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ABSTRACT ARTICLE HISTORY
Image similarity or distortion assessment is fundamental to a wide range of applications Received 11 August 2018
throughout the field of image processing and computer vision. Many image similarity Revised 5 April 2019
measures have been proposed to treat specific types of image distortions. Most of these Accepted 3 June 2019
measures are based on statistical approaches, such as the classic SSIM. In this paper, we KEYWORDS

present a different approach by interpolating the information theory with the statistic, Image similarity; information
because the information theory has a high capability to predict the relationship among theory; structural similarity
image intensity values. Our unique hybrid approach incorporates information theory measure; feature similarity
(Shannon entropy) with a statistic (SSIM), as well as a distinctive structural feature provided measure; edge detection;
by edge detection (Canny). Correlative and algebraic structures have also been utilized. This Gaussian noise
approach combines the best features of Shannon entropy and a joint histogram of the two

images under test, and SSIM with edge detection as a structural feature. The proposed

method (ISSM) has been tested versus SSIM and FSIM under Gaussian noise, where good

results have been obtained even under a wide range of PSNR. Simulation results using the IVC

and TID2008 image databases show that the proposed approach outperforms the SSIM and

FSIM approaches in similarity and recognition of the image.

Introduction parameter optimization in many applications of digital
image processing, such as image enhancement, image
compression, and image restoration. The aim of image
similarity is to produce methods for objective assess-
ment of quality versus subjective human image-quality
evaluation (Hassan Asmhan, Hussain Zahir, & Cailin,
2014). Image similarity compares two images to detect
how visually similar they are; it is also possible to
identify images that are identical, even if they are
taken from different sides or a different angle of the
same body or were under any distortion.

There are several challenges in the field of image
similarity. Some of these challenges are fundamental,
more application-specific, and actively being
researched. Some are resolved relatively, and others
remain largely unsolved. It is a real challenge when
the researchers designing a model of human visual
processing which can cope with natural images.
There is a need for improved models of the primary
visual cortex, more ground-truth data on natural
images, and models that incorporate processing by
higher-level visual areas. Researchers also face
a problem when designing an algorithm that can
cope with the diversity of distortions that image
similarity algorithms can face. Distortion of the
image’s appearance is a particular challenge when

It is a well-known task in digital image analysis to
compare the similarities of images. This comparison
may be limited to a special area of any image. The
measures of images similarity are methods that provide
a quantitative evaluation of the similarity between two
image regions or two images. These measures are used
as a base for registration measures because they provide
the information that indicates when the process of
registration is going in the appropriate direction.
Many of images similarity measures have been pro-
posed in the medical image field and computer vision
community. There is no right image similarity measure
but a set of measures that are appropriate for particular
applications (Qaid, 2015).

Image similarity involves retrieving similar-
looking images given a reference image. The ability
to find a similar set of images for a given image has
multiple uses and multiple cases from visual search to
duplicate product detection to domain-specific image
clustering (Appalaraju & Chaoji, 2017).

The measurement of image similarity is a necessary
issue in real-world applications. The measures of mage
similarity play a vital role in digital image processing. It
can be applied to improve the quality of the image and

CONTACT Song Feng Lu @ lusongfeng@hust.edu.cn @ School of Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan 430074, China
© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


http://orcid.org/0000-0002-6684-2572
http://orcid.org/0000-0002-1707-5485
http://orcid.org/0000-0003-3162-832X
http://orcid.org/0000-0003-4489-2488
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/22797254.2019.1628617&domain=pdf&date_stamp=2019-12-12

researchers want to design an algorithm for image
similarity. In fact, there are differences between dis-
tortions perceived as additive and distortions that
affect the image’s objects. There is a need for adaptive
visual approaches and other high-level effects that
humans use when judging quality. Images that are
simultaneously distorted by multiple types of distor-
tions are an interesting challenge for researchers who
design and improve image similarity approaches;
where the effects of multiple distortions on image
quality and the potential perceptual interactions
between the distortions and their joint effects on
images. Geometric changes to images are one of the
challenges of image similarity algorithms faced by
researchers (Chandler, 2013).

Related works

There are several mathematical concepts can have
a positive effect on image processes such as image
enhancement, image compression, image similarity,
or image recognition. Finding and using these concepts
represents the starting point for reaching the desired
goal. There are many works that dealt with the
approach of images similarity in different ways, but
the most characteristic method was based on the infor-
mation theory because information theory has a high
capability to predict the relationship between image
intensity values, especially when the use of this
approach in the identification of images and find simi-
larities between images for the purpose of recognition.

