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Biological therapies are currently at the forefront of pharmaceutical innovation and drug discovery. 

Seminal developments in molecular biology and recombinant technologies in the 1990’s brought 

about a new era in biomedicine, inasmuch as they expanded the ability to manipulate the synthetic 

machinery of biological systems for the production of recombinant macromolecules with exquisite 

therapeutic potential and versatility. Most prominent among these developments were advances in 

the manufacture of humanised and human monoclonal antibodies in a streamlined fashion. 

Biotherapeutics then experienced a remarkable boom in the early 2000’s and currently remain the 

fastest-growing class of therapeutics. As the field of molecular biology continues to advance at an 

accelerated pace, manifold opportunities are presented to implement new tools and technologies 

in the design of novel biotherapeutics and the refinement of existing biological therapies. The 

empirical research contained in this thesis reports on various approaches to address crucial aspects 

of the development of novel biotherapeutics, and demonstrates the application of modern mass 

spectrometry methods to gain insight into the complex structural features of macromolecules.  

Three main aims were defined and addressed in this work. The first aim consisted in employing a 

tailored mass spectrometry method to acquire the site-specific glycan profile of an influenza 

surface glycoprotein that plays a crucial role in infectivity and antigenicity. The structural data 

obtained sheds light into antigenic properties of the virus that can aid in the design of recombinant 

vaccines. The second aim sought to evaluate a protein engineering strategy to improve the 

biophysical properties of monoclonal antibodies through the targeted insertion of glycosylation 

sites in strategic positions on the protein. The data reported demonstrates the capabilities of the 

technique to increase physical stability and underlines aspects that require further refinement 

moving forward. The final aim focused on the synthesis of a nanoparticle-based drug delivery 

platform that employs antibodies as targeting agents for increased treatment specificity. We 

demonstrated the feasibility of chemically modifying the antibody using concomitant protein 

functionalisation techniques to produce antibody-drug conjugates that bind to the surface of gold 

nanoparticles to serve as targeting agents. The synthesized nanocarrier is designed to accumulate 

preferentially in tumours through the enhanced permeability and retention effect, where it can 

subsequently engage in specific interactions with tumour cells via active-targeting of the antibody. 

Thesis Abstract 
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Altogether, the body of work presented in this thesis reports on novel experimental approaches 

that will aid in the design and production of next-generation biotherapeutics.  
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Preface 

Reports of the use of biological therapies can be traced back to the 1st millennium BC, with the 

employment of variolation in various regions of Africa and Asia. Variolation consisted in the 

inoculation of patients with smallpox pathogens through the administration of dried smallpox 

scabs into the nose of patients to prompt immunological protection – a rudimentary form of 

vaccination [1, 2]. The technique eventually spread to other parts of the world and by the 18th 

century it had reached Europe and America. By this point, it was common knowledge in Europe 

that dairymaids that had been infected with cowpox (a closely related virus) from contact with the 

cow’s udders could develop immunity against smallpox. Encouraged by this observation, English 

physician and scientist Edward Jenner hypothesized that cowpox could deliberately be inoculated 

into a patient to generate cross immunity against smallpox. Jenner tested his theory in a small 

subset of patients and published his work in a booklet in 1798; which, although initially criticised 

by the scientific community, eventually led to the spread of the technique of vaccination 

throughout Europe in the early 1800s [3, 4]. The medical community then devoted efforts into 

refining the method and developing vaccines against other infectious diseases. Louis Pasteur 

would later make the technique safer by introducing the principle of viral attenuation [5]. 

Vaccination has since become the clinical intervention with the most important contribution to 

global health, best reflected by the eradication of smallpox and dramatic reductions in the global 

incidence of polio and measles [6-8].  

Biological therapies (otherwise known as biotherapeutics, biopharmaceutics, and biologics) have 

since come a long way. Presently, biologics comprise a wide spectrum of therapeutic classes 

including vaccines, monoclonal antibodies, blood components, viruses, gene therapy, enzymes, 

and cytokines. Seminal developments in molecular biology and recombinant DNA technologies 

in the 1980’s and 1990’s enabled the manipulation of the synthetic machinery of living organisms 

to efficiently produce engineered macromolecules. The field then experienced a remarkable 

expansion since the late 1990’s with the approval of myriad recombinant products, and by 2016 

biotherapeutics comprised 25% of the global pharmaceutical market [9, 10]. Most pivotal among 

these developments was the invention of phage display technologies and complementarity-
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determining region (CDR) grafting for the production of humanised and fully-human monoclonal 

antibodies (mAbs) against predetermined molecular targets [11-13]. Therapeutic monoclonal 

antibodies now dominate the pharmaceutical market, featuring 7 of the top-10 best-selling drugs 

in 2018; and they continue to expand as the fastest growing class of therapeutics [14]. The 

astounding clinical success of mAbs has arisen from the structural and functional versatility of the 

molecule and the exquisite molecular specificity that they confer. On that account, tremendous 

research efforts are currently being devoted to implement recent technological advancements for 

the improvement of currently available therapeutic mAbs and the development of enhanced next-

generation antibody therapeutics. Prime examples of next-generation mAbs that have already 

reached the clinic include antibody fragments, fusion proteins, glycoengineered antibodies, 

antibody-drug conjugates (ADC), and bispecific antibodies (described in further detail in chapters 

3 and 6).  

Most biotherapeutics are structurally complex macromolecules, among which proteins and 

peptides are strongly predominant. In the case of proteins, the intrinsic complexity of their primary 

and higher-order structures is further complicated by post-translational modifications (PTMs) 

(e.g., glycosylation, phosphorylation, sulfation, hydroxylation, alkylation, N-acetylation, C-

terminal amidation) that have important implications in the biological activity and biophysical 

properties of the protein [15, 16]. Arguably the most tangible illustration of the latter is the case of 

mAb Fc glycosylation, wherein the absence of core fucosylation has been identified as a major 

determinant of antibody-dependent cellular cytotoxicity (ADCC), which has led to the 

development of cell lines engineered to have double knockout alleles of the enzyme responsible 

for fucose addition [17-19]. PTMs are mostly enzymatic processes sensitive to metabolic 

alterations, making it challenging to control structural heterogeneity and batch-to-batch variability. 

This poses significant hurdles in the analysis and characterisation of therapeutic proteins and can 

hinder the development of novel biotherapeutics.   

In this context, mass spectrometry (MS) has become a cornerstone in structural biology and 

currently plays a central role in the development of protein pharmaceuticals, biological therapies 

and biomarker identification. Mass spectrometry methods are particularly suited for the detailed 

study of post-translation modifications and are hence ubiquitously employed in such quality 

analyses. Broadly, different MS techniques can be applied in the analysis of an extensive range of 
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biomolecules, ranging from small metabolites to large protein complexes [20-22]. The current 

prominence of MS technologies in proteomics and protein analysis stems from numerous recent 

advancements in instrumentation and methodologies, particularly the development of 

macromolecule ionisation methods, such as electrospray ionisation (ESI), matrix-assisted laser 

desorption/ionisation (MALDI), and atmospheric pressure chemical ionisation (APCI) [23, 24]. 

Modern mass spectrometers offer exquisite m/z resolution and sensitivity, being able to detect 

molecules in the attomolar scale (10-18). The ability to couple MS instruments online to molecule 

separation methods such as liquid and gas chromatography greatly improves the analysis of 

complex samples, which can be aided by data-dependent acquisition methods (DDA) and tailored 

sample preparation workflows [25-27]. DDA methods involve the selection of predetermined 

precursor ions within allowed m/z ranges in an initial survey scan to be subjected to a subsequent 

stage of mass spectrometry. This ion “filtering” step is particularly useful in the targeted detection 

of low-abundance analytes in complex biological samples. Moreover, analysis of the 

fragmentation patterns produced through various activation modes (e.g., collision-induced 

dissociation (CID), high-energy collision dissociation (HCD), electron-transfer dissociation (ETD) 

and electron-capture dissociation (ECD)) in tandem mass spectrometry allows the elucidation of 

highly detailed structural information, as it is showcased in the experimental work in this thesis 

[28, 29]. 

Considering the opportunities that the current wealth of knowledge in molecular biology and 

biotechnology provide, the overarching aim of this thesis was to implement innovative protein 

engineering approaches aimed towards the development of improved biotherapeutics. The 

following body of work compiles a series of research manuscripts that delve into key aspects of 

the development of new generation biological therapies, with a strong component of mass 

spectrometry as a pivotal tool in the structural analysis of biomolecules.  

Aims and chapter description 

Aim 1 (Chapter 2) – Studying the glycan profile of influenza hemagglutinin to 

contribute to the design of improved vaccine platforms 

In contrast to the experience with antibody therapeutics and other biologicals, the development of 

rationally-designed recombinant vaccines for numerous infectious diseases remains elusive. In the 
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case of influenza, further elucidation of antigenic determinants and viral adaptation mechanisms 

are needed to improve rational design of recombinant platforms. Hence, we sought to make use of 

state-of-the-art mass spectrometry methods to study an important structural feature of the virus – 

the N-glycosylation profile.  

Chapter 2 – “Site-specific Glycosylation Profile of Influenza A (H1N1) Hemagglutinin 

Through Tandem Mass Spectrometry” – of this thesis describes a mass spectrometry-based 

methodology for the analysis of the site-specific glycan microheterogeneity of an influenza H1N1 

strain. Historically, the study of the evolution of the influenza virus dating back to the outbreak of 

the Spanish flu in 1918 has focused primarily on antigenic alterations in the surface glycoproteins 

(hemagglutinin and neuraminidase) caused by antigenic shift. These mechanisms indubitably play 

a critical role in viral adaptation to human immunogenic responses; however, recent reports have 

established that variations in the number and localisation of glycans on these proteins can have a 

significant contribution to antigenic masking and modulation of strain infectivity. We thus present 

a methodology that involves a simple preliminary fractionation and digestion step of the viral 

proteins obtained from whole inactivated viruses, followed by a tandem mass spectrometry setup 

that enables the analysis of digested glycopeptides. We employed this methodology on the 

hemagglutinin protein of an H1N1 strain as a proof of principle, and we were able to establish two 

important structural characteristics of the protein: (1) identification and confirmation of 

glycosylation sites, and (2) the monosaccharide composition of the glycans obtained from specific 

sites within the primary sequence. This site-specific analysis can easily be extended to the study 

of other relevant viral strains in order to obtain further insight into viral evolution and adaptation 

mechanisms. Chapter 2 was published in the Human Vaccines and Immunotherapeutics journal 

as: 

E. Cruz, J. Cain, B. Crossett, V. Kayser. Site-specific Glycosylation Profile of Influenza A 

(H1N1) Hemagglutinin Through Tandem Mass Spectrometry. Human Vaccines and 

Immunotherapeutics, 14(3) (2018), 508-517. 

The implementation of state-of-the-art structural analysis techniques like the one discussed in 

Chapter 2 will likely have pivotal contributions to the design of optimised treatment strategies 

and vaccine design. Importantly, mass spectrometry techniques can be utilized to study an 

extensive range of biomolecules, ranging from small metabolites to large protein assemblies. This 
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is further exemplified in Chapters 4, 5 and 7, where equivalent MS approaches were similarly 

employed in the development of novel antibody-based therapeutics as discussed hereafter. 

Aim 2 (Chapters 3, 4, and 5) – Targeted insertion of N-glycosylation sites to improve 

the physical stability of antibody therapeutics  

Chapter 3 – “The State-of-play and Future of Antibody Therapeutics” – is a comprehensive 

review on the current landscape of antibody therapeutics, and it serves as an introduction to 

Chapter 4 – “Enhancing the Stability of Adalimumab by Engineering Additional 

Glycosylation Motifs” – and Chapter 5 – “Glycan Profile Analysis of Engineered 

Trastuzumab with Rationally Added Glycosylation Sequons for Enhanced Physical 

Stability” – that report on an innovative approach to produce improved “biobetter” antibodies. 

The chapter gives an overview of important recent developments in antibody discovery and protein 

engineering strategies that aim to improve the therapeutic potential of the conventional IgG 

molecules that predominate in the market. Special focus is given to the limitations that derive from 

the intrinsic propensity of antibody molecules to aggregate, which represents a recurring problem 

in manufacturing and development of novel antibody therapeutics. The manuscript then discusses 

recently developed computational tools to identify aggregation-prone regions, which can then be 

targeted for replacement through mutagenesis as a means to improve the intrinsic physical stability 

of the protein. The latter engineering approach was implemented in Chapter 4 – “Enhancing the 

Stability of Adalimumab by Engineering Additional Glycosylation Motifs” – and Chapter 5 

– “Glycan Profile Analysis of Engineered Trastuzumab with Rationally Added Glycosylation 

Sequons for Enhanced Physical Stability” . This review was published in the Advanced Drug 

Delivery Reviews journal as: 

Z. Elgundi, M. Reslan, E. Cruz, V. Sifniotis, V. Kayser. The State-of-play and Future of 

Antibody Therapeutics. Advanced Drug Delivery Reviews, 122 (2017), 2-19. 

The next chapter of this thesis (Chapter 4 – “Enhancing the Stability of Adalimumab by 

Engineering Additional Glycosylation Motifs”) explores a novel engineering approach to 

enhance the intrinsic stability of antibodies against aggregation, using the blockbuster antibody 

adalimumab (Humira®) as a proof-of-concept. The strategy involved the insertion of glycosylation 

sequons on the primary structure of adalimumab to yield “hyperglycosylated” antibodies, 
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possessing glycans on engineered sites where the carbohydrate can shield identified aggregation-

prone regions. Various candidate mutants were produced and subsequently tested for their 

tendency to aggregate through accelerated stability studies. A variation of the MS method 

presented in Chapter 2 – “Site-specific Glycosylation Profile of Influenza A (H1N1) 

Hemagglutinin Through Tandem Mass Spectrometry” – was employed for structural 

characterisation of the mutants and confirmation of both the amino acid mutation and glycan 

attachment. Several of the tested mutants displayed enhanced thermodynamic stability, reflected 

by substantial increases in the melting temperature of the Fab domain where the glycan was 

introduced. Importantly, the mutations were performed on conserved regions of the antibody, 

meaning that they have potential for application on further IgG1 molecules. Chapter 2 has been 

submitted to the Biotechnology and Bioengineering journal as: 

M. Reslan, V. Sifniotis, E. Cruz, Z. Sumer-Bayraktar, S. Cordwell, V. Kayser (2019). 

Enhancing the Stability of Adalimumab by Engineering Additional Glycosylation Motifs. 

Biotechnology and Bioengineering. 

Given the established potential of the “hyperglycosylation” approach presented in Chapter 4 – 

“Enhancing the Stability of Adalimumab by Engineering Additional Glycosylation Motifs”, 

we sought to analyse the structural characteristics of the introduced glycans to better understand 

the conferred physicochemical properties. To achieve this, we performed equivalent mutations on 

another blockbuster antibody – trastuzumab (Herceptin®) – and carried out a detailed structural 

analysis of the glycan profile of the mutants. Once again, a mass spectrometry method similar to 

the ones presented in Chapter 2 – “Site-specific Glycosylation Profile of Influenza A (H1N1) 

Hemagglutinin Through Tandem Mass Spectrometry”  and Chapter 4 – “Enhancing the 

Stability of Adalimumab by Engineering Additional Glycosylation Motifs”, was employed, 

however the technique utilised herein was modified to obtain structural information of the 

carbohydrates, rather than glycopeptides. The global glycan profile of the “hyperglycosylated” 

mutants revealed that the added Fab glycosylation site greatly enhances the heterogeneity of glycan 

structures in contrast to the glycan microheterogeneity of the conserved Fc glycan. This 

observation reveals an important feature that will likely have to be addressed if this strategy is to 

be pursued in clinical development. Importantly, it was also established that most of these 

mutations on trastuzumab have only a minor impact on the binding affinity to biologically relevant 
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receptors. The latter was similarly reported for adalimumab, suggesting that the biological activity 

of antibodies that rely on effector functions is unlikely to be significantly altered through this 

strategy. Chapter 5 is prepared for submission as: 

E. Cruz, V. Sifniotis, Z. Sumer-Bayraktar, S. Cordwell, V. Kayser. (2019). Glycan Profile 

Analysis of Engineered Trastuzumab with Rationally Added Glycosylation Sequons for 

Enhanced Physical Stability. 

Aim 3 (Chapter 6 and 7) – Chemical functionalisation of an antibody molecule for 

employment as a targeting agent in the design of a nanoparticle drug delivery 

platform  

Chapter 6 – “Monoclonal Antibody Therapy of Solid Tumours: Clinical Limitations and 

Novel Strategies to Enhance Treatment Efficacy” – is a literature review that introduces the aim 

of Chapter 7 – “Synthesis and Enhanced Cellular Uptake In Vitro of Anti-HER2 

Multifunctional Gold Nanoparticles” –  that reports on an alternative approach to harness the 

specificity of antibody molecules to produce antibody-targeted nanoparticle delivery systems. The 

manuscript outlines critical challenges in the treatment of non-haematological cancers with 

monoclonal antibodies related to the architectural features of solid tumours. It emphasizes the 

importance of improving tumour penetration and distribution upon systemic delivery of an 

anticancer agent to prevent exposure to sub-therapeutic concentrations. It then briefly describes 

various novel strategies currently implemented or undergoing preclinical development to address 

such challenges. These include: (1) antibody-drug conjugates that aim to enhance intrinsic potency 

while maintaining selectivity, (2) antibody-based immune checkpoint inhibitors that can release 

the breaks of the immune anti-cancer response, and (3) nanoparticle formats that preferentially 

accumulate in solid tumours and can be granted further tumour-selectivity through the attachment 

of antibody molecules. This chapter is published in the Biologics: Targets and Therapy journal as: 

E. Cruz, V. Kayser. Monoclonal Antibody Therapy of Solid Tumours: Clinical Limitations 

and Novel Strategies to Enhance Treatment Efficacy. Biologics: Targets and Therapy. 13 

(2019), 33-51. 

Chapter 7 describes the synthesis of antibody-targeted nanoparticle formats designed for 

enhanced specificity towards HER2-positive tumours. Preferential accumulation of nanosized 
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materials has been validated in a wide range of mouse tumour models, and there is clinical 

evidence in human patients to support this effect. Enhanced localisation stems from the increased 

leakiness of tumour vasculature and concomitant impaired lymphatic drainage, leading to 

nanoparticles extravasation and accumulation, respectively. Hence, nanoparticles constitute an 

appealing vehicle for selective delivery of cytotoxic payloads to solid tumours. In this chapter, we 

employed gold nanoparticles as drug carriers due to their proven biocompatibility and ease of 

surface functionalisation. Taking advantage of the latter, the nanoparticles were granted further 

tumour specificity via surface-attachment of a trastuzumab (anti-HER2) antibody-drug conjugate. 

Trastuzumab was chemically modified to enable attachment of a potent cytotoxic agent 

(monomethyl auristatin E) via a cleavable linker for selective intracellular release. The antibody 

was then bound to the nanoparticle surface via a stable SH-gold bond through a polyethylene 

glycol linker. The nanoparticle format was tested in in vitro experiments, where it displayed 

enhanced cellular uptake and a potent cytotoxic activity in HER2-amplified cell lines. This 

manuscript demonstrates the feasibility of employing antibody-drug conjugates as a potentially 

superior active-targeting agent for payload delivery in solid tumours. Chapter 7 is published in 

the Cancers journal as: 

E. Cruz, V. Kayser. Synthesis and Enhanced Cellular Uptake In Vitro of Anti-HER2 

Multifunctional Gold Nanoparticles. Cancers, 11 (2019), 870. 

Notes on the format of the chapters 

Chapters 2-7 have been published, submitted, or prepared for publication. In the case of published 

and submitted material, the content included is identical to that of the published article, with the 

exception that some formatting changes have been made to standardise the style throughout the 

thesis. These formatting changes include a rearrangement of the order of the sections in some 

chapters, so that all research manuscripts are organised in the following order:  

1. Introduction  

2. Methods  

3. Results  

4. Discussion  
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5. Conclusions 

The format of the references has also been modified, so that all chapters follow the same style. 
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Abstract 

The study of influenza virus evolution in humans has revealed a significant role of glycosylation 

profile alterations in the viral glycoproteins – hemagglutinin (HA) and neuraminidase (NA), in the 

emergence of both seasonal and pandemic strains. Viral antigenic drift can modify the number and 

location of glycosylation sites, altering a wide range of biological activities and the antigenic 

properties of the strain. In view of the key role of glycans in determining antigenicity, elucidating 

the glycosylation profiles of influenza strains is a requirement towards the development of 

improved vaccines. Sequence-based analysis of viral RNA has provided great insight into the role 

of glycosite modifications in altering virulence and pathogenicity. Nonetheless, this sequence-

based approach can only predict potential glycosylation sites. Due to experimental challenges, 

experimental confirmation of the occupation of predicted glycosylation sites has only been carried 

out for a few strains. Herein, we utilized HCD/CID-MS/MS tandem mass spectrometry to 

characterize the site-specific profile of HA of an egg-grown H1N1 reference strain (A/New 

Caledonia/20/1999). We confirmed experimentally the occupancy of glycosylation sites identified 

by primary sequence analysis and determined the heterogeneity of glycan structures. Four 

glycosylation sequons on the stalk region (N28, N40, N303 and N497) and four on the globular 

head (N71, N104, N142 and N177) of the protein are occupied. Our results revealed a broad glycan 

microheterogeneity, i.e., a great diversity of glycan compositions present on each glycosite. The 

present methodology can be applied to characterize other viruses, particularly different influenza 

strains, to better understand the impact of glycosylation on biological activities and aid the 

improvement of influenza vaccines. 

Introduction 

Influenza viruses undergo a high rate of antigenic drift, leading to gradual antigenic modifications 

that are responsible for the persistent emergence of seasonal influenza strains. Occasional antigenic 

shift (viral reassortments) can also lead to pandemic outbreaks that pose a serious public health 

threat [1, 2]. The production of immunological memory after a primary exposure (through 

infection or vaccination) to influenza is essential to trigger an accelerated and efficacious immune 

response to subsequent infection [3, 4]. For this reason, it is crucial to elucidate the mechanisms 

that prompt such response and determine the viral antigens that elicit the generation of 

immunological memory.  
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The selection of annual strains for influenza vaccines relies on detailed characterization of the 

genetic and antigenic features of circulating viruses [5]. Due to their surface exposure, the envelope 

glycoproteins NA and HA play a prominent role in host immune cell recognition and are 

considered to be the main antigenic determinants in the virus [6, 7]. Influenza A viruses are thus 

further classified into subtypes according to the antigenic variants of their surface glycoproteins – 

18 HA (H1-H18) and 11 NA (N1-N11) subtypes [8]. HA is the most abundant protein in the viral 

envelope and is consequently also the focal point of virus surveillance [9]. 

The antigenic sites in HA are comprised mainly of polypeptide regions on the globular head; 

however, it has been demonstrated that the presence of glycans in the proximity of these sites can 

affect its biological activity, thereby altering immune cell recognition and receptor binding 

specificity [10, 11]. HA undergoes N-linked glycosylation (no O-glycosylation has been reported), 

whereby glycans are attached to asparagine residues within the consensus sequence Asn-Xaa-Ser 

(Xaa can be any amino acid except proline) [12, 13]. Hemagglutinin assembles as a homotrimer 

that displays a surface-exposed globular head formed by part of the HA1 chain, whereas the stalk 

region is comprised mostly of α-helix coils and a transmembrane domain from HA2 [9]. Both the 

stalk and the head region are often heavily glycosylated, and glycan attachment can affect a wide 

spectra of biological properties, such as immunogenicity, virulence and receptor specificity [14, 

15]. Overall, glycan attachment on the stalk region is highly conserved, and glycans on this area 

play a critical role in correct protein folding and membrane transport [16, 17]. Conversely, the 

globular head of HA exhibits a considerably higher rate of variation. Most antigenic sites are found 

on the HA head, therefore modifications on this region usually impair immune recognition [18, 

19]. 

Influenza subtype H1 has undergone extensive alteration over time in the number and position of 

glycans attached, mostly on the globular head [20]. These modifications are associated with 

adaptation mechanisms caused by antigenic drift, whereby novel virus subtypes avoid host cell 

immune recognition by masking antigenic regions through the variation in the localization or 

number of glycosites [20, 21].  

The consensus sequons required for N-glycosylation make it possible to analyse glycosylation 

occupancy profiles by searching for potential acceptor sites in the primary sequence of proteins. 

Sequence-based analysis of potential glycosylation sites on H1 has revealed that in the early stages 
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of virus evolution after the outbreak of the 1918 pandemic, the H1N1 virus subtype predominantly 

increased the number of glycosylation sites on its globular head. However, following 1950, the 

number of sites remained somewhat constant and the alteration in position became the prominent 

feature [20]. Strikingly, the H1 of the 2009 swine flu pandemic virus resembles the 1918 pandemic 

H1 not only in its antigenic epitopes, but also in that they both lack glycosylation sites near the Sa 

antigenic site [22, 23]. This absence of shielding glycans was an important factor contributing to 

the pathogenicity of the 1918 pandemic strain [14]. 

Although sequence-based glycosylation analysis has substantially contributed to the understanding 

of virus evolution, the information obtained through this method is only limited, as the sequons it 

identifies are not necessarily occupied [24]. For this reason, there remains the need to confirm site 

occupancy experimentally. Moreover, it is important to assess whether differences in glycoforms 

exist among strains, and determine if the potential variations have an impact on biological 

properties. To this end, mass spectrometry based methods, especially those based on collision-

induced dissociation (CID), higher-energy collision dissociation (HCD), electron-capture 

dissociation (ECD) and electron-transfer dissociation (ETD), are particularly suited to analyse 

protein posttranslational modifications [25, 26]. However, due to the experimental challenges that 

N-glycoproteomic analysis poses, characterization of site-specific glycosylation profiles has only 

been carried out for a few strains. 

In this study, we employed HCD/CID tandem mass spectrometry to map glycosylation sites and 

characterize the glycan microheterogeneity (i.e., the subset of glycan structures on each particular 

position within the protein) of an egg-grown A/New Caledonia/20/1999 H1N1 reference strain. 

