear thinning fluids.

2.4 Lubricity

Lubricity comes into consideration when two bodies are in contact; the contact can be rolling, 

sliding or separating in nature. W hen two bodies are in contact, they produce frictional force at 

their interface in the direction opposite to their movement. This force o f friction is known to cause 

wear, thus damaging one or both bodies at the contacting surfaces. In order to lower the amount 

o f friction and wear, lubricants are used, and the process is termed lubrication (Jones, 1971).
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2.5 Filtration

W hen the mud has higher pressure than the formation pressure, the mud filtrate is forced to go into 

the formation. W hile doing so, it deposits solids on the borehole wall, leaving behind a mud cake 

with filtrate invasion. The initial fluid that flows into the formation, before the deposited solids 

form the mud cake, is known as spurt loss. Both mud cake deposition and filtrate invasion can lead 

to errors and problems, which may result in significant downtime during the operation. Filtrate 

invasion causes formation damage and results in a reduction of formation permeability, which 

subsequently hampers production. The most common experiment to test the filtration 

characteristics o f the drilling fluid is the API static filtration test, which is a low-pressure low- 

temperature (LPLT) test.

2.6 Previous Related W ork

Nanoparticles have been recognized recently as useful additives to improve drilling fluid 

performance. They have the potential to overcome the limitations o f current drilling fluid systems 

that are faced while drilling more challenging wells. Until now, mixed success has been attained 

in research related to nanoparticle application in drilling fluids. The desire to solve existing 

problems in drilling fluids has inspired researchers to use nanoparticles to enhance wellbore 

stability, lubricity, filtration and rheological properties.

Sensoy et al. (2009) used two different types o f silica nanoparticles, each 20 nm in size, in various 

concentrations o f 40, 29, 10 and 5 wt%, to minimize water invasion. They formed nanoparticle 

suspensions with mud and tested the ability o f the nanoparticle-based muds to plug shale pores. 

Through their experiments, they found that decreasing nanoparticle concentration to 5 wt% 

resulted in a higher leak-off into the shale. They also concluded that 10 wt% concentration was 

ideal for plugging the shale pores. Building on this work, Cai et al. (2011) investigated the effect 

o f different sizes o f silica nanoparticles (5 to 20 nm), at 10 wt% concentration, on water invasion 

into shale. They used two types o f base muds, bentonite and low-solids mud, to form nanoparticle- 

based muds. They observed that nanoparticle sizes between 7 and 15 nm at 10 wt% concentration 

were effective at reducing shale permeability and thus shale swelling. They also noted that 

nanoparticle-based muds resulted in higher plastic viscosity and lower yield point and fluid loss 

compared to the base muds. Knowing that silica nanoparticles can be used to reduce shale swelling,
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it was necessary to understand their impact on clay swelling. Pham and Nguyen (2014) studied the 

effect o f silica nanoparticles on clay swelling. They observed that presence o f polyethylene glycol 

(PEG) coated silica nanoparticles had a positive impact on clay swelling inhibition only in the 

presence of electrolytes. They also concluded that increasing nanoparticle concentration in clay 

dispersion leads to particle aggregation.

Through the work o f Cai et al. (2011), it was evident that nanoparticles can be used to alter 

rheology and filtration loss characteristics o f drilling fluids. Jung et al. (2011) synthesized two 

different clay nanoparticle hybrids, aluminum oxide-silica nanoparticle clay hybrid (ASCH) and 

iron oxide nanoparticle clay hybrid (ICH), and tested their effects on the rheological properties of 

bentonite drilling mud. They found that at 0.5 wt%, ICH was able to increase the viscosity and 

yield point compared to base mud, which was due to the development of cross-links between the 

particles. Also, they observed that ASCH association with clay platelets in bentonite drilling fluid 

is pH sensitive. At high pH, the addition o f ASCH resulted in a reduction o f viscosity and yield 

point, however, as pH decreased, its properties became similar to those o f ICH. Nasser et al. (2013) 

used a mixture o f nano graphite and nano silicon wires, at 3 wt%, to investigate the effect of 

prepared nanoparticle-based mud on rheological properties at various temperatures. They found 

that temperature had a detrimental effect on the rheological properties, and nanoparticle-based 

mud showed improved lubricity and filtration characteristics.

Zakaria et al. (2012) used in-house prepared nanoparticles to test the filtration characteristics o f an 

oil based mud. They investigated the filtration loss characteristics on API standard filter press 

(LPLT) and reported a 70% reduction in fluid loss. As stated earlier, Nasser et al. (2013) observed 

that a mixture o f nano graphite and nano silicon wires, at 3 wt%, was able to improve the filtration 

characteristics o f the mud. Vryzas et al. (2015) tested the effect o f iron oxide and silica 

nanoparticles on the performance o f bentonite-based drilling fluids. They found that iron oxide 

nanoparticles can be used to enhance filtration properties at an optimal concentration o f 0.5 wt%, 

whereas silica nanoparticles adversely affected fluid loss characteristics.

Until now, limited studies have been conducted to investigate the influence of nanoparticles on 

mud lubricity. Abdo and H aneef (2013) tested palygorskite (Pal), a naturally available clay, 

synthesized into nano-form with an average diameter o f 10-20 nm. Drilling fluid samples were 

formed with 5.9 g o f Pal in the presence o f 40 g montmorillonite with 570 ml o f water. This
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drilling fluid recipe was found to improve the lubricity by 33.8%. Wrobel (2016) used different 

nanoparticles, such as M oS2, TiO2 and TiN, in bentonite drilling fluid and investigated their 

lubricity characteristics. The nanoparticles were added between 0.02 to 0.08 wt% in concentration. 

M oS2 was found to improve the lubricity o f the mud, with 0.04 wt% being optimal nanoparticle 

concentration. However, TiO2 enhanced the lubricity at the lowest concentration o f 0.02 wt%; 

further increases in concentration negatively impacted the lubricity characteristic of the mud. It 

was also noted that TiN proved to be a bad lubricity agent.
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Chapter 3. 

EXPERIM ENTAL METHOD

3.1 Materials and Equipment

In this study, the base mud is mixed with 5 wt% of bentonite and deionized water. Eight different 

nanoparticles have been used to prepare nanoparticle-based drilling fluid samples, respectively. 

Table 1 shows the eight nanoparticles and their corresponding fundamental basic properties.

The CPX Series Ultrasonic Bath, as shown in Fig. 1 (a), has been used to pre-disperse the 

nanoparticles in deionized water, and then the Qsonica Q500 Sonicator, as shown in Fig. 1 (b), has 

been used to sonicate the prepared nanoparticle dispersions to disperse the nanoparticles 

completely. The Hamilton Beach mixer, shown in Fig. 1 (c), has been employed to mix the 

bentonite and the aqueous phase. The OFITE Model 900 Viscometer associated with a computer 

control system, shown in Fig. 2 (a), has been used to measure the rheological properties o f the 

drilling fluids. The OFITE API standard LPLT filter press, shown in Fig. 2 (b), has been used to 

measure the filtration properties o f the drilling fluids. The OFITE EP and Lubricity Tester, shown 

in Fig. 2 (c), has been used to determine the coefficient of lubricity of different drilling fluid 

samples, and the OFITE Portable Roller Oven and Aging Cells, shown in Fig. 2 (d), have been 

employed to conduct the aging tests.
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Table 1 -  Nanoparticles used in this study

Nanoparticle Size, nm
Bulk Density, 

g/cm3

SSA,

m2/g

Electrical

Charge
Nature

SiO2 with KH550 

coating
20-30 < 0.1 130-600 Negative

Super oleophilic and 

hydrophilic, and easier 

to be dispersed

SiO2 without 

coating
20-30 < 0.1 180-600 Negative

Hydrophilic and easier 

to disperse in ethanol

TiO2 - Anatase 5 0.12-0.18 289 Positive
Hydrophilic and high 

catalytic activity

TiO2 - Anatase 10 0.15-0.25 210 Positive
Hydrophilic and 

photocatalyst

TiO2 - Anatase 15 0.22 60 Positive
Hydrophilic and 

photocatalyst

TiO2 - Anatase 50 0.42-0.50 20-40 Positive
Hydrophilic and 

photocatalyst

AhO3 20 0.18-0.30 230-400 Positive
Hydrophilic and high 

catalytic activity

Fe3O4 20 0.85 40-60 Positive
Hydrophilic and super 

paramagnetic
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(a) CPX Series Ultrasonic Bath (b) Qsonica Q500 Sonicator

(c) Hamilton Beach Mixer

Figure 2 - Drilling Fluid Preparation Equipment
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(a) OFITE Model 900 Viscometer (b) OFITE LPLT Filter Press

(c) OFITE EP and Lubricity Tester (d) OFITE Portable Roller Oven and Aging Cells

Figure 3 - Laboratory Equipment
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3.2 Test Scenarios and Procedures

In this study, four common scenarios have been designed and carried out to investigate the 

influence of nanoparticles on the properties of drilling fluids including rheology, filtration, and 

lubricity. Scenario 1 is to test the effect o f concentration o f two nanoparticles, SiO2 with KH550 

coating and SiO2 without coating, on the mud properties. Scenario 2 is to examine the effect o f the 

nanoparticle size at a fixed concentration o f 0.5 wt% on the mud properties. Scenario 3 is to test 

the influence o f nanoparticle type on mud properties. Scenario 4 is to examine the effect o f aging 

on the properties of the nanoparticle-based muds. In addition, the effect of temperature on the 

rheological properties o f the nanoparticle-based muds, i.e., Scenario 5 in rheology measurement, 

has been investigated. The details of these test scenarios are described in Table 2.