An image similarity measure (SEME) proposed by
(Silva, Panetta, & Agaian, 2007) is based on the mea-
sure of enhancement by entropy. This measure is
a modified version of the measurement of enhance-
ment by entropy (EME). Similarity-EME can be used
for image similarity and image quality because image
similarity assessment is closely related to image qual-
ity assessment in that quality is based on the apparent
differences between a degraded image and the origi-
nal, unmodified image. SEME has been compared
with and outperformed the existing measures
(SSIM, PSNR, and MSE) by applying on the database
of images compressed with JPEG.

The relationships among fuzzy logic entropy, simi-
larity, and subsethood measures are studied and cal-
culated based on their definitions by (Li, Qin, & He,
2013). The transformation of these measures has been
calculated by using new formulae.

(Hassan, Hussain, & Cai-Lin, 2014) proposed, ana-
lyzed, and tested HSSIM for image similarity using
the information-theoretic approach. The method
detects the similarity of images in the database
under the conditions of noisy. HSSIM is proposed
for general similarity testing between different kinds
of database images.
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The group theory and entropy function have been
considered in the similarity index by (Suarez, Garcia,
Barzaga, & Rodriguez Morales, 2015). The algebraic
group of images has been introduced by an inner law
for the subtraction of images which is proved that the
existence of the quotient group.

(Palubinskas, 2017) proposed Composite Means,
Standard deviations, and Correlation coefficient mea-
sure (CMSC), which based on the similar concepts in
structural similarity (SSIM) and Mean Squared Error
(MSE). CMSC is based on means, the square root of
the variance, and correlation. Many challenges have
been considered in CMSC measure such as mean
shift, contrast stretching, additive noise, multiplica-
tive noise, impulsive noise, and blurring.

(Aljanabi, Shnain, & Lu, 2017) introduced THS
image similarity metric based on information theory.
THS method based on Taneja entropy and the alter-
native of histogram; THS tested on the ORL and
Brazilian datasets against structure similarity and fea-
ture similarity.

kurtosis and skewness measure (KSDM) is
a measure for image similarity introduced by
(Shnain, Hussain et al., 2017). KSM is based on high-
order statistics (HOS). KSM focused on the statistical
properties of the images. The performance of KSM
applied versus SSIM and FSIM using AT&T database
and FEI image database.

(Shnain et al., 2017) proposed FSM similarity
approach which is based on the features of structure
similarity measure and feature-based similarity.
Canny edge detector has been used in the introduced
approach as a distinctive structural feature. FSM has
been tested under Gaussian noise and PSNR. The
Brazilian and ORL databases are the test environment
in the proposed approach.

In our recent paper (Aljanabi, Hussain, & Lu, 2018)
we proposed two entropy measures SHS and RSM
based on a joint histogram and entropies (Shannon
and Renyi). These measures have high performance
for the sake of image similarity and face recognition.

Similarity measures

Similarity measures are probably the most critical
element of a registration problem. The measures
define the goal of the process, and they measure
how well the target object is matched by the reference
object after the transformation has been applied. The
measures should be selected in view of the types of
objects to be registered and the expected kind of
misalignment. Some measures have a rather large
capture region, which means that the optimizer will
be able to find his way to a maximum, even if the
misalignment is high. Typically, large capture regions
are associated with low precision for the maximum.
Other metrics can provide high precision for the final
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registration but usually need to be initialized quite
close to the optimal value.

Unfortunately, there are no clear rules on how to
select a measure, other than trying some of them in
different conditions. In some cases, there could be an
advantage to using a particular measure to get an initial
approximation of the transformation and then switch-
ing to another, more sensitive measure to achieve bet-
ter precision in the final result. Measures depend on the
objects they compare. In general, image similarity mea-
sures can be classified into two main directions: statis-
tical-based and information-theoretic-based quality
measures. The proposed measure (ISSM) incorporates
the two directions into one, and we utilized edge detec-
tion properties to provide a more reliable similarity
measure.