We confirmed the occupancy of eight glycosylation sites on this reference strain – four on the stalk 

and four on the globular head. This profile was consistent to the one obtained through sequence-

based analysis using the NetNGlyc server for prediction of glycosylation potential. Moreover, a 

great diversity of glycan compositions was found on those positions close to the Sa antigenic site, 

which could have important implications on the antigenicity of the strain.  
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Materials and Methods 

N-glycosylation sequon analysis of A/New Caledonia/20/1999 HA 

The amino acid sequence for the A/New Caledonia/20/1999 HA was obtained from the National 

Institute of Allergy and Infectious Disease (NIAID) Influenza Research Database (IRD) [43]. 

through the web site at http://fludb.org. NetNGlyc 1.0 Server [24] was used for the prediction of 

potential glycosylation sites. NetNGlyc 1.0 Server utilizes several artificial neural networks that 

are able to predict the probability of an N-glycosylation motif to be occupied by analysing the 

adjacent primary sequence. The server sets a default threshold of 0.5, whereby a higher value 

indicates a predicted glycosylated residue. 

Homology modelling of A/New Caledonia/20/1999 HA 

The homology model of A/New Caledonia/20/1999 HA was created with Prime (Schrödinger) 

using H2 (PDB entry 2WR3, chain A) as a template. The molecular structures were generated 

using VMD 1.9.3. 

Hemagglutinin isolation through polyacrylamide electrophoresis and in-gel trypsin 

digestion 

Egg-grown A/New Caledonia/20/1999 virus samples were provided by Sanofi-Pasteur (PA-US). 

Viral proteins were separated by means of reducing SDS-PAGE by running whole virus samples 

(suspended in PBS) on a 10% home-made bis-acrylamide gel. The virus suspension was diluted 

with SDS-PAGE sample buffer containing 1% 2-Mercaptoethanol and 2% SDS. The samples were 

boiled at 95 °C for 10 minutes before loading onto the gel.  The gel was stained with Coomassie 

Brilliant Blue R-250 overnight, and the bands corresponding to HA0 monomers, HA1 and HA2 

were excised from the gel. The bands were subsequently destained using 40% (v/v) acetonitrile 

and dried using a vacuum concentrator prior to incubation with 5 µL 12 mg/mL trypsin (Promega) 

at 4 °C for 1 hour. 20 μL of NH4HCO3 50 mM pH 6.8 were added and incubated overnight to 

extract the proteins from the gel. 

Analysis of tryptic peptides and glycopeptides by nanoRPLC-MS/MS 

The tryptic peptide fraction was first desalted using a C18 ZipTip (Millipore) and eluted with 80% 

(v/v) acetonitrile. The desalted peptides were then dried by vacuum centrifugation and resuspended 
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in 0.1% formic acid (FA) prior to loading onto the nanoRPLC column. The glycopeptide solution 

was loaded onto an in-house packed 20 cm x 75 μm Reprosil-Pur C18AQ (3 μm, 120 A; Dr. 

Maisch GmbH) column/emitter using an easy nanoLC II HPLC (Proxeon). HPLC separation was 

carried out over 140 minutes at a flow rate of 250 nL/min using a 0-40% solvent B gradient, where 

solvent A consists in 0.1% (v/v) formic acid and solvent B is 90% (v/v) acetonitrile and 0.1% 

formic acid. Instrument parameters were set up as follows: source voltage = 2.0 kV, S-lens RF 

level = 68%, and capillary temperature = 275 °C. MS analysis was performed with an Orbitrap 

Velos Pro MS (Thermo Scientific). The initial MS scan was collected in the Orbitrap mass analyser 

(300-1,700 m/z; MS AGC = 1 x 10+6) with a resolution of 30,000 at 300 m/z. The three most 

intense precursors were then selected for fragmentation using either data-dependent higher-energy 

collisional dissociation (HCD) or collision induced (CID) fragmentation. HCD parameters were 

as follows: activation time = 0.1 ms, resolution = 7,500, maximum injection time = 500 ms, 

dynamic exclusion = enabled with repeat count 1, normalized energy = 45, exclusion duration = 

60 s, default charge state = 2, and MSn AGC 2 x 10,000. CID parameters as follows: activation 

time = 10 ms, maximum injection time = 300 ms, dynamic exclusion = enabled with repeat count 

1, normalized energy = 35, exclusion duration = 30 s, default charge state = 2, and MSn AGC = 2 

x 10+4.  

Analysis of MS/MS spectra of intact N-glycopeptides  

The MS data was processed with Proteome Discoverer 2.0 (Thermo Scientific), with HCD scans 

searched using Byonic (Protein Metrics Inc.). The search was performed against an influenza A 

virus (A/New Caledonia/20/1999) and Chicken protein sequence databases using the following 

settings: Full trypsin specificity with a maximum of two missed cleavages, an MS tolerance of 20 

ppm and a MS2 tolerance of 0.05 Da. A total of 3 common1 modifications (deamidation of 

asparagine and glutamine – +0.984016, cysteine propionamide – +71.037114 and asparagine 

glycosylation) were allowed and one total rare modification (oxidation of methionine – 

+15.994915 Da). The N-glycan database (309 mammalian no sodium) available in the Byonic 

search engine was chosen for N-linked modification. HCD spectra were manually inspected to 

confirm the matched glycopeptide fragmentation pattern and the presence of diagnostic HexNAc 

oxonium ions. CID spectra were manually inspected to validate the predicted glycan composition 

by manual annotation. 
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Results  

Prediction of N-glycosylation sites 

Prior to tandem mass spectrometry analysis, the amino acid sequence of the A/New 

Caledonia/20/1999 H1N1 strain was scanned to identify potential N-glycosylation sequons using 

the NetNGlyc 1.0 server. Figure 1 shows the predicted sites and table 1 displays the potential 

assigned for glycosylation for each sequon.  

 

Figure 1. Location of potential N-glycosylation sites within A/New Caledonia/20/1999 H1. 

Monomeric H2 (PDB entry, 2WR3) was used as a template to generate the homology model 

of A/New Caledonia/20/1999 H1. 
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Table 1. Estimated glycosylation potential of the glycosylation sequons identified using the 

NetNGlyc 1.0 server 

Residue number Position Sequence Potential assigned 

27 Stalk NNST 0.4009 

28 Stalk NSTD 0.7964 

40 Stalk NVTV 0.7477 

71 Side of head NCSV 0.7470 

104 Side of head NGTC 0.6300 

142 Top of head NHTV 0.6911 

177 Top of head NLSK 0.7380 

303 Stalk NSSL 0.6707 

498 Stalk NGTY 0.5190 

557 Cytoplasmic domain NGSL 0.6833 

 

A total of 10 sequons were identified within the amino acid sequence of the strain using the 

NetNGlyc 1.0 server. Four of these sites are located on the globular head (N71, N104, N142 and 

N177), five on the stalk (N27, N28, N71, N303 and N498) and one on the cytoplasmic tail (N557). 

With the exception of asparagine N27, all other sequons were predicted to be glycosylated (Fig. 

1). The case of N27 is exceptional as its adjacent N28 residue is also a potential acceptor site, but 

only N28 yields a positive result (≥ 0.5).  

Mass spectrometry analysis of electrophoretically-fractionated viral proteins 

The first step in sample preparation for mass spectrometry involved a preliminary fractionation of 

the viral proteins from a whole inactivated virus sample suspension through SDS-PAGE. This 

isolation step was performed in order to reduce sample complexity prior to nanoLC-MS/MS 

analysis.  
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Following gel extraction and trypsin digestion, bands 1-6 (Fig. 2) were subjected to a preliminary 

nanoLC-MS/MS analysis to identify the bands where HA was present. The whole inactivated virus 

samples used in this analysis are produced in embryonated chicken eggs, thus the Byonic search 

was conducted against the strain’s proteome database and then against a chicken proteome 

database.  This last step allowed for the detection of remnant chicken proteins from the purification 

steps of the whole virus stock suspension, which also improves the confidence of viral protein 

matches in this case.   

 

Figure 2. Reducing SDS-PAGE of whole inactivated A/New Caledonia/20/1999 H1N1 

virus. The numbering on the virus lane indicates an arbitrarily-assigned order to identify the 

prominent protein bands obtained through viral fractionation that were subjected to nanoLC-

MS/MS analysis. 

HA was predominantly detected in band 4 (~60 kDa). This band also yielded the greater HA 

protein coverage (53%) among all the bands (supplementary table 1). Subunits HA1 and HA2 were 

detected in bands 5 (~50 kDa) and 6 (~22 kDa), respectively, and were subjected to glycopeptide 

analysis. Moreover, peptides from HA were identified in bands 1 and 2, likely due to the presence 

of hemagglutinin trimers and dimers. The overall protein coverage of HA across all bands was 

71.5%. 
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Glycopeptide analysis 

Bands 4-6 (Fig. 2) were then analysed to characterize the glycosylation profile of hemagglutinin. 

Precursor glycopeptide ions subjected to HCD yield several diagnostic oxonium ions. Diagnostic 

ions at 204.08 m/z (HexNAc + H) and 366.14 m/z (Hex(1)HexNAc(1) + H)) are typically present 

in HCD spectra of glycosylated peptides. The HCD spectra were used in this study to assign 

peptide identity. The higher dissociation energy of HCD allows for the fragmentation of the 

peptide backbone, whereby the presence of b and y ions in the spectrum is matched by Byonic to 

the theoretical fragmentation patterns of the tryptic peptides to score the PSMs (peptide spectral 

matches) and assign identity. Figure 3A shows a representative HCD spectra displaying the 

diagnostic oxonium ions at 186.076, 204.087 and 366.140 along with b and y ions for the reported 

peptide. Other peptide + fragmented glycan ions (Y ions, e.g., peptide+HexNAc, 

peptide+HexNAc(2)) detected through HCD can also be instrumental to manually validate the 

peptide identity assigned by the search engine. The peptide backbone mass can be inferred from 

the trimannosyl ions detected in the HCD/CID-MS/MS spectrum pairs. The theoretical Y ions are 

then matched to the HCD/CID-MS/MS spectrum pair to validate the spectral matches. Byonic 

derives the mass of the glycan by calculating the mass difference between the precursor ion 

(peptide + glycan) and the identified tryptic peptide, which is then used to predict the composition 

of the oligosaccharide by searching this value against the mammalian glycan database within the 

engine. Byonic is thus able to predict glycoforms to the level of monosaccharide composition. 
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Figure 3. Representative CID and HCD spectra of H1 glycopeptides. (A) Annotated HCD 

spectrum of glycopeptide ESSWPNHTVTGVSASCSHNGK. The spectrum exhibits the 

diagnostic oxonium ion at 204.08 m/z and the presence of b and y ions derived from 

backbone fragmentation. (B) Annotated CID spectrum of glycopeptide 

ESSWPNHTVTGVSASCSHNGK with an attached glycan with a HexNAc(4)Hex(5)Fuc(1) 

composition. Sequential glycan fragmentation is predominant in the spectrum and allows for 

the validation of predicted glycan composition. The presence of a core fucose can be 

confirmed by the detection of ion Pep+2HexNAc-Fuc in both the HCD and CID spectra. 

A complementary CID fragmentation of each precursor ion also allows for the validation of the 

predicted glycan composition from the Byonic server. Figure 3B displays the CID spectrum of the 

same precursor ion as the one used for HCD in figure 3A. In this HCD/CID setup, CID causes 

predominantly the cleavage of glycosidic bonds, resulting in the sequential fragmentation of the 

glycan. The glycan information derived from low-energy CID is limited, since it does not generate 

cross-ring fragmentation to elucidate linkage information, nor does it allow to differentiate 

between glycan isomers in many cases or elucidate topology. Still, the sequential fragmentation 

enables the elucidation of glycan monosaccharide compositions, by which the prediction from the 

engine can be manually validated. Consequently, predicted glycan compositions from 
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glycopeptides with a high byonic score for the HCD spectrum were subjected to manual 

interpretation.  

Confirmation of glycosylated residues 

Eight out of the nine predicted glycosylation sites were confirmed to be occupied. Four of these 

sites are on the stalk region (N28, N40, N304 and N498) and four on the globular head (N71, 

N104, N142 and N177). Figure 4 displays the location of these sequons on a 3D structure 

homology model of the hemagglutinin monomer. Prediction for asparagine 557 was positive, 

however, no peptide was detected for the cytosolic domain nor the transmembrane domain of HA, 

suggesting that only the ectodomain of the protein can be characterized using this sample 

preparation. Inasmuch as these domains are unlikely to play an important role in immunogenic 

response – since they are not exposed to the surface to influence in host cell recognition and have 

not been related to virulence, obtaining glycosylation information for N557 was deemed 

unnecessary. Furthermore, it is not expected for glycosylation site N557 to be occupied given its 

location in the cytosolic region of the protein. 
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Figure 4. Location of confirmed glycosylation sites in relation to the most relevant antigenic 

sites on A/New Caledonia/20/1999  H1. (A) View of the globular head of H1 from the top. 

(B) View of H1 from the side to highlight the distribution of glycosites along the stalk region 

and the side of the globular head. Monomeric H2 (PDB entry, 2WR3) was used as a template 

to generate the homology model of A/New Caledonia/20/1999 H1. 

Glycan microheterogeneity profile 

Table 2 shows the glycan monomeric compositions found through HCD/CID-MS/MS on each 

glycosylation site within H1. Overall, glycan heterogeneity was quite broad, especially for sites 

N142 and N498.  
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Table 2. Microheterogeneity of A/New Caledonia/20/1999 H1. 

Position of glycan 

attachment within 

the protein 

sequence 

Predicted glycan 

composition 

Ion detected 

(m/z) 

Glycan 

mass (Da)  

Δm/z (Da) 

Site 1: Asparagine 28 

(NSTD) 

Stalk 

HexNAc(5)Hex(3) 1,389.59 (+6) 1, 501.55 -0.3369 

 

Site 2: Asparagine 40 

(NVTV) 

Stalk 

HexNAc(5)Hex(8)Fuc(1) 

 

1,474.63 (+3) 2, 457.87  0.0079 

 

HexNAc(5)Hex(6) 988.68 (+4) 1, 987.71 0.00022 

 

Site 3: Asparagine 71 

(NCSV) 

Side of the head 

HexNAc(3)Hex(5)NeuGc(1) 1,564.69 (+3) 1, 726.59 -0.36158 

 

Site 4: Asparagine 

104 (NGTC) 

Side of the head 

HexNAc(7)Hex(3)Fuc(1) 

 

1,389.85 (+4) 2, 053.77 0.27418 

HexNAc(2)Hex(3) 1,081.43 (+4) 892.31 -

0.001997 

Site 5: Asparagine 

142 (NHTV) 

Top of the head 

HexNAc(6)Hex(6)Fuc(1) 1,149.22 (+4) 2, 336.85 0.00096 

HexNAc(6)Hex(5) 1,054.67 (+4) 2, 028.74 0.24239 

HexNAc(6)Hex(4)NeuAc(1) 1,104.64 (+4) 2, 157.78 0.25827 

HexNAc(6)Hex(4)Fuc(1) 1, 068.44 (4) 2, 012.74 0.24967 
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HexNAc(6)Hex(4) 953.60 (+5) 1, 866.68 0.00167 

HexNAc(6)Hex(3)Fuc(1)Neu

Ac(1) 

1,466.57 (+3) 2, 141.78 -0.35536 

HexNAc(6)Hex(3)Fuc(2) 1,046.42 (+4) 1, 996.75 -0.00844 

HexNAc(6)Hex(3) 991.16 (+4) 1, 704.63 0.00043 

HexNAc(5)Hex(6)Fuc(2) 1,134.72 (+4) 2, 279.82 0.00087 

HexNAc(5)Hex(6)Fuc(1) 1,098.45 (+4) 2, 133.77 0.00237 

HexNAc(5)Hex(6) 1,061.70 (+4) 1, 987.71 -0.24352 

HexNAc(5)Hex(5)Fuc(3) 1,130.96 (+4) 2, 263.83 0.00054 

HexNAc(5)Hex(5)Fuc(2) 1,094.45 (+4) 2, 117.77 0.00123 

HexNAc(5)Hex(5)Fuc(1) 1,057.94 (+4) 1, 971.71 0.0035 

HexNAc(5)Hex(5) 1,021.42 (+4) 1, 825.66 -0.00022 

HexNAc(5)Hex(4)NeuAc(1) 1,035.43 (+4) 1, 954.70 -0.24191 

HexNAc(5)Hex(4)Fuc(1) 1,356.23 (+3) 1, 809.66 0.00052 

HexNAc(5)Hex(4) 980.91 (+4) 1, 663.60 -0.00032 

HexNAc(5)Hex(4)Fuc(2) 1,955.72 (+4) 1, 930.69 0.00039 

HexNAc(5)Hex(3)Fuc(1)Neu

Gc(1) 

1,404.24 (+3) 1, 954.70 -0.32956 

HexNAc(5)Hex(3)Fuc(1) 976.91 (+4) 1, 647.61 -0.00067 

HexNAc(4)Hex(7) 1,402.13 (+3) 1, 948.68 0.32814 

HexNAc(4)Hex(6)NeuGc(1) 1,450.25 (+4) 2, 091.72 0.33191 

HexNAc(4)Hex(6)NeuAc(1) 1,444.92 (+3) 2, 075.72 0.33262 

HexNAc(4)Hex(6)Fuc(2) 1,084.19 (+4) 2, 076.75 0.00188 
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HexNAc(4)Hex(6)Fuc(1) 1,047.93 (+4) 1, 930.69 0.2478 

HexNAc(4)Hex(6) 1,324.20 (+3) 1, 784.63 0.00147 

HexNAc(4)Hex(5)NeuGc(1) 1,047.18 (+4) 1, 926.67 0.00257 

HexNAc(4)Hex(5)NeuAc(1) 1,367.21 (+3) 1, 931.67 0.3165 

HexNAc(4)Hex(5)Fuc(3) 1,079.95 (+4) 2, 060.75 0.00052 

HexNAc(4)Hex(5)Fuc(2) 1,043.68 (+4) 1, 914.69 0.00044 

HexNAc(4)Hex(5)Fuc(1) 1,007.41 (+4) 1, 768.63 0.24923 

HexNAc(4)Hex(5) 970.65 (+4) 1, 622.58 -0.00094 

HexNAc(4)Hex(4)Fuc(2)Neu

Gc(1) 

1,061.69 (+4) 2, 059.73 -0.24548 

HexNAc(4)Hex(4)Fuc(2)Neu

Ac(1) 

1,057.69 (+4) 2, 043.74 -0.24382 

HexNAc(4)Hex(4)Fuc(1)Neu

Ac(1) 

1,021.17 (+4) 1, 897.68 -0.24484 

HexNAc(4)Hex(4)NeuAc(1) 1,003.16 (+4) 1, 751.62 0.2533 

HexNAc(4)Hex(4)Fuc(2) 1,003.17 (+4) 1, 752.64 0.00223 

HexNAc(4)Hex(4)Fuc(1) 901.58 (+5) 1, 606.58 0.00127 

HexNAc(4)Hex(4) 929.89 (+4) 1, 460.52 0.00082 

HexNAc(4)Hex(3)Fuc(3) 981.16 (+4) 1, 736.64 -0.00291 

HexNAc(4)Hex(3)Fuc(1) 926.14 (+4) 1, 444.53 0.00019 

HexNAc(3)Hex(6)Fuc(1)Neu

Gc(1) 

1,431.24 (+3) 2, 034.70 0.32942 
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HexNAc(3)Hex(6)Fuc(1)Neu

Ac(1) 

1,402.56 (+3) 2, 018.70 0.33363 

HexNAc(3)Hex(6)NeuGc(1) 1,037.41 (+4) 1, 888.64 0.24807 

HexNAc(3)Hex(6)Fuc(1) 996.91 (+4) 1, 727.61 0.00239 

HexNAc(3)Hex(6) 1,280.18 (+3) 1, 581.55 -0.01264 

HexNAc(3)Hex(5)Fuc(1) 956.39 (+4) 1, 565.56 0.00357 

HexNAc(3)Hex(5) 919.8 (+4) 1, 419.50 -0.00045 

HexNAc(3)Hex(4)Fuc(2) 915.88 (+4) 1, 549.56 0.00085 

HexNAc(3)Hex(4)Fuc(1) 915.64 (+4) 1, 403.50 0.00039 

HexNAc(3)Hex(3)Fuc(1) 875.37 (+4) 1, 241.45 -0.00017 

HexNAc(3)Hex(3) 838.85 (+4) 1, 095.39 0.00015 

HexNAc(2)Hex(5) 869.11 (+4) 1, 216.42 0.00035 

HexNAc(2)Hex(6) 909.62 (+4) 1, 378.47 0.00027 

HexNAc(2)Hex(7) 950.13 (+4) 1, 540.52 -0.00177 

HexNAc(2)Hex(8) 1,320.51 (+4) 1, 702.58 -0.01245 

Site 6: Asparagine 

177 (NLSK) 

Top of the head 

HexNAc(5)Hex(4)Fuc(1)Neu

Ac(1) 

1,553.65 (+2) 2, 100.76 -0.0034 

HexNAc(4)Hex(6) 1,166.17 (+3) 1, 784.63 0.00055 

HexNAc(2)Hex(8) 1,354.56 (+2) 1, 702.58 0.00196 

HexNAc(2)Hex(7) 1,273.53 (+2) 1, 540.52 0.00127 

HexNAc(2)Hex(6) 1,193.00 (+2) 1, 378.47 0.0015 

HexNAc(2)Hex(5) 1,111.98 (+2) 1, 216.42 0.00069 

HexNAc(2) 585.06 (+4) 406.15 -0.00064 
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Site 7: Asparagine 

303 (NSSL) 

Stalk 

HexNAc(6)Hex(4) 1,657.73 (+4) 1, 866.68 0.25101 

HexNAc(6)Hex(3) 1,621.22 (+4) 1, 704.63 0.25377 

HexNAc(4)Hex(5)NeuAc(1) 1,686.49 (+4) 1, 913.67 -0.24401 

HexNAc(4)Hex(4)NeuGc(1) 1,649.97 (+4) 1, 767.61 -0.25517 

HexNAc(3)Hex(6)NeuAc(1) 1,659.22 (+4) 1, 872.64 0.25161 

HexNAc(3)Hex(4)Fuc(1)Neu

Ac(1) 

1,614.70 (+4) 1, 694.60 0.2467 

Site 8: Asparagine 

498 (NGTY) 

Stalk 

HexNAc(8)Hex(8)Fuc(1) 1,342.18 (+3) 3, 067.11 -0.00606 

HexNAc(7)Hex(7)Fuc(1)Neu

Ac(2) 

1,414.88 (+3) 3, 284.17 0.3354 

HexNAc(6)Hex(6) 1,050.08 (+3) 2, 190.79 0.00079 

HexNAc(6)Hex(5)Fuc(1)Neu

Ac(2)NeuGc(1) 

1,341.19 (+3) 3, 064.07 0.02 

HexNAc(6)Hex(3)Fuc(2)Neu

Gc(1) 

1,471.89 (+3) 2, 303.84 -0.34158 

HexNAc(5)Hex(7) 1,415.21 (+3) 2, 149.76 -0.33692 

HexNAc(5)Hex(5)Fuc(1)Neu

Ac(1) 

1,458.23 (+3) 2, 262.81 -0.33147 

HexNAc(5)Hex(5)NeuGc(1) 1,409.55 (+3) 2, 132.75 -0.32933 

HexNAc(5)Hex(5)Fuc(1) 1,465.08 (+2) 1, 971.71 0.00223 

HexNAc(5)Hex(5) 1,307.84 (+3) 1, 825.66 0.00225 

HexNAc(5)Hex(4)Fuc(1)Neu

Ac(1) 

1,401.21 (+3) 2, 100.76 -0.32961 
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HexNAc(5)Hex(4)Fuc(1)Neu

Gc(1) 

1,409.55 (+3) 2, 116.75 -0.32763 

HexNAc(5)Hex(4)NeuGc(1) 1,384.87 (+3) 1, 970.69 -0.00099 

HexNAc(5)Hex(3)Fuc(1)Neu

Gc(1) 

1,355.53 (+3) 1, 945.70 -0.32857 

HexNAc(4)Hex(6) 1,293.83 (+3) 1, 784.63 -0.00351 

HexNAc(4)Hex(5)Fuc(1)Neu

Gc(1) 

1,390.54 (+4) 2, 075.72 -0.32938 

HexNAc(4)Hex(5)NeuGc(1) 1,366.19 (+3) 1, 929.67 0.00128 

HexNAc(4)Hex(5)Fuc(3) 1,386.20 (+3) 2, 060.75 -0.00084 

HexNAc(4)Hex(5)Fuc(2) 1,006.74 (+3) 1, 914.69 0.00054 

HexNAc(4)Hex(5)Fuc(1) 1,288.83 (+3) 1, 768.63 -0.00049 

HexNAc(4)Hex(5) 1,101.78 (+3) 1, 622.58 0.00172 

HexNAc(4)Hex(4)Fuc(2)Neu

Ac(1) 

1,385.21 (+3) 2, 043.74 -0.32697 

HexNAc(4)Hex(4)Fuc(1)Neu

Gc(1) 

1,360.86 (+3) 1, 913.67 0.32938 

HexNAc(4)Hex(4)Fuc(1)Neu

Ac(1) 

1,336.52 (+3) 1, 987.68 -0.33167 

HexNAc(4)Hex(4)Fuc(1) 943.87 (+4) 1, 606.58 -0.00836 

HexNAc(3)Hex(6)Fuc(1)Neu

Gc(1) 

1,382.18 (+3) 2, 034.70 -0.34415 

HexNAc(3)Hex(6)Fuc(1) 1,343.03 (+2) 1, 727.61 0.00136 
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HexNAc(3)Hex(5)NeuGc(1) 1,298.49 (+3) 1, 726.59 -0.00482 

HexNAc(3)Hex(4)Fuc(1)Neu

Ac(1) 

1,287.83 (+2) 1, 694.60 0.00233 

HexNAc(3)Hex(4)NeuAc(1) 1,239.15 (+3) 1, 548.54 0.00166 

HexNAc(3)Hex(4)Fuc(2) 1,239.15 (+3) 1, 549.56 -0.01108 

HexNAc(3)Hex(4) 1,107.95 (+2) 1, 257.44 0.00098 

HexNAc(2)Hex(8) 1,330.49 (+2) 1, 702.58 -0.02006 

 

The structural information obtained through CID fragmentation, albeit limited, still allows to 

discriminate between high mannose, complex or hybrid glycans in some cases. A high mannose 

structure can be assigned to the monosaccharide compositions in the form HexNAc(2)Hex(5-12), 

as long as the sequential fragmentation confirms the neutral loss of only hexose residues in the 

antennae from the glycopeptide Y ion series. Complex and hybrid glycans can be distinguished 

when diagnostic Y ions are detected, such as Pep+HexNAc(2)Hex(4), for compositions with more 

than 2 HexNAc residues. In such cases, at least one of the HexNAc residues must be in the 

antennae, thus ruling out a high mannose glycan. Additionally, the Pep+HexNAc(2)Hex(4) 

fragment confirms that one hexose must be attached to one glucose residue from the trimannosyl 

core. Both these features combined can only occur in hybrid glycans, since only HexNAc residues 

are attached to the trymannosyl core in complex glycans. Figure 3B shows a representative CID 

spectrum with two diagnostic ions (Pep+HexNAc(3)Hex(5)+3 and 

Pep+HexNAc(3)Hex(5)Fuc(1)+3) for a hybrid structure.  