Table 2 - Test Scenarios

Mud

Properties
Test Scenarios Nanoparticle Type

Nanoparticle 

Concentration, wt%

Temperature,

oC

Scenario 1: 

Effect o f

SiO2 with KH550 

coating
0.01, 0.05, 0.1, 

0.25, 0.5, 1
25

Concentration SiO2 without coating

Scenario 2'
TiO2, 5 nm 0.5 25

Effect o f Particle
TiO2, 10 nm 0.5 25

Size
TiO2, 15 nm 0.5 25

TiO2, 50 nm 0.5 25

Rheology

Scenario 3'

SiO2 with KH550 

coating
0.5 25

Effect o f SiO2 without coating 0.5 25

Nanoparticle Type AhO3 0.5 25

Fe3O4 0.5 25

Scenario 4: 

Effect o f Aging

SiO2 with KH550 

coating
0.5 25

SiO2 without coating 0.5 25
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TiO2, 5 nm 0.5 25

TiO2, 10 nm 0.5 25

TiO2, 15 nm 0.5 25

TiO2, 50 nm 0.5 25

AhO3 0.5 25

Fe3O4 0.5 25

Scenario 5: Effect 

o f Temperature

SiO2 with KH550 

coating 0.5 25, 40, 60, 80

SiO2 without coating

Scenario 1: 

Effect o f

SiO2 with KH550 

coating
0.01, 0.05, 0.1, 

0.25, 0.5, 1
25

Concentration SiO2 without coating

Scenario 2'
TiO2, 5 nm 0.5 25

Effect o f Particle
TiO2, 10 nm 0.5 25

Size
TiO2, 15 nm 0.5 25

TiO2, 50 nm 0.5 25

Scenario 3'

SiO2 with KH550 

coating
0.5 25

Effect o f SiO2 without coating 0.5 25

Filtration Nanoparticle Type Al2O3 0.5 25

Fe3O4 0.5 25

SiO2 with KH550 

coating
0.5 25

SiO2 without coating 0.5 25

Scenario 4'
TiO2, 5 nm 0.5 25

Effect o f Aging
TiO2, 10 nm 0.5 25

TiO2, 15 nm 0.5 25

TiO2, 50 nm 0.5 25

Al2O3 0.5 25

Fe3O4 0.5 25
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Scenario 1: 

Effect o f

SiO2 with KH550 

coating
0.01, 0.05, 0.1, 

0.25, 0.5, 1
25

Concentration SiO2 without coating

Scenario 2'
TiO2, 5 nm 0.5 25

Effect o f Particle
TiO2, 10 nm 0.5 25

Size
TiO2, 15 nm 0.5 25

TiO2, 50 nm 0.5 25

Scenario 3'

SiO2 with KH550 

coating
0.5 25

Effect o f SiO2 without coating 0.5 25

Lubricity Nanoparticle Type AhO3 0.5 25

Fe3O4 0.5 25

SiO2 with KH550 

coating
0.5 25

SiO2 without coating 0.5 25

Scenario 4'
TiO2, 5 nm 0.5 25

Effect o f Aging
TiO2, 10 nm 0.5 25

TiO2, 15 nm 0.5 25

TiO2, 50 nm 0.5 25

AhO3 0.5 25

Fe3O4 0.5 25

The test procedures are described briefly in the following section.

3.2.1 Drilling Fluid Preparation

The base mud has been prepared by adding bentonite to the deionized water little by little while 

stirring, and then continuing to stir the mixture for 15 minutes. There are two main steps to prepare 

the nanoparticle-based muds. The first step is to prepare the nanoparticle dispersions' the 

nanoparticles are pre-dispersed for 4 hours in the CPX Series Ultrasonic Bath, and then continue 

to be dispersed for 20 mins using the high-frequency Q500 Sonicator to make sure that the 

nanoparticles have been dispersed thoroughly. The second step is to add the weighed bentonite
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(5wt%) into the prepared nanoparticle dispersions while stirring, and then continuing to stir the 

mixture for 15 minutes. Then the prepared muds are ready for measurement.

3.2.2 Rheology Measurements

The OFITE Model 900 Viscometer, which is associated with a computer control system and a 

heating cup, has been used to measure the rheological properties of the prepared base mud and 

nanoparticle-based muds. The heating cup is used to heat the mud to the test temperature at which 

the rheological properties need to be measured, while the computer control system is used to set, 

control and monitor the mud temperature. Also, the computer control system is used to calculate 

and record the rheology parameters including plastic viscosity (PV), yield point (YP), power law 

exponent (n), fluid consistency factor (K), and gel strengths.

The detailed measurement procedure is as follows (OFITE Model 900 Viscometer Manual, 2015)'

1. Before the test, select and design the type o f test to be conducted on the computer control 

software (ORCADA).

2. Specify the test temperature in ORCADA.

3. Install bob on the bob shaft with the help o f shaft wrench.

4. Place the rotor sleeve over the bob and move it upward to connect the rotor.

5. Pour approximately 170 ml o f the test fluid into the cup. Then set the cup in the heating 

container.

6. Raise the sample cup, with the rotor sleeve immersed into the test fluid up to the scribed 

line.

7. The test is started from ORCADA.
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3.2.3 Filtration Measurements

The OFITE LPLT filter press has been employed to measure the filtration properties of prepared 

base mud and nanoparticle-based muds following the API standard procedures (Reference, API 

standard). In this study, only 30 minute filtration volume and filter cake thickness have been 

reported and discussed.

The detailed test procedure is as follows (OFITE API Filter Press Manual, 2013)'

1. Before the test, it is vital to make sure that each part o f the cell is dry and clean. The gaskets 

need to be examined for w ear and distortion.

2. To assemble the test cell, turn the base cap upside down and place a rubber gasket into it.

Then, set a screen along with a filter paper and another gasket on top of it. Lastly, put the

cell body into the base cap and lock it.

3. Pour the sample to be tested into the cell, with 0.5 inches o f empty space at the top.

4. Place a dry, clean graduated cylinder under the filtrate tube.

5. M ake sure that all the valves above the test cells are closed.

6. Apply the pressure o f 100 ±  5 psi to the inlet port on the pressure manifold. Open the valve 

for the cell to be tested. Begin the test period at the time o f initial pressurization.

7. M easure the volume o f filtrate collected at 1, 7.5, 15 and 30 minutes in ml.

8. After 30 minutes, pull the pressure valve out to release the pressure from the cell. Remove 

the cell and disassemble it.

9. Carefully remove filter paper with the deposited mud cake.

10. M easure and record the thickness o f the filter cake to the nearest — inches.
32

3.2.4 Lubricity Measurements

The OFITE EP and Lubricity Tester has been used to measure the coefficient of lubricity for the 

prepared base mud and nanoparticle-based muds, while the standard lubricity coefficient test is 

conducted at a fixed rotation rate o f 60 RPM  and a fixed force between two hardened steel surfaces 

o f 150 in-lb. Before each mud test, the equipment has been calibrated by determining the correction 

factor using deionized water, and the correction factor can be calculated as
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Correction Factor
Standard Meter Reading for Deionized Water

eq.7
Meter Reading Obtained in Deionized Water Calibration

Then, the calibrated equipment is used for the mud test, while the lubricity coefficient can be 

determined by

The detailed operation procedure is as follows (OFITE EP and Lubricity Tester Manual, 2015)'

1. Before the test, clean the lubricity test ring and the test block with acetone and rinse both 

thoroughly with deionized water.

2. Turn on the power and let the machine run for 15 minutes.

3. Position the test block in the block holder, with the concave side o f test block facing away 

from the torque shaft. It is vital for the test ring and block not to be in contact with each 

other.

4. Set the motor speed to 60 RPM.

5. After the unit has completed running for 15 minutes, zero the torque reading. The unit is 

run for 5 more minutes and the torque is zeroed again.

6. Fill the test cup with the test sample. Raise the cup stand until the test ring and the black 

are fully immersed. Zero the torque reading again if  necessary.

7. Place the torque arm so that it fits inside the concave portion o f the torque arm clamp.

8. Torque handle is turned clockwise until the torque gauge on the arm reads 150 in-lb.

9. The machine is run for 5 minutes and then the torque reading is recorded.

10. The motor speed is adjusted to zero and the cup is lowered.

Lubricity Coefficient
Meter Reading*Correction Factor

eq.8
100
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3.2.5 Aging Test

The prepared muds have been aged by API Recommended Practice 13B-1 and 13I using the 

OFITE aging cells and OFITE portable roller oven (API RP 13B-1 and 13I). Dynamic aging is 

carried out at 275oF for 16 hours. Then, the rheological, filtration and lubricity characteristics of 

the aged muds have been measured following the above measurement procedures and compared 

with those of the corresponding un-aged muds.

The detailed operation procedure of the aging cell and portable roller oven is as follows (OFITE 

Portable Roller Oven Manual, 2015)'

1. Pour the test sample into the aging cell. Leave approximately 1 inch o f empty space at the 

top. Next, the aging cell is closed.

2. Turn on the portable roller oven.

3. Enter the temperature required for the aging test into the machine along with the duration 

o f aging.