Structural similarity index measure (SSIM)

One of the must dependent measure for image similar-
ity is SSIM (structural similarity index measure). The
structural similarity measure is introduced by (Wang,
Bovik, Sheikh, & Simoncelli, 2004). A structural simi-
larity measure is based on the statistical measurements
such as the standard deviation (o) and mean (u) to
extract the statistical image features for image similarity
purpose. To get the similarity between the reference
image and a test image by a definition of a distance
function between the two images by using the SSIM by
this formula:

2uu, + ¢ ) (204 +c
gy = Lttt 1)

= 1
(ﬂ2+#2+6)(02+02+62>, W
x Ty DA% ™%

where S(x,y) is a structural similarity measure of
a statistical similarity between the test image (x) and
training image (y). The quantity u_ is the statistical
mean of pixels in the image x, (7,2( is the statistical

variance of pixels in the image x, p, is the statistical
mean of pixels in the image y, and ai is the statistical
variance of pixels in the image y. The quantities ¢; and
¢, are constants: ¢; = (le)2 where k is a small con-

stant and L is a maximum value of pixels; ¢, = (k,L)*
where L = 255.

Feature-Based Similarity Index (FSIM)

A Feature-based Similarity Index Measure (FSIM) is
a measure can be used to find the similarity in
images. FSIM has been proposed by (Zhang, Zhang,
Mou, & Zhang, 2011). FSIM is mainly based on two
basic features which are: the Phase Congruency (PC)
as a primary feature and the Gradient Magnitude
(GM) as a secondary feature. These features have

been passed in multi-stages to calculate the similarity
between images by using the final definition of FSIM:

2 e St (%) PCin(x)
erQ Pcm (x)

where 2 means the whole image spatial domain, PC
is a phase congruency and S; is a similarity resulting
from the combined similarity measure for phase con-
gruency Spc(x) and similarity measure for gradient
Sg(x), as given by the formulas:

S(x) = [Sec(x)] “.[Se(x)] P 3)

where a and P are parameters used to adjust the
relative importance of phase congruency(PC) and
gradient magnitude(GM) features.

FSIM = (2)

~ PC}(x).PC3(x) + T1

Spc(x) 4)
where T1 is a positive constant, inserted to raise the
stability of Spc (it was also included in SSIM), The
period notation is the form of multiplication for two
real numbers (similarity and Phase Congruency) in
Equation (2) and Phase Congruency (PC) in
Equation (4). The mathematical operation of period
notation is defined in the context as a dot (.) multi-
plication of two real numbers.

- 2G1 (X).Gz(x) + T2
N G]Z(X).GZZ(X) + T2

is the gradient similarity, where G = | /Gi(x) + G} (x)
is the gradient magnitude; G, and G, ‘are partial deri-

Sg(x) (5)

vatives of image f(x). The phase congruency PC is given
by the equation:
E(x)
PCx) = —=—"—— 6
TS NG ©

where € is a small positive constant, and

E(x) = VK3(x) + H?(x) (7)

where H(x) =), 0,(x) and K(x) = ), eu(x), 04(x)
= &(x) * M5 e,(x) = &(x) * M2, noting that M’ and
M, are even and odd symmetric filters on scale #, and
“*” denotes convolution. The function £(x) is a 1D
signal obtained after arranging pixels in different orien-
tations. The local amplitudes A, (x) are defined as:

An(x) = 1/e2(x) + 0%(x) (8)

where x is the position on scale #.

Joint histogram

The traditional way to compare two images to find
the similarity between these images based on the
histogram intensity is applicable in case if we have
some images in the database because if there are



many images in the database for instance image simi-
larity datasets there might be identical histograms for
very different images. So to avoid getting this situa-
tion (Pass & Zabih, 1999) proposed a joint histogram
to be alternative to the histogram and includes addi-
tional information without losing the features of the
histogram. The joint histogram selects the features of
the local pixel to construct a multidimensional histo-
gram. Let Hy;(x,y) is a 2D joint histogram entry for
image x and image y represents the probability that
a pixel intensity value i from image x co-occurs with
pixel intensity value j from image y. The normalized
joint histogram for two images x and y of size M X N
is defined here as follows:

H(x,y) = [Hj] )
where:
Number of joint events (x =i,y = j)
i = (10)
M XN
or:
Hijzl{x=l}ﬂ{y=1}| (an

M x N

We used a Joint Histogram (JH) as a basic element in
this work and combine it with the entropy element
and the structural measure (SSIM) to get the pro-
posed measure (ISSIM).