Other diagnostic ions shed further structural information. A 512 m/z peak in the lower m/z range 

of the CID spectra corresponds to a Hex(1)HexNAc(1)Fuc(1) glycan B ion, characteristic of an 

outer arm fucose. Conversely, core fucosylation can be determined from the detection of Y ions 

such as Pep+HexNAc(1)Fuc(1) and Pep+HexNAc(2)Fuc(1). The latter fragments can also be 

observed in some HCD spectra to further confirm fucose attachment to the chitobiose core. Special 

consideration was given to glycans with a mass consistent with isobaric glycan compositions 

containing either Fuc+NeuGc or Hex+NeuAc. In these cases, not all spectra contained sufficient 
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information to derive the correct composition. Nonetheless, diagnostic ions (NeuAc (292.10 m/z), 

NeuAc-H2O (274.09 m/z), NeuGc (308.09 m/z), NeuGc-H2O (290.09 m/z)) were present in some 

HCD spectra and were used to identify the correct composition. Moreover, glycan B fragments 

corresponding to HexNAc-Gal-NeuAc (657 m/z) or HexNAc-Gal-NeuGc (673 m/z) detected in 

CID were also present in some spectra. 

Residues N142 and N498 displayed a great variety of glycan monomeric compositions. 

Conversely, for sites N28, N40, N71 and N104, only a very limited number of compositions were 

detected.  Overall, complex and hybrid glycans were predominantly found. Nonetheless, high 

mannose glycans are also present in N142 and N177, both located on the top of the globular head. 

Fucosylation was observed in most glycopeptides and was confirmed by the presence of fucose 

residues in the CID spectra or diagnostic ions in the HCD spectra. Core fucoses are predominant, 

but outer arm fucoses were also found in some glycoforms. Highly bulky complex glycans were 

found on N498. 

Discussion 

Sequence-based analysis has previously been employed by others to study the variation in the 

glycosylation profile of several strains during virus evolution [27, 28]. Although N-glycosylation 

prediction contributes greatly to the understanding of glycosite variation across strains, this method 

only provides a prediction that relies on primary sequence context, and the actual occupancy of 

glycosites must be confirmed experimentally. Moreover, it is known that the location of the sequon 

can affect glycan maturation, thereby resulting in different sets of glycoforms for each site 

depending on the accessibility of N-glycosyltransferases [29]. To this end, we used mass 

spectrometry analysis to confirm the occupancy of glycosites predicted by the NetNGlyc 1.0 

Server for the A/New Caledonia/20/1999 H1 protein. Others have shown that hemagglutinin from 

egg-grown viruses and human cell lines display the same occupancy profile [30]. Therefore, the 

results obtained in this study are relevant to the understanding of influenza virus adaptation in 

humans. 

The occupancy profile obtained through HCD/CID-MS/MS of tryptic glycopeptides was 

consistent with the prediction by the NetNGlyc 1.0 server. All eight sequons confirmed 

experimentally had been predicted by the server. Indeed, N28 (and not N27), was shown to be 

glycosylated as was predicted. The transfer of N-glycan precursors to asparagine residues in 
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endoplasmic reticulum (ER) bound ribosomes is affected by conformational constraints as well as 

inaccessibility due to steric hindrance from nearby residues. To this end, since N28 is occupied, it 

is unlikely that an olygosaccharyltransferase can act upon asparagine N27. The positive prediction 

for site N557 was not accurate, due to the location of the residue within the cytoplasmic domain 

of the protein. Nonetheless, such inaccuracies can easily be identified to prevent misleading 

interpretations when performing sequence-based analyses.  

Glycosites N142 and N177 are of particular relevance for the study of immunogenicity and 

virulence. These residues are both located on the receptor binding site (RBS) and the attachment 

of oligosaccharides can mask the antigenic Sa region. Remarkably, both acceptor sites were absent 

in the 1918 and 2009 pandemic strains. Wei et al. showed that mice display cross-neutralization 

of 1918 and 2009 pandemic viruses after vaccination with the 1918 strain, whereas such antibodies 

did not protect against seasonal strains – providing evidence that the introduction of N-

glycosylation sites on the vicinity of the RBS can mask antigenic recognition by pandemic 

antibodies [31].   

A vast heterogeneity of glycan compositions was found on N142 (Table 2), which is even more 

notable taking into account that the predicted compositions can encompass several glycan 

isoforms; meaning that the actual heterogeneity is presumably broader. Among the predicted 

oligosaccharides attached to N142 are glycan compositions consistent with complex, high 

mannose and hybrid glycans. The vast complexity encountered on this asparagine residue can be 

attributed to the high surface exposure, providing accessibility for N-glycan processing and 

maturation (Fig. 4).  

In the case of glycosite N177, a much narrower variety of glycoforms was detected. However, the 

intensities for these glycopeptides were much lower compared to those glycopeptides containing 

site N142. Therefore, many glycopeptides for N177 could have been suppressed and missed in the 

analysis, which constitutes a limitation of the method. Still, the MS/MS analysis predicted the 

occupancy of high mannose, hybrid and complex glycoforms. 

The presence of terminal sialic acid residues in several of the predicted glycoforms attached to 

both N142 and N177 could play an important role in the immunogenicity of the strain. Ohuchi et 

al. suggested that the presence of terminal NeuAc and NeuGc on HA glycans in the vicinity of the 

receptor binding sites may impair binding to sialic acid-containing receptors [32]. Although the 
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effect of the presence of sialic acid residues on immune cell recognition in this case is unknown, 

the bulkiness and negative charge of NeuAc and NeuGc would likely further impair an immune 

response. Overall, terminal sialylation of both cell surfaces and glycoproteins has been shown to 

decrease antigenicity [33, 34]. Therefore, the attachment of negatively charged terminal residues 

in embryonated-egg vaccine production could be a drawback in terms of HA antigenicity 

compared to other recombinant hemagglutinin based vaccines, where sialylation can be controlled 

or non-existent, as is the case in the baculovirus expression system [35].  

Glycosites N71 and N104 are located on the side of the globular head (Fig. 4). In the case of N71, 

only one glycan with a composition consistent with a non-fucosylated hybrid glycan was found 

(Table 2). For N104, one glycan with a complex-like composition was detected. Others have 

proposed that the occupancy of site N104 might be sterically hindered by glycan attachment on 

N71 due to their close proximity (Fig. 4) [20]. Moreover, it has been argued that since both 

glycosites are able to shield antigenic site Ca2, glycosylation on N71 could render the occupancy 

of N104 unnecessary to mask antigenic site Ca2 [20]. It was confirmed that both N71 and N104 

are indeed glycosylated in egg-grown viruses. It was unexpected, however, to find such a limited 

set of glycan compositions in these sites, in contrast to other positions such as N142, N177 and 

N498. As discussed previously, these results are potentially due to a limited detection of the 

glycopeptides containing these acceptor sites. However, the close proximity of both residues also 

suggests that glycan processing might be impaired due to steric hindrance. 

The detection of highly bulky complex glycans on N498 (e.g., HexNAc(8)Hex(8)Fuc(1) and 

HexNAc(7)Hex(7)Fuc(1)NeuAc(2)) suggests the presence of poly-N-acetyllactosamine groups, 

which are commonly found on membrane-proximal glycosites [36, 37]. The close proximity of 

N498 to the viral membrane (Fig. 4B) does not seem to decrease the degree of glycan maturation 

on this asparagine residue, resulting in a high complexity of structures. 

In this mass spectrometry setup, some tryptic glycopeptides produce considerably higher 

intensities than others. This causes that more information on glycan microheterogeneity can be 

gathered on those glycopeptides that ionize with a higher efficiency and whose m/z value is better 

detected under these experimental conditions, whereas only limited information can be derived 

from other regions. This was likely the cause of the limited glycopeptide detection for sites N28, 

N40, N71 and N104. Unfortunately, this drawback prevents an appropriate comparison of glycan 
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microheterogeneity among glycosites. Obtaining a more comprehensive profile is required to 

better understand the role of glycan structures on the biological properties of the virus. Still, these 

results allowed to confirm glycan attachment on these sites. 

An advantage of utilizing reducing SDS-PAGE as a preliminary fractionation step is that analysing 

HA0, HA1 and HA2 separately provides a more comprehensive characterization of glycan 

microheterogeneity, owing to the fact that the lower overall presence of non-glycosylated peptides 

in HA1 or HA2 isolated fractions (compared to HA0) could allow the detection of certain 

glycopeptides with low total ion current (TIC). In fact, most of the distinct glycan compositions 

detected on site N498 come from the analysis of HA2 and were not present in the analysis of HA0 

(band 4 in figure 2). This is likely due to the large presence of non-glycosylated peptides in HA0, 

which can suppress the signal of N498 glycopeptides.  

The experimental confirmation of glycosylation sites is highly important in the study of influenza 

viral evolution. Furthermore, there is evidence that egg and mammalian cell derived HA display 

the same occupancy profile [30]. Consequently, characterizing further egg-derived strains with 

this method would also yield site occupancy information relevant to other approved production 

platforms, such as cell-based and recombinant technologies. Currently, egg-based vaccines 

comprise the overwhelming majority of available influenza vaccine products. However, the FDA 

has recently approved the cell-based Flucelvax (Seqirus), produced in Madin-Darby Canine 

Kidney (MDCK) epithelial cells, and the recombinant Flublok (Protein Sciences Corporation), 

produced in insect cells [38-40]. It is noteworthy to mention that the glycan structures found on 

egg-derived viruses can differ significantly to those present on viruses that replicate in alternative 

cell substrates [30, 41, 42]. 

Conclusion 

The results presented in this study confirmed the glycan occupancy profile of A/New 

Caledonia/20/1999 hemagglutinin, validated the prediction by the NetNGlyc 1.0 Server and 

characterized the site-specific structural heterogeneity of the attached glycans. The mass 

spectrometry approach employed was able to furnish information on sequon occupancy and glycan 

structures in a single run. This efficient strategy can be extended to study further influenza 

glycoproteins in order to attain deeper knowledge of the role of N-glycosylation in viral adaptation 

mechanisms. Site-specific mass spectrometry methods, however, typically provide only partial 
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information on the structure of the oligosaccharides. To this regard, additional work should be 

carried out to elucidate more detailed structural features to assess the impact of glycoforms on 

parameters such as antigen masking, immunogenicity, SA receptor binding affinity and viral 

membrane resistance to surfactant treatment. The latter is highly relevant for split-virus vaccine 

manufacturing, where a surfactant is employed to disrupt the viral membrane. Gaining further 

insight into the glycosylation characteristics of influenza viruses can therefore potentially improve 

the manufacturing process of split-virus vaccines, the selection of strains for the composition of 

seasonal vaccines and the development of recombinant products. 
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Abstract 

It has been over four decades since the development of monoclonal antibodies (mAbs) using a 

hybridoma cell line was first reported. Since then more than thirty therapeutic antibodies have been 

marketed, mostly as oncology, autoimmune and inflammatory therapeutics. While antibodies are 

very efficient, their cost-effectiveness has always been discussed owing to their high costs, 

accumulating to more than one billion dollars from preclinical development through to market 

approval. Because of this, therapeutic antibodies are inaccessible to some patients in both 

developed and developing countries.  The growing interest in biosimilar antibodies as affordable 

versions of therapeutic antibodies may provide alternative treatment options as well potentially 

decreasing costs.  As certain markets begin to capitalize on this opportunity, regulatory authorities 

continue to refine the requirements for demonstrating quality, efficacy and safety of biosimilar 

compared to originator products.  In addition to biosimilars, innovations in antibody engineering 

are providing the opportunity to design biobetter antibodies with improved properties to maximize 

efficacy.  Enhancing effector function, antibody drug conjugates (ADC) or targeting multiple 

disease pathways via multi-specific antibodies are being explored. The manufacturing process of 

antibodies is also moving forward with advancements relating to host cell production and 

purification processes.  Studies into the physical and chemical degradation pathways of antibodies 

are contributing to the design of more stable proteins guided by computational tools.  Moreover, 

the delivery and pharmacokinetics of antibody-based therapeutics are improving as optimized 

formulations are pursued through the implementation of recent innovations in the field. 

Introduction  

Over the past twenty years, therapeutic antibodies have rapidly become the leading product within 

the biopharmaceutical market.  In 2013, therapeutic antibodies represented 50% of the $140 billion 

taken by the biopharmaceutical market with sales growing from $39 billion in 2008 to $75 billion 

in 2013 [1].  There are currently more than thirty therapeutic antibodies approved for established 

markets such as the United States and Europe with over three hundred antibody-based products in 

clinical development [1-3].  Therapeutic antibodies are no longer full-length, naked mouse 

antibodies; advancements in antibody engineering technologies, novel antigen discovery strategies 

and progress in deciphering disease pathways have all generated robust interest, resources and 

investment in antibody development.  In this review, we will discuss developments in the field of 



46 
 

therapeutic antibodies, the growth of biosimilars and pay particular attention to targeting 

degradation pathways of antibodies to produce more stable biobetter antibodies and formulations. 

Antibody discovery strategies 

The generation of early antibodies relied on the immunization of mice or other mammals with the 

desired antigen target. This resulted in multiple antibodies directed at different epitopes of the 

antigen secreted by a mixed population of B cells with each cell secreting only one specific 

antibody (i.e. polyclonal).  Unfortunately, secreting B cells can only replicate a limited number of 

times, therefore rendering mass production all but impossible.  The ground-breaking hybridoma 

technology developed by Kohler and Milstein allowed antibody secreting cells from the spleen of 

immunized animals to be fused with immortalized non-antibody secreting cells, thus resulting in 

cells that would divide continuously when cultivated in permissive conditions [4, 5].  Although 

the first recombinant antibodies were produced using this technology, including the first approved 

therapeutic antibody muromonab-CD3 (Orthoclone OKT®3) in 1986 for preventing kidney 

transplant rejection, hybridoma production presented some drawbacks.  Hybridomas can be labour 

intensive, low yielding or genetically unstable [6].  More importantly though, the antibody 

sequences originated from an immunized animal and consequently had the potential of triggering 

an immune response in humans.  Therefore, further improvements were needed to yield antibodies 

more human-like and safe.  These technologies have evolved from chimeric antibodies that is, 

grafting essential mouse amino acids needed for antigen binding onto a human antibody 

framework [7, 8] to both in vitro and in vivo techniques for generating humanized antibodies.   

The XenoMouse™ (Abgenix) and HuMab-Mouse® (Medarex) are transgenic mice developed in 

parallel and in both, the endogenous murine heavy and kappa light chain genes are inactivated and 

replaced with the equivalent human germline sequences [9, 10].  Injection of antigens into these 

mice leads to development of ‘fully human’ antibodies that have undergone mouse somatic 

hypermutation and selection to relatively high affinity.  Validation of this technology came with 

the regulatory approval of panitumumab (Vectibix®) in 2006; a fully human antibody directed 

against epidermal growth factor receptor (EGFR) as treatment for advanced colorectal cancer [11].  

Since then, RANK ligand-specific denosumab (Prolia®) has been approved for bone loss and 

TNFα-specific golimumab (Simponi®) for rheumatoid arthritis.   



47 
 

An in vitro method for generating fully human antibodies can be accomplished by cloning and 

screening large libraries of sufficiently diverse human antibody genes in combination with display 

technology.  The concept of display technology provides a direct physical link between a gene 

(genotype) and the encoding antibody fragment (phenotype) to allow selection of genes that 

encode a protein with the desired binding function.  Phage display technology remains the most 

widely used in vitro method for the display of large repertoires and for the selection of high affinity 

antibodies to biologically relevant targets [6].  Phage display involves the expression of proteins 

on the surface of filamentous phage via fusion with phage coat protein with the genetic sequence 

packaged within, linking phenotype to genotype selection.  When combined with antibody 

libraries, phage display allows for rapid in vitro selection of antigen-specific antibodies and 

recovery of their corresponding coding sequence [12-14].  This system is highly effective, robust 

and amenable to high throughput processes for screening of  >10+10 specificities [15].  The 

diversity of phage display libraries is distinguishable by source and design: naïve [16], immune 

[12], synthetic [17] and semi-synthetic [18].  The technology was first demonstrated for a single 

chain variable fragment (scFv) [13]. with screening of other formats also introduced including 

human antigen binding fragments (Fabs) [19], domain antibodies [20], camelid domain antibodies 

[21], single domain shark antibodies [22], diabodies [23] and even whole IgG [24].  The first 

approved human antibody isolated by phage display technology was adalimumab (Humira®) 

which binds the cytokine TNFα.  This antibody was first selected as a scFv expressed on the 

surface of phage and was further engineered in human IgG1 format, providing major validation 

for phage display technologies [25].  Adalimumab remains the most lucrative antibody product 

generating global sales of $11 billion in 2013 [1].  The number of phage display-derived candidates 

currently in clinical development further demonstrates the value of phage display as an established 

and reliable drug discovery platform [26].   

Other cell surface methodologies such as bacterial, baculovirus and yeast display present 

thousands of copies of the displayed protein on the cell surface thereby allowing for quantitative 

screening such as flow cytometry [27-29].  Yeast display has the additional feature of eukaryotic 

protein folding pathways and as a result, is perhaps the most ideally suited system for the surface 

display of mammalian secreted proteins such as antibodies.  Alternatively, ribosome display is 

used to screen large scFv and single variable domain libraries containing up to >10+13 mutant 

clones [30].  The main distinguishing feature of this method is that large libraries can be generated 
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because the entire procedure is performed in vitro without the need for cell transformations.  The 

genotype and phenotype are linked through ribosomal complexes, consisting of messenger RNA 

(mRNA), ribosome and encoded protein.  The in vitro selection of antibodies from antibody 

libraries based on target affinity is termed as “panning”. The method is an iterative process 

whereby the population of target specific antibodies is enriched relative to the number of panning 

rounds. 

With the advent of next-generation sequencing (NGS), analysis of the natural and synthetic 

repertoires from which libraries have been constructed has become possible [31-33].  In one 

application, NGS was used to identify antigen-specific IgG antibodies from polyclonal serum of 

immunized rabbits and mice when used in combination with affinity chromatography coupled to 

LC-MS/MS [34].  The technology has been used to demonstrate its utility in selecting antibodies 

with favourable properties.  For example, Reddy et al. found that 21/27 (or 78%) of scFv they 

constructed could bind the target antigen with nanomolar affinity after using NGS data to pair 

together the most abundant variable heavy (VH) and variable light (VL) genes from immunized 

mice [35].  Other studies have seen similar findings with natural VH:VL pairing limitations [36]. 

and without the limitation [37].  Interestingly, the method of repertoire mining of VH and VL 

abundances using NGS of splenocytes isolated from immunized mice was compared with a phage 

panning approach of the same cDNA [38]. While both methods provided completely different sets 

of antibodies, specificity and affinities of the antibody clones were comparable. 

Novel antibodies in approval and preclinical development stages 

In 2015, eight therapeutic antibodies were granted market approval by the US Food and Drug 

Administration (FDA) (Table 1). While full-length and IgG1 antibodies still dominate, a 

humanized Fab also gained approval.  Five of the eight approvals were to non-oncology indications 

with two antibodies entering ‘first-in-class’ for the treatment of hyperlipidemia.  The outlook for 

2016 has been positive with six antibodies approved (as of November 2016), including a first-in-

class antibody to bacterial target Bacillus anthraxis.  A number of full-length antibodies are 

currently under biologics license application (BLA) submission and awaiting FDA approval or 

have completed Phase III trials with endpoints met (Table 1).   
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Table 1. Novel full-length antibodies and fragments developed in recent years and their clinical 

status. 

Name Commerci

al Name 

Company Target Indication (FDA 

approved) 

Format 

APPROVED BY FDA IN 2015 

Secukinumab Costentyx

® 

Novartis IL-17 Psoriasis Whole IgG1 

(fully 

human) 

Dinutuximab Unituxin® United 

Therapeutics 

Corporation 

GD2 Neuroblastoma 

(pediatric 

patients) 

Whole IgG1 

(chimeric) 

Alirocumab Praulent® Sanofi PCSK9 Hyperlipidemia Whole IgG1 

(fully 

human) 

Evolocumab Repatha® Amgen PCSK9 Hyperlipidemia Whole IgG2 

(fully 

human) 

Idarucizumab Praxbind® Boehringer 

Ingelheim 

Dabigatran Anti-coagulation 

reversal 

Fab fragment 

(humanized) 

Mepolizumab Nucala® GlaxoSmithKline IL-5 Asthma Whole IgG1 

(humanized) 

Necitumumab Portrazza® Eli Lilly EGFR Non-small cell 

lung cancer 

(NSCLC) 

Whole IgG1 

(fully 

human) 

Daratumumab Darzalex® Janssen Biotech CD38 Multiple 

myeloma 

Whole IgG1 

(fully 

human) 

APPROVED BY FDA IN 2016 (as of November) 

Reslizumab Cinquil® Teva IL-5 Asthma Whole IgG4 

(humanized) 

Ixekizumab Taltz® Eli Lilly IL-17a Psoriasis Whole IgG4 

(humanized) 
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Obiltoxaximab Anthim® Elusys 

Therapeutics 

Bacillus 

anthrax 

Anthrax Whole IgG3 

(humanized) 

Atezolizumab Tecentriq

® 

Genentech PD-L1 NSCLC, Bladder 

cancer 

Whole IgG1 

(humanized) 

Olaratumab (+ 

Doxorubicin)  

Lartruvo® Eli Lilly PDGFRalph

a 

Soft tissue 

carcinoma 

Whole IgG1 

Bezlotoxumab Zinplava® Merck Clostridium 

difficile 

toxin B 

Clostridium 

difficile infection 

Whole IgG1 

(fully 

human) 

NOT YET APPROVED, TRIALS COMPLETED 

Brodalumab 
 

Valeant 

Pharmaceuticals 

IL-17R Psoriasis Whole IgG1 

(fully 

human) 

Bimagrumab 
 

Novartis ACVR2B Muscle loss and 

weakness 

Whole IgG1 

(fully 

human) 

MABp1 Xilonix XBiotech IL-1alpha Colorectal cancer, 

Cachexia 

Whole IgG1 

(‘true’ 

human) 

Catumaxomab Removab Trion Pharma EPCAM/CD

3 

Malignant ascites Whole 

hybrid of rat 

IgG2 

variable and 

mouse IgG2a 

Fc regions 

Guselkumab  Janssen Biotech IL-23/p19 Psoriasis Whole IgG1 

(fully 

human) 

Dupilumab  Sanofi/Regeneron IL-4R Atopic Dermatitis Whole IgG4 

(fully 

human) 

ONGOING PHASE III TRIALS 

Ocrelizumab Ocrevus Roche CD20 Multiple Sclerosis Whole IgG1 
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(humanized) 

Sirukumab 
 

GlaxoSmithKline IL-6 Rheumatoid 

arthritis 

Whole IgG1 

Sarilumab 
 

Sanofi/Regeneron IL-6R Rheumatoid 

arthritis 

Whole IgG1 

(fully 

human) 

Tildrakizumab 
 

Sun 

Pharmaceutical 

IL-23/p19 Psoriasis Whole IgG1 

(humanized) 

Romosozumab 
 

Amgen/UCB 

Pharma 

Sclerostin Osteoporosis Whole IgG2 

(humanized) 

Racotumomab Vaxira Recombio NGcGM3 NSCLC Whole IgG1 

(mouse) 

Clivatuzumab 

tetraxetan 

hPAM4-

Cide 

Immunomedics Mucin1 Pancreatic cancer Whole IgG1 

(humanized) 

Ublituximab 
 

TG Therapeutics CD20 Chronic 

Lymphocytic 

Leukemia 

Whole IgG1 

(chimeric) 

Benralizumab 
 

AstraZeneca IL-5R Asthma Whole IgG1 

(humanized) 

Caplacizumab 
 

Ablynx vWF Thrombotic 

thrombocytopenic 

purpura 

VH-VH 

(humanized) 

Lampalizumab 
 

Roche CFD Macular 

degeneration 

Fab fragment 

(humanized) 

Avelumab 
 

Merck/Pfizer PD-L1 Merkel Cell 

Carcinoma 

Whole IgG1 

(fully 

human) 

Aducanumab  Biogen Beta 

amyloid 

Alzheimer’s 

Disease 

Whole IgG1 

(fully 

human) 

Abbreviations: GD = disialoganglioside; PCSK = proprotein convertase subtilisin/kexin; EGFR = 

epidermal growth factor receptor; PD-L = programmed death-ligand; PDGFR = platelet-derived 

growth factor receptor; ACVR = activin receptor; EPCAM = epithelial cell adhesion molecule; 



52 
 

NGcGM = N-glycolyl (NGc) gangliosides; vWF = Von Willebrand factor; CF = complement 

factor. 

There is expected to be an influx of antibodies in the coming years for the treatment of 

inflammatory skin conditions including psoriasis that encompass various cytokine targets or their 

respective receptors; IL-17a, IL-17R, IL-1α, IL-4R and IL-23 (Table 1).  Other promising 

antibodies based on recent clinical trial results include ocrelizumab and atezolizumab.  