4. Put the aging cell on the rollers.

5. For dynamic aging, place the roller power switch in the “On” position.

6. On completion o f aging test, allow the aging cell to cool down to room temperature.

7. After cooling down, extract the sample from the aging cell and stir it in the mechanical 

mixer for 15 minutes to homogenize the sample.
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Chapter 4. 

RESULTS AND DISCUSSION

4.1 The Influence on Rheology

In this subsection, the influence o f nanoparticle concentration, nanoparticle size, nanoparticle type, 

aging, and temperature on rheological properties of the nanoparticle-based muds have been 

investigated, while experimental results have been reported, analyzed and discussed. Also, the 

rheological values o f plastic viscosity, yield point and YP/PV ratio have been compared to the API 

specifications. Furthermore, their corresponding influence on mud functions has been discussed.

4.1.1 Effect of Concentration

In this scenario, the influence of nanoparticle concentration on the rheological properties of 

nanoparticle-based muds has been investigated. Both o f the nanoparticles used in this scenario are 

SiO2. Just one SiO2 nanoparticle is without any coating, which is hydrophilic, while another SiO2 

nanoparticle is coated with KH550, making it super oleophilic and hydrophilic and easier to 

disperse. Both the nanoparticles have been tested at concentrations o f 0.01, 0.05, 0.1, 0.25, 0.5 

and 1 wt%, the results o f which are in Fig. 4.

Measurements for SiO2 with KH550 nanoparticle were within an average relative standard 

deviation o f 2.8% for plastic viscosity (PV), 6.3% for yield point (YP), 4.3% for gel strength (10 

min), 4% for power law index (n), 8.4% for consistency index (K) and 5.3% for YP/PV ratio, with 

0.5 wt% concentration having the highest relative standard deviation. W hich might be due to 

variation in nanoparticle concentration, because o f the use o f a weighing balance with one decimal 

place precision. While, SiO2 without coating nanoparticle measurements were within 1.4% for PV, 

13.6% for YP, 10% for gel strength, 9.2% for power law index, 8.7% for consistency index and 

3.7% for YP/PV ratio, with 0.5 wt% again showing the highest relative standard deviation. Which 

again might be related to the precision o f the weighing balance used.

As can be seen from Fig. 4 (a), the plastic viscosity (PV) increases with the nanoparticle 

concentration due to the fact that the solid content of the drilling fluids continues to increase with 

the increase o f the nanoparticle concentration. The PV increase rate o f the mud composed o f SiO2
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nanoparticle without coating is higher than that o f the mud consisting o f SiO2 nanoparticle coated 

with KH550, since SiO2 nanoparticle coated with KH550 has higher density compared to SiO2 

nanoparticle without coating, so the former will have fewer particles in dispersion compared to 

latter. Mostly, the PV values for both nanoparticle-based muds satisfy the API minmum value, 

except for 0.01 wt% concentration o f SiO2 with KH550 nanoparticle. As shown in Figs. 4 (b), (c) 

and (d), the yield points (YP) and gel strengths o f both muds decrease with increasing nanoparticle 

concentration and their downtrends are quite similar. Besides, at lower concentrations (< 0.1 wt%), 

the YP and gel strength of the nanoparticle-based muds are higher than those of the base mud. 

However, at higher concentrations (> 0.1 wt%), the YP and gel strength o f the nanoparticle-based 

muds are lower than those of the base mud. All of these phenomena may be explained by the 

electrical properties o f the clay and nanoparticles. In general, the surface o f the SiO2 nanoparticle 

is negatively charged (Kim et al., 2014), while after dispersion, the surface o f the SiO2 nanoparticle 

coated with KH550 is also negatively charged due to the hydrolysis reaction o f the silane coupling 

agent. Therefore, both nanoparticles are negatively charged in the dispersions. By introducing a 

small amount of nanoparticles into the mud, flocculation may occur, resulting in higher YP and 

gel strength than those o f the base mud at the lower nanoparticle concentration. Subsequently, by 

introducing more negatively charged nanoparticles into the mud, the attractive force between the 

particles in the mud decreases, which results in the decrease o f YP and gel strength with increasing 

nanoparticle concentration. Also, as can be observed in Fig. 4 (b), the YP values for nanoparticle- 

based muds are less than that o f the specified API maximum value. Hence, they satisfy the API 

YP requirement.

The influence o f nanoparticle concentration on YP/PV ratio; n, which is the power law index; and 

K, which is the consistency index o f the Power-law model, have been described in Figs. 4 (e), (f), 

and (g), respectively. As can be seen, with increasing nanoparticle concentration, YP/PV ratios 

decrease, n values increase, and K values decrease for both nanoparticles. It is well known that the 

hole cleaning capacity o f the mud can be improved by increasing the YP/PV ratio, lowering the n 

value, and increasing the K value (Okrajni and Azar, 1986; Bloodworth et al., 1992). Therefore, 

in this scenario, the hole cleaning capacity of the nanoparticle-based mud decreases with 

increasing negatively charged SiO2 nanoparticle concentration. Besides, it can be seen from Figs. 

4 (e), (f) and (g) that the YP/PV ratio and K values o f the nanoparticle-based muds are higher than 

those o f the base mud at lower concentration (< 0.1 wt%). The n values o f the nanoparticle-based
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muds are lower than those o f the base mud at lower concentrations (< 0.1 wt%). All o f these 

findings indicate that, compared with the base mud, adding a small number o f negatively charged 

SiO2 nanoparticles (< 0.1 wt%) can improve the m ud’s hole cleaning capacity, while higher 

negatively charged SiO2 nanoparticle concentration (> 0.1 wt%) has an adverse effect. Also, it can 

be observed from Fig. 4 (e), YP/PV ratio values for nanoparticle-based muds are less than the API 

maximum value, indicating that the muds satisfy the API requirement.
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Figure 4 (a): Effect of Nanoparticle Concentration on Plastic Viscosity
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Figure 4 (g): Effect of Nanoparticle Concentration on Consistency Factor
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4.1.2 Effect of Size

In this scenario, the influence o f nanoparticle size on the rheological properties o f nanoparticle- 

based muds has been investigated, while four TiO2 nanoparticles with sizes o f 5, 10, 15 and 50 nm 

have been used to conduct the tests. In all of the tests, the nanoparticle concentrations have been 

fixed at 0.5 wt%. Figure 5 shows the experimental results.

Measurements for different sizes of TiO2 nanoparticle were within an average relative standard 

deviation o f 5.3% for PV, 8.2% for YP, 7.2% for gel strength (10 min), 4.6% for n value, 5.5% for 

K value and 7.3% for YP/PV ratio, with 15 nm nanoparticle having the least relative standard 

deviation and 5 nm nanoparticle having highest relative standard deviation. Even though the 

experiments in this scenario are conducted at constant 25oC, still sometimes deviations in 

temperature are encountered during the experiment run. The reason for the better repeatability of 

15 nm nanoparticle is due to a small difference in the temperatures o f the two experiment runs. 

W hile for 5 nm nanoparticle, a difference o f 2.3oC was observed between the two experiment runs, 

which would increase the amount o f error.

As can be seen from Fig. 5 (a), the PV  decreases with the increasing nanoparticle size, while the 

PVs o f the muds composed o f 15 and 50 nm nanoparticles are lower than those o f the pure mud. 

These trends may be explained by the different electrical properties of the clay surface and TiO2 

nanoparticles. In general, the clay surface is negatively charged, while the surface o f the TiO2 

nanoparticle is positively charged. Thus, adding TiO2 nanoparticles into the mud may cause 

aggregation. Although aggregation may occur by adding TiO2 nanoparticles, if  the nanoparticle 

size is smaller, such as 5 and 10 nm in this study, the surface area to volume ratio of the solids in 

the nanoparticle-based muds may be still higher than that o f the pure mud. This is why the PVs of 

the muds composed o f 5 and 10 nm nanoparticles are higher than those o f the pure mud (Li et al., 

2012). W ith increasing nanoparticle size, more aggregation may occur, and the specific surface 

area (SSA) of the nanoparticles may decrease, as shown in Table 1, which both result in the 

reduction o f the surface area to volume ratio o f the nanoparticle-based muds. Thus, the PVs o f the 

nanoparticle-based muds decrease with increasing nanoparticle size. Eventually, at a critical point, 

the surface area to volume ratio of the solids in the nanoparticle-based muds is lower than that of 

the pure mud, while accordingly, their PVs are lower than those o f the base mud. It should be noted

29



that only the mud composed of 5 nm nanoparticle satisfies the API minimum PV  value 

requirement.

As can be seen from Figs. 5 (b), (c) and (d), the YPs and gel strengths show similar trends by 

adding TiO2 nanoparticles. In general, the YPs and gel strengths o f the muds composed o f TiO2 

nanoparticles are higher than those of the pure mud, since the TiO2 nanoparticles are positively 

charged, increasing the attractive forces in the fluids (Loosli et al., 2015). However, the 

relationships among YPs and gel strengths and the nanoparticle size are not monotonic, while those 

may be attributed to the different amount of positive charge associated with the different size of 

nanoparticles. The 5 nm TiO2 nanoparticle may be associated with the most positive charge, 

causing the largest attractive forces in the fluids, so its mud generates largest values o f YPs and 

gel strengths. The 10 nm TiO2 nanoparticle may be associated with the least positive charge, 

causing the smallest attractive forces in the fluids, so its mud generates minimum values o f YPs 

and gel strengths.It can be observed from Fig. 5 (b) that the YPs o f all the different sizes o f TiO2 

nanoparticle satisfy the YP API requirement as they are lower than the maximum API value. Also, 

the different amounts of positive charge associated with the different sizes of nanoparticles can 

explain the non-monotonic change o f YP/PV, n and K with nanoparticle size. In general, 

comparing the YP/PV, n and K values of the muds composed of TiO2 nanoparticles with those of 

the base mud, the hole cleaning capacity can be improved by adding TiO2 nanoparticles. 