The proposed measure (ISSM)

Image similarity belongs to a more general category
known as image quality assessment. Although there
are many measures that have tried to reduce the
challenges faced by the approach of image similarity
or object recognition within the images, the chal-
lenges and problems still exist so far, so requires
more effort and work in this direction to get the
reliable algorithms and its role to increase the rate
of success in testing the similarity of images for the
sake of identifying or searching for. The most dis-
turbing problem in image similarity is the confusing
high similarity given by a specific measure between
the reference image and other images in the database.
Therefore, we proposed a novel and unique image
similarity measure based on the combined of the
statistical and information theory approach for
image similarity. In information theory, the main
domains of interest in this paper are Shannon
entropy theory and joint histogram. In the statistic,
the main domain of interest in image similarity is
SSIM. The foundations for entropy are in informa-
tion theory, which is the mathematical theory for
communication developed in the seminal work of
Shannon (Cover & Thomas, 1991). Central to the
theory is the concept of entropy (Shannon) and
how lossless images similarity-recognition measure
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can be constructed efficiently. Entropy is the expected
value of the information. Entropy has several applica-
tions in statistical mechanics, coding theory, statistics,
and related areas. Emerging fields have also used
entropy, such as image similarity (Golshani, Pasha,
& Yari, 2009). The most significant entropy in appli-
cations is Shannon entropy, whose mathematical for-
mula is given by:

B = -3 palloglptx) (12

where E; represents the entropy, x is a discrete random
variable x = {x;,x2, ... ,x,} and p(x;) is a probability
of event x;, p € [0, 1]. Here the probabilistic events are
the elements of the 2D joint histogram between two
images (test image and reference image).

Now we apply the entropy to measure the infor-
mation held in the joint histogram that represents the
joint probability of pixel co-occurrence. Note that
both i and j range from 0 to L = 255. Shannon
entropy measure is applied to get Entropy-
Histogram Similarity Measure (EHS) as follows:

MxN

EHS(x,y) = — > _ T(k) -log,[T(k)] ~ (13)
k=1

where T = H(:) reshapes the 2D joint histogram H
into a one-dimensional column vector T via the
colon operator, as defined in MATLAB, with a new
dimension 1 x (M - N). After getting the EHS, the
inclusion of edge effects using Canny’s method
(Canny, 1987) into ISSM to give more reliable simi-
larity measure. The Canny edge detector is the effec-
tive edge detection algorithms because it is based on
three criteria in estimating the efficiency of the algo-
rithm. The first criterion is to achieve the lowest
percentage of error in the number of edges to be
detected and this is reflected in not ignoring the real
edges as much as possible and not detect the false
edges as much as possible. The second criterion is
that adopted by the Canny algorithm is accuracy in
edge detection which means achieving the least pos-
sible distance between the location of the specified
edge and its real location in the image. The third
criterion is to make the algorithm one response to
the same edge as this criterion is a complement to the
first and second criterions because the repetition of
the edge means the addition of false edges (shadow
edges) and therefore difficult to detect the precise
location of the edge. These features, as well as the
other features contributed by the other concepts in
the proposed algorithm, lead us to say that the intro-
duced measure is unique because it depends on the
operation of more than one scale in the process of
finding similarities or identifying images and that is
actually why we used Canny; noting that C(x,y) is
the 2D edge correlation coefficient defined as:
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C( — Zi Z](gl]* gO) (hzj - ho)
X,y) =
\/[Z’ Zj (gif - go)z} {Z; E:] (hij - ho)z}

(14)

where g and h are the new images resulting from
applying an edge detection technique to the test
images x andy, respectively, while g, and hy are
their global means. Peak Signal to Noise Ratio
(PSNR) was used in this test as follows:
L2
PSNR = — (15)
Py,

where L = 255 is the maximum value of illumination
and P, is the power of the Gaussian noise. Now we have
four robust basic concepts have been used together for
the first time in this paper: Information theory (Shannon
entropy), Joint Histogram (JH), Statistic (SSIM), and
edge detection (Canny). The main principles of informa-
tion theory, which provides a framework for eflicient
images similarity from a statistical perspective. One of
the fundamental theories is Shannon entropy. In this
paper, the widely used and examined Shannon entropy
is introduced and its application to image similarity and
image recognition due to its speed and good compaction
performance. We applied Shannon entropy to the joint
histogram as a probabilistic distribution to get Shannon-
Histogram Similarity (EHS) as one measure; next we will
use it in Equation (16) with SSIM and edge detection,
hence we propose the following image similarity measure
equation:

C(x,y).EHS(x,y).(a+Db) + e
a.C(x,y).EHS(x,y) + b.EHS(x, y) + c¢.S(x,y) + e
(16)

I(x7y) =

where I(x, y) represents the proposed ISSM similarity
between two imagesx and y; usually, x represents the
reference image and y represents a corrupted version
of x. EHS is the Entropy-Histogram Similarity as
defined in Equation (13) and S represents SSIM as
defined in Equation (1). The constants are chosen as
a=0.3,b=0.5 and c = 0.7 are added to balance the
quotient and avoid division by zero and inserted to
raise the stability. Chosen any other constants give
similar results approximately in the distance function
between the highest match and the second-best match.
In fact, what distinguishes this proposed measure and
makes it unique is when it is implemented to find
similarities between images or identify images as in
the faces, all these elements are used simultaneously.
We have combined all four concepts in one algorithm
that can run all these tools and to find the similarities
between the images or to recognize the images and
thus the results are very accurate and reliable in secur-
ity and other purposes and the most characteristic
feature of the ISSM measure and that makes it unique

is the great combination between two basic approaches
in image similarity which are statistical approach and
information theoretic approach while the previous
measures were based on either statistic direction such
as the well-known SSIM or based on information
theory such as (Aljanabi et al, 2017, 2018), and
(Aljanabi et al.,). ISSM chose the features of the struc-
tural similarity index measure due to its performance
in such image processing field and entropy as an
information theory measure. The main properties of
the proposed algorithm are mainly all the properties of
the main components of the I(x,y), which are the
extraction of the statistical properties of the image by
the statistical method (SSIM) and theoretical proper-
ties of the image using the theoretical approach
(Shannon entropy and joint histogram), hence to
sum up the properties of Equation 16 is the combina-
tion of the components properties. The proposed mea-
sure, namely ISSM, reduces confusion by giving a very
small similarity (near zero) between unrelated images;
ISSM has been tested under the condition of Gaussian
noise and a wide range of PSNR. In particular, the
discussion examines how information theory and sta-
tistic theory are used to establish performance bounds
for images similarity and recognition. The proposed
methodology was applied to actual data under several
situations which include pure and contaminated data.

Motivation

A high level of uncertainty about the similarity of
two images, for example, the reference image and
test image in the same database is one of the most
difficult challenges faced by researchers in measur-
ing similarities between images, especially when the
image has low resolution, distorted, different light-
ing and background changes. In this work, we have
contributed to reducing these challenges regarding
the similarity of images. We proposed new image
similarity measures, these measures are built using
an information-theory approach combined with
statistics; they proved to be very accurate in finding
similarity between images with more confidence
than existing images similarity and image recogni-
tion measures. Our method is motivated by the
problem of finding image similarity in large data-
bases, where reduced confidence may open the
door for big confusion. The aim of this work is to
provide metrics to find the similarity between
images, this can be used in case of nonface images.
High performance and accuracy are the main fea-
tures of proposed measures as compared to existing
measures. Although other measures may have the
ability to find the similarity between images (even
for image recognition), the proposed measures have
high confidence by giving almost a near-zero value
in case of different images, while other measures



give a nontrivial amount of similarity when com-
paring different images.

Experimental results and performance

We have implemented the proposed measures on
MATLAB and tested their performance against
other measures as follows.

Test environment: image databases

There are several publicly available image databases in
the image similarity community, including TID2008 as
shown in figure 1 and image and video-communication
(IVC) as shown in figure 2. Both are used here for
algorithm validation and comparison. TID2008 contains
25 reference images and 1,700 distorted images (25
reference images x 17 types of distortions x 4 levels of
distortions) (Ponomarenko et al., 2009). The IVC data-
base has 10 original images and 235 distorted images
generated from four different processes: JPEG,
JPEG2000, LAR coding, and blurring (Ninassi, Callet,
& Autrusseau, 2005). In this paper, we use part of each
of the TID2008 and IVC databases for implementation
and we use six complex-distorted versions as image poses
to test, compare, and prove that the proposed ISSM
outperforms the well-known SSIM and feature similarity
index measure (FSIM) in a recognition test.
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Performance criterion

Performance of the proposed ISSM measure has been
tested against other efficient image similarity measures:
SSIM and FSIM. The criterion for good performance is
the amount of confusion in deciding how similar the
reference image with the noise version of it is. This
confusion is measured by the difference in similarity
produced (by a specific measure) between the reference
image and the database images. If a measure gives little
difference in similarity between unrelated images, that
means the confusion is high and the performance is low.