Ocrelizumab is a humanized antibody which selectively targets CD20-positive B cells which based 

on emerging evidence play a major role in activating T cells, the key cell type responsible for 

inflammatory damage within central nervous system lesions in multiple sclerosis (MS) [39].  Data 

from three Phase III studies (OPERA I, II and ORATORIO) show positive results in patients with 

relapsing MS and primary progressive MS (PPMS) with superiority to well-established therapy 

(Rebif®), by reducing the three major markers of disease activity.  Atezolizumab is a monoclonal 

antibody designed to target PD-L1 expressed on T cells and tumour-infiltrating immune cells, 

preventing binding to PD-1 and B7.1 to mediate T cell immune responses.  Positive results 

announced from two Phase II studies (POPLAR and BIRCH) in patients with advanced non-small 

cell lung cancer (NSCLC) show strong correlation between PD-L1 expression and response rates, 

suggesting that measuring PD-L1 may help identify people most likely to respond to antibody 

treatment.  Atezolizumab has since been granted FDA approval (after priority review) for 

treatment of a specific type of bladder cancer and NSCLC.   

A number of novel formats and treatment options are also likely to enter the market in 2017.  Of 

note based on novelty, are racotumomab, ublituximab, MABp1 and caplacizumab.  Racotumomab 

is an anti-idiotypic mouse monoclonal antibody that mimics N-glycolyl (NGc) gangliosides, thus 

triggering responses against tumor antigen NGcGM3 [40].  The idiotypic antibody acts as a 

therapeutic vaccine by inducing the immune system to elicit a specific response.  A Phase III 

clinical trial is ongoing in advanced NSCLC patients.  

Ublituximab is a chimeric monoclonal antibody which targets CD20 and has been fragment of 

crystallization (Fc) engineered with low fucose content to enhance affinity to all allelic variants of 

FcγIIIa receptors, demonstrating greater antibody dependent cell cytotoxicity (ADCC) than 

rituximab (Rituxan®) and ofatumumab (Arzerra®).  This will see the second glyco-engineered 

antibody to enter the market (discussed later in Fc engineered section).  Ublituximab is currently 
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being assessed in Phase III trials in combination with small molecule ibrutinib in patients with 

previously treated high-risk Chronic Lymphocytic Leukemia (CLL).  Indeed, 2015 witnessed the 

first FDA approval of a combination regime of anti-PD-L1 antibodies nivolumab (Opdivo®) and 

ipilimumab (Yervoy®) and is quickly becoming a focus of ongoing research with both emerging 

and established therapeutics.   

MABp1 is a ‘natural’ antibody cloned from an affinity-matured, in vivo human immune response, 

with no sequence modifications. The antibody was derived from Epstein-Barr-virus-immortalized 

B lymphocytes derived from an individual with circulating anti-interleukin-1α, a method 

previously described by Garrone and colleagues [41].  This potential breakthrough first-in-class 

‘true human™’ monoclonal antibody targeting IL-1α is being assessed in Phase III clinical trials 

for late stage colorectal cancer.  The safety results to date suggest a unique safety profile for this 

antibody, among the best tolerated therapies used in oncology making it ideally suited for treating 

advanced cancer patients with reduced tolerance for toxic therapy [42].  The antibody is also being 

investigated in a Phase II trial to correct the metabolic dysregulation underlying the wasting 

phenotype associated with malignancy by specifically targeting IL-1α signalling in the 

hypothalamus.   

A Phase III clinical trial (HERCULES) has been initiated for bivalent nanobody® (or VHH) 

caplacizumab targeting anti-von Willebrand factor (vWF) to treat acquired Thrombotic 

Thrombocytopenic Purpura (TTP).  This could see the first nanobody® to be approved and the 

smallest antibody fragment on the market at approximately fifteen kilodaltons (kDa).   

Biobetter antibodies 

Despite its success, antibody-based therapy still presents a long list of important shortcomings that 

need to be overcome to fully exploit their full therapeutic potential. Typical drawbacks in antibody-

based therapy include limited efficacy due to poor tissue and tumor penetration, low in vivo 

efficacy, cumbersome administration, antibody aggregation, solubility as well as high production 

costs [43]. The use of antibody engineering to improve the properties of therapeutic antibodies has 

advanced greatly in the last decades giving rise to a varied set of novel formats that offer enhanced 

attributes for therapeutic and research purposes. These novel molecules are often referred to as 

biobetters or next-generation antibodies and include platforms such as: engineered antibodies for 
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enhanced effector functions, antibody drug-conjugates (ADC), multi-specific antibodies and 

single-domain antibody fragments (sdAb or nanobodies®) [44, 45].  

A biobetter can have modifications to its chemical structure such as humanization, 

fusion/conjugation or be glyco-engineered to be less immunogenic or more efficacious. For 

instance, anti-CD20 ocrelizumab which is currently under review for FDA approval for MS is a 

humanized version of rituximab (Rituxan®).  A biobetter may be modified to have an improved 

formulation for improved treatment regimen so treatment is less evasive or have a simplified 

manufacturing process.  This was demonstrated with novel subcutaneous (SC) formulations of 

trastuzumab (Herceptin®) and rituximab (Mabthera®) developed by co-formulating the antibody 

with hyaluronidase, an enzyme that increases the absorption and distribution of the injected 

product [46].  A biobetter may be engineered to have higher target affinity, bind at a different 

epitope or stronger effector function to enhance efficacy and potentially reduce any off-target side 

effects.  Any such improvement means that the therapeutic has been modified and incomparable 

to the original therapeutic; it is therefore classified as a new biological therapeutic and requires 

more laborious testing to obtain regulatory approval before market entry.  In the next section, Fc 

engineering, ADC and multi-specific antibody-based therapies will be discussed. 

Fc engineered antibodies for enhanced effector functions 

Antibody engineering has sought to improve the effector function of antibodies via the Fc region; 

namely ADCC, complement dependent cytotoxicity (CDC) and PK profile. Specifically, this has 

been mostly explored through modifications in the amino acid sequence or the glycosylation 

pattern in the Fc region to enhance the affinity towards Fcγ receptors (FcγR) on effector cells [44, 

47]. The most prominent and successful technology so far has been the glycosylation approach, 

which has seen nearly twenty glyco-engineered antibodies enter clinical trials with two already 

approved for clinical use [48-50]. The first success came with the approval of mogamulizumab 

(Poteligeo®) in Japan in 2012, developed using the POTELLIGENT (Kyowa Hakko Kirin) 

platform which is indicated for CC-chemokine receptor 4 (CCR4)-expressing T cell leukaemia-

lymphoma and peripheral T cell lymphoma (PTCL) in adult patients [51].  

An ADCC enhanced version of rituximab, obinituzumab (Gazyva®) gained approval by the FDA 

in 2013 under breakthrough therapy designation [52]. Obinituzumab is an anti-CD20 monoclonal 

antibody that was originated by GlycArt Biotechnology (now GlycoMAb) and is approved for 
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CCL [49]. Both POTELLIGENT® and GlycArt platforms are based on the manufacture of 

products using engineered cell lines that yield defucosylated antibodies; a structural modification 

that removes the core 1,6 fucose from the N-glycans attached to asparagine at amino acid position 

297 of human IgG1 thereby greatly enhancing the affinity towards FcγRIII, and increasing ADCC 

induction by NK cells (Figure 1a) [53, 54].  NK cells are not abundant in the tumor site, and human 

endogenous IgG can inhibit the elicitation of ADCC by therapeutic antibodies [55] therefore, 

increasing the affinity towards FcγRIII to preferentially interact with the therapeutic antibody is a 

valuable approach to improve the efficacy profile. This approach was demonstrated by Zhang et 

al. by producing an anti-HER2 antibody with an identical sequence to trastuzumab but with 

superior binding affinity to FcyRIIIa and greater ADCC activity [56]. The antibody was produced 

using glyco-engineered Pichia pastoris and the differences were presumed to be due to absence of 

fucose in the N-glycans attached to the IgG1 product. 
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Figure 1. Schematic representation of biobetter antibody formats being pursued for clinical 

development. (a) Schematic structure of an IgG1 antibody with glycosylation sites at 

asparagine 297 (Asn-297) in CH2 domains indicated by hexagons.  The general structure of 

N-linked glycosylation is shown inset; core structures indicated by solid lines and variable 

structures by dotted lines.  Glyco-engineering of antibodies can involve defucosylation 

which refers to the removal of core fucose to enhance Fc-mediated effector functions.  (b) 

Schematic structure of an antibody drug conjugate (ado-trastuzumab emtansine; Kadcyla®) 

including N-maleimidomethyl cyclohexane-1-carboxylate (MCC) linker and maytansinoid 

1 (DM1) payload. (c) Prominent bispecific formats in development as discussed in the text 

including: Triomab or Trifunctional antibody, Dual variable domain immunoglobulin 

(DVD-Ig), Dock-and-Lock (DNL) antigen binding fragments (Fabs), Bispecific T cell 

engager (BITE), Dual affinity re-targeting (DART) molecule, Tandem diabody (tandAb) and 

Immune-mobilizing monoclonal TCRs against cancer (ImmTAC). 

Whereas the glyco-engineering approach generates defucosylated antibodies with FcγRIIIa-

specific affinity improvement, variants generated by mutagenesis of Fc amino acid sequence can 

be enhanced for multiple FcγR interactions.  A number of publications have identified specific Fc 

mutations to improve binding to the activating receptor FcγIIIa and reduce binding to the inhibitory 

receptor FcγIIb with corresponding improvement to ADCC activity [57-59].  The XmAb® concept 

is currently being investigated as an anti-CD30 in Phase I trials for Hodgkin lymphoma. 

In an alternative approach, aglycosylated antibodies (without glycan structures) can be engineered 

to display effector functions that are distinct from those of glycosylated counterparts [60-63].  The 

use of aglycosylated therapeutic antibodies offers manufacturing advantages by bypassing 

glycosylation and hence production can be performed in prokaryotic hosts.  On the other hand, the 

importance of glycosylation on the structural stability of antibodies has been demonstrated [64, 

65].  The first aglycosylated antibody to enter clinical trials, produced in yeast, is humanized rat-

derived IgG1 otelixizumab directed against CD3 which is being assessed in Phase II trials for type 

I diabetes mellitus. 

Antibody drug conjugates (ADC)  

ADC comprise one of the foremost antibody-based platforms currently being pursued for clinical 

implementation. Indeed, the FDA approval of brentuximab vedotin (Adcetris®) and a cytotoxin-
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conjugated biobetter of trastuzumab, ado-trastuzumab emtansine (Kadcyla®) in 2011 and 2013 

respectively, have eclipsed the clinical failures of first generation ADC. As of early 2016, in 

addition to the two ADC available in the market, over forty antibody drug conjugates are 

undergoing clinical trials and a plethora of such formats are in preclinical development [3]. (Table 

3). The achievement of such milestones has been facilitated by the advent of novel ADC 

technologies and designs.  

 

Table 3. Overview of ADC developed in recent years and their clinical status. 

ADC Format Target Payload Linker Lead 

indications 

FDA APPROVED 

Brentuximab 

vedotin 

(Adcetris®) 

IgG1 

(Chimeric) 

CD30 MMAE Valine-Citrulline Hodgkin 

Lymphoma, 

Anaplastic 

large cell 

lymphoma 

Ado-trastuzumab 

emtansine 

(Kadcyla®) 

IgG1 

(Humanized) 

HER2 DM1 Valine-Citrulline HER2+ breast 

cancer 

Gemtuzumab 

ozogamicin 

(Mylotarg® - 

withdrawn) 

IgG4 

(Humanized) 

CD33 Calicheamicin SS/hydrazone Acute 

Myeloid 

Leukemia 

Phase III 

Inotuzumab 

ozogamicin 

IgG4 

(Humanized) 

CD22 Calicheamicin SS/hydrazone Acute 

Lymphoblastic 

Leukemia  

Phase II 

Enfortumab 

vedotin 

(ASG-22ME) 

IgG1 

(Human) 

Nectin-4 MMAE Valine-Citrulline Bladder 

cancer 



58 
 

PSMA ADC IgG1 

(Human) 

PSMA MMAE Valine-Citrulline Prostate 

cancer 

Glembatumumab 

vedotin (CDX-

011) 

IgG2 

(Human) 

GPNMB MMAE Valine-Citrulline Breast cancer 

Lifastuzumab 

vedotin 

(DNIB0600A) 

IgG1 

(Humanized) 

NaPi2b MMAE Valine-Citrulline Ovarian 

cancer 

Pinatuzumab 

vedotin 

(DCDT2980S) 

IgG1 

(Humanized) 

CD22 MMAE Valine-Citrulline Non-

Hodgkin’s 

Lymphoma 

(NHL) 

Polatuzumab 

vedotin 

(DCDS4501A) 

IgG1 

(Humanized) 

CD79b MMAE Valine-Citrulline NHL, Diffuse 

large B cell 

lymphoma 

Lorvotuzumab 

mertansine 

(IMGN-901) 

IgG1 

(Humanized) 

CD56 DM1 SPP Hematological 

malignancies 

IMMU-130 

(Labetuzumab-

SN-38) 

IgG1 

(Humanized) 

CEACAM5 SN-38 Carbonate Colorectal 

cancer 

IMMU-132 

(hRS7-

SN38ADC) 

IgG1 

(Human) 

TROP-2 SN-38 Carbonate Breast cancer 

Milatuzumab 

doxorubicin 

(IMMU-110) 

IgG1 

(Humanized) 

CD74 Doxorubicin Hydrazone Multiple 

myeloma 

Indatuximab 

ravtansine (BT-

062) 

IgG1 

(Humanized) 

CD138 DM4 SPDB Multiple 

myeloma 

Rovalpituzumab 

tesirine 

(SC16LD6.5) 

Undisclosed Fyn3 D6.5 Undisclosed Small cell 

lung cancer 
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Depatuxizumab 

mafodotin 

(ABT-414) 

IgG1 

(Human) 

EGFRvIII MMAF Maleimidocaproyl Glioblastoma 

Abbreviations: MMAE = monomethylauristatin; DM = maytansinoid; PSMA = prostate-

specific membrane antigen; GPNMB = transmembrane glycoprotein NMB; NaPi = sodium-

dependent inorganic phosphate; CEACAM = carcinoembryonic antigen-related cell 

adhesion molecule; EGFR = epidermal growth factor receptor. 

While the targeted nature of ADC therapy is expected to reduce treatment side effects, toxicity still 

remains an important concern for ADC. In fact, gemtuzumab ozogamicin (Mylotarg®), a 

humanized anti-CD33 antibody conjugated to calicheamicin was the first ADC to receive FDA 

approval in 2000 for treatment of acute myeloid leukemia (AML).  However, Mylotarg® was 

voluntarily withdrawn from the market after results of a Phase III study raised toxicity concerns 

and showed no benefit compared to standard therapies [66].  Brentuximab vedotin and ado-

trastuzumab emtansine also present significant toxicity; both are required by the FDA to carry a 

black box warning due to the risk (although only seen in rare cases) of developing progressive 

multifocal leukoencephalopathy (brentuximab vedotin) and risk of hepatotoxicity, cardiac toxicity, 

and embryo-fetal toxicity (ado-trastuzumab emtansine). Consequently, there remains a challenge 

in the field to further validate the superior therapeutic index that ADC can deliver over traditional 

chemotherapy and other targeted therapies. In this regard, great efforts are being directed to 

implement refinements in each of the components (targeted antigen, targeting moiety, linker, 

payload and conjugation chemistry) to boost the therapeutic potential of ADC. 

While most conjugates in clinical and preclinical development target cell surface receptors that are 

overexpressed in solid tumours and B-cell malignancies (Table 3), novel approaches such as 

targeting antigens present in neovasculature or extracellular stromal tissue are being explored.  One 

main advantage of such approach is that perfusion into the tumor is not required since blood serum 

is in direct contact with vascular endothelial cells, with exposure of the conjugate to its target tissue 

considerably greater than for traditional ADC targeting neoplastic cells [67-69].  Another attractive 

feature is that vascular endothelial cells are less likely to develop resistance mechanisms. Others 

have also explored the possibility of targeting cancer stromal cells, aiming to suppress tumor 

proliferation, neovascularization, invasion, and metastasis which are typically promoted by the 
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tumor microenvironment [70, 71].  Overall, the factors affecting the internalization rate of ADC 

suggest that antigen selection is of high importance in determining the efficacy of the conjugate in 

a physiological environment.  

Conversely, the efficacy of a conjugate is predominantly determined by its affixed payload. 

Current ADC feature antineoplastic agents that have an extremely high potency, usually in the sub-

nanomolar range. Most of these molecules are derivatives of highly potent cytotoxic drugs that 

have exquisite potency but at the same time, make them unamenable for development as 

chemotherapeutic agents alone. The cytotoxic drugs being employed can be classified into three 

major groups namely, calicheamicins (DNA disruption), maytansinoids and auristatins (cell cycle 

interference) [72-75].  Monomethylauristatin E (MMAE) and monomethylauristatin F (MMAF) 

are the most widely used payloads in the current pipeline with another twenty auristatin conjugates 

under clinical development [76, 77].  Among the maytansine analogs, DM1 and DM4 are being 

pursued with more than ten ADC in clinical trials (Table 3; Figure 1b).  Alternative drug classes 

such as duocarmycins and pyrrolobenzodiazepines may also gain popularity due to their 

remarkable potency [78, 79]. 

The linker component is a major determinant of plasma stability of a conjugate, thus impacting on 

the efficacy and safety profile.  One of the main reasons for off-target effects is the premature 

release of cytotoxic activity outside of target cells.  A commonly used approach for coupling the 

conjugate to an antibody is via a linker that contains a lysosomal-specific protease cleavage site. 

In this format, the linker is intended to be cleaved in the lysosome by proteases such as cathepsin 

B, plasmin and β-glucoronidase [80, 81].  Indeed, the valine-citrulline (Val-Cit) dipeptide linker, 

recognized and cleaved by cathepsin B, is currently the most widely implemented linker 

technology [82, 83].  A novel approach using non-cleavable linkers has gained popularity since 

they could substantially increase blood serum stability. In this modality, the antibody is digested 

inside the lysosome upon internalization, releasing the payload attached to an amino acid residue, 

yet still retaining its cytotoxic activity [84, 85].  For example, ado-trastuzumab emtansine, employs 

the hetero-bifunctional crosslinker N-succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-

carboxylate (SMCC), creating a non-reducible thioether linker (MCC) as a spacer between the 

anti-HER2 antibody and the maytansine DM1 [86]. Presumably due to increased stability, reduced 

toxicity has been observed with non-cleavable linker design relative to conjugates with cleavable 
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linker [87].  Remarkably, ado-trastuzumab emtansine has displayed superior in vivo activity in 

mouse breast cancer models compared to a similar trastuzumab-DM1 conjugate that differs only 

in that it contains a disulphide reducible linker [88]. 

The chemical reactions used to couple ADC components can also play a role in the therapeutic 

index.  The first conjugation techniques developed to create ADC involved a chemical reaction 

between a functional group in the linker and a reactive moiety in native amino acid residues, 

predominantly the thiol side-chains of partially reduced cysteines and the epsilon-amino end of 

lysine residues [89, 90].  In these cases, the conjugation sites and the number of drug molecules 

affixed to the antibody are stochastic, resulting in heavily heterogeneous conjugates.  This 

heterogeneity undermines the clinical potential of ADC, since it impacts severely on their toxicity 

and safety profiles.  In terms of potency, the efficacy is compromised by the reduced subset of 

ADC with an optimal amount of attached drug to exert a significant cytotoxic effect. Besides the 

fact that conjugates with low drug-to-antibody ratios (DAR) have limited efficacy, high DAR also 

possess higher toxicity and reduced plasma stability due to increased clearance rates [91].  This 

clearly illustrates the critical importance of achieving an optimal ratio.  Despite the shortcomings 

of stochastic attachments methods, both cysteine and lysine conjugation techniques have been 

utilized in the development of brentuximab vedotin and ado-trastuzumab emtansine, respectively.  

A set of alternate novel techniques have been developed to allow for site-specific conjugation 

including the THIOMAB platform [92], introduction of unnatural amino acids or enzymatic 

modification of native amino acid side-chains [93-95] and even glycan attachment through glyco-

engineering [96]. 

Bispecifics 

The next novel wave of therapeutic antibodies is predicted to be in the format of bispecific 

antibodies.  The concept of bispecific antibodies was first demonstrated more than twenty years 

ago, initially by chemical conjugation of two antibodies [97] then by fusing two hybridoma 

cultures [98].  There are now more than fifty different bispecific formats in development, enabling 

researchers to adjust and control parameters such as size, half-life, stability, flexibility and 

orientation to achieve the desired therapeutic outcome.  The assembly of antibody chains to 

accomplish the various antibody formats has been made possible with antibody engineering 

techniques including variations of the general approach [99-101] to novel approaches such as 
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‘knobs-into-holes’ [102], CrossMab [103], ‘Dock-and-Lock’ (DNL) [104, 105] and even hybrid 

domains derived from other immunoglobulin antibodies, via a technology referred to as strand-

exchange engineered domain (SEED) [106].   

The majority of bispecific antibodies are currently being assessed in clinical trials and are detailed 

in Table 4 with a few examples discussed below based on their mode of action.  Referred to as a 

trifunctional or triomab is catumaxomab (Removab®), bispecific to tumor antigen EPCAM and T 

cell marker CD3 (Figure 1c).  The antibody acts by recruiting and activating immune cells; 

EPCAM targets the tumor, CD3 recruits T effector cells and the Fc region recruits and activates 

monocytes, macrophages, dendritic cells (DC) and NK cells by FcγR binding [107].  

Catumaxomab is a hybrid antibody comprised of rat IgG2b binding domains and mouse IgG2a Fc 

region.  Catumaxomab has not yet received FDA approval (BLA submitted) but has EMA approval 

for the treatment of malignant ascites since 2009.  The antibody is also in clinical trials for 

application in ovarian cancer (II), gastric cancer (II) and epithelial cancer (I).  Given that 

catumaxomab is a rat-mouse hybrid, some anti-rat or anti-mouse IgG responses are observed in 

patients, though treatment does not appear to be significantly affected.  In fact, development of 

human anti-mouse antibodies (HAMA) have been shown to contribute to greater clinical benefit 

[108]. 

Table 4. Bispecific antibodies developed in recent years and their clinical status. 

Name Company Targets Antibody 

type 

Mode of 

Action 

Indications 

FDA approved 

Blinatumoma

b Blincyto® 

Amgen CD19/CD

3 

BiTE T cell 

recruitment 

Philadelphia chromosome-negative 

precursor B-cell acute 

lymphoblastic leukemia 

Clinical Trials Completed 

Catumaxoma

b Removab® 

Trion Pharma EPCAM/

CD3 

Trifuncti

onal/ 

Triomab 

T cell 

recruitment/ 

Fc effector 

Malignant ascites 

Phase III 

Emicizumab/

RG6013/AC

E910 

Roche Factors 

XI/X 

CLC-IgG Two factor 

dimerisation 

Haemophilia A 
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MT111/ME

DI565 

MedImmune CEA/CD3 BiTE T cell 

recruitment 

Gastrointestinal cancer 

Phase II 

Vanucizuma

b 

Roche Angiopoie

tin2/VEG

F 

Crossmab Two ligand 

inactivation 

Colorectal cancer 

RG7716 Roche Angiopoie

tin2/VEG

F 

Crossmab Two ligand 

inactivation 

Macular degeneration 

TF2 IBC 

Pharmaceutical/ 

Immunomedics 

CEA/Hapt

en 

DNL 

Fab3 

Payload 

delivery 

Small cell lung cancer, Colorectal 

cancer, Thyroid cancer 

Duligotuzum

ab 

Genentech/Roch

e 

HER1/HE

R3 

DAF-IgG Two ligand 

inactivation 

Head and neck cancer, Colorectal 

cancer 

ABT122 Abbott 

Laboratories 

TNFα/IL-

17 

DVD-

IgG 

Two ligand 

inactivation 

Rheumatoid arthritis, Psoriatic 

arthritis 

ABT981 Abbott 

Laboratories 

IL-1α/IL-

1β 

DVD-

IgG 

Two ligand 

inactivation 

Osteoarthritis 

SAR156597 Sanofi-Aventis IL-4/IL-

13 

DVD-

IgG 

Two ligand 

inactivation 

Idiopathic pulmonary fibrosis 

Istiratumab/

MM141 

Merrimack 

Pharmaceuticals 

IGF1R/H

ER3 

IgG-scFv Two ligand 

inactivation 

Pancreatic cancer 

IMCgp100 Immunocore MHC 

peptide280-

88/CD3 

ImmTAC T cell 

recruitment 

Malignant melanoma 

AFM13 Affimed 

Therapeutics 

CD30/CD

16 

TandAb NK cell 

recruitment 

Hodgkin Lymphoma 

Phase I 

BI1034020 Boehringer 

Ingelheim 

Pharmaceuticals 

Beta 

amyloid 2 

epitopes 

Bi-

nanobody 

Undisclosed Alzheimer's Disease 

ALX0761 Merck Sereno IL-

17A/IL-

17F 

Bi-

nanobody 

Two ligand 

inactivation 

Psoriasis 

LY3164530 Eli Lilly HER1/cM

ET 

orthoFab-

IgG 

Two ligand 

inactivation 

Metastatic cancer 
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Pasotuxizum

ab 

Bayer PSMA/C

D3 

BiTE T cell 

recruitment 

Prostate cancer 

MGD006 Servier CD123/C

D3 

DART T cell 

recruitment 

Acute Myeloid Leukemia 

AFM11 Affimed 

Therapeutics 

CD19/CD

3 

TandAb T cell 

recruitment 

Acute Lymphoblastic Leukemia, 

Non-Hodgkin's Lymphoma 

MGD007 Servier GPA33/C

D3 

DART-

Fc 

T cell 

recruitment/ 

Fc effector 

Colorectal cancer 

Abbreviations: BiTE = bispecific T cell engager; CLC = common light chain; DNL= dock-

and-lock; Fab = antigen binding fragment; DAF = dual acting Fab; DVD-IgG = dual variable 

domain immunoglobulin, scFv = single chain variable fragment; ImmTAC = immune-

mobilizing monoclonal TCRs against cancer; TandAb = tandem diabody; DART = dual 

affinity re-targeting molecule; Fc = fragment of crystallization; EPCAM = epithelial cell 

adhesion molecule; CEA = carcinoembryonic antigen; VEGF = vascular endothelial growth 

factor; TNF = tumor necrosis factor; IGFR = insulin growth factor receptor; MHC = major 

histocompatibility complex; PSMA = prostate-specific membrane antigen; GP = 

glycoprotein; NK = natural killer.   