Furthermore, it can be seen in Fig 5 (e) that muds composed o f TiO2 nanoparticles have YP/PV 

ratios less than the maximum API value. Hence, they satisfy the YP/PV ratio API requirement.
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4.1.3 Effect of Type

In this scenario, the influence o f nanoparticle type on the rheological properties o f nanoparticle- 

based muds has been investigated. This scenario used four different nanoparticles, namely AhO3, 

Fe3O4 and two SiO2 nanoparticles, one without any coating and other with KH550 coating. The 

Al2O3 nanoparticle is hydrophilic in nature and is known to have a high catalytic activity, while 

the Fe3O4 nanoparticle is also hydrophilic in nature and is superparamagnetic. All four types o f 

nanoparticles have been tested at the concentration o f 0.5 wt%, with the results presented in Fig.

6.

Measurements for SiO2 with KH550 and SiO2 without coating nanoparticles were within an 

average relative standard deviation o f 8.6% and 0.9% for PV, 18.2% and 19% for YP, 7.2% and 

6% for gel strength (10 min), 1.6% and 4% for n value, 2% and 3.7% for K value and 9% and 14% 

for YP/PV ratio, respectively. While, Fe3O4 nanoparticle measurements were within 2.3% for PV, 

0.1% for YP, 0% for gel strength, 3.3% for n value, 0.8% for K value and 2.2% for YP/PV ratio.
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The relative standard deviation for AI2O3 is zero as the measurements were carried out for only 

one set o f experiment, due to its limited amount. The excellent repeatability o f Fe3O4 nanoparticle 

is due to difference o f only 0.07oC between the two experiment runs.

As can be seen from Fig. 6 (a), the plastic viscosity (PV) for nanoparticle-based muds is generally 

greater than that o f the base mud, except for the Fe3O4 nanoparticle. The ascending order of 

increasing PV among the nanoparticles is Fe3O4, SiO2 with KH550 coating, SiO2 without coating, 

and AhO3. Since the Fe3O4 nanoparticle has a high density, it will have fewer particles in 

dispersion compared to the others. Due to its high positive charge, it might cause particle 

aggregation, which could be the reason for its low PV value. The potential reason for the SiO2 

without coating nanoparticle to have higher PV than the SiO2 coated with KH550 nanoparticle 

may be the latter’s higher density. Hence, the SiO2 without coating nanoparticle will have a higher 

number o f particles in dispersion compared to the SiO2 with KH550 coating nanoparticle. Further, 

the Al2O3 nanoparticle has the greatest specific surface area among all the different types of 

nanoparticles, which is reflected by its high PV value. Also, except for muds composed o f Fe3O4 

nanoparticle, other nanoparticle-based muds satisfy the minimum value for API PV requirement. 

As can be seen in Figs. 6 (b), (c) and (d), the yield points (YP) and gel strengths show a similar 

trend. The YP and gel strength values for both SiO2 nanoparticles are quite low and similar. As 

both o f the SiO2 nanoparticles are negatively charged, their introduction into the mud will decrease 

the attractive forces and will lead to a decrease in YP and gel strength values. In this scenario, 

Al2O3 shows significantly higher YP and gel strength values than those o f the rest o f the 

nanoparticles. The likely explanation for this behavior may be its high specific surface area 

accompanied by the positive charge on the surface. Also, owing to its relatively low density in 

comparison to the Fe3O4 nanoparticle, it will have a higher number o f positively charged particles 

in dispersion, which increases YP and gel strength values. Besides, the Fe3O4 nanoparticle also 

has a positive charge which will cause flocculation and result in an increase in YP and gel strength 

values. Furthermore, through Fig 6 (b) it can bee seen that AhO3 nanoparticle-based mud has YP 

values higher than the maximum API YP value. Thus, it does not adhere to the standards 

requirement. While, other nanoparticle-based muds satify the YP API requirement.

The influence o f nanoparticle type on YP/PV ratios, n values, and K values is described in Figs. 6 

(e), (f), and (g), respectively. As can be seen, YP/PV ratios and K values decrease for both SiO2
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nanoparticles, while they increase for positively charged AI2O3 and Fe3O4 nanoparticles. However, 

n values increase for both the SiO2 nanoparticles and decrease for the AhO3 and Fe3O4 

nanoparticles. Further, it can be observed from Figs. 6 (e), (f), and (g) that YP/PV ratios and K 

values for both SiO2 nanoparticles are lower than those o f the base mud, while they are higher for 

the AhO3 and Fe3O4 nanoparticles. The n values are higher for both SiO2 nanoparticles, while they 

are lower for the Al2O3 and Fe3O4 nanoparticles than the base mud. Therefore, compared to base 

mud, adding positively charged AhO3 and Fe3O4 nanoparticles (at 5 wt%) can improve the m ud’s 

hole cleaning capacity, while addition o f negatively charged SiO2 nanoparticles (at 5 wt%) is 

detrimental to the m ud’s hole cleaning function. Also, even though AhO3 nanoparticle-based mud 

does not conform to API YP requirement, it along with other nanoparticle-based muds satifies the 

YP/PV ratio API requirement.

Figure 6 (a): Effect of Nanoparticle Type on Plastic Viscosity
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Figure 6 (b): Effect of Nanoparticle Type on Yield Point

Figure 6 (c): Effect of Nanoparticle Type on 10 sec Gel Strength
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Figure 6 (e): Effect of Nanoparticle Type on YP/PV ratio
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Figure 6 (g): Effect of Nanoparticle Type on Consistency Factor
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4.1.4 Effect of Aging

In this scenario, the influence o f aging on the rheological properties o f nanoparticle-based muds 

has been investigated. This scenario used eight different nanoparticles, namely SiO2 with KH550 

coating, SiO2 without coating, four different sizes o f TiO2 nanoparticles (5 nm, 10 nm, 15nm and 

50 nm), AhO3 and Fe3O4. All eight types o f nanoparticles have been aged and tested at the 

concentration o f 0.5 wt%, the results o f which have been presented in Fig. 7.

Measurements for aged SiO2 with KH550 and SiO2 without coating nanoparticles were within an 

average relative standard deviation o f 1.1% and 3.7% for PV, 0.9% and 7.1% for YP, 13% and 

12% for gel strength (10 min), 2.1% and 4.2% for n value, 12% and 2.4% for K value and 6% and 

2.8% for YP/PV ratio, respectively. While, measurements for aged different sizes o f TiO2 

nanoparticle were within o f 6.8% for PV, 5.5% for YP, 6.9% for gel strength, 5.6% for n value, 

7.5% for K value and 9.3% for YP/PV ratio, with aged 5 nm nanoparticle having highest relative 

standard deviation. The reason for high relative standard deviation o f aged TiO2 15 nm 

nanoparticle is temperature fluctuations in the two experiment runs. The relative standard 

deviations for Al2O3 and Fe3O4 nanoparticles were zero as the measurements were carried out for 

only one set o f experiment, due to their limited amount.

As can be seen from Fig. 7 (a), the plastic viscosity (PV) for nanoparticle-based muds is 

significantly affected by the aging process. In the case o f the base mud, aging leads to increase in 

PV. This may be explained by dissociation of clay particles at elevated temperatures. With 

exposure to high temperature, the face-to-face and face-to edge associations might break down 

among the clay particles, leading to increased PV. For both SiO2 nanoparticles, aging causes 

increased PV, which may be due to the combined effects of dissociation and slight flocculation 

caused by negatively charged SiO2 nanoparticles. The increase in PV is greater for the SiO2 without 

coating nanoparticle compared to the one with KH550 coating, due to the presence o f more 

particles in dispersion by the former. However, after aging, the TiO2 5 nm and Al2O3 nanoparticles 

show a reduction in PV, which may be attributed to their positive charge and high specific surface 

area, and may lead to aggregation among the particles. Further, after aging, the TiO2 10 nm, TiO2 

15 nm, TiO2 50 nm and Fe3O4 nanoparticles show increased PV, which may be explained by the 

dissociation o f clay particles. Except for aged TiO2 5 nm, the other aged nanoparticle-based muds 

satisfy the minimum API PV requirement. As can be seen from Figs. 7 (b), (c) and (d), the yield
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points (YP) and gel strengths show a relatively similar trend. After aging, the base m ud’s YP and 

gel strength values decrease. This can be explained by dissociation o f clay particles at elevated 

temperatures resulting in a number o f negatively charged clay particles, which repel each other 

and thus reduce the attractive forces. Both SiO2 nanoparticles show an increase in YP and gel 

strength values, which may be recognized by flocculation caused by them. In addition, the TiO2 5 

nm, TiO2 10 nm, TiO2 15 nm, TiO2 50 nm, AhO3 and Fe3O4 nanoparticles show a reduction in YP 

and gel strength values after aging. A potential reason for this behavior could be that the number 

o f dissociated clay particles is significantly greater and overcomes the number o f positively 

charged nanoparticles and leads to a net repulsive force which reduces the YP and gel strength 

values. Also, it can be seen from Fig. 7 (b) that except for aged AhO3 nanoparticle-based muds, 

the other nanoparticle-based muds have YP less than the specified maximum API YP value. Thus, 

except for aged Al2O3 nanoparticle, the other nanoparticle-based muds satisfy the API YP 

standard.