The difference in the values of the peaks of each
measure is a new feature showing the high performance
of the proposed measure (ISSM). If the distance between
the highest match and the second-best match is higher,
that means the measure has better performance; and vice
versa, i.e., if the distance is less, that means the measure
has been confused in deciding the best match by giving
a non-trivial similarity between the different images. The
new feature of recognition confidence can be very useful
in security systems of big databases.

Results and discussion

Performance Comparison with Image Similarity
Metrics

The performance of the proposed ISSM indices will be
evaluated and compared with two representative

Figure 2. Ten IVC reference images used for the test and comparison image similarity measures.
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similarity metrics: SSIM and FSIM. In this work, we have
two kinds of tests — one is for similarity and the other for
recognition — to evaluate and test the proposed ISSM
versus the well-known SSIM and FSIM. In the first test,
we used some images from the environment of the two
databases (TID2008 and IVC, respectively) randomly;
note that other images also achieve good results with
high performance. Figures 3-6 have three images: (a) is
the original reference image from databases, (b) is the
noise version of the reference image, and (c) represents
the performance of our proposed similarity measure
compared with the SSIM and FSIM, where the proposed
ISSM gives more confidence in the similarity decision
between the reference image and the noise image under
the Gaussian noise condition and a wide range of PSNR.

As shown in the figures above, the ISSM is superior in
the similarity between the original image and the noise of
the same image under the condition of Gaussian noise
and PSNR. Now, we have to evaluate the proposed ISSM
against SSIM and FSIM to find the similarity by using the

(a) (b)

Image1, gn-noisy,

psnr(dB)= 15

noise image of the original image and compare with the
different image in the database. In this test, the work of all
measures (SSIM, FSIM, and ISSM) is to decide how they
are similar between the noise image and the different
image, whether these two images are highly similar or
highly dissimilar. The proposed measure gives (near zero)
similarity between unrelated images, while the other mea-
sures give a non-trivial amount of similarity between
different images. Figures 7-10 have four images: (a) is
the original image, (b) is the noise of the original image,
(c) is the different image in the databases (TID2008 and
IVC, respectively), and (d) is the performance comparison
among SSIM, FSIM, and the proposed ISSM under
Gaussian noise and a wide range of PSNR.

On the other hand, the three measures (SSIM, FSIM,
and the proposed ISSM) were tested in their ability to
recognize the reference images with destructive images.
The following results show that the proposed ISSM is still
superior to the other measures. However, there is
another challenge to test measures in image recognition.

(C) (s1ir2nilarity with noisy version of same image vs. PSNR; Gaussian Noise)

o
®

Similarity
o
[}

04 S e SSIM with same img.
3 = = = FSIM with same img
ISSM with same img.

0.2

-20 -10 0 10 20 30 40 50 60
PSNR, dB

Figure 3. Performance of similarity measures using similar images from TID2008 database under Gaussian noise and wide range
of PSNR; (a) The test image; (b) The noise version of reference image; (c) Performance comparison among (SSIM, FSIM and ISSM)

under Gaussian noise using.

(@) (b)

Image1, gn-noisy,
psnr(dB)=15

Similarity

(C) (S1irénilarity with noisy version of same image vs. PSNR; Gaussian Noise)

.......... SSIM with same img.
= = = FSIM with same img
ISSM with same img.

o
3

o
)

I
~

0.2

et 1 L 1 L L 1
-20 -10 0 10 20 30 40 50 60
PSNR, dB

Figure 4. Performance of similarity measures using similar images from TID2008 database under Gaussian noise and wide range
of PSNR; (a) The test image; (b) The noise version of reference image; (c) Performance comparison among (SSIM, FSIM and ISSM)

under Gaussian noise.
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(S1iglilarity with noisy version of same image vs. PSNR; Gaussian Noise)

SSIM with same img.
= = = FSIM with same img
ISSM with same img.

1

0.8

o
=)

0.4

0.2

20
PSNR, dB

30 40 50 60

Figure 5. Performance of similarity measures using similar images from IVC database under Gaussian noise and wide range of
PSNR; (a) The test image; (b) The noise version of reference image; (c) Performance comparison among (SSIM, FSIM and ISSM)

under Gaussian noise.