Another example that achieves effector cell recruitment via a conceptually different format without 

a Fc region is bispecific T cell engager (BiTE®).  BiTEs are variable regions in the form of two 

scFv connected by flexible linker peptides (Figure 1c)  [109, 110].  One scFv is directed at a cell 

surface tumor antigen (with higher affinity) and the other scFv binds CD3 (with lower affinity).  

The first marketed BiTE was blinatumomab (Blincyto®) which targets CD19 on acute 

lymphoblastic leukemia (ALL), approved by the FDA in late 2014 under the accelerated approval 

program.  Blinatumomab is currently undergoing multiple Phase II and Phase III clinical trials for 

other B-cell related malignancies [111].  A major setback for BiTEs is the requirement of 

continuous intravenous infusion due to the short half-life inherent to the small size of the molecule 

(55 kDa) and the lack of Fc region.  Additionally, the treatment produces significant side effects, 

notably neurotoxicity and symptoms of cytokine-release syndrome [112].  Despite the challenges, 

this strategy is being investigated for other targets (CEA, EPCAM, PSMA) and indications. Other 

examples of molecules with immune cell recruitment are dual affinity re-targeting (DART®) [113, 

114] and tandem diabodies (tandAb®) (Figure 1c) [115, 116].   
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Another novel class of bispecific molecules called immune-mobilizing monoclonal TCRs against 

cancer (ImmTAC) further expands the variety of potential tumor-specific antigens, by 

incorporating soluble T cell receptors (TCRs) that can target intracellular antigens through 

recognition of peptide-HLA antigen complexes on the cell surface (Figure 1c) [117].  Under 

current investigation in Phase II clinical trial for malignant melanoma is IMCgp100.  The 

engineered TCR portion of the molecule targets the gp100 peptide280-288 antigen, which is 

overexpressed and presented by HLA-A2 on the surface of melanoma cells. The anti-CD3 scFv 

portion captures and redirects T cells to kill the melanoma cells.  

 

With the knowledge gained on validated targets and receptor signalling of existing therapeutic 

antibodies, targeting two antigens to simultaneously interfere with two or more signaling pathways 

is being pursued to improve therapeutic efficacy.  The most advanced molecule in clinical 

development is dugliotuzumab, a human IgG which targets the combination of HER1 and HER3 

as a dual action Fab (DAF)-IgG [118].  Duligotuzumab is being evaluated in Phase II trial in 

patients with head and neck cancer.  The dual interference can also be applied to inflammatory 

conditions.  Dual variable domain immunoglobulin (DVD-Ig™) formats directed at TNFα + IL-

17 and IL-1α + IL-1β are undergoing assessment in Phase I studies in patients with rheumatoid 

arthritis (Figure 1c) [119].  Other formats being investigated to interfere with signaling pathways 

include CrossMabs [103] and bi-nanobodies [120].  

Bispecifics can also serve as vehicles to deliver payloads to tumor cells.  TF2 is a DNL(Fab3) 

bispecific antibody that binds to CEA present on the surface of many solid tumours (Figure 1c).  

The antibody comprises three Fab modules that are stably coupled to each other in a triangular 

fashion using the ‘dock-and-lock’ technology.  Without a Fc region, these molecules have a rather 

short serum half-life which is an advantage for pre-targeting approaches.  TF2 is being evaluated 

in a Phase I trial in patients with colorectal cancer using Lutetium-177 or Indium-111 payload for 

imaging. 

Physical and chemical degradation of antibodies 

During manufacturing and storage, therapeutic antibodies are at risk of degradation via a number 

of pathways.  Though these reactions may be kept under control by appropriate storage and 
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formulation conditions of the final product, degradation that occurs during culture, downstream 

processing and in vivo cannot be controlled sufficiently.  These degradation events may affect 

antigen recognition, hamper functionality and in severe cases lead to immunogenic responses [121-

125].  Each antibody molecule seems to have a unique personality related to its requirements for 

stability; a phenomenon derived from the fact that differences in the CDR between antibodies are 

primarily dictated by the surface exposed amino acids that define antigen specificity [124].  The 

identification of degradation prone or unstable regions early in the antibody development process 

would ideally permit re-engineering of these problematic areas [126-129].  This approach is aided 

by recent developments in computational modelling tools that predict regions of interest 

susceptible to physical, chemical degradation or influence other biophysical properties of 

antibodies.  In the next section, degradation pathways commonly observed in therapeutic 

antibodies and an overview of predictive tools are discussed. 

Aggregation  

Protein aggregation is the most common and significant type of physical degradation associated 

with therapeutic antibodies, often leading to reduced activity and in some cases, formation of 

immunogenic products [130, 131].  Initial preparations of therapeutic antibodies were administered 

by intravenous (IV) infusion formulated at protein concentrations (1-25 mg/ml).  As antibody-

based therapeutics have become more widely used, high concentration formulations that allow SC 

injection (>50 mg/ml) became desirable giving rise to aggregation issues.  Proteins are folded in 

such a way as to internalize hydrophobic domains and surface expose more hydrophilic domains.  

As protein-protein contact frequency increases at high concentrations, the opportunity for 

aggregation formation increases proportionally.  Changes in extrinsic conditions including 

temperature, pH, salt, shaking, viscosity and concentration can transiently expose hydrophobic 

domains which in doing so promotes protein-protein interactions that lead to aggregation events 

[132-135].  Non-covalent aggregates can be formed via hydrophobic and/or electrostatic 

interactions and may be reversible, while covalent aggregates are usually formed by disulphide 

bonds and are difficult to reverse. Mechanisms of protein aggregation include: (1) aggregation of 

native state monomers; (2) aggregation of monomers with a modified conformation (non-native); 

(3) aggregation of chemically-modified monomers; (4) aggregation via a nucleation-dependant 
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process; and (5) surface-induced aggregation via adsorption of protein to glass-liquid or air-liquid 

interfaces [136, 137]. 

Denaturation 

Protein denaturation refers to the partial or complete unfolding of the native three-dimensional 

folded protein structure.  A denatured antibody often loses its tertiary and perhaps secondary 

structure leading to loss of binding affinity and activity if an active site domain is affected, and 

may expose aggregation-prone regions leading to further degradation [133, 138, 139].  Several 

intermediate states may exist between the folded native structure of an antibody molecule and the 

denatured state, with some intermediates thought to act as precursors or ‘nuclei’, attracting other 

protein species to exposed hydrophobic sites and forming irreversible aggregates.  Denaturation 

may be induced by a number of stress conditions that arise during antibody manufacture including 

changes in solution pH or temperature, use of organic solvents or chaotropes, high salt 

concentrations, or shear force [132, 133, 140]. In general, the CH3 domain of an IgG antibody is 

often the most stable against denaturation at high temperatures (highest Tm) while the IgG CH2 

domain is least stable and denatures first (lowest Tm) [141]. 

Fragmentation 

Fragmentation of therapeutic antibodies can be a product of enzymatic or non-enzymatic 

hydrolysis that occurs at the peptide backbone of a number of regions, such as the hinge region, 

the CH2-CH3 interface or a region containing aspartic acid (Asp) or tryptophan (Trp) residues 

[132].  Asp-associated hydrolysis is affected by pH and the n+1 residue; for instance, a serine 

(Ser), valine (Val) or tyrosine (Tyr) adjacent to an Asp may increase the rate of Asp-hydrolysis.  

Hinge region hydrolysis can occur in the absence of Asp, and occurs most commonly in the IgG1 

isoform [132, 142, 143]. The rate of hydrolysis is dependent on the flexibility the peptide sequence 

at the hinge, and occurs within a narrow range of residues.  Hinge hydrolysis rates are affected by 

solution pH, with a minimum rate of hydrolysis observed near pH 6, and higher rates at a lower or 

higher pH [132, 143].  Fragmentation of full-length antibodies is a common occurrence and 

generally, cleaved forms are present in such low amounts that effect on efficacy would not likely 

be seen.     
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Deamidation 

 Deamidation is the most common chemical degradation pathway of therapeutic antibodies and 

results from the hydrolysis of the amide side-chain of amino acids glutamine (Gln) or asparagine 

(Asn) [132, 136, 144, 145].  Hydrolysis of the side-chain can occur at acidic pH (pH <4) resulting 

in the conversion of Asn to Asp and Gln to glutamic acid (Glu) [132]. However at higher pH, 

deamidation occurs predominantly (and more slowly) via the formation of a cyclic imide 

intermediate.  For Asn, the cyclic intermediate (succinimide) leads to either the formation of Asp 

or an isomer of Asp.  A similar process results in the deamidation of Gln to Glu; although Gln 

deamidation is much less frequent, due to the lower stability of the 6-membered cyclic intermediate 

formed.  In short, deamidation events lead to more acidic forms of the antibody through the 

acquisition of additional carboxylic acid groups.  Conversely, it is also possible for Asp residues 

to undergo modification to a succinimide intermediate that produces a basic form of the antibody 

by removal of a carboxylic acid group [144].   

A number of factors can affect the rate of deamidation.  For instance, Asn residues are more prone 

to deamidation if they are present in solvent-accessible or structurally-flexible regions, especially 

if followed by a small or flexible residue such as Gly, Ser, threonine (Thr) or Asn [132, 146].  

Deamidation rate is also affected by extrinsic conditions including pH, temperature, buffer 

composition and concentration [147].  Gln deamidation is thought to be less common than Asp 

deamidation due to the lower stability of the 6-membered cyclic ring intermediate, which results 

in a much slower reaction rate [132].  Although Gln deamidation occurs less frequently, a study 

found that following incubation at pH 9, 7.8% of Gln82 of a recombinant IgG1 mAb had 

undergone deamidation, despite no deamidation of this residue occurring at neutral pH [145]. 

Deamidation of therapeutic antibodies is well characterised both  and in vivo, and has been shown 

to decrease the potency, activity and stability of antibodies [144, 146-150].  The deamidation 

events appear to be highly selective for individual antibodies.  For example, Harris et al. performed 

accelerated stability studies at elevated temperatures with rhuMAB HER2 antibody and found 

three labile Asn residues in the CDR region (Asn55, Asn30 and Asn102) [144]. These residues 

either formed aspartate, isoasparatate or a stable succinimide intermediate, resulting in a total of 

seven species of the antibody being resolved. Deamidation of these Asn residues was shown to 

significantly affect the specific in vitro activity and potency of rhuMAb HER2. 
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Oxidation 

Oxidation is another common degradation pathway which can occur during antibody production, 

formulation or storage. A number of amino acid residues may be affected, including methionine 

(Met), cysteine (Cys), histidine (His), tyrosine (Tyr) and Trp [132]. Specific Met residues within 

the Fc region (up to four residues) are prone to oxidation resulting in production of methionine 

sulfoxide [136, 151, 152].  Oxidation of these residues may affect the stability of an antibody, Fc-

mediated effector function or Protein A binding affinity which is often used for purification from 

cell culture supernatant [153]. Wang et al. demonstrated that oxidation of Met252 can result in >4-

fold reduction in the half-life of an antibody in transgenic mice expressing human Fc neonatal 

receptor (FcRn). However, this was only observed when 80% of the antibody existed in the 

oxidized form, and not at 40% [154].   

Oxidation can be dependent on intrinsic factors such as the degree of surface exposed residues as 

well as extrinsic factors including buffer composition, light exposure and pH, although Met 

oxidation appears to be almost pH-independent [132, 153, 155]. Oxidative stress has been 

observed during antibody production in mammalian expression systems where the formation of 

reactive oxygen species as a result of hypoxic conditions caused fragmentation of an IgG1 

antibody [156]. 

Tryptophan oxidation of antibodies has been reported following light exposure. Sreedhara et al. 

found that light induced oxidation of surface exposed Trp residues (Trp53, Trp108 and Trp94) in 

the Fab region of an IgG1 antibody leading to a loss in potency accompanied with a solution colour 

change [151]. In another example, oxidation of Trp residue in the H3 CDR loop (Trp135) of a 

humanized anti-respiratory syncytial virus (RSV) therapeutic antibody resulted in loss of antigen 

binding and biological function [157]. 

Computational design tools 

In recent years, computational methods used to simulate and develop structural models of proteins 

have transformed into practical design tools for the development of biobetter and next-generation 

antibody therapeutics [127, 158]. Current computational design tools have evolved to allow rapid 

identification of specific amino acid sequences or regions on a protein of interest, that contribute 

to its observed in vivo properties such as binding affinity, efficacy, stability and half-life [158].  
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Some of the early computational tools used for protein modelling include TANGO, PAGE, 

AGGRESCAN, PASTA and Zyggregator all of which rely on the sequence of the protein of 

interest (Table 5) [128, 159-164]. These computational tools use force fields such as CHARMM 

or AMBER and exploit chemical properties of the amino acids such as hydrophobicity, β-sheet 

propensity, charge, and aromatic content to predict aggregation hot-spots and residues susceptible 

to chemical degradation. In some cases, multiple tools can be used in combination to improve the 

predictive power.  For example, Wang et al. combined TANGO and PAGE to identify aggregation-

prone motifs and residues susceptible to deamidation or oxidation of 22 commercial and 20 non-

commercial therapeutic antibodies [165]. 

Table 5. A representative list of computational tools for prediction of protein aggregation hot 

spots. 

Name Properties 

Sequence-based methods 

TANGO 

 [204]. 

Determines the secondary structure formation propensity 

Aggrescan 

 [205]. 

Uses amino acid aggregation propensity value 

Zyggregator 

 [207]. 

Compares a new peptide sequence to the database 

PASTA 

 [208]. 

Predicts amyloid structure aggregation by looking into sequences 

that are likely to stabilize the cross-beta core of fibrils 

PAGE 

 [209]. 

Uses physicochemical properties for prediction 

Structure-based methods 

SAP   

 [173]. 

Determines spatial effective surface accessible area 

LIP   

 [211]. 

Measures ratio of polar surface area to apolar surface area of buried 

interfaces 

AGGRESCAN3D  

[212]. 

Based of original AGGRESCAN server with input from 3D structure 

and spatial arrangement of residues 
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Some structure-based computational tools have also been developed. One such method, Spatial 

Aggregation Propensity (SAP), predicts surface exposed aggregation-prone regions of a protein 

based on hydrophobicity, dynamic fluctuations and solvent accessibility of residues and regions 

[127]. The tool has been used to simulate entire antibodies and develop IgG1 antibody variants 

with enhanced physical stability to the wild type, by performing single or multiple mutations in 

either the Fab or Fc regions [127, 129]. 

Another method developed by Angarica and Sancho predicts aggregation propensity based on the 

packing density and polarity ratio (ratio of polar surface area to apolar surface area) of buried 

interfaces [166]. The tool was designed to characterise “Light Interfaces of high Polarity” (LIPs) 

considered to be intrinsically unstable cores. The technology shows promise as a tool for 

engineering antibody variants with increased aggregation-resistance, especially as a 

complimentary method to surface- or sequence-based tools mentioned above.  

One of the most recent developments in computational modelling is the evolution of 

AGGRESCAN to AGGRESCAN3D (A3D), an improved server which addresses many of the 

limitations of AGGRESCAN and other sequence-based methods.  A3D takes into account the 

three-dimensional structure of the protein and the spatial arrangement of the residues when the 

protein is in its native folded state [167].  With the incorporation of a mutation module that allows 

the easy modelling of the detected aggregation-prone and surrounding residues, A3D looks to be 

a promising tool for predicting problematic regions and the same time, allowing for re-design of 

more stable proteins. 

Optimization of antibody bioavailability and delivery 

Antibody-based therapies are predominantly delivered intravenously (IV), though an increasing 

number are now being formulated and administered subcutaneously (SC). While the IV route 

offers 100% bioavailability, systemic distribution and physiological barriers greatly reduce the 

actual concentration of antibody achieved in target tissues [168]. What is more, IV infusions are 

time-consuming and inconvenient. Ideally, an antibody formulation should be non-invasive and 

increase local bioavailability.  Limited alternatives have been implemented in the clinic since 

formulation requirements for such delivery often pose significant hurdles. For other parenteral 
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administration routes, such as SC or intramuscular (IM), the most common limitation is poor 

antibody solubility at the high concentrations required, given that maximum volume of injection 

is restricted to 2 ml and 5 ml, respectively.  When compared to IV formulations which range from 

1-25 mg/ml, SC and IM products often require concentrations >100 mg/ml to deliver an effective 

dose [169].  Furthermore, these delivery routes involve an absorption step to enable systemic 

circulation. Two main approaches are being pursued to optimize bioavailability: 1) the design of 

aggregation-resistant antibodies with higher solubility to prevent precipitation at higher 

concentrations; 2) the use of polymer matrix systems to develop controlled release formulations 

and improve PK profile. 

As discussed in the previous section, the design of aggregation-resistant antibodies albeit 

challenging, has become possible with the implementation of computational tools and increasing 

understanding of antibody structure and degradation pathways. Formulation stability has also been 

improved by using stabilizing additives such as salts (e.g. citrates, sulfates), amino acids (e.g. 

glycine) and sugars (e.g. sorbitol, sucrose, trehalose) [132, 170-172]. The development of SC and 

IM products has been successful in the last decade because of the formulation of large doses in 

significantly smaller volumes without aggregation issues [46].  SC and IM formulations have 

significantly improved patient convenience enabling self-administration through the use of pre-

filled syringes, a feature that is highly advantageous for treatment of chronic diseases.  A novel 

approach to improving SC formulation and PK has been proposed by Yang et al. whereby, 

crystalline antibody preparations of infliximab (Remicade®) and trastuzumab (Herceptin®) were 

formulated at 200 mg/ml while maintaining low viscosities suitable for this delivery route [173].  

Animal studies in rats showed a 2-fold increase of antibody half-life compared to non-crystallized 

antibody, demonstrating the potential of crystalline preparations as controlled release systems.  

Alginate polymers have also been explored for controlled release.  Schweizer et al. developed two 

polyanionic alginate matrices loaded with antibody through electrostatic interactions [174].  Both 

matrices were delivered to rats subcutaneously as hydrogels. After comparison with its liquid 

antibody counterpart, no significant differences in bioavailability were reported.  

For many pathologies, local delivery could increase efficacy and reduce systemic exposure. In 

such cases, administration routes such as oral, topical, respiratory and intraocular become highly 

relevant. Controlled release systems based on polymer matrices are also being tested in preclinical 
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studies for these delivery routes [168, 175]. For instance, liposomes and chitosan-alginate 

microparticles have been employed for oral delivery in order to protect antibodies from gastric 

inactivation and allow release in the small intestine [176, 177]. This is being explored in 

combination with the conjugation of targeting ligands to improve delivery and absorption in the 

gastro-intestinal tract.  [178].  For topical application, a hydrofiber dressing/adhesive sheet has 

been used to apply infliximab as a gel formulation for wound healing with improvements in 7/8 

patients tested [179].  In another example, a Phase I trial has been completed with positive results 

for BIL-010t, a topically administered, sheep antibody therapy to treat Basal Cell Carcinoma 

(BCC).  BIL-010t ointment was self-applied for 28 days; it was noted that 13/20 patients had 

decreases in the sizes of their lesions with only mild localized skin reactions reported.  The 

respiratory route has been extensively studied for treatment of chronic obstructive pulmonary 

disease, lung cancer, asthma and other pulmonary pathologies. Liposomes and microspheres have 

shown potential to increase bioavailability of respiratory delivery by preventing proteolysis [180]. 

The PEGylation of antibody fragments was shown to increase lung lumen residence time in a 

murine model through decreased clearance of alveolar macrophages and increased mucoadhesion 

[181].  Other strategies being investigated to deliver antibodies via the respiratory tract include 

IgG-loaded lipid microparticles and nano-micelles [182-184]. The most advanced molecule in 

clinical development is ALX-0171, an anti-RSV nanobody administered through inhalation; 

demonstrating a positive safety and tolerability profile in a first-in-infant Phase I/II study with an 

anti-viral effect observed [185].   

Overall, the IV route will likely remain the most prominent administration route in development 

due to ease of formulation. Still, the improvement of local bioavailability is an obvious 

requirement to fulfil the potential of antibody-based therapy, both in terms of efficacy and patient 

convenience. As such, strategies such as pursuing alternative administration routes and developing 

appropriate controlled release systems will gain relevance as their therapeutic potential continues 

to be explored in preclinical studies. 

Conclusions 

Antibody-based therapeutics have evolved from murine antibodies to humanized and fully human 

antibodies, developed with innovative technologies such as transgenic mice and phage display.  In 

the coming years, next-generation antibodies with improved properties and formats including 
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ADC and bispecifics are expected to gain popularity as biobetter antibody therapeutics. Major 

hurdles are being overcome for biosimilar development following the marketing approval of the 

first biosimilar antibody by the FDA earlier this year.  The advancement of next-generation 

biobetters and biosimilars is critical to; 1) reduce the high cost of therapeutic antibodies 

encountered over the last thirty years, 2) address the shortcomings confronted with the use of these 

antibodies such as poor efficacy and stability and most importantly, (3) provide greater patient 

benefit. 
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Abstract 

Monoclonal antibodies (mAbs) are of high value in the diagnostic and treatment of many 

debilitating diseases such as cancers, auto-immune disorders and infections. Unfortunately, protein 

aggregation is one of the ongoing challenges, limiting the development and application of mAbs 

as therapeutic products by decreasing half-life, increasing immunogenicity and reducing activity. 

We engineered an aggregation-prone region of adalimumab, the top selling mAb product 

worldwide - with additional glycosylation sites to enhance its resistance to aggregation by steric 

hindrance as a next generation biologic. We found that the addition of N-glycans in the Fab domain 

significantly enhanced its conformational stability, with some variants increasing the melting 

temperature of the Fab domain by more than 6 °C. The mutations tested had minimal impact on 

antigen binding affinity, or affinity to Fcγ receptors responsible for effector function. Our findings 

highlight the significant utility of this rational engineering approach for enhancing the 

conformational stability of therapeutic mAbs and other next-generation antibody formats. 

Introduction 

Monoclonal antibodies (mAbs) are amongst the top-selling therapeutic prescription products 

worldwide. In 2017, Humira® (adalimumab) alone, generated over 18 billion US dollars, 

maintaining its position as the top-selling drug worldwide [1, 2]. Antibody therapeutics are 

revolutionary biopharmaceuticals used to treat cancers, auto-immune and inflammatory 

conditions, and even some types of asthma. Approximately 80 antibody products have been 

approved and marketed by the FDA and EMA with hundreds more in early and advanced clinical 

trials [3]. Advances in antibody engineering technology have led to the development of a multitude 

of novel, next-generation antibody-derived products often termed biobetters, which include 

bispecifics, nanobodies, antibody-drug conjugates, and nanoparticles functionalised with 

antibodies [3, 4].  

Despite the four-decade-long progress and ever-growing interest in antibody research, one of the 

major challenges in the development of antibody therapeutics remains unsolved: protein 

aggregation [4-7]. Protein aggregation is one of the most common form of antibody degradation, 

having significant implications for a therapeutic product under development; aggregation can 

result in reduced therapeutic efficacy, and may trigger severe immunogenic side effects when 
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administered [8, 9]. Formulations of biologics including mAbs and other protein products are 

stabilized with the use of additives such as salts, sugars, amino acids and surfactants [10-12]. Some 

novel formulation additives have also been investigated to inhibit protein aggregation, including 

deuterated solvents [13], hydrogels [14, 15], peptide dendrons [16] and ionic liquids [17]. 

However, the type and amount of additives allowed in any given formulation is limited, especially 

in parenteral formulations – which are often used to administer mAbs. Thus, other approaches to 

enhance the aggregation-resistance of mAbs are needed. 

Another approach to significantly enhance the stability of a mAb is to modify the antibody 

structure itself. A single amino acid mutation in an aggregation-prone region (APR) can be 

sufficient to significantly improve the stability of an antibody against aggregation and/or increase 

its melting temperature. Predictions of aggregation-prone regions are often aided by computational 

tools – these include TANGO, AGGRESCAN3D, SAP [18-20], docking studies and/or molecular 

dynamics simulations [21]. For instance, the spatial aggregation propensity (SAP) tool has 

previously been used to guide mutations of aggregation-prone motifs of rituximab. These motifs 

predicted by SAP were ‘neutralised’ by single-point mutations, and multiple mutations were then 

combined to increase the overall antibody stability [22]. 

A variation of this approach (single-point mutation of high SAP regions) involves engineering an 

additional N-glycosylation site in a spatially proximate region to an APR, to sterically hinder 

aggregation in that APR [23, 24]. This strategy involves the introduction of amino acid sequons 

containing the sequence N-X-S/T (N-glycosylation sequon), that can be recognised by 

oligosaccharyltransferases and result in the enzymatic attachment of a glycan to the asparagine (N) 

residue within the N-glycosylation sequon. Naturally occurring N-linked glycans in the Fc domain 

are known to significantly influence antibody stability and effector function and to increase half-

life in patient serum. The introduction of extra N-linked glycosylation sites in the Fab domain may 

not only improve resistance to aggregation, but also enhance solubility and conformational 

stability of the antibody, offering additional benefits to a single-point mutation in a hydrophobic 

region. 

Courtois, Agrawal [23] recently tested a series of Fab-glycosylated bevacizumab variants and 

reported significant improvements in overall stability. Nakamura, Oda-Ueda [24] also tested a 

glycan-introducing mutation in the Fab of adalimumab expressed in Pichia pastoris and found that 
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it inhibited protease digestion and precipitation under pH stress. However, its impact on soluble 

aggregation of the full antibody is not clear. 

Table 1. Surface exposed amino acid (AA) residues identified in adalimumab Fab region for 

substitution. 

AA 
Residue Position Region Mutation Proposed Function 

L 178 CH1 
K Remove APR by introducing polar amino acid  

[23]. 

N 

Remove APR and introduce glycosylation site  
[23]. 

Q 160 Ckappa 

Sterically hinder APR by introducing 
glycosylation site  [23]. L 116 

Cjoin 
T 118 

A 122 

CH1 

Improve solubility by introducing 
glycosylation site  [25]. 

Q 179 Sterically hinder APR by introducing 
glycosylation site  [23, 25]. 

L 183 

T 199 
Improve solubility and sterically hinder self-
association by introducing glycosylation site  
[25, 26]. 