The influence o f aging on YP/PV ratios, n values, and K  values is shown in Figs. 7 (e), (f), and 

(g), respectively. As can be observed, after aging, YP/PV ratios and K  values decrease for both 

pure mud and nanoparticle-based mud, while the n values generally increase after aging. This 

indicates that aging has an adverse effect on the m ud’s hole cleaning function. However, if  we 

contrast the hole cleaning capacity o f nanoparticle-based muds with aged base mud, it can be seen 

in Figs. 7 (e), (f), and (g) that aged TiO2 5 nm, TiO2 10 nm, TiO2 15 nm, TiO2 50 nm, AhO3 and 

Fe3O4 have YP/PV ratios and K values higher than those o f the aged base mud. The n values of 

aged TiO2 5 nm, TiO2 10 nm, TiO2 15 nm, TiO2 50 nm, Al2O3 and Fe3O4 are lower than those of 

the aged base mud. This indicates that aged TiO2 5 nm, TiO2 10 nm, TiO2 15 nm, TiO2 50 nm, 

AhO3 and Fe3O4 can improve the m ud’s hole cleaning capacity compared to aged base mud. It can 

also be observed that all the aged muds have YP/PV ratios less than the maximum API value. 

Thus, all o f them satify the API YP/PV ratio requirement.
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Figure 7 (c): Effect of Aging on 10 sec Gel Strength
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Figure 7 (d): Effect of Aging on 10 min Gel Strength
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Figure 7 (f): Effect of Aging on Consistency Factor 

4.1.5 Effect of Temperature

In this scenario, the influence o f temperature on the rheological properties o f nanoparticle-based 

muds has been investigated. Both o f the nanoparticles used in this scenario are SiO2, namely SiO2 

without coating nanoparticle and SiO2 with KH550 coating. Both the nanoparticles are taken at a 

concentration o f 0.5 wt% and have been tested at temperatures o f 25, 40, 60 and 80oC, the results 

o f which have been presented in Fig. 8.

For base mud, SiO2 with KH550 coating and SiO2 without coating nanoparticles, the relative 

standard deivation values for the measurements have been averaged for all the different 

temperatures to represent the average relative standard deviation for each rheological property. 

Measurements at different temperatures for base mud, were within an average relative standard 

deviation o f 5.9% for PV, 1.4% for YP, 1% for gel strength (10 min), 9.6% for n value, 6.2% for 

K value and 1.7% for YP/PV ratio, with 80oC measurement having highest relative standard 

deviation due to temperature fluctuations between the two measurements. While, measurements
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at different temperatures o f SiO2 with KH550 and SiO2 without coating nanoparticles were within 

an average relative standard deviation o f 11.5% and 0.3% for PV, 3.9% and 1.8% for YP, 6.1% 

and 7.6% for gel strength, 0.9% and 5.7% for n value, 1.6% and 14.4% for K value and 10.1% and 

7.1% for YP/PV ratio, respectively. For both the nanoparticle highest relative standard deviation 

is associated with 80oC measurements, which is due to not maintaining a constant temperature 

when measurements are going on.

As can be seen from Fig. 8 (a), the plastic viscosity (PV) decreases with increasing temperature, 

which may be due to a partial destruction o f the hydration clay suspensions, causing aggregation 

o f particles, which would decrease the number o f particles in dispersion and result in PV reduction 

(Sami, 2015). Furthermore, the PV decrease rate o f the mud composed o f the SiO2 with KH550 

coating nanoparticle is higher than that o f the mud consisting o f the SiO2 without coating 

nanoparticle, since the SiO2 with KH550 coating nanoparticle has a higher density than SiO2 

without coating nanoparticle, so the former will have fewer particles in dispersion compared to the 

latter. As PV depends upon the number o f particles in dispersion, the SiO2 w ithout coating 

nanoparticle will have higher PV than the SiO2 with KH550 coating nanoparticle. It can be 

observed that SiO2 without coating nanoparticle has PV values greater than the minimum API PV 

requirement at all the tested temperatures. While, SiO2 w ithout coating nanoaprticle can satisfly 

the minimum API PV  requirement upto 40oC, after which its PV  values are lower than the 

minimum API PV  requirement. As can be seen from Figs. 8 (b), (c) and (d), the yield points (YP) 

and gel strengths increase with increasing temperature for both SiO2 nanoparticles and base mud. 

Besides, the increases in YP and gel strength are greater in the base mud than in the nanoparticle- 

based muds. A potential reason for this behavior could be higher flocculation in the base mud 

compared to nanoparticle-based muds. Both SiO2 nanoparticles are negatively charged and would 

have less attractive force at ambient temperature. However, with an increase in temperature, 

negatively charged SiO2 nanoparticles could come into contact with the positively charged edges 

o f the clay particles, which could lead to flocculation, in turn increasing YP and gel strength. The 

SiO2 with KH550 coating nanoparticle has a higher rate o f increase in YP and gel strength 

compared to the SiO2 without coating nanoparticle. The potential reason for this behavior could 

be the presence o f a higher negative charge on the former nanoparticle due to its association with 

a silane coating. Also, both nanoparticle-based muds satisfy the API YP standard as they have YPs 

less than the maximum API YP requirement.

46



The influence o f temperature on YP/PV ratios, n values, and K values is shown in Figs. 8 (e), (f), 

and (g), respectively. As can be observed, with increasing temperature, YP/PV ratios increase, n 

values decrease, and K values increase for both nanoparticles. It can be observed that the n values 

for both nanoparticles are greater than those o f the base mud, while the YP/PV ratios and K values 

are less than those of the base mud. Thus, increasing temperature has an adverse effect on the 

nanoparticle-based m ud’s hole cleaning function. The base mud has YP/PV ratio greater than the 

maximum API requirement beyond 60oC. While, both the nanoparticle-based muds have YP/PV 

ratios less than the maximum API YP/PV requirements at all the tested temperatures, and so satisfy 

the API requirement.
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Figure 8 (a): Effect of Temperature on Plastic Viscosity
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Figure 8 (c): Effect of Temperature on 10 sec Gel Strength
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4.2 The Influence on Lubricity

In this subsection, the effects of nanoparticle concentration, nanoparticle size, nanoparticle type 

and aging on the lubricity o f the nanoparticle-based muds have been investigated, while 

experimental results have been reported, analyzed and discussed. Also, the lubricity coefficient of 

the nanoparticle-based muds has been compared to the API specification.

4.2.1 Effect of Concentration

In this scenario, the influence o f nanoparticle concentration on lubricity of nanoparticle-based 

muds has been investigated. Both o f the nanoparticles used in this scenario are SiO2, one without 

any coating and the other with KH550 coating. Lubricity coefficients have been measured for both 

nanoparticles at concentrations o f 0.01, 0.05, 0.1, 0.25, 0.5 and 1 wt%, the results o f which are 

presented in Fig. 9.

Lubricity coefficient measurements for SiO2 with KH550 nanoparticle were within an average 

relative standard deviation o f 3.5%. While, SiO2 without coating nanoparticle measurements were 

within 5.2%. As can be seen in Fig. 9, the lubricity coefficient increases as nanoparticle 

concentration increases because the solid content of the drilling muds continues to increase with 

increasing nanoparticle concentration. Also, it is well known that increasing surface area of the 

solids increases the amount o f friction o f the drilling mud (Redburn et al., 2013). As the 

nanoparticle concentration increases, the total surface area of the nanoparticles increases, which 

consequently increases the amount o f friction. In Fig. 9, it can also be observed that the increase 

in the lubricity coefficient is greater for the SiO2 without coating nanoparticle than for the SiO2 

with KH550 coating nanoparticle. A potential reason for this behavior could be the presence o f the 

coating on the SiO2 with KH550 coating nanoparticle, which may reduce its size degradation. 

Also, at any given nanoparticle concentration, SiO2 without coating nanoparticle has higher 

particles in mud compared to SiO2 with KH550 coating nanoparticle. Besides, it can be seen that 

the lubricity coefficient values of the nanoparticle-based muds are lower than those of the base 

mud at lower nanoparticle concentrations (< 0.1 wt%). This amounts to improvements o f 9.66% 

and 6.03% for the SiO2 with KH550 coating nanoparticle, and 4.83% and 1.69% for the SiO2 

without coating nanoparticle, at concentrations o f 0.01 wt% and 0.05 wt%, respectively. Thus, 

compared with the base mud, adding a small amount o f SiO2 nanoparticles (< 0.1 wt%) can
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improve the m ud’s lubricity, while higher SiO2 nanoparticle concentration (> 0.1 wt%) reduces 

the m ud’s lubricity. However, at all the tested nanoparticle concentrations, both nanoparticle-based 

muds have significantly higher lubricity coefficeients than the API requirement. Therefore, both 

nanoparticle-based muds do not meet the API lubricity requirement.

Figure 9: Effect of Nanoparticle Concentration on Lubricity Coefficient
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4.2.2 Effect of Size

In this scenario, the influence o f nanoparticle size on the lubricity o f nanoparticle-based muds has 

been investigated. For this scenario, TiO2 nanoparticles were tested at four different sizes o f 5, 10, 

15 and 50 nm, at the concentration o f 0.5 wt%, while the results o f which are presented in Fig. 10.