(a) (b)
Image1, gn-noisy,
psnr(dB)= 15

L?.'

Similarity

(C) (S1ig\ilarity with noisy version of same image vs. PSNR; Gaussian Noise)

SSIM with same img.
= = = FSIM with same img
ISSM with same img.

0.8

o
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0.4

0.2

0 .
20 30
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Figure 6. Performance of similarity measures using similar images from IVC database under Gaussian noise and wide range of
PSNR; (a) The test image; (b) The noise version of reference image; (c) Performance comparison among (SSIM, FSIM and ISSM)

under Gaussian noise.

Note that incorporation of the statistical characteristics of
the image with the information theory in the proposed
ISSM gives robust and reliable results in the testing of
image recognition of all images in the databases used.
Figures 11-14 have three images: (a) is the original
reference image from databases, (b) is the distorted ver-
sion of the reference image, and (c) represents the per-
formance of our proposed similarity measure compared
with the existing measures. The proposed ISSM demon-
strates better performance in terms of recognition con-
fidence. Although the other measures (SSIM and FSIM)
correctly decide the proper image with maximum simi-
larity, they give low confidence in their decision because
there are many cases of distrust (big similarities with
wrong images) in their decisions (similarities). This is
a big challenge when we employ these measures in
security recognition tasks. ISSM gives more confidence
to decide the proper image from a database.

The difference in the values of the peaks of each
measure is a new feature showing the high performance
of the proposed measure (ISSM). If the distance between
the highest match and the second-best match is higher,
that means the measure has better performance and vice
versa; i.e. if the distance is less, that means the measure
has been confused in deciding the best match by giving
a non-trivial similarity between the different images. The
new feature of recognition confidence can be very useful
in security systems of big databases. The scores of various
measures (proposed and existing) for the shown images
and other images in the database has been shown in Table
1 and the confidence in recognition for SSIM, FSIM and
ISSM by using part of each of the TID2008 and IVC
databases for implementation and we use six complex-
distorted versions as image poses to test, compare, and
prove that the proposed ISSM outperforms the well-
known SSIM and feature similarity index measure
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(a) (b)

Image1, gn-noisy,
psnr(dB)= 15

Image1

(c)

Image2

(d) (Similarity with noisy version of different image vs. PSNR; Gaussian Noise)
R p— SSIM with different img. j " ' '
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Similarity
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Figure 7. Performance of similarity measures using dissimilar images under Gaussian noise; (a) The original image; (b) The noise
image; (c) Dissimilar image and (d) Performance of SSIM, FSIM and ISSM under Gaussian noise using TID2008 database.
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(d) (Sirl;\garity with noisy version of different image vs. PSNR; Gaussian Noise)

""""" SSIM with different img.
= = = FSIM with different img PRl
ISSM with different img. [, =
0.5 > 1
’
4
4
’
0.4 P 1
- -
2 o3t .
T
]
E
» 02f J
0.1} 3
0 s .
01 . . . . . . .
-20 -10 0 10 20 30 40 50 60

PSNR, dB

Figure 8. Performance of similarity measures using dissimilar images under Gaussian noise; (a) The original image; (b) The noise
image; (c) Dissimilar image and (d) Performance of SSIM, FSIM and ISSM under Gaussian noise using TID2008 database.
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Figure 9. Performance of similarity measures using dissimilar images under Gaussian noise; (a) The original image; (b) The noise
image; (c) Dissimilar image and (d) Performance of SSIM, FSIM and ISSM under Gaussian noise using IVC database.
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Similarity with noisy version of different image vs. PSNR; Gaussian Noise
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Figure 10. Performance of similarity measures using dissimilar images under Gaussian noise; (a) The original image; (b) The
noise image; (c) Dissimilar image and (d) Performance of SSIM, FSIM and ISSM under Gaussian noise using IVC database.
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Figure 11. Performance of recognition measures using original image from TID2008 database and distort of the original image;
(a) The reference image; (b) The distorted version of it; (c) Performance of SSIM, FSIM and ISSM. Confidence in recognition for
SSIM, FSIM and ISSM is 0.7285, 0.0837 and 0.9279 respectively.
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(b)

Image Recognition Using Similarity Measures
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Figure 12. Performance of recognition measures using original image and distort of the original image from TID2008 database;
(a) The reference image; (b) The distorted version of it; (c) Performance of SSIM, FSIM and ISSM. Confidence in recognition for
SSIM, FSIM and ISSM is 0.5808, 0.0918 and 0.9356 respectively.
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Figure 13. Performance of recognition measures using original image and distort of the original image from IVC database; (a)
The reference image; (b) The distorted version of it (c) Performance of SSIM, FSIM and ISSM. Confidence in recognition for SSIM,
FSIM and ISSM is 0.7339, 0.0854 and 0.9053 respectively.