 

In this study, we report on and discuss the stability of Fab-glycosylated adalimumab variants that 

have spatial proximity to a previously determined APR in the IgG1 CH1 region of rituximab [22] 

and bevacizumab [23]. Specifically, the amino acid of the APR transposed to the adalimumab 

IgG1 peptide sequence is leucine 178. The substitution of this hydrophobic amino acid to lysine 

in bevacizumab [23], or to serine in rituximab [22] in the equivalent position, had experimentally 

demonstrated increased stability. This amino acid can also be substituted with asparagine (e.g. 

L178N) to introduce an N-linked glycosylation site. For this study, surface exposed amino acids 

were identified that can be substituted to asparagine to introduce N-linked glycosylation sites i.e. 



101 
 

Asn-X-Ser/Thr, where X is any amino acid except proline (Fig. 1). All substitutions except T199N, 

were previously identified to have 10 Angstrom spatial proximity to the APR of interest [22, 23]. 

T199N was specifically chosen as it had been reported to dramatically increase the solubility of a 

poorly soluble antibody [25], however it does not have spatial proximity to the APR. This 

particular substitution also has the potential to sterically hinder reversible self-association [26] 

which warranted further investigation through this study. The substitutions that were identified 

and pursued for this study are listed in Table 1. 

 

Figure 1. Crystal structure 3wd5 of adalimumab Fab fragment complexed to partial TNF-α 

fragment. Adalimumab VH/CH1 (green), VL/CL (aqua), TNF-α fragment (orange), APR 

site (purple) and surface exposed amino acids identified for substitution to an N-linked 

glycosylation site (pink). 

In addition to studying the effect of these Fab N-linked glycosylations on the aggregation 

propensity of adalimumab, we also investigated the conformational stability of the variants, and 
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characterised their binding affinity to TNF-α, and Fcγ receptors (FcγRs) responsible for effector 

function, to understand the broader impact of these additional glycans. 

Materials and Methods 

Cloning and mutation of AdmAb WT and variants 

The blank gWiz expression vector (Genlantis, P000200) was used to construct separate AdmAb 

IgG1 and kappa chain expression vectors. Firstly, secretion peptide genes, IgG1 and kappa chain 

genes were sourced from genes contained in vector pVITRO1_trastuzumab_IgG1/κ (Addgene 

plasmid # 61883), a kind donation from Andrew Beavil. These genes were cloned separately into 

the empty gWiz vector through conventional restriction cloning techniques (all materials from 

GeneSearch). The variable regions of AdmAb genes were designed and synthetically produced 

(Integrated DNA Technologies). These genes were exchanged with the trastuzumab variable 

regions in the gWiz vectors through In-Fusion cloning (Scientifix, 639648) to produce gWiz 

AdmAb IgG1 and gWiz AdmAb kappa vectors. 

Mutations were then introduced to the gWiz AdmAb IgG1 and kappa vectors through high fidelity 

inverse PCR to produce a library of AdmAb mutant expression vectors. AdmAb WT and mutant 

variants were confirmed through sequencing and expressed through transfection of vector pair 

combinations. 

Expression and Purification of AdmAb WT and variants 

AdmAb WT and mutants were transiently expressed in suspension HEK293F culture. HEK293F 

culture was maintained and transfected in Freestyle 293F media (Life Technologies, 12338-018), 

120 rpm, 37 °C, 5% CO2, humidified incubation conditions. 24 hours prior to transfection, 

HEK293F culture was seeded to 6 - 7 x 10+5 cells/mL in a 60 mL culture and the culture was 

adjusted to 1 x 10+6 cells/mL on the day of transfection.  

The complexing DNA for transfection was prepared as 1 µg total DNA per 1 x 10+6 cells. The 

gWiz AdmAb IgG1 and kappa vectors were combined in a w/w ratio of 1:1, and the complexing 

w/w ratio of PEI (BioScientific, 23966-2 (POL)) to total DNA was 2:1. The vector DNA and PEI 

were separately diluted in OptiPRO SFM (Life Technologies, 12309-050). The dilutions were 

combined and left to complex for 15 minutes before adding dropwise to the transfection culture. 
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After 24-hour incubation of the transfection culture, the culture was scaled up to 120 mL with 

Freestyle 293F media and supplemented to a total concentration of 0.5% tryptone w/v. After a 

further 24 hours of incubation, the culture was scaled up to 240 mL with Freestyle 293F media 

and supplemented to a total concentration of 0.5% tryptone w/v. The transfection culture remained 

in incubation for a total of 8 days before the media containing secreted antibody was harvested by 

centrifugation, and the culture supernatant was clarified by filtration. 

AdmAb WT and variants were purified from the culture supernatants using protein A affinity with 

a 1 mL HiTrap MabSelect SuRe column (GE Healthcare, 29-0491-04). PBS pH 7.4 was used as 

the binding and wash buffer, and glycine-HCl pH 3 was used to elute bound antibody. Eluted 

antibody samples were neutralized in 1 M Tris-HCl pH 8 and concentrated to <1 mL using 50 kDa 

centrifugal filters (Sigma-Aldrich, Z740193). To purify the samples from any aggregates and 

obtain pure monomer samples, concentrated samples were fractioned using SE-HPLC (see SE-

HPLC section) and the monomer fractions were collected and concentrated in 150 mM potassium 

phosphate buffer, pH 6.5, for analysis. 

LC-MS/MS analysis of AdmAb variants 

Successful mutation and introduction of glycosylation motifs of the AdmAb variants was 

confirmed through site-specific liquid chromatography tandem mass spectrometry (LC-MS/MS). 

Briefly, AdmAb variants were separated on reducing SDS-PAGE and digested with trypsin 

(Sigma-Aldrich, T6567) and chymotrypsin (Sigma-Aldrich, 11418467001). A fraction of the 

digestions was further treated with PNGase F (GeneSearch, P0708S) for glycan release. The 

digestion products were analysed by LC-MS/MS using higher-energy collisional dissociation 

(HCD), collision induced dissociation (CID) and electron transfer dissociation (ETD) methods. 

The AdmAb variants (10 μg) were run on a reducing SDS-PAGE, in-gel trypsin digestion was 

performed on the heavy chain band (50 - 60 kDa) of variants L116N, T118N, A122N, L178K, 

L178N, Q179N, L183N, T199N and the light chain band (25 - 30 kDa) of Q160N. The bands were 

excised, diced and washed with 50% (v/v) acetonitrile in 100 mM NH4HCO3. The gel pieces were 

then reduced with 10 mM dithiothreitol at 56 °C for 45 minutes, followed by alkylation by addition 

of 55 mM iodoacetamide in 100 mM NH4HCO3, and incubation at 25 °C for 30 minutes. The 

samples were subsequently washed with 50% (v/v) acetonitrile in 100 mM NH4HCO3. 
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The alkylated polypeptides were incubated with trypsin (1 μg trypsin per 50 μg antibody) in 50 

mM NH4HCO3, pH 6.8 at 37 °C overnight. The resulting tryptic peptides were further digested 

with chymotrypsin in 100 mM Tris-HCl, 10 mM CaCl2, pH 7.8 at room temperature, overnight. 

Glycan release was performed to confirm amino acid substitution; a fraction of the chymotryptic 

peptides (excluding L178K) was incubated with recombinant PNGase F (400 units per 1 μg of 

peptide) in 50 mM sodium phosphate buffer pH 7.5 at 37 °C, overnight. The chymotryptic peptides 

and the de-glycosylated fractions were desalted with C18 ZipTips (Millipore, ZTC18S096), eluted 

in 80% (v/v) acetonitrile, dried by vacuum centrifugation then re-dissolved in 0.1% formic acid 

for LC-MS/MS analysis. 

Glycopeptides and de-glycosylated peptides were separated on an in-house packed 20 cm × 75 μm 

Reprosil-Pur C18AQ (3 μm, 120 A; Dr. Maisch GmbH) column using a Dionex 3500RS HPLC 

over a 90-minute 0-40% solvent B gradient at a flow rate of 300 nL/min, at 60°C (solvent A was 

0.1% (v/v) formic acid; solvent B was 80% (v/v) acetonitrile and 0.1% formic acid). MS analysis 

was performed on an Orbitrap Fusion MS (Thermo Scientific) in positive mode. Instrument 

parameters were set up as follows: source voltage = 2.3 kV, S-lens RF level = 68%, and capillary 

temperature = 275 °C. The initial MS scan was acquired in the Orbitrap mass analyser (350–2000 

m/z; MS AGC = 6 × 10+5) with a resolution of 60,000 at 400 m/z. MS1 was followed by data-

dependent HCD using top speed, where as many dependent scans as possible are acquired in a 

specified time. HCD fragmentation was followed by re-isolation of the top two most intense 

precursors, and fragmentation with CID and ETD MS/MS. HCD parameters were as follows: 

activation time = 0.1 ms, resolution = 30,000, maximum injection time = 200 ms, dynamic 

exclusion = enabled with repeat count 1, normalized energy = 40, exclusion duration = 20 s, default 

charge state = 2, and MSn AGC 2.0e5. CID parameters were as follows: 30,000 resolution in 

orbitrap, activation time = 10 ms, max injection time = 300 ms, dynamic exclusion = enabled with 

repeat count 1, normalized energy = 35, exclusion duration = 20 s, default charge state = 2, and 

MSn AGC 5.0e4. ETD parameters were as follows: 30,000 resolution in orbitrap, 5.0e4 AGC, 

ETD reaction time = 50 ms, Max injection time = 300 ms. 

Peptide spectrum matches (PSM) were generated through a search against the corresponding 

FASTA file (wild-type or variant Adalimumab amino acid sequence) utilizing the search engine 

Byonic (Protein Metrics Inc.). Annotation of the HCD and ETD spectra were automated through 
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Byonic and the PSM assignments were validated by manually annotating the aforementioned 

spectra and the complementary CID spectrum. Further confirmation of the identity assignment was 

achieved through analysis of the de-glycosylated chymotryptic peptides utilizing the same LC-

MS/MS approach as for the glycosylated fraction. 

Accelerated stability at elevated temperatures 

We performed accelerated studies at an elevated temperature as previously described [7]. Humira® 

40 mg/0.8 mL subcutaneous injections (Symbion) were used for reference. Briefly, 20 µL of each 

AdmAb variant (1 mg/mL) was transferred to a 0.2 mL PCR vial and incubated at 65 °C for 1, 2 

or 3 hours in a Thermal Cycler with heated lid (Applied Biosystems, CA, USA) to induce 

aggregation. Each experiment was repeated in triplicate. A thermal cycler was used to minimize 

sample amount and prevent evaporation of the sample and consequent changes in antibody 

concentration during incubation (lid/cover of thermal cycler is heated above incubation 

temperature). Following incubation, samples were immediately transferred to an ice bath as to halt 

aggregation. The aggregated samples were then characterized by size exclusion-high performance 

liquid chromatography (SE-HPLC). 

SE-HPLC analysis of monomer loss 

Size exclusion-high performance liquid chromatography (SE-HPLC) was used to quantify AdmAb 

monomer loss following incubation at elevated temperature as previously described [7]. Analysis 

was performed using an Agilent 1200 Liquid Chromatography system (Agilent Technologies) with 

a Zorbax GF-250 column (Agilent Technologies, 884973-701) coupled to a guard column (Agilent 

Technologies, 82095-911) at 22 °C, using a 150 mM potassium phosphate pH 6.5 mobile phase, 

and a flow rate of 0.5 mL/min. 5 μL of each incubated sample was injected in triplicate. Monomer 

peaks were detected using an in-line UV signal detector set at 280 nm. The area under the curve 

(AUC) of the monomer peak was averaged over the three runs. The percentage mean relative 

monomer was calculated for each sample by setting the monomer AUC of the non-incubated 

samples as 100% and calculating the change in monomer AUC accordingly. The standard 

deviations (SD) were plotted as error bars in the figures. 
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AdmAb melting temperature (Tm) and onset temperature of aggregation (Tagg) 

The Tm and Tagg of Humira®, AdmAb WT, and variants were simultaneously measured using 

intrinsic tryptophan fluorescence and static light scattering (SLS), respectively, on the UNcle 

system (Unchained Labs). A linear temperature ramp from 15 to 95 °C at a 1 °C/minute scan rate 

was performed whilst measuring tryptophan fluorescence and SLS simultaneously through laser 

excitation at 266 nm. 8.5 µL of each AdmAb sample (1 mg/mL) was transferred undiluted in 

triplicate, into the UNcle sample holding unit. A holding time was not used as to maximize the 

frequency of measurements. Tm and Tagg were determined by the UNcle Analysis software. The 

barycentric mean (BCM) was used to plot the Tm curves, which is defined by the following 

equation: 

𝜆𝜆𝐵𝐵𝐵𝐵𝐵𝐵 =
∑ 𝜆𝜆𝜆𝜆(𝜆𝜆)𝜆𝜆

∑ 𝐼𝐼(𝜆𝜆)𝜆𝜆
 

The equation is defined over the range 300 - 450 nm; each wavelength value (λ) is multiplied by 

the tryptophan fluorescence intensity (I) at that wavelength, and the sum of that value for all 

wavelengths from 300 - 450 is divided by the sum of the intensities at those wavelengths. This 

results in an ‘averaged’ peak wavelength (λBCM) for a given spectrum. 

Binding kinetics to TNF-α and Fcγ receptors (FcγRs) 

The binding kinetics of Humira®, AdmAb WT and variants were assessed to TNF-α and FcγR1A, 

2B and 3A through surface plasmon resonance (SPR) to confirm that the mutations did not 

contribute to a loss of biological function. Briefly, a Biacore T200 system (GE Healthcare) was 

used, running single cycle kinetic assays. Monomeric AdmAb samples were captured on a ProA 

chip (GE Healthcare, 29-1275-55) and increasing dilutions of TNF-α (Sigma-Aldrich, H8916) 

were injected, with a 60-minute dissociation. HIS-tagged FcγR1A (Life Technologies, 10256-

H08H-5), FcγR2B (Sigma-Aldrich, SRP6396) and FcγR3A (Sigma-Aldrich, SRP6436) were 

captured on an anti-HIS chip and increasing dilutions of monomeric AdmAb samples were 

injected, with a 30-minute dissociation. The sensograms were analysed to determine association 

rate (Ka), dissociation rate (Kd) and equilibrium dissociation constants (KD). All runs were 

performed at 25 °C with 10 mM HEPES, 150 mM NaCl, 0.05% v/v Tween 20 running buffer, pH 

adjusted to 7.4. 
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Soluble homotrimeric TNF-α was assayed against monomeric AdmAb samples on a ProA chip 

under continuous flow rate of 20 µL/min. Monomeric AdmAb samples were prepared to 10 nM 

and captured on the sensor chip surface with a contact time of 10 seconds. TNF-α was injected in 

2-fold increasing concentrations (2.5 – 40 nM) with a contact time of 120 seconds at each 

concentration, then a dissociation time of 60 minutes. The chip surface was regenerated with 50 

mM NaOH for 30 seconds at a flow rate of 30 µL / min. 

Monomeric AdmAb samples were assayed against HIS tagged FcγRs. Anti-HIS antibody was 

covalently attached to a CM5 biosensor chip (GE Healthcare, 29-1049-88) using an amine 

coupling kit (GE Healthcare, BR-1000-50) and HIS capture kit (GE Healthcare, 28-9950-56). HIS 

tagged FcγR1A, 2B and 3A were prepared to 4 nM and captured to the sensor chip surface with a 

contact time of 300 seconds at 5 µL/min flow rate. AdmAb samples were injected on FcγR1A 

coated surface in 2-fold increasing concentrations (2.5 – 40 nM) at a flow rate of 20 µL/min with 

a contact time of 120 seconds at each concentration, followed by 30-minute dissociation time. 

AdmAb samples were injected on FcγR2B and FcγR3A-coated surfaces in 2-fold increasing 

concentrations (25 – 400 nM unless otherwise stated) at a flow rate of 10 µL/min with a contact 

time of 120 seconds at each concentration, followed by 1800 second dissociation time. The chip 

surface was regenerated with 10 mM glycine-HCl, pH 1.5 for 60 seconds at a flow rate of 30 

µL/min. 

The sensograms were analysed globally using a Langmuir 1:1 binding model to determine Ka, Kd 

and KD. All samples were conducted in duplicate to obtain average values and standard deviation. 

Kinetic rate and equilibrium constants determined from sensograms were accepted if the goodness 

of fit value (χ2) was within 5% of the maximum response level (Rmax) of the sensograms and KD 

was calculated as Kd/Ka. 

Results 

Confirmation of mutation and glycan attachment through LC-MS/MS 

Detailed analysis of LC-MSMS data confirmed that all AdmAb variants had successful amino acid 

substitution. Incorporation of HCD, ETD and CID fragmentation techniques further provided 

compositional glycan information of the new N-glycosylation sites. Except for Q160N mutant, all 

other AdmAb glycosylation-site variants were found to contain an N-glycan (data not shown). 
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Here, we show the characterization of glycan site-engineered AdmAb variant T199N as a 

representation of the analysis performed for all AdmAb variants. 

 

Figure 2. (A) HCD, (B) ETD and (C) CID spectra of chymotryptic T199N glycopeptide 

observed at m/z 909.65 (4+). Peptide sequence SLSSVVTVPSSSLGNQTY and attached 

complex type N-glycan HexNAc5Hex4Fuc1 are shown. Blue square; N-acetylglucosamine, 

red triangle; fucose, green circle; mannose, yellow circle; galactose, Hex; hexose, HexNAc; 

N-acetylhexosamine, M; precursor ion. 

HCD spectrum of SLSSVVTVPSSSLGNQTY peptide observed at m/z 909.65(4+) showed b- and 

y-ion series confirming amino acid sequence and the asparagine substitution was shown 

specifically by y4-y11 fragment ions (Fig. 2A). HCD of T199N mutant also contained diagnostic 
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HexNAc (m/z 204.09) and HexNAcHex (m/z 366.14) oxonium ions, strongly indicating 

glycosylation on the mutant peptide (Fig. 2A). ETD further confirmed the structure of T199N 

glycopeptide by multiple fragment ions corresponding to dissociated peptide backbone with intact 

glycan (Figure 2B, c-15, c-16, c-17 and z-16 ions). Theoretical monosaccharide composition of 

the N-glycan was derived using Byonic (Protein Metrics) search results and GlycoMod 

(https://web.expasy.org). CID data in Figure 2C shows sequential loss of monosaccharides from 

glycopeptide fragments of T199N mutant and contains complementary oxonium ions m/z 366.14, 

m/z 528.19, and m/z 569.22 of the observed glycan in the low mass region. Extensive glycosidic 

bond cleavages (Fig. 2C, y-ions, m/z 1616.2(2+), m/z 1535.19(2+), m/z 1461.67(2+)) observed in 

CID confirmed that SLSSVVTVPSSSLGNQTY peptide is occupied by a complex type N-glycan 

with HexNAc5Hex4Fuc1 composition. CID spectra of deglycosylated T199N peptide m/z 

609.64(3+) showed enhanced peptide backbone fragmentation and provided additional 

information for the expected mass shift from threonine to asparagine (y4-y18 ions and b17 ion, 

Fig. 3). Same ion series also displayed deamidation (+1Da) of the new asparagine residue which 

is a characteristic result of PNGaseF treatment of a formerly N-glycosylated peptide. 

 

Figure 3. CID spectrum of de-glycosylated chymotryptic T199N mutant peptide 

SLSSVVTVPSSSLGNQTY observed at m/z 609.64(3+). b- and y- ions show CID fragments 

of the peptide. 

Monomer loss following accelerated studies at elevated temperature 

Incubation at 65 °C revealed modest differences in aggregation propensity between the reference 

Humira®, WT and single-mutant variants (Fig. 4). Variants L116N and T118N were completely 

degraded after an hour of incubation and were therefore not included in the figure (Fig. 4). Variant 

Q160N had very similar monomer loss data at all incubation temperatures to the WT, while L183N 
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had a noticeably higher monomer loss. Variants A122N, Q179N and T199N retained higher 

monomer content than the control at most incubation conditions, with A122N having the least 

monomer loss (Fig. 4). While Q179N had comparable monomer loss after 1 hour, monomer loss 

was lower at 2 and 3 hours, when compared to the WT. Interestingly, variants L178N and L178K 

had comparable monomer loss profiles which were not significantly different to the WT (Fig. 4). 

Humira® reference had slightly lower monomer loss than the WT. 

 

Figure 4. Monomer loss of Humira®, AdmAb wild-type (WT) and variants following 

incubation at 65 °C for 1, 2 and 3 hours. Error bars represent the SD. 

Tm and Tagg 

The WT AdmAb had a very similar Tm1 and Tm2 to the Humira® reference product; a slightly 

lower Tm1 was measured at 69.6 °C (WT) compared with 70.8 °C (Table 2). The Tm2 was 

comparable at 82 °C compared with 82.5 °C for Humira®. Variant Q160N had a similar melting 

profile to the WT, with an identical Tm1 and comparable Tm2 of 69.6 and 82 °C, respectively. 

Variants T118N and L116N had a significantly lower Tm1 at 59.7 and 63.6 °C, respectively; the 
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Tm2 was also lower at 68 and 78.6 °C, respectively. Interestingly, a third Tm was recorded for 

variants T118N and L116N at 87.8 and 88.3 °C, respectively. Variants L178K, A122N and Q179N 

had similar Tms and were comparable to the WT. Variants T199N and L178N had similar Tm1 

values to the WT (70.6 and 69.9 °C, respectively), but significantly higher Tm2 values (88.2 and 

89.3 °C, respectively). Variant L183N had a similar Tm1 to the WT, but had a consistent minor 

unfolding event at ~65 °C (not shown); Tm2 was higher than the WT (88.3 °C, Table 2). The Tagg 

of the WT and variants ranged from 70.6 to 72.5 °C, except for variants T118N and L116N, which 

had significantly lower Tagg values (61.7 and 64.7 °C, respectively; Table 2). Most variants had 

a slightly higher Tagg than the WT (70.7 °C) by approximately 1-2 °C, while the Tagg of Q160N 

and L178K were unchanged. Compared with L178K, the Tagg of glycosylated variant L178N was 

1.7 °C higher. 

Table 2. The melting (Tm) and onset of aggregation temperatures (Tagg) of the AdmAb variants 

compared with the wild-type (WT) and reference Humira® product (± SD). ^see discussion 

AdmAb Tm1 (°C)  Tm2 (°C) Tm3 (°C) Tagg @266 nm 

Humira® 70.8 ± 0.2 82.5 ± 0.8 - 71.3 ± 0.4 

WT 69.6 ± 0.5 82 ± 1.4 - 70.7 ± 0.1 

Q160N 69.6 ± 0.3 81.1 ± 1.4 - 71 ± 0.4 

T199N 70.6 ± 0.2 88.2 ± 2.2 - 71.7 ± 0.1 

T118N 59.7 ± 0.5 68 ± 0.7 87.8 ± 2.5 61.7 ± 0.6 

L178K 68.4 ± 0.6 83.5 ± 0.5 - 70.6 ± 0.3 

L178N 69.9 ± 0.5 89.3 ± 0.2 - 72.3 ± 0.3 

A122N 69.7 ± 0.5 83.4 ± 0.7 - 71.8 ± 0.4 

Q179N 69.4 ± 0.2 82.7 ± 0.9 - 71.7 ± 0.5 

L118N 63.6 ± 0.5 78.6 ± 0.5 88.3 ± 1.2 64.7 ± 0.3 

L183N 70^ ± 0.5 88.3 ± 1.1 - 72.5 
 

Binding kinetics of AdmAb to TNF-α and FcγRs 

The binding kinetics of reference Humira®, monomeric AdmAb WT and variants to TNF-α and 

FcγR1A, 2B and 3A were assessed using SPR single cycle kinetic analysis. Samples were run in 
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duplicate and sensograms were fitted to a Langmuir 1:1 binding model to obtain Ka, Kd and KD 

values for comparison as per previous studies [27, 28]. It was determined that in general, the 

majority of AdmAb variants did not experience a significant loss of biological activity. 

The KD range determined for monomeric AdmAb variants binding to soluble homotrimeric TNF-

α spanned 36.69 – 110.27 pM, while Humira® had a mean KD of 30.77 pM (Table 3). Monomeric 

AdmAb WT had a KD of 66.43 ± 2.37 pM which lies within the range, with no significant outlier 

(Table 3). Of all variants tested, T199N had the strongest KD to TNF- α (36.69 pM) - 

approximately 1.8-fold stronger than the WT - while Q179N had the weakest KD (110.27 pM). 

Table 3. Kinetics and binding affinity of reference (Humira®) and monomeric AdmAb mutants 

to soluble homotrimeric TNF-α (± SD). 

AdmAb 
TNF-α 

Ka (x 10+5) M-1.s-1 Kd (x 10-5) s-1 KD (pM) 

Humira® 11.7 ± 0.01 3.59 ± 0.80 30.77 ± 6.83 

WT 6.08 ± 0.07 4.04 ± 0.10 66.43 ± 2.37 

L178K 4.84 ± 0.01 4.61 ± 0.64 95.33 ± 13.3 

L178N 5.33 ± 0.03 5.42 ± 0.67 101.7 ± 12.1 

Q160N 6.2 ± 0.07 2.86 ± 0.05 46.05 ± 1.31 

L116N 5.19 ± 0.09 2.84 ± 0.1 54.77 ± 2.87 

T118N 5.04 ± 0.02 3.59 ± 0.21 71.19 ± 4.50 

A122N 6.47 ± 0.03 2.87 ± 0.05 44.32 ± 0.57 

Q179N 5.02 ± 0.40 5.53 ± 0.1 110.3 ± 6.56 

L183N 5.58 ± 0.14 3.05 ± 0.03 55.37 ± 0.86 

T199N 7.15 ± 0.69 2.62 ± 0.01 36.69 ± 3.54 
 

The KD range determined for FcγR1A binding to monomeric AdmAb variants spanned 2.1 – 6.81 

nM, while Humira® had a mean KD of 1.84 nM (Table 4). Monomeric AdmAb WT had a KD of 

4.4 ± 0.01 nM which lies within the range with no significant outlier (Table 4). Of all variants 

tested, the strongest KD was recorded for mutant T118N (2.1 nM), while the weakest KD was 

recorded for L178N (6.81 nM).  
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Due to sample limitations, monomeric AdmAb Q160N was not tested for the cycle assays against 

FcγR2B (Table 4).  