Lubricity coefficient measurements for different sizes of TiO2 nanoparticle were within relative 

standard deviation o f 1.1% for 5 nm, 0.4% for 10 nm, 0.8% for 15 nm and 3.7% for 50 nm. 

Indicating good repeatability for all the tested TiO2 sizes. As can be seen in Fig. 10, the lubricity 

coefficient o f nanoparticle-based muds decreases as nanoparticle size increases until 15 nm. Also, 

it can be observed that a further increase in nanoparticle size to 50 nm increases the lubricity 

coefficient. The decrease in lubricity coefficient until nanoparticle size o f 15 nm may be explained 

by the reduction in the surface area o f the nanoparticle with increasing nanoparticle size. However, 

at a nanoparticle size o f 50 nm, the lubricity coefficient increases as the number o f particles in 

suspension may increase due to size degradation o f the 50 nm nanoparticles. Through Fig. 10, it 

can be observed that the lubricity coefficients for nanoparticle-based muds are greater than those 

for the base mud, indicating that, compared to the base mud, the addition of different sizes of the 

TiO2 nanoparticle at a concentration o f 0.5 wt% cannot improve the lubricity o f the mud. Also, 

lubricity coefficient for nanoparticle-based muds is greater than the maximum API value for 

lubricity coefficient. Thus, TiO2 nanoparticle-based muds do not satisfy the API lubricity 

requirement.
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Figure 10: Effect of Nanoparticle Size on Lubricity Coefficient

4.2.3 Effect of Type

In this scenario, the influence o f nanoparticle type on the lubricity o f nanoparticle-based muds has 

been investigated. In this scenario, four different nanoparticles, namely AhO3, Fe3O4 and two SiO2 

nanoparticles, one without any coating and other with KH550 coating, have been tested at a 

concentration o f 0.5 wt%, the results o f which have been presented in Fig. 11.

Lubricity coefficient measurements for SiO2 with KH550, SiO2 without coating, AhO3 and Fe3O4 

nanoparticles were within relative standard deviation o f 3.1%, 2.6%, 1.4% and 0.6%, respectively. 

Indicating, good repeatability for all the tested nanoparticle types. As can be seen from Fig. 11, 

the lubricity coefficient for nanoparticle-based muds is greater than that of the base mud. The 

ascending order o f increasing lubricity coefficient among the nanoparticles is Fe3O4, SiO2 with 

KH550 coating, SiO2 w ithout coating and AhO3. A potential reason for the Fe3O4 nanoparticle 

having a lubricity coefficient similar to that of the base mud may be its low specific surface area, 

high bulk density and positive charge. Owing to its high bulk density, the Fe3O4 nanoparticle will
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have fewer particles in suspension compared to other types o f nanoparticles, also due to its surface 

being positively charged, it will cause particle aggregation. Thus providing less friction compared 

to other nanoparticles. The lubricity coefficient o f the SiO2 with KH550 coating nanoparticle is 

lower than SiO2 without coating nanoparticle due to the presence o f the coating on the former, 

which protects against size degradation, thus reducing its lubricity coefficient in comparison. In 

this scenario, the AhO3 nanoparticle exhibits a higher lubricity coefficient than other nanoparticles 

due to the fact that it has higher specific surface area, leading it to have greater friction and 

subsequently a higher lubricity coefficient. In this scenario, as the lubricity coefficient of 

nanoparticle-based muds is greater than that o f the base mud, the addition o f different nanoparticles 

at a concentration o f 0.5 wt% has adverse effects on the drilling m ud’s lubricity. Also, lubricity 

coefficient for different nanoparticle-based muds is greater than the maximum API value for 

lubricity coefficient. Thus, the tested different types o f nanoparticle-based muds do not satisfy the 

API lubricity requirement.
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Figure 11: Effect of Nanoparticle Type on Lubricity Coefficient
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4.2.4 Effect of Aging

In this scenario, the influence of aging on the lubricity of nanoparticle-based muds has been 

investigated. In this scenario, eight different nanoparticles, namely SiO2 with KH550 coating, SiO2 

without coating, four different sizes o f TiO2 nanoparticles (5 nm, 10 nm, 15nm and 50 nm), AhO3 

and Fe3O4 have been tested at a concentration o f 0.5 wt%, the results o f which have been presented 

in Fig. 12.

Lubricity coefficient measurements for aged SiO2 with KH550 and SiO2 without coating 

nanoparticles were within relative standard deviation o f 0.1% and 0.7%, respectively. While, aged 

different sizes o f TiO2 nanoparticle were within relative standard deviation o f 2.5% for 5 nm, 0.6% 

for 10 nm, 0.3% for 15 nm and 0.2% for 50 nm. The relative standard deviations for AhO3 and 

Fe3O4 nanoparticles were zero as the measurements were carried out only once, due to their limited 

amount. As can be seen in Fig. 12, aging has a significant effect on the lubricity coefficient of 

nanoparticle-based muds. In the case of the base mud, aging leads to an increase in the lubricity 

coefficient, which may be explained by dispersion of clay particles upon exposure to high 

temperatures. For both SiO2 nanoparticles, aging decreases the lubricity coefficient, which may be 

due to the flocculation they cause, reducing the number of particles in suspension and improving 

the lubricity. However, the lubricity coefficient o f the SiO2 w ithout coating nanoparticle is higher 

than that o f the SiO2 with KH550 coating nanoparticle due to a greater number o f nanoparticles in 

dispersion. However, for TiO2 nanoparticle, the trend for lubricity with increasing size remains 

moreover the same upon aging. In case o f the TiO2 5 nm nanoparticle, there might be breaking of 

agglomerated nanoparticles, leading to an increase in surface area and subsequent increase in 

friction. As explained in Section 4.1.4, upon aging, dissociation o f clay might occur and due to 

presence o f positive charge on TiO2 nanoparticle particle aggregation can occur. Thus the 

combined effect o f both the reasons may cause the lubricity coefficient trend observed for TiO2 10 

nm, TiO2 15 nm, TiO2 50 nm, AhO3 and Fe3O4 nanoparticles. However, if  we contrast the lubricity 

o f nanoparticle-based muds with aged base mud (Fig. 12), aged SiO2 with KH550 coating, SiO2 

without coating and Fe3O4 nanoparticles have lubricity coefficients lower than that o f the aged 

base mud. This amounts to improvements o f 4.81%, 2.93% and 9% for KH550 coating, SiO2 

without coating and Fe3O4 nanoparticles, respectively, compared to the aged base mud. Upon 

aging, these nanoparticles can improve the m ud’s lubricity compared to that o f the aged base mud.
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Also, lubricity coefficients for aged nanoparticle-based muds is greater than the maximum API 

value for lubricity coefficient. Therefore, aged nanoparticle-based muds do not satisfy the API 

lubricity requirement.

Figure 12: Effect of Aging on Lubricity Coefficient 

4.3 The Influence on Filtration

In this subsection, the effects o f nanoparticle concentration, nanoparticle size, nanoparticle type 

and aging on the filtration property o f the nanoparticle-based muds have been investigated, while 

experimental results have been reported, analyzed and discussed. Also, the filtration loss o f the 

nanoparticle-based muds has been compared to the API specification.
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4.3.1 Effect of Concentration

In this scenario, the influence of nanoparticle concentration on the filtration property of 

nanoparticle-based muds has been investigated. Two nanoparticles, SiO2 without coating and SiO2 

with KH550 coating, have been tested at concentrations o f 0.01, 0.05, 0.1, 0.25, 0.5 and 1 wt%, 

the results o f which have been presented in Fig. 13.

Filtration loss measurements for SiO2 with KH550 nanoparticle were within an average relative 

standard deviation o f 2.2%. While, SiO2 without coating nanoparticle measurements were within

0.5%. Indicating, accuracy in measurements and good repeatability. As can be seen in Fig. 13, the 

filtration loss (FL) for both nanoparticles increases with increasing nanoparticle concentration. A 

potential reason for this behavior may be related to the propensity o f nanoparticles to agglomerate. 

It may be that at low concentrations, the nanoparticles can effectively plug the pores due to a 

limited number of particles in dispersion, while at higher concentrations, they might start to 

agglomerate. The agglomerated nanoparticles form a highly porous/permeable layer beneath the 

main filter cake, thus increasing fluid loss (Mahmoud et al., 2016). In addition, greater filtration 

loss is observed for the SiO2 w ithout coating nanoparticle than the SiO2 with KH550 coating 

nanoparticle. This may be due to the presence o f a greater number o f particles o f the former than 

the latter nanoparticle. Also, it can be seen that FL for nanoparticle-based muds is lower than that 

o f the base mud at lower concentration (< 0.25 wt%). Showing improvements o f 11.9%, 9% and 

10.9% for the SiO2 with KH550 coating nanoparticle, and 6.25%, 4.38% and 1.9% for the SiO2 

without coating nanoparticle, at 0.01, 0.05 and 0.1 wt%, respectively. This indicates that, compared 

with the base mud, adding a small amount o f SiO2 nanoparticles (< 0.25 wt%) can improve the 

m ud’s filtration characteristics, while higher SiO2 nanoparticle concentrations (> 0.25 wt%) have 

an adverse effect on filtration property of the mud. As the maximum value of FL in API 

specification is same as the FL in case o f the base mud, it can stated that at low SiO2 nanoparticle 

concentrations (< 0.25 wt%), the prepared nanoparticle-based muds satisfy the API requirement. 