EUROPEAN JOURNAL OF REMOTE SENSING . 13

Image Recognition Using Similarity Measures
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Figure 14. Performance of recognition measures using original image and distort of the original image from IVC database; (a)
The reference image; (b) The distorted version of it (c) Performance of SSIM, FSIM and ISSM. Confidence in recognition for SSIM,

Table 1. Results of applying the proposed algorithm to part
of each of the TID2008 and IVC datasets.

Measures

Images SSIM FSIM ISSM

1 0.8316 0.0862 0.9408
2 0.6965 0.0864 0.8919
3 0.6965 0.1025 0.9271
4 0.7596 0.0855 0.9136
5 0.7596 0.0929 0.8678
6 0.8665 0.0752 0.9263
7 0.8114 0.0798 0.9002
8 0.8225 0.0828 0.8994
9 0.7715 0.0915 0.8678
10 0.8201 0.0798 0.9405
1 0.8282 0.0906 0.8848
12 0.8543 0.0752 0.9123
13 0.8439 0.0828 0.9314

(FSIM) in a recognition test. Implementation should be
done in the least time and hence ISSM is better than
others as shown in Table 2 and computational time
analysis proves to be the fastest amongst all.

To show the real performance of the proposed mea-
sure, we provided an average similarity difference using

Table 2. Computational time analysis of the ISSM, SSIM, and
FSIM.

Measures Computational Time Analysis
ISSM 0.016s
SSIM 0.667s
FSIM 0.031s

FSIM and ISSM is 0.7269, 0.0797 and 0.9225 respectively.

all images as a reference image and all images as test
images. In this case, similarity difference is (best match of
reference image) - (second best match within any other
images). In this paper, we did an average of the similarity
as a confidence measure for all images in the TID2008
and IVC datasets. The global average can be obtained as
the mean of all these sub averages. Let s;; denote the
similarity confidence when the image (i) with the dis-
torted version of it (j) is the reference image while
recognizing image (i) among all images under distorted
(j), and let N refers to the number of all images (original
images and distorted images) and M denote the number
of original images. Then, the global confidence average is
taken as S,, = (%)Zle ij\il Sjj. Table 3 shows the
performance of the proposed ISSM versus other meth-
ods. The preparation of the database that is more suitable
for this approach (e.g., in security applications) should
take into consideration some important factors like light-
ing, expression, and viewpoint, while the reference image
should consider the same factors.

Table 3. The global average similarity difference of best
match and second-best match within all images.

Measures
All persons ISSM SSIM FSIM

0.0704 0.0625 0.0279

Average
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Future Directions. The Authors may extend their
testing the performance of similarity measures to
modern engineering systems, especially long-range
wireless channels as in (Mahmoud, Hussain, &
O’Shea, 2002, 2006); and short-range communication
systems as in (Lau & Hussain, 2005).

Conclusion

This paper presented an efficient and unique approach
to image similarity. The proposed Information theore-
tic-based Statistic Similarity Measure (ISSM) is based
on information theory and statistic. The incorporation
of Shannon entropy and joint histogram gives high
performance in image similarity. This merger is repre-
sented in an EHS measure in Equation (13), which
considers an information theory direction. SSIM was
used as a statistical direction with Canny edge detection
in the proposed ISSM in Equation (16). A wide range of
peak signal to raise ratios was used in this paper. The
performance of ISSM was tested against efficient exist-
ing similarity metrics: FSIM and structural similarity
SSIM. ISSM outperforms conventional SSIM and FSIM.
ISSM resolves the shortcomings of the existing mea-
sures of FSIM and SSIM. Experimental results showed
the superior performance of the proposed ISSM in
terms of correct decisions with minimal confusion in
image similarity and image recognition using the
TID2008 and IVC image databases.

In this work, we treat the whole image at once as
global image analysis. Also, the local analysis of
images can improve image similarity and image
recognition. Therefore, in the future work, we will
combine modern measures based on statistics and
others based on information theory to get better
results to find similarities between images or identify
images by finding similarities between them.
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