The KD range determined for FcγR2B binding to monomeric AdmAb variants spanned 1.81 – 

9.61 nM, while Humira® had a mean KD of 2.55 nM. Monomeric AdmAb WT had a KD of 4.47 

± 0.1 nM which lies within the range with no significant outlier (Table 4). T199N had the strongest 

KD to FcγR2B (1.81 nM), while T118N had the weakest KD (9.61 nM). However, due to the large 

variation in KD values for the WT and several mutants, most differences were not deemed 

significant.  

The KD range determined for FcγR3A binding to monomeric AdmAb variants spanned 1.48 – 

18.01 nM, while Humira® had a mean KD of 1.84 nM. Monomeric AdmAb WT had a KD of 5.96 

± 1.62 nM which lies within the range with no significant outlier (Table 4). The strongest KD was 

recorded for L183N (1.48 nM), while the weakest KD was recorded for A122N (18.01 nM) with 

large ranges. Overall, all differences in KD recorded compared to the WT, were no larger or 

smaller than 3-fold for TNF-α and all receptors tested. 

Table 4. Binding affinity of reference Humira® and monomeric AdmAb mutants to FcγR1A, 

FcγR2B and FcγR3A. 

AdmAb 
KD (nM) 

FcγR1A FcγR2B FcγR3A 

Humira® 1.84 ± 0.18 2.55 ± 1.67 1.84 ± 0.68 

WT 4.4 ± 0.01 4.47 ± 1.00 5.96 ± 1.62 

L178K 4.14 ± 0.06 9.16 ± 6.86 2.37 ± 1.19 

L178N 6.81 ± 0.45 3.67 ± 0.93 2.15 ± 0.73 

Q160N 5.3 ± 0.01 N.D. 16.2 ± 3.05 

L116N 3.87 ± 0.14 6.15 ± 1.10 6.71 ± 1.91 

T118N 2.1 ± 0.01 9.61 ± 1.38 13.3 ± 0.45 

A122N 5.58 ± 0.18 7.53 ± 2.74 18.01 ± 7.4 

Q179N 2.74 ± 0.01 5.27 ± 0.11 2.92 ± 0.16 

L183N 2.6 ± 0.04 2.52 ± 2.05 1.48 ± 0.84 
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T199N 6.49 ± 0.06 1.81 ± 1.25 11.80 ± 0.2 
 

Discussion 

We rationally designed and produced a library of glycan-engineered AdmAb variants to enhance 

stability through steric hindrance of an APR. Successful mutation and glycan addition was 

confirmed for all mutants aside from Q160N, through LC-MS/MS. Consequently, the stability and 

binding kinetics results for the Q160N variant are directly related to the amino acid substitution 

alone. Since Q160N had similar stability and antigen binding affinity to the WT, it was concluded 

that the amino acid substitution did not have any significant impact on the antibody properties 

tested. The KD values for the AdmAb WT produced in our study (Table 3 and 4) are comparable 

to Humira® KD values observed, and as reported in the literature; TNF-α (30-110 pM), FcγR1A 

(15-23 nM), FcγR2B (4.3-14.2 nM) and FcγR3A (5.8-7.9 nM) [29, 30]. 

Likewise, most measured KD values for the mutants tested lay within a close range to reported 

literature values for the reference AdmAb, showing that these mutations had minimal impact on 

binding properties.  

The highest improvement in resistance to aggregation was observed in mutant A122N with a slight 

increase in Tagg and reduction in monomer loss (Table 2 and Fig. 4). The A122N mutation resulted 

in 1.5-fold increased binding affinity to TNF-α with slightly reduced binding to FcγRs tested and 

with no impact on conformational stability. Pepinsky, et al [25] reported that a mutation equivalent 

in position to AdmAb variant A122N significantly improved the solubility of an anti-LINGO 

antibody, with no impact on binding affinity or conformational stability. Improvements in 

solubility often correlate with reduced precipitation and insoluble aggregate formation. 

This may explain the minor improvement in Tagg we observed with mutant A122N which reflects 

a higher resistance to precipitation at higher temperatures. Although only a minor improvement in 

monomer loss, the improvement is consistent at higher concentrations tested (15 mg/mL, data not 

shown) and is significant in a clinical setting, where typically no more than 5% of aggregates are 

considered acceptable by regulatory standards. 

No significant improvements in monomer loss were observed with other mutants (e.g. T199N and 

Q179N). Courtois, et al [22] hypothesised that a mutant equivalent in position to Q179N in 
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bevacizumab could not be glycosylated as it was inaccessible to glycosylases. However, we 

confirmed that Q179N was glycosylated; likewise, Pepinsky, et al [25] were able to express a 

glycosylated variant with a mutation in an equivalent position to Q179N which mildly improved 

antibody solubility. Accessibility to glycosylases does not determine whether the initial glycan is 

added or not, as this addition occurs in the endoplasmic reticulum prior to the folding of the protein. 

Thus, it may have been possible to introduce a glycan in this position with bevacizumab as well. 

Nevertheless, with the additional N-glycan, Q179N was expected to sterically hinder Fab-mediated 

aggregation in the targeted APR; while T199N was reported to significantly improve solubility 

[25] and sterically hinder self-association [26], however this was not observed for AdmAb. The 

Q179N mutation also mildly reduced antigen binding affinity by ~1.6-fold. 

Interestingly, Pepinsky, et al [25] reported no change in the Tm of the mutation equivalent in 

position to AdmAb variant T199N, while we observed a significant improvement in Fab Tm with 

variant T199N (~6 degrees higher). Additionally, T199N had 1.8-fold improved KD to TNF-α 

with minimal differences in KD to FcγRs. The lack of improvement in resistance to aggregation, 

despite the improvement in Fab stability, may be related to the mechanism of aggregation in 

AdmAb. Since the CH2 has the lowest Tm in most IgG1s, it is expected that most aggregation 

steps are at least initiated with unfolding of the CH2; thus, an improvement in Fab stability may 

not significantly impact overall resistance to soluble aggregation.  

Similarly, we observed an improvement in Fab Tm for mutants L178N and L183N. L178N is an 

interesting example, because when compared to the non-glycosylated variant L178K, there is an 

improvement in Tagg and Fab Tm through glycosylation. This emphasises the impact of the N-

glycans added via mutation on the conformational stability of the Fab and its resistance to 

precipitation, and highlights that these changes are not due to the amino acid substitution. The 

mutation significantly improved the conformational stability of the Fab domain. Furthermore, 

despite suppressing pH-induced precipitation when tested on the Fab alone [24], the L178N 

mutation had minimal impact on soluble aggregation when tested on the full AdmAb. Surprisingly, 

the non-glycosylated variant L178K which was reported to significantly suppress aggregation in 

bevacizumab [23], but enhance aggregation in rituximab [22], also had minimal impact on the 

stability of AdmAb. This finding highlights that framework regions differ significantly between 

IgG1 antibodies despite having identical sequences. 
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Variants L116N and T118N had multiple Tms, with a lower Tm1, higher Tm3 and a significantly 

reduced Tagg; additionally, they were completely degraded at 65 °C. The Tms of these mutants 

are harder to interpret, and do not necessarily represent the CH2, Fab and CH3 in that order. As 

previously reported [31], disturbances in the joining region between the Fab domains can create 

additional Tms for each separate domain. Thus, we expect that the Tm1 value of these mutants is 

representative of only part of the Fab (for e.g. the CH1 or VL); since the Tm of this part of the Fab 

is now less stable than the CH2, aggregation proceeded more rapidly at 65 °C. Again, our results 

do not correspond with findings reported for the mutation equivalent to AdmAb L116N in 

bevacizumab, which showed improved resistance to aggregation with no destabilization of the Fab 

[23]. Some perturbation in Fab stability was also observed with mutant L183N, resulting in 

increased monomer loss. The perturbation was minor and hard to detect; however consistently 

appeared in temperature ramps for Tm measurement. It is likely that the amino acid substation in 

this position impaired the conformational stability of part of the Fab domain as observed with 

mutants L116N and T118N. 

Conclusion 

Protein aggregation is a complex challenge hindering the development and long-term stability of 

therapeutic mAbs. Using advanced computational tools, we identified aggregation prone regions 

and engineered adalimumab, a marketed therapeutic mAb, with additional N-glycans in the Fab 

domain, with the aim to sterically hinder aggregation and increase long-term stability. Our glycan-

engineered variants displayed a range of different stabilities, with some mutations increasing 

susceptibility to aggregation, others enhancing the conformational stability of the Fab domain, and 

one showing minor improvements in resistance to aggregation.  This approach has potential 

application for other antibodies where the Fab domain has poor stability or is a pre-cursor to 

aggregation.  We demonstrated that the conformational stability of blockbuster therapeutic 

antibodies such as AdmAb can still be improved with glycan-engineering without compromising 

its antigen and Fc receptor binding affinity; these findings highlight the significant value of this 

engineering approach in the quest for developing more stable therapeutic mAbs with improved 

half-lives and therapeutic outcomes. 
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Abbreviations 

AdmAb adalimumab 

APR  aggregation-prone region 

AUC  area under the curve 

BCM  barycentric mean  

CID  collision induced dissociation 

ETD  electron transfer dissociation 

HCD  higher-energy collisional dissociation 

Ka  association rate constant 

Kd  dissociation rate constant 

KD  equilibrium dissociation constant 

LC-MS/MS liquid chromatography tandem mass spectrometry 

mAb   monoclonal antibody 

PEI  polyethylenimine, linear, 25 kDa 

PSM  peptide spectrum matches 

rpm  rotations per minute 

SAP  spatial aggregation propensity 

SD  standard deviation 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SE-HPLC size exclusion-high performance liquid chromatography  

SLS  static light scattering 

SPR  surface plasmon resonance 

Tagg  onset temperature of aggregation 
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 Tm  melting temperature (protein) 

UV  ultraviolet 

v/v  volume for volume 

WT  wild-type 

w/v  weight for volume 
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Abstract 

Protein aggregation constitutes a recurring complication in the manufacture and clinical use of 

therapeutic monoclonal antibodies (mAb) and mAb derivatives. Antibody aggregates can reduce 

production yield, cause immunogenic reactions, decrease the shelf-life of the pharmaceutical 

product and impair the capacity of the antibody monomer to bind to its cognate antigen. A common 

strategy to tackle protein aggregation involves the identification of surface-exposed aggregation-

prone regions (APR) for replacement through protein engineering. Others have shown that the 

insertion of N-glycosylation sequons on amino acids proximal to an aggregation-prone region can 

increase the physical stability of the protein by shielding the APR, thus preventing self-association 

of antibody monomers. We recently implemented this approach in the Fab region of full-size 

adalimumab and demonstrated that the thermodynamic stability of the Fab domain increases upon 

N-glycosite addition.  Previous experimental data reported for this technique has lacked 

appropriate confirmation of glycan occupancy and structural characterization of the ensuing glycan 

profile. Here, we mutated previously identified candidate positions on the Fab domain of 

trastuzumab and employed tandem mass spectrometry to confirm attachment and obtain the N-

glycosylation profile of the mutants. The trastuzumab glycomutants displayed a glycan profile 

with significantly higher structural heterogeneity compared to the WT antibody, which contains a 

single N-glycosylation site per heavy chain located in the CH2 domain of the Fc region. These 

findings suggest that Fab N-glycosites have higher accessibility to enzymes responsible for glycan 

maturation, shedding light into mAb glycobiology and potential implications in the application of 

this technique for the development of “biobetter” antibodies.  

Introduction 

The advent of therapeutic monoclonal antibodies (mAb) reshaped the pharmaceutical industry and 

has enabled a wide array of therapeutic avenues. Antibody therapeutics have dominated the market 

for the past two decades, featuring seven mAbs or mAb-based therapeutics in the top-10 list of 

best-selling drugs in 2018; and are now implemented in the treatment of an extensive range of 

pathologies, including oncological, inflammatory, cardiovascular, neurodegenerative and 

infectious diseases [1-3]. Moreover, mAbs comprise the largest class of molecules undergoing 

clinical development, thus it is forecasted that their market size will grow further as their clinical 

applications expand [3]. 
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The coming of age of mAbs as therapeutics entailed substantial efforts aimed at addressing pitfalls 

of first-generation molecules, most notably the immunogenicity caused by their non-human origin 

[4]. Yet, despite the myriad advancements in antibody technology, protein aggregation is a 

recurring complication that continues to hinder their manufacture and clinical properties [2]. 

Furthermore, the physicochemical factors determining thermodynamic and colloidal stability 

remain poorly understood. Aggregation can have a negative impact on the therapeutic efficacy of 

monoclonal antibodies by compromising their biological function, increasing clearance rates, and 

triggering immunogenic reactions. Moreover, the shelf-life of the pharmaceutical product can be 

severely reduced by the accelerated formation of protein aggregates [5, 6].  

Although it is believed that evolution has yielded improvements in the thermodynamic states of 

native antibodies relative to aggregated species, the manufacturing process and storage exposes 

recombinant therapeutic mAbs to a combination of “non-physiological” stress factors that hamper 

their physical and chemical stability [7, 8]. These factors include high protein concentrations, 

mechanical stress, exposure to air-water interfaces, and variations in pH, temperature, and ionic 

strength. To tackle this issue, numerous strategies have been developed and are the subject of 

intense exploration. These approaches can be broadly classified into two main categories: those 

that enhance the intrinsic stability of the protein to prevent aggregation throughout the 

manufacturing process [9-11], and those that improve the formulation of the final product by the 

optimization of pH, ionic strength and the incorporation of stabilizing agents [12, 13].   

Excipients commonly used in protein stabilization include surfactants, sugars, amino acids, 

polymers, and other proteins. Recently, ionic liquids have emerged as promising additives in this 

context [14, 15]. Whilst highly valuable, formulation strategies are limited in their applicability in 

that the amount of excipient added is restricted by several factors, including toxicity and increases 

in viscosity and tonicity [14]. Furthermore, optimizing formulation conditions for particular 

proteins is challenging, given the lack of understanding of aggregation mechanisms and how 

excipients impact these processes. In light of these limitations, strategies to improve the intrinsic 

physical stability of mAbs become highly valuable as a way to avoid physical degradation in the 

manufacturing process and/or decrease the necessity to incorporate excipients in the final 

formulation. This has been particularly relevant in recent times due to the growing trend to 

formulate antibody therapeutics as sub-cutaneous (SC) syringes for self-injection, wherein high 
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protein concentrations are required to deliver effective doses in the limited injection volumes 

allowed by the SC route [2, 16].  

Approaches to improve intrinsic aggregation resistance rely on rational modifications of the 

antibody structure. It is widely believed that surface-exposed hydrophobic regions in proteins can 

lead to self-association and initiate the formation of larger aggregates [5, 9]. Considering this, in 

silico methods have been developed to screen and identify aggregation-prone regions (APR). 

Exposed hydrophobic amino acids in APRs can then be replaced with more hydrophilic or charged 

residues through mutagenesis [7, 9, 10]. Pepinsky et al. introduced an innovative variation to this 

approach, wherein the mutations pursued inserted an N-glycosylation sequon (Asn-X-Ser/Thr) in 

the Fab region of an anti-LINGO antibody, enabling the attachment of an additional glycan on the 

antibody molecule – IgG1 molecules possess a conserved N-glycosylation motif in the Fc region 

[17]. The substantial increments (50-fold) in solubility obtained with two such mutants were 

attributed to the large hydrodynamic size and hydrophilic character of the glycan, preventing self-

association through steric hindrance. Later, Courtois et al. employed an advanced computational 

tool, called Spatial Aggregation Propensity (SAP), that performs full antibody molecular dynamic 

simulations to identify APRs in bevacizumab; and proposed a panel of residues that could be 

mutated to insert a glycosylation site where the glycan can shield an aggregation prone region and 

deter protein-protein interactions [18]. In the latter study, significant enhancements were reported 

in accelerated stability studies with the glyco-engineered bevacizumab variants, reporting up to 3-

fold improvements in monomer preservation. More recently, our group implemented several of 

the identified mutations in adalimumab and demonstrated improvements in thermodynamic 

stability, reflected by increments in the second melting temperature (Tm2).  

Altogether, the experimental results obtained with the glycosylation site insertion approach have 

highlighted the potential of this technique to improve shelf-life and pharmacokinetic profiles of 

approved therapeutic antibodies and mAbs in preclinical development. Notwithstanding, crucial 

aspects neglected in the aforementioned studies have been the appropriate confirmation of glycan 

attachment; and more importantly, the structural analysis of the glycans attached to the engineered 

site. The latter is essential in the context of regulatory approval and in elucidating the molecular 

mechanisms that drive improvements in stability. In view of the foregoing, we sought to ascertain 
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differences in the glycosylation profiles of a wild-type antibody compared to its glycoengineered 

mutants.  

Herein, we implemented several glycosite insertions in the Fab region of the blockbuster antibody 

trastuzumab and characterized the full glycan profile of the trastuzumab variants by glycan 

enzymatic release followed by LC-MS/MS analysis. In addition, we employed algorithms for 

prediction of successful glycan attachment to compare with experimental data in order to gain 

insight into structural features governing glycan transfer during translation. Furthermore, we 

evaluated the binding kinetics of the trastuzumab variants to its biological target (HER2) and to 

Fc receptors involved in eliciting effector functions to assess potential effects on therapeutic 

efficacy.  

Materials and methods 

Materials 

Herceptin® was a generous donation from Genentech (San Francisco, California). The pVITRO-

1-trastuzumab-IgG1/κ expression vector (containing trastuzumab heavy and light chain genes) was 

a generous gift from Andrew Beavil (Addgene plasmid # 61883). The gWiz expression vector was 

purchased from Genlantis (San Diego, USA). The primers utilized for mutagenesis and sequencing 

were acquired from Geneworks (Adelaide, Australia). The DpnI enzyme (R0176S) and the 

Phusion high-fidelity PCR kit (E0553S) were purchased from Genesearch (Gold Coast, Australia). 

StellarTM competent E. coli cells were purchased from Scientifix (Melbourne, Australia). Tryptone 

(LP0042B) was purchased from Thermo Fisher Scientific (Melbourne, Australia). Sodium 

chloride (S9888) and Kanamycin solution (K0254) were purchased from Sigma-Aldrich (Sydney, 

Australia). The miniprep (PLN70) and maxiprep (NA0310) kits were obtained from Sigma-

Aldrich (Sydney, Australia).  

Freestyle 293F cells were provided by Dr. Mario Torrado del Rey of Prof. Joel Mackay’s research 

group, School of Life and Environmental Sciences, The University of Sydney. FreeStyleTM 293 

media (12338018), RPMI media (21870-076), OptiPROTM serum free media (SFM) (12309050) 

and other reagents used for tissue culture were purchased from Life Technologies (Melbourne, 

Australia). 25 kDa linear polyethylenimine (PEI) (23966-2) was purchased from BioScientific 

(Sydney, Australia). Disposable baffled tissue-culture flasks (CLS431405), glycine hydrochloride 
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(G2879), and HiTrap® Protein A HP affinity column (GE17-0403-01) were obtained from Sigma-

Aldrich (Sydney, Australia). The Reprosil-Pur C18AQ (3µm, 120 A) was purchased from Dr. 

Maisch (Amerbuch, Germany). 

PBS tablets (09-2051-100), 1 M Tris-HCl pH 9 (BIOSD814), and all chemicals employed for SDS-

PAGE were acquired from Astral Scientific (Sydney, Australia). Precision Plus Protein™ Dual 

Color Molecular Weight Marker (1610374) was obtained from Bio-Rad Laboratories (Sydney, 

Australia). Trypsin (T6567), Chymotrypsin (1141847001) were purchased from Sigma-Aldrich 

(Sydney, Australia). C18 ZipTip® pipette tips (ZTC18S096) were obtained from Merck Millipore. 

PNGase F (P0708) was purchased from Genesearch (Gold Coast, Australia).  

HEPES (54457), Tween 20 (P9416) and the HIS-tagged HER2 (SRP6405), FcγR2B (SRP6396), 

and FcγR3A (SRP6436) receptors were purchased from Sigma-Aldrich (Sydney, Australia). HIS-

tagged FcγR1A (10256-H08H-5) were obtained from Life Technologies (Melbourne, Australia). 

The CM5 chips (29-1049-88), anti-HIS capture kit (28-9950-56), and amine coupling kit (BR-

1000-50) were purchased from GE Healthcare (Sydney, Australia). 

Cloning and mutation of Tmab WT and glycosylation mutants 

A section of the pVITRO-1-trastuzumab-IgG1/κ expression vector containing the secretion signal 

and Tmab heavy chain gene, and another section containing the secretion signal and Tmab light 

kappa chain gene were amplified separately employing high fidelity PCR (Phusion High Fidelity 

PCR kit) with a 2-step PCR cycling method. These amplified sections were then inserted separately 

into the blank gWiz vector through restriction enzyme cloning to produce separate vectors for 

trastuzumab heavy chain (HC) and light chain (LC) expression. Mutagenesis was performed 

through high fidelity inverse PCR to obtain mutated trastuzumab expression vectors. Successful 

mutation was confirmed by sequencing. HEK-293F cells were co-transfected with heavy and light 

chain vectors for transient expression.  

Expression and purification of Tmab WT and glycosylation mutants 

The trastuzumab variants were expressed transiently in HEK-293F cells in suspension at 120 rpm, 

using Freestyle 293F media. The cell culture was maintained at 37 °C, 5% CO2. Transfection was 

performed at a cell density of 1 x 10+6 cells/mL (60 mL cultures). Vector DNA and PEI in OptiPRO 

SFM were added to the cells in a 2:1 PEI/DNA w/w ratio. Total DNA added per 1 x 10+6 cells was 
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1 µg (1:1 w/w HC to LC ratio). Following 24 hours after transfection, the cultures were scaled up 

to 120 mL with Freestyle 293F media containing tryptone (0.5% w/v final concentration). At 48 

hours post transfection the cultures were further scaled up to 240 mL with Freestyle 293F media 

containing tryptone (0.5% w/v final concentration). The cell culture supernatant was harvested by 

centrifugation at day 8 following transfection and subsequently clarified by filtration (0.22 µm).  

Purification of the secreted antibody was performed employing a HiTrap® Protein A HP affinity 

column. PBS was used for the binding and washing steps. Elution of bound antibody was 

performed with 0.1 M glycine HCl pH 2.7 and the eluted fractions were immediately neutralized 

with 1 M Tris-HCl pH 9. Eluted fractions containing antibody were pooled and buffer exchanged 

to PBS using 50 kDa molecular weight cutoff (MWCO) centrifugal filters. Antibody 

concentrations were derived from absorbance readings at 280 nm using a molar extinction 

coefficient ε = 2.25 x 10+6 M-1 cm-1. 

LC-MS/MS analysis of Tmab variants 

Glycopeptide analysis 

Tmab WT, Herceptin and Tmab mutants were run on a reducing 10% SDS-PAGE. The HC bands 

(Tmab WT, Herceptin and all mutants except Q160N) and the LC band (Q160N) were excised 

from the gel and diced. The proteins in the gel were reduced by incubation with 10 mM DTT at 

56 °C for 45 minutes and then alkylated with 55 mM iodoacetamide (IAA) in 100 mM NH4HCO3 

at 25 °C for 30 minutes. The alkylated proteins were then digested with trypsin (1 µg per 50 µg of 

protein) in 50 mM NH4HCO3 (pH 6.8) at 37 °C overnight. The tryptic peptides were subsequently 

treated with chymotrypsin in 100 mM Tris-HCl and 10 mM CaCl2 (pH 7.8) at 25 °C overnight. 

C18 ZipTips were used for desalting the tryptic/chymotryptic peptides, using 80% (v/v) 

acetonitrile in 0.1% TFA for elution. Solvent was removed by vacuum centrifugation and the 

peptides were dissolved in 0.1% formic acid for LC-MS/MS analysis. 

Free glycan analysis 

The glycans were released from the antibody and analysed through tandem mass spectrometry as 

described before [19]. Briefly, antibody aliquots were reduced and alkylated using 1 M DTT and 

500 mM IAA, respectively. Subsequently, 10 µg of protein was blotted on a PVDF membrane 

previously wetted with ethanol and left to dry overnight. The membrane was then washed with 
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methanol, followed by a wash with water to remove salts. The membrane was then stained briefly 

with Direct Blue 71 solution (1 part 0.1% direct blue 71 stain (w/v) in MilliQ water and 12 parts 

wash solution (40% ethanol (v/v), 10% acetic acid (v/v)) to visualize the spots. The spots were 

then briefly destained using wash solution and washed with water. The spots were cut from the 

membrane and transferred to 96-well plates and blocked with 1% (w/v) polyvinylpyrrolidone 40 

(PVP40). The spots were washed three times with water and placed in new wells containing water. 

PNGase F was subsequently added to the wells (1 unit per 5 ug of protein) and the plate was 

incubated overnight at 37 °C. The resulting solution containing the released glycans was collected 

and transferred to a low-protein binding tube. 10 µL of 100 mM ammonium acetate pH 5 was 

added and incubation was done for 1 hour at 25 °C to remove glycosylamines from the reducing 

end. The samples were dried by vacuum centrifugation followed by reduction with 1 M NaBH4 in 

50 mM KOH for 3 hours at 50 °C. The reaction was neutralized with 1 µL glacial acetic acid.  

An AG 50W X8 cation exchange resin loaded onto a ZipTip C18 tip for packing and was used for 

desalting the reduced glycans. Prior to sample loading, the columns were washed three times with 

50 µL of 1 M HCl followed by three washes with 50 µL of methanol. The columns were then 

transferred to new collection tubes and washed three times with 50 µL of water. The samples were 

loaded onto the column and eluted with water. The eluted glycans were dried with a SpeedVac 

concentrator and redissolved in 100 µL methanol to remove residual methyl borate and dried once 

more. Methanol redissolution was performed three times.  

Finally, a carbon cleanup step was performed with a carbon solid-phase extraction (SPE) slurry 

packed into a TopTip. The carbon SPE columns were initially washed three times with 50 µL of 

acetonitrile in 0.1% (v/v) TFA. The columns were then washed three times with 50 µL of 0.1% 

(v/v) TFA in water. The desalted reduced glycans were then dissolved in 0.1% (v/v) TFA in water 

and loaded onto the column. The columns were washed three times with 50 µL of 0.1% (v/v) TFA 

in water and the glycans were eluted with 50% (v/v) acetonitrile in 0.1% (v/v) TFA. The glycans 

were dried in a SpeedVac concentrator and dissolved in 10 mM NH4HCO3 for LC-MS/MS 

analysis. 