While, at higher SiO2 nanoparticle concentration (> 0.25 wt%), the prepared nanoparticle-based 

muds do not satisfy the API requirement.
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Figure 13: Effect of Nanoparticle Concentration on Filtration loss 

4.3.2 Effect of Size

In this scenario, the influence o f nanoparticle size on the filtration property o f nanoparticle-based 

muds has been investigated. For this scenario, TiO2 nanoparticles were tested at four different 

sizes, 5, 10, 15 and 50 nm, at a concentration o f 0.5 wt%, the results o f which have been presented 

in Fig. 14.

Filtration loss measurements for different sizes o f TiO2 nanoparticle were within relative standard 

deviation o f 1.4% for 5 nm and 0.9% for 50 nm. While, the relative standard deviation for 10 nm 

and 15 nm was 0%. Indicating, good repeatability and precision of measurements. As can be seen 

in Fig. 14, filtration loss o f nanoparticle-based muds decreases with increasing nanoparticle size 

from 5 nm to 10 nm, after which FL increases slightly with increasing size from 10 nm to 50 nm. 

The inability of the TiO2 5 nm nanoparticle to limit FL may be due to its small size, because of 

which it might agglomerate more and form a porous/permeable nanoparticle layer beneath the 

filter cake, leading to increase in FL. Increases in size to 10 nm, 15 nm, and 50 nm have little effect 

on FL. For the 10 nm nanoparticle, FL is same as that o f the base mud, while for nanoparticle sizes
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of 15 nm and 50 nm, there is a minuscule increase in FL, which may be due to nanoparticle 

agglomeration. Therefore, in this scenario, the addition o f different sizes o f TiO2 nanoparticle at

0.5 wt% does not improve the filtration characteristics o f the mud. Also, the TiO2 nanoparticle- 

based muds do not satisfy the API requirement at nanoparticle concentration o f 0.5 wt%.

25
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Nanoparticle Size, nm

Figure 14: Effect of Nanoparticle Size on Filtration loss 

4.3.3 Effect of Type

In this scenario, the influence o f nanoparticle type on the filtration property o f nanoparticle-based 

muds has been investigated. In this scenario, four different nanoparticles, namely AhO3, Fe3O4 

and two SiO2 nanoparticles, one without any coating and other with KH550 coating, have been 

tested at a concentration o f 0.5 wt%, the results o f which have been presented in Fig. 15.

Lubricity coefficient measurements for SiO2 with KH550, SiO2 without coating, AhO3 and Fe3O4 

nanoparticles were within relative standard deviation o f 2.7%, 0.8%, 4.2% and 1.9%, respectively. 

Indicating, good repeatability for all the tested nanoparticle types. As can be seen in Fig. 15, the 

filtration loss for nanoparticle-based muds is greater than for the base mud. The ascending order 

o f increasing FL among the nanoparticles is Fe3O4, SiO2 with KH550 coating, SiO2 without
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coating and AI2O3. The FL for both S1O2 nanoparticles is comparable and, as discussed before, 

may be due to agglomeration o f nanoparticles beneath the filter cake, which would not aid in 

effective plugging o f pores and would lead to increased FL. FL is substantially greater for the 

AhO3 nanoparticle, which might be due to its high degree o f agglomeration caused in it, due to its 

large specific surface area, the number o f particles and positive charge. Also, it forms a thicker 

mud cake, which would be permeable and quite porous, leading to greater FL. The FL for the 

Fe3O4 nanoparticle is slightly greater than that o f the base mud and less than that o f other 

nanoparticles, which may be due to its lesser number o f particles in dispersion, pointing to slight 

nanoparticle agglomeration in the filter cake. Also, in this scenario, as the filtration loss of 

nanoparticle-based muds is greater than that o f the base mud, the addition o f different nanoparticles 

at a concentration o f 0.5 wt% has an adverse effect on filtration characteristics o f drilling mud. As 

the nanoparticle-based muds have filtration loss more than maximum filtration loss API value, 

they do not satisfy the API requirement.
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Figure 15: Effect of Nanoparticle Type on Filtration loss
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In this scenario, the influence o f aging on the filtration property o f nanoparticle-based muds have 

been investigated. In this scenario, eight different nanoparticles, namely SiO2 with KH550 coating, 

SiO2 w ithout coating, four different sizes o f TiO2 nanoparticles (5 nm, 10 nm, 15nm and 50 nm), 

AhO3 and Fe3O4 have been tested at a concentration o f 0.5 wt%, the results o f which have been 

presented in Fig. 16.

Filtration loss measurements for aged SiO2 with KH550 and SiO2 without coating nanoparticles 

were within relative standard deviation o f 2.9% and 0%, respectively. While, aged different sizes 

o f TiO2 nanoparticle were within relative standard deviation o f 3.6% for 5 nm, 0% for 10 nm, 2.2% 

for 15 nm and 1.2% for 50 nm. The relative standard deviations for AhO3 and Fe3O4 nanoparticles 

were zero as the measurements were carried out only once. As can be observed in Fig. 16, aging 

decreases filtration loss in nanoparticle-based muds. It is known that an increase in solid 

concentration o f the mud increases the FL (Ismail et al., 1994). In the case o f the base mud, aging 

leads to a slight increase in FL, which may be due to dissociation o f clay particles upon exposure 

to high temperatures. For both SiO2 nanoparticles, aging causes decrease in FL, which may be 

attributed to reduced agglomeration o f nanoparticles in the filter cake. Similarly, the decrease in 

FL for TiO2 5 nm, TiO2 10 nm, TiO2 15 nm, TiO2 50 nm, AhO3 and Fe3O4 nanoparticles after aging 

may be due to decrease in agglomeration o f nanoparticles. Also, it can be seen that TiO2 10 nm, 

TiO2 15 nm and Fe3O4 nanoparticles have FL less than that o f aged mud, showing improvements 

o f 7.4%, 2.16% and 2.47%, respectively. This indicates that after aging, TiO2 50 nm, AhO3 and 

Fe3O4 nanoparticles can limit fluid loss better than aged base mud. W hile on comparison with the 

non-aged base mud, aged TiO2 10 nm nanoparticle shows better filtration characteristics and 

satisfies the API requirement.

4.3.4 Effect of Aging
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Figure 16: Effect of Aging on Filtration loss
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Chapter 5.

CONCLUSIONS

This research investigated the influence o f various nanoparticles on drilling fluid’s rheological 

properties, lubricity and filtration characteristics. For clarity, the main points drawn from the 

experimental results are presented below.

1. Addition o f negatively charged nanoparticles improved the hole cleaning function o f the 

mud at low nanoparticle concentrations (<0.1 wt%).

2. Addition o f positively charged nanoparticles improved the hole cleaning function o f the 

mud.

3. Aging generally reduced the hole cleaning capability o f the drilling fluids. Two 

nanoparticles, TiO2 5 nm and Al2O3 nanoparticles, retained their hole cleaning capability 

after the aging process.

4. Increasing temperature, generally improves the hole cleaning capacity o f the mud.

5. At low nanoparticle concentration (<0.1 wt%), lubricity for silica nanoparticle-based muds 

was improved. With, SiO2 with KH550 coating nanoparticle performing better than SiO2 

without coating nanoparticle. W hile other tested nanoparticles failed to improve the 

lubricity o f the mud.

6. Aging had a mixed effect on the m ud’s lubricity characteristics. For base mud, it decreased 

the lubricity, while for majority nanoparticle-based muds it slightly improved the lubricity.

7. At low nanoparticle concentration (<0.25 wt%), filtration characteristics o f the silica 

nanoparticle-based muds were improved. At low nanoparticle concentration, the addition 

o f SiO2 with KH550 coating nanoparticle reduced filtration loss better than SiO2 without 

coating nanoparticle. Other nanoparticles failed to improve the filtration characteristics of 

the mud.

8. Upon aging, all the nanoparticle-based muds recorded decrease in fluid loss, with TiO2 10 

nm showing less fluid loss than base mud.
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Chapter 6.

RECOMMENDATIONS

The primary objective o f this study was to test the influence o f nanoparticles on water-based mud. 

An experimental investigation o f how nanoparticles affect mud properties was carried out by 

examining how m ud’s properties change with respect to nanoparticle concentration, size, type, 

aging and temperature. Even though the current study was thorough, it still has scope for extension 

and improvement in future. A few recommendations related to extending this work are presented 

below.

1. Unexpected results must be reinvestigated. For example, filtration characteristics for aged 

TiO2 10 nm nanoparticle should be redetermined as, it was the only nanoparticle which 

recored less filtration loss compared to the base mud. Also, rhelogical properties o f TiO2 5 

nm nanoparticle should redetermined as significant error was associated with them.

2. The effect o f nanoparticles should be investigated on formation damage.

3. The effect o f nanoparticle concentration on positively charged nanoparticles should be 

investigated.

4. For silica nanoparticles, the effect o f nanoparticle concentration should be examined at 

nanoparticle concentrations lower than 0.01 wt%.

5. The colloidal stability o f nanoparticle-based muds should be studied.

6. Scanning electron microscope (SEM) imaging and X-ray Defraction (XRD) analysis 

should be carried out for nanoparticle-based muds and their filter cakes, in order to 

understand the interaction o f nanoparticles with the clay particles.

7. Different aging temperatures should be tested to study the effects o f aging.

8. High temperature high pressure (HTHP) filtration on nanoparticle-based muds should be 

examined.
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APPENDIX

Table A-1: API Specifications for Bentonite (API Specification 13A)

Suspension Properties Standard

Plastic Viscosity, cP Minimum 7

Yield Point, D.R. M aximum 46.95

YP/PV Maximum 6

Lubricity Coefficient Maximum 0.11

Filtrate Volume, ml Maximum 16

Table A-2: Rheology Data for SiO2 with KH550 coating

Pure Mud SiO2 with KH550 coating

Concentration, wt% 0 0.01 0.05 0.1 0.25 0.5 1

PV, cP 6.4825 6.879 7.653 8.604 8.792 9.7355 12.4705

YP, dial reading 8.844 14.506 12.1825 9.6285 5.4295 3.54 3.2025

n 0.1217 0.1007 0.11335 0.16555 0.2835 0.35295 0.46415

K 6.39625 10.58605 8.79705 5.69765 2.25425 1.21105 0.73925

Gel1 7.5 10 9 4.5 2 0.5 1

Gel2 13 18 15.5 13 8.5 6 6

YP/PV
1.364 2.109 1.592 1.119 0.618 0.364 0.257
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Table A-3: Rheology Data for SiO2 without coating

Pure Mud SiO2 without coating

Concentration, wt% 0 0.01 0.05 0.1 0.25 0.5 1

PV, cP 6.4825 7.0405 7.201 7.2235 9.698 11.849 12.8675

YP, dial reading 8.844 13.3045 12.1755 10.304 6.206 3.0655 2.6635

n 0.1217 0.09265 0.10215 0.13265 0.2717 0.514 0.52765

K 6.39625 10.18025 9.2059 6.81765 2.7405 0.58165 0.54925

Gel1 7.5 9 8.5 6 3 0.5 0.5

Gel2 13 17 16 13 9.5 5.5 5.5

YP/PV 1.364 1.890 1.691 1.426 0.640 0.259 0.207

Table A-4: Rheology Data for Different size of TiO2

Pure Mud TiO2 at 0.5 wt%

Particle Size, nm - 5 10 15 50

PV, cP 6.4825 8.0265 6.7975 6.075 5.587

YP, dial reading 8.844 31.7225 17.2135 19.942 20.005

n 0.1217 0.0839 0.089 0.07065 0.07185

K 6.39625 22.5927 12.94205 15.6166 15.6345

Gel1 7.5 29 14 16 16

Gel2 13 35 19.5 21.5 21.5

YP/PV 1.364 3.925 2.524 3.285 3.6
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Table A-5: Rheology Data for Different Nanoparticle Types

Pure Mud

SiO2 with KH550 

coating

SiO2 without 

coating AhO3 Fe3O4

PV, cP 6.4825 9.7355 11.849 23.233 5.8295

YP, dial reading 8.844 3.54 3.0655 67.626 19.753

n 0.1217 0.35295 0.514 0.0768 0.07165

K 6.39625 1.21105 0.58165 42.302 15.565

Gel1 7.5 0.5 0.5 68 16

Gel2 13 6 5.5 75 22

YP/PV 1.364 0.364 0.259 2.91 3.39

Table A-6: Rheology Data for Aged Pure M ud and Silica

Tested Media Pure Mud SiO2 with KH550 Coating SiO2 without coating

PV, cP 13.3625 17.78 18.902

YP, dial reading 7.3445 5.9715 5.9685

n 0.25685 0.3888 0.42295

K 3.4518 1.7745 1.5161

Gel1 3.5 2 2

Gel2 10.5 11.5 12.5

YP/PV 0.549 0.336 0.316
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Table A-7: Rheology Data for Aged Different Sizes of TiO2

Tested Media TiO2

Particle Size, nm 5 10 15 50

PV, cP 6.79 11.051 13.548 15.602

YP, dial reading 21.9035 13.769 13.5945 14.901

n 0.07555 0.1408 0.16715 0.16515

K 17.00545 9.0227 8.31545 9.3129

Gel1 19.5 9.5 9 10.5

Gel2 27 16.5 16.5 19

YP/PV 3.292 1.253 1.007 0.955

Table A-8: Rheology Data for Aged AhO3 and Fe3O4

Tested Media AhO3 Fe3O4

PV, cP 18.662 12.361

YP, dial reading 41.271 14.935

n 0.1069 0.1432

K 35.7772 9.7993

Gel1 62 10

Gel2 65 18

YP/PV 2.211 1.208
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Table A-9: Rheology Data for Pure Mud

Pure Mud

Temperature, oC 25 40 60 80

PV, cP 6.4825 3.702 3.123 1.616

YP, dial reading 8.844 12.141 15.076 16.373

n 0.1217 0.0736 0.068 0.0591

K 6.39625 9.5304 11.5085 12.5529

Gel1 7.5 10 13 15

Gel2 13 16 20 28

YP/PV 1.364 2.484 4.238 6.982

Table A-10: Rheology Data for SiO2 with KH550 coating

SiO2 with KH550 coating

Temperature, oC 25 40 60 80

PV, cP 9.736 6.597 5.235 4.706

YP, dial reading 3.540 4.329 5.628 9.962

n 0.353 0.2463 0.1589 0.0872

K 1.211 1.9965 3.4987 7.8109

Gel1 0.500 2 3 7

Gel2 6.000 8 13 30

YP/PV 0.364 0.557 0.899 1.425
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Table A-11: Rheology Data for SiO2 without coating

SiO2 w ithout coating

Temperature, oC 25 40 60 80

PV, cP 11.849 7.98 7.703 7.052

YP, dial reading 3.066 3.446 4.009 6.142

n 0.514 0.3313 0.2363 0.16

K 0.582 1.1972 2.2263 4.1337

Gel1 0.500 1 1 6

Gel2 5.500 8 11 24

YP/PV 0.259 0.765 1.056 1.447

Table A-12: Lubricity Coefficient for SiO2 with KH550 coating

Pure Mud SiO2 with KH550 coating

Concentration, wt% 0 0.01 0.05 0.1 0.25 0.5 1

Lubricity Coefficient 0.414 0.374 0.389 0.436 0.458 0.466 0.470

Table A-13: Lubricity Coefficient for SiO2 w ithout coating

Pure Mud SiO2 without coating

Concentration, wt% 0 0.01 0.05 0.1 0.25 0.5 1

Lubricity Coefficient 0.414 0.394 0.407 0.471 0.470 0.472 0.478
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Table A-14: Lubricity Coefficient for Different sizes of TiO2

Pure Mud TiO2 at 0.5 wt%

Particle Size, nm - 5 10 15 50

Lubricity Coefficient 0.414 0.532 0.507 0.488 0.495

Table A-15: Lubricity Coefficient for Different Nanoparticle Types

Pure Mud
SiO2 with 

KH550 coating

SiO2 without 

coating
AhO3 Fe3O4

Lubricity Coefficient 0.414 0.466 0.472 0.507 0.415

Table A-16: Lubricity Coefficient for Aged Pure Mud and Silica

Tested M edia Pure M ud SiO2 with KH550 Coating SiO2 without coating

Lubricity Coefficient 0.478 0.455 0.464

Table A-17: Lubricity Coefficient for Aged Different sizes of TiO2

Tested Media TiO2

Particle Size, nm 5 10 15 50

Lubricity Coefficient 0.545 0.496 0.491 0.491

Table A-18: Lubricity Coefficient for Aged AhO3 and Fe3O4

Tested Media AhO3 Fe3O4

Lubricity Coefficient 0.485 0.435
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Table A-19: Filtration Characteristics for SiO2 with KH550 coating

Pure Mud SiO2 with KH550 coating

Concentration, wt% 0 0.01 0.05 0.1 0.25 0.5 1

30 minutes, ml 16 14.1 14.55 14.25 16.25 18.5 19.7

Mud Cake Thickness, in 0.125 0.125 0.125 0.125 0.125 0.09375 0.09375

Table A-20: Filtration Characteristics for SiO2 w ithout coating

Pure Mud SiO2 without coating

Concentration, wt% 0 0.01 0.05 0.1 0.25 0.5 1

30 minutes, ml 16 15 15.3 15.7 16.3 18.65 19.7

Mud Cake Thickness, in 0.125 0.125 0.125 0.125 0.125 0.125 0.125

Table A-21: Filtration Characteristics for Different Sizes of TiO2

Pure Mud TiO2 at 0.5 wt%

Particle Size, nm - 5 10 15 50

30 minutes, ml 0.414 21.7 16 16.2 16.35

Mud Cake Thickness, in 0.125 0.1875 0.15625 0.125 0.125

Table A-22: Filtration Characteristics for Different Nanoparticle Types

Pure

Mud

SiO2 with 

KH550 coating

SiO2 without 

coating AhO3 Fe3O4

30 minutes, ml 16 18.5 18.65 24 16.2

M ud Cake Thickness, in 0.125 0.09375 0.125 0.28125 0.125
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Table A-23: Filtration Characteristics for Aged Pure Mud and Silica

Tested Media Pure Mud SiO2 with KH550 Coating SiO2 without coating

30 minutes, ml 16.2 17.5 18.1

Mud Cake Thickness, in 0.125 0.125 0.094

Table A-24: Filtration Characteristics for Aged Different sizes of TiO2

Tested Media TiO2

Particle Size, nm 5 10 15 50

30 minutes, ml 17.85 15 15.85 16.2

M ud Cake Thickness, in 0.125 0.125 0.125 0.125

Table A-25: Filtration Characteristics for Aged Al2O3 and Fe3O4

Tested Media AhO3 Fe3O4

30 minutes, ml 17.85 15

Mud Cake Thickness, in 21 15.8
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