Mass Spectrometry 

Glycopeptide analysis was done using an in-house packed 20 cm x 75 µm Reprosil-Pur C18AQ (3 

µm, 120 A) coupled to an Orbitrap Fusion MS (Thermo Scientific) was used for LC-MS/MS. 
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HPLC solvent A was 0.1% (v/v) formic acid and solvent B was 80% (v/v) acetonitrile in 0.1% 

formic acid. The peptides were separated running a 90-minute 0-40% solvent B gradient at 300 

nL/min at 60 °C. The Orbitrap Fusion mass spectrometer was used in positive mode, with source 

voltage = 2.3 kV, S lens RF level = 68%, and a capillary temperature of 275 °C. Initial MS scan 

was acquired from 350-2000 m/z at a resolution of 60000 at 400 m/z (MS AGC = 6 x 105). 

Following MS1, data-dependent higher-energy collisional dissociation (HCD) was used at top 

speed. HCD parameters were set up as: activation time = 0.1 ms, maximum injection time = 200 

ms, dynamic exclusion = enabled with repeat count 1, resolution = 30000, normalized energy = 

40, exclusion duration = 20 s, default charge state = 2 and MSn AGC = 2.0 x 105. The two most 

intense precursors were re-isolated and subjected to collision induced fragmentation (CID). CID 

parameters were: resolution = 30000 in orbitrap, activation time = 10 ms, dynamic exclusion = 

enabled with repeat count 1, normalized energy = 35, exclusion duration = 20 s, default charge 

state = 2, MSn AGC = 5.0 x 104. 

MS analysis of the free glycans was done on a VelosPro (Thermo) mass spectrometer with an 

Agilent 1260 HPLC using a Hypercarb porous graphitised carbon capillary column (3 µm particle 

size, 100 mm x 180 µm, pore size 250 Å, Thermo). The glycans were separated using a 60 min 5-

45% (v/v) solvent B (80% (v/v) acetonitrile in 10mM NH4HCO3) gradient on a flow rate of 2 

μl/min. Column was washed with 100% solvent B and equilibrated with solvent A (10mM 

ammonium bicarbonate) after each run. ESI–MS was performed in negative ion mode at a 

resolution of 30000 with a mass range of m/z 500–2000. Transfer capillary temperature was at 275 

°C and the capillary voltage was at 3 kV. MS2 of the top 9 most intense ions was done using 

collusion induced dissociation (CID) at a normalized collision energy of 35 in the ion trap with an 

activation time of 10 ms.   

Data Analysis 

The analysis of the peptide and glycopeptide data was done using Byonic (Protein Metrics Inc.) 

software. Peptide spectrum matches (PSM) were obtained through a search against the FASTA 

files of the wild-type trastuzumab and its variants. CID spectra annotation was automated using 

Byonic and the spectral matches were inspected manually. The Byonic search was conducted with 

a semi specific digestion specificity allowing two missed cleavages. The fragment mass tolerance 

was 0.05 Dalton (Da). A maximum of two common modifications (Asparagine and glutamine 
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deamidation +0.984016 Da, Cysteine carbamidomethylation +57.021464) and one rare 

(Methionine oxidation +15.994915) modifications were enabled.   

Free glycans were analysed manually using Thermo Xcalibur Qual Browser version 3.0.63. The 

theoretical monosaccharide compositions were determined using the monoisotopic masses of the 

detected ions using GlycoMod (http://web.expasy.org/glycomod/) with mass tolerance of ±0.5 Da. 

The glycan structures were manually assigned using PGC retention time and MS2 diagnostic 

fragment ion information. The percentage relative quantitation of each glycan structure per Tmab 

variant was calculated using the extracted ion chromatogram (EIC) areas upon peak smoothing 

using Gaussian Algorithm (15 points). The area values for the glycan structures were summed and 

normalised to 100% and each glycan peak was expressed as percentage of the total.  

Binding affinity to HER2 and Fc receptors 

The wild type trastuzumab references (Tmab WT and Herceptin) and the hyperglycosylated 

mutants were tested for their capacity to bind their molecular target (HER2) and Fc receptors 

(FcγR1A, FcγR2B, and FcγR3A). A Biacore T200 instrument (GE Healthcare, Australia) was used 

to obtain the binding kinetic constants through surface-plasmon resonance (SPR) using single-

cycle kinetic analysis.  

For HER2 binding experiments, a CM5 sensor chip was functionalized with an anti-HIS antibody 

through amine coupling chemistry. The HIS-tagged HER2 receptor (4 nM) was then bound to the 

anti-HIS at 5 µL/min flow rate for 5 minutes. The trastuzumab variants were assayed in single-

cycle kinetic titrations in 2-fold serial dilutions spanning 0.5 – 8 nM using HBS-T running buffer 

(10 mM HEPES, 150 mM NaCl, 0.05% (v/v) Tween 20, pH 7.4). Analyte runs were performed at 

20 µL/min for 2 min with 60 min dissociation times. All experiments were conducted in duplicate. 

HIS-tagged Fc receptors were bound to the anti-HIS antibody on the CM5 sensor following the 

same procedure as for HER2. The analyte runs were performed as described above for HER2, with 

the exception of a 30 min dissociation time and that analyte concentrations ranged from 2.5 – 40 

nM for FcγR1A, and from 25 – 400 nM for FcγR2B and FcγR3A. 

The sensorgrams were fitted to a Langmuir 1:1 binding model to derive the binding kinetic 

constants (Ka, Kd, and KD). The fit was deemed acceptable if χ2 was lower than 5% of the maximum 

response level (Rmax). 
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Results 

Engineered glycosylation sites 

Table 1 lists the surface exposed amino acid residues that were mutated herein in trastuzumab with 

the respective proposed mechanism to increase physical stability. One residue (L115) lies on the 

variable region of the heavy chain (VH), five (A121, L177, Q178, L182 and T198) on the constant 

heavy (CH1) and one on the constant region of the light kappa chain (Ck). The amino acid 

substitutions L115N, Q160N, Q178N and L182N were derived from previous studies by Courtois 

et al. that identified sites on the tertiary structure of the Fab region of IgG1 antibodies where the 

incorporation of a glycan could shield hydrophobic surface-exposed regions. These aggregation-

prone regions (APRs), or aggregation hotspots, were mapped with the Spatial Aggregation 

Propensity (SAP) technology, wherein individual amino acids are assigned an aggregation 

propensity value based on side chain hydrophobicity, dynamically-exposed solvent accessible 

surface area (SASA), and the hydrophobic contributions of adjacent amino acids within a given 

radius [18]. For more details on this technique see [20].  

Table 1. Surface exposed amino acid (aa) residues identified in Tmab Fab region for glycosylation 

sequon addition. 

aa Substitution 

(Position) 
Region Proposed function 

L115N VH Mask APR by introducing glycosylation site [18]. 

A121N 

CH1 

Improve solubility by introducing glycosylation site [17]. 

L177N 
Mutate aa with high spatial-aggregation propensity and introduce 

glycosylation site [18, 21]. 

Q178N 
Sterically hinder self-association by introducing glycosylation site and 

increase solubility [18, 17]. 

L182N Mask APR by introducing glycosylation site [18]. 

T198N 
Improve solubility and sterically hinder self-association by introducing 

glycosylation site [17]. 

Q160N Ck  Mask APR by introducing glycosylation site [18]. 

 

Aside from T198, all other aforementioned substitutions were engineered to shield the APR 

generated by the high SAP residue L177. Mutations L115N and Q160N have previously 
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demonstrated to improve resistance to aggregation through accelerated stability studies in 

bevacizumab – a therapeutic monoclonal antibody with a pronounced tendency to aggregate 

through self-association [18]. Q178N and L182N were identified in the same study as positions in 

the vicinity of L177N that can be mutated to generate an N-glycosylation sequon (Asn-X-Ser/Thr) 

through a single amino acid substitution, however these were excluded from experimental tests in 

bevacizumab due to Q178 having reduced SASA and L182 not being oriented on the same face as 

the APR. In this work, L177 was also mutated to substitute the high SAP residue with an 

asparagine within a consensus motif for glycan addition. The latter mutation was recently tested 

in an adalimumab Fab expressed in Pichia pastoris, conferring improved resistance to aggregation 

and proteinase K digestion relative to wild-type adalimumab Fab. 

A121N, Q178N and T198N were identified by Pepinsky et al. [17] as glycosite additions that could 

prevent self-association through steric hindrance in an anti-LINGO antibody with reduced 

solubility. In this case, all three modifications granted a dramatic improvement in solubility.   

Glycan occupancy prediction 

To assess the validity of employing existing algorithms for the prediction of glycan attachment, 

the primary sequence of the trastuzumab variants was subjected to an in-silico analysis using two 

available N-glycosylation prediction servers. Both servers, NetNGlyc 1.0 and NGlycPred, assign 

a 0-1 score, wherein values greater than 0.5 indicate a predicted glycosylated asparagine residue. 

Figure 1 depicts the location and surface exposure of the amino acid substitutions and the high 

SAP L177. Table 2 reports the predicted potential for glycan occupancy obtained with the 

NetNGlyc 1.0 server, which relies on adjacent primary sequence to assign a probability for N-

glycan transfer during protein translation. This server has been employed successfully in various 

studies to predict glycosylation in identified Asn-X-Ser/Thr motifs within primary amino acid 

sequences [22-24]. NetNGlyc predicted all residues, except Q178N, to undergo glycosylation. 

Further, an additional algorithm (NGlycPred) that incorporates structural features (e.g., adjacent 

secondary structure, surface accessibility, local contact order) into the analysis was utilised for 

prediction based on fundamentally distinct inputs [25]. NGlycPred assigned a negative value 

(<0.5) to L115N and Q178N.  Herein, all listed mutations were implemented and expressed in 

HEK-293F human embryonic kidney cells. The attached glycans were subsequently released by 
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PNGase F digestion and analysed by capillary/nanoLC-ESI-MS/MS to confirm glycan attachment 

and obtain structural features of the oligosaccharides. 

 

Figure 1. Location of the mutated amino acid residues for glycosite addition. Crystal 

structure of the HER2 extracellular domain complexed with the Fab of trastuzumab (1N8Z) 

visualised in PyMOL. The mutated amino acids are highlighted in red. The high SAP L177 

is displayed in yellow. VH and CH1 domains are shown in light grey and dark grey 

respectively. VL and CL domains are shown in light green and dark green respectively. The 

HER2 ECD is displayed in blue. 
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Table 2. Estimated glycosylation potential and solvent accessible surface area (SASA) of the 

targeted N-glycan sequons. 

aa Substitution (Position) Region Sequon NetNGlyc NGlycPred SASA (Å^2) 

Q160N CK 160 NESV 0.647 0.834 62.478 

L115N VH 115 NVTV 0.679 0.462 43.709 

A121N CH1 121 NSTK 0.547 0.686 85.338 

L177N 

CH1 

177 NQSS 0.537 1.000 96.039 

Q178N 178 NSSG 0 0.157 20.5 

L182N 182 NYSL 0.568 0.999 30.123 

T198N 198 NQTY 0.592 1.000 141.149 

 

Glycan attachment confirmation 

Glycan attachment on the mutated sites was analysed through electrophoretic mobility shifts in 

SDS-PAGE and MS/MS glycan profile analysis. Figure 2 shows a reducing SDS-PAGE of the 

mutants and the in-house wild-type trastuzumab (Tmab WT) produced in the same cell line (HEK-

293F) under identical expression conditions. The heavy chain (HC) band (~50 kDa) mobilities of 

the L115N, A121N, L177N, Q178N, L182N, and T198N mutants were retarded relative to that of 

WT, commercial Herceptin (Herc) and Q160N (mutated on the light chain), indicating higher 

levels of glycosylation on these HC mutants. 

Interestingly, no matches were found for glycopeptides containing the L177N, Q178N and L182N 

residues. Conversely, peptides containing the non-mutated L177, Q178 and L182 amino acids 

were detected in WT and Tmab variants with mutations outside the region (Figures S31-S33). 

Assuming no missed cleavages, the tryptic/chymotryptic peptide containing L177N, Q178N or 

L182N has a mass of 2206.11 Da (Table 3). It is likely that glycan attachment on the side chain 

hindered enzymatic digestion, thus producing peptides with missed cleavages and m/z values too 

large for detection – glycan attachment increases the m/z further. It has also been suggested that 
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large glycopeptides can be missed in the workflow utilized for this analysis during peptide 

extraction following SDS-PAGE, as the large size could prevent them from extraction due to gel 

shrinkage caused by the organic solvents employed [19]. Similarly, glycan attachment in the 

vicinity of the cleavage sites has been shown to prevent enzymatic activity of the serine protease 

proteinase K in the L177N mutant in adalimumab Fab [21]. Still, successful glycosylation of 

L177N, Q178N, and L182N was confirmed by mobility shifts in SDS-PAGE and an increased 

heterogeneity observed in the released glycan profile compared to WT as discussed in the next 

section. 

 

Figure 2. Reducing SDS-PAGE of the trastuzumab mutants for confirmation of glycan 

attachment. Commercial Herceptin (Herc) and the wild-type (non-mutated) trastuzumab 

produced in-house were run together with the mutants to compare electrophoretic mobility 

shifts in the ~50 kDa band corresponding to the heavy chain. 

Despite the positive prediction from the algorithms (NGlycPred score of 0.834 (Q160N), Table 2), 

the light chain (LC) band (~25 kDa) of Q160N showed no apparent mobility shift compared to 

WT LC region, suggesting a lack of glycosylation on the mutated asparagine residue. Although 

the glycan profiling of the Q160N showed very similar structures to WT Tmab, the glycan release 

was performed on the whole protein but not on the light chain only and therefore provided an 
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overall glycoprofile of the protein (figure 3, table 4). While the visual similarity of the light chain 

gel mobilities of WT Tmab and Q160N and the information of the overall glycan profile of Q160N 

do not entirely exclude the possibility of glycan occupancy on the 160N, the MS analysis of the 

Q160N light chain peptide clearly showed the presence of a non-glycosylated LC region. To 

confirm the lack of glycan attachment, the Q160N mutant was subjected to trypsin and 

chymotrypsin digestion to generate the corresponding peptides for nanoLC-ESI-MS/MS analysis. 

Spectral matches were found for non-glycosylated peptides encompassing the Q160N residue, thus 

confirming successful Q to N conversion and reaffirming the lack of glycan attachment (Figure 

S34). This apparent lack of glycan attachment was also observed in the corresponding Q160N 

mutant when expressed in adalimumab (Q161N) (data to be published). 

Table 3. Peptide sequences after trypsin/chymotrypsin digestion allowing one missed cleavage 

(MC) site 

Mass (Da) Position MC Sequence 

4000.01 162-201 1 NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTY 

3248.63 153-183 1 FPEPVTVSWNSGALTSGVHTFPAVLQSSGLY 

3148.59 184-213 1 SLSSVVTVPSSSLGTQTYIC NVNHKPSNTK 

2206.11 162-183 0 NSGALTSGVHTFPAVLQSSG LY 

1812.92 184-201 0 SLSSVVTVPSSSLGTQTY 

 

Glycan profile analysis 

To analyse the global glycan profile of the trastuzumab variants, the proteins were immobilized 

on PVDF membranes and treated with PNGase F to release glycans attached to both the conserved 

WT N297 and the added glycosylation site. The released oligosaccharides were run on capillary 

LC-ESI-MS/MS, wherein a PGC column was used for separation of distinct glycoforms and 

MS/MS analysis (CID fragmentation) was performed to elucidate glycan structure. Figure 3 shows 

the annotated full MS spectra of Tmab WT, Herceptin, Q160N, and L177N displaying the 

identified glycan structures found on each variant. The global glycan profile reflects contrasting 

differences in glycoform heterogeneity and the relative abundance of the glycans found on the 

glycomutants. MS1 and MS2 (where possible) spectra of all the glycomutants can be found in 
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supplementary materials. The released glycan profiles displayed in figure 3 and figures S1-S9 

come from both the conserved Fc N-glycosylation sequon and the added N-glycosylation site. 

Table 4 lists the glycan structures found on all Tmab variants through this MS methodology; and 

Figure 4 reports the glycan relative abundances on specific Tmab variants determined by 

quantifying the area under the curve (AUC) of the extracted ion chromatograms.  

 

Figure 3. Full MS spectra of N-glycans released from Tmab WT, Q160N, L177N and 

Herceptin contrasting the heterogeneity found on the mutant. 
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Glycan microheterogeneity at the conserved N297 in Tmab WT is similar to that reported in 

previous analysis of commercial Herceptin and other monoclonal therapeutic antibodies, where 

complex G0F, G1F and G2F glycoforms (Figure 4 and table 4) are predominant [26, 27]. Minor 

species (i.e., Man5, G0 and G2S1) were detected in commercial Herceptin but not in Tmab WT 

(Figure 3). An important difference between commercial Herceptin and Tmab WT lies in the 

relative abundance of the three main glycoforms (G0F, G1F and G2F), where the originator 

contained the pattern G0F>G1F>G2F (60%, 31%, and 2%) and Tmab WT possessed 

G1F>G0F>G2F (26%, 57%, and 17%) (Figure 4). Glycosylation differences are expected between 

these two samples, as the originator is produced in CHO cells and our in-house Tmab in HEK-

293F. Moreover, sialic acid-containing species (17a table 4) were present in the originator and not 

detected in Tmab WT. This observation is consistent with previous studies reporting higher 

sialylation of N-glycans in recombinant proteins expressed in CHO when compared to HEK cells 

[28].  

The G1F>G0F>G2F distribution observed in Tmab WT was conserved in all the glycomutants 

(Figure 4), although the abundance of G1F seemed to decrease in comparison to that observed for 

Tmab WT. Figure 5 shows the relative abundances considering only the main complex glycoforms 

found on the Fc domain (G0F, G1F, and G2F). The decrease in G1F and concomitant increase in 

G0F was more pronounced in the Q178N mutant where G1F (40.47%) was only slightly less 

abundant than G0F (42.98%) (Figure 5).  
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Figure 4. Relative abundances of the glycan found on each specific mutant. Highlighted in 

blue are G0F, G1F and G2F which were also found on the WT tmab. High mannose glycans 

are displayed in greed, hybrid glycans in yellow and sialic acid containing glycans in red. 
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Figure 5. Relative abundances of the main glycoforms found on all Tmab variants. 

Remarkably, a much wider heterogeneity of glycan structures were detected on most Tmab 

variants relative to wild type trastuzumab (Tmab WT and Herceptin) (Figures 3 and 4). The fact 

that G0F, G1F, and G2F were still the most abundant structures in all samples indicates that the 

increased variety of glycans come from the Fab region. The wider array of structures included high 

mannose, hybrid, and complex biantennary, triantennary and tetrantennary glycans with varied 

degrees of galactosylation and sialylation (Table 4). Variants L177N and L182N displayed the 

most varied sets of glycoforms with 16 and 12 different structures detected, respectively. 

Importantly, sialic acid-containing glycans were particularly abundant in L115N, L182N, and 

T198N. Q178N had a significant presence of high mannose glycans.  
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Table 4. Full list of glycans found on all mutants 

# 

Structure 
Type Composition Structure 

[M-

2H]2- 

Mutants 

containing 

the glycan 

1a 
high 

mannose 
HexNAc(2)Hex(5) 

 

617.22 
Q178N 

 

1b 
high 

mannose 
HexNAc(2)Hex(5) 

 

617.22 

L177N 

Q178N 

L182N 

2a (G0) complex HexNAc(4)Hex(3) 

 

658.24 
L177N 

Herceptin 

2b (G0) complex HexNAc(4)Hex(3) 

 

658.24 L177N 

3 
high 

mannose 
HexNAc(2)Hex(6) 

 

698.25 
Q178N 

L182N 

4 (G0F) complex HexNAc(4)Hex(3)Fuc(1) 

 

731.27 

All Tmab 

variants 

 

5 complex HexNAc(5)Hex(3) 

 

759.78 
L177N 

 

6a hybrid 
HexNAc(3)Hex(4)Man(2) 

Fuc(1) 

 

791.79 L177N 

6b hybrid 
HexNAc(3)Hex(4)Man(2) 

Fuc(1) 

 

791.79 L177N 

6c hybrid 
HexNAc(3)Hex(4)Man(2) 

Fuc(1) 

 

791.79 L177N 

7 hybrid HexNAc(3)Hex(5)Man(1) 

 

799.79 
Q178N 

L182N 
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8a (G1F) complex 
HexNAc(4)Hex(3)Man(1) 

Fuc(1) 

 

812.3 L177N 

8b (G1F) complex 
HexNAc(4)Hex(3)Man(1) 

Fuc(1) 

 

812.3 
All Tmab 

variants 

9 complex HexNAc(5)Hex(3)Man(1) 
 

 

840.81 L177N 

10 
high 

mannose 
HexNAc(2)Hex(8) 

 

 

860.3 
L115N 

 

11 hybrid 
HexNAc(3)Hex(4)Man(1) 

NeuAc(1) 
 

 

864.31 L182N 

12 hybrid 
HexNAc(3)Hex(5)Man(1) 

Fuc(1) 

 

872.81 L177N 

13 (G2F) complex 
HexNAc(4)Hex(3)Man(2) 

Fuc(1) 

 

893.33 
All Tmab 

variants 

14a complex 
HexNAc(5)Hex(3)Man(1) 

Fuc(1) 

 

913.84 

A121N 

L177N 

Q178N 

L182N 

T198N 

14b complex 
HexNAc(5)Hex(3)Man(1) 

Fuc(1) 

 

913.84 

A121N 

L177N 

Q178N 

L182N 

T198N 

15 
high 

mannose 
HexNAc(2)Hex(9) 

 

941.33 
L115N 

 

16 hybrid 
HexNAc(3)Hex(5)Man(1) 

NeuAc(1) 

 

944.84 

A121N 

L177N 

L182N 

T198N 
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17a complex 
HexNAc(4)Hex(3)Man(2) 

NeuAc(1) 

 

965.84 
L177N 

L182N 

17b complex 
HexNAc(4)Hex(3)Man(2) 

NeuAc(1) 

 

965.84 L177N 

18 complex 
HexNAc(5)Hex(3)Man(1) 

Fuc(2) 

 

986.87 
A121N 

L177N 

19a complex 
HexNAc(5)Hex(3)Man(2) 

Fuc(1) 

 

994.87 

L115N 

A121N 

L177N 

Q178N 

L182N 

T198N 

19b complex 
HexNAc(5)Hex(3)Man(2) 

Fuc(1) 

 

994.87 L177N 

20a complex 
HexNAc(4)Hex(3)Man(2) 

Fuc(1)NeuAc(1) 

 

1038.87 

L115N 

A121N 

L177N 

Q178N 

L182N 

T198N 

20b complex 
HexNAc(4)Hex(3)Man(2) 

NeuAc(1) 

 

1038.87 

A121N 

L177N 

Q178N 

L182N 

T198N 

21a complex 
HexNAc(5)Hex(3)Man(1) 

NeuAc(1) 

 

1059.39 

A121N 

L177N 

T198N 

21b complex 
HexNAc(5)Hex(3)Man(1) 

NeuAc(1) 

 

1059.39 L177N 

21c complex 
HexNAc(5)Hex(3)Man(1) 

NeuAc(1) 

 

1059.39 L177N 
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Binding affinity to HER2 and FcγR1A 

To assess potential alterations in biological activity caused by the structural modifications of 

glycan addition, we tested the binding affinity of the Tmab variants on biologically relevant 

receptors in vitro. Surface-plasmon resonance (SPR) single-cycle kinetic assays were performed 

to determine binding kinetic constants of the Tmab variants to their molecular target HER2, and 

to Fc receptors FcγR1A, FcγR2B, and FcγR3A (Table 5 and Table 6). Sensorgrams displaying 

typical curvatures with satisfactory curve fitting were obtained across all receptors tested with the 

exception of mutants A121N, Q178N, L182N, and T198N on FcγR2B, thus the corresponding 

binding kinetic constants to this receptor were not determined (Figures S35-S38). Chi-square 

values and residuals were inspected to validate curve fitting.  

Table 5. Binding kinetic constants of the Tmab variants to HER2 and FcγR1A 

 

HER2 FcγR1A 

Ka Kd KD Ka Kd KD 

(x 10+6) M-

1.s-1 
(x 10-5) s-1 pM 

(x 10+5) M-

1.s-1 
(x 10-4) s-1 nM 

Tmab WT 2.50 ± 0.03 3.03 ± 0.72 12.11 ± 2.72 2.11 ± 0.03 10.64 ± 0.56 5.05 ± 0.33 

L115 > N 3.82 ± 3.80 
18.16 ±  

9.14 

47.56 ± 

25.89 
1.79 ± 0.20 4.20 ± 0.06 2.34 ± 0.26 

A121 > N 4.40 ± 1.71 23.84 ± 4.35 
54.24 ± 

10.24 
3.83 ± 0.36 8.77 ± 1.14 2.29 ± 0.08 

Q160 > N 0.83 ± 0.02 2.78 ±  1.26 
33.53 ± 

15.86 
2.55 ± 0.02 6.62 ± 0.11 2.59 ± 0.02 

L177 > N 1.84 ± 0.13 6.32 ± 0.08 34.28 ± 2.01 5.01 ± 0.18 15.04 ± 1.27 3.00 ± 0.15 

Q178 > N 1.35 ± 0.27 4.29 ± 0.67 31.88 ± 2.11 7.38 ± 0.11 9.23 ± 0.30 1.25 ± 0.02 

L182 > N 1.1 * 3.2 * 29.1 * 3.67 ± 0.55 12.37 ± 2.64 3.37 ± 0.22 

T198 > N 6.11 ± 1.17 50.97 ± 3.23 
83.44 ± 

77.77 
4.71 ± 0.02 8.09 ± 0.10 1.72 ± 0.03 
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Table 6. Binding kinetic constants of the Tmab variants to FcγR2B and FcγR3A 

 

FcγR2B FcγR3A 

Ka Kd KD Ka Kd KD 

(x 10+4) M-

1.s-1 
(x 10-4) s-1 nM 

(x 10+4) M-1.s-

1 
(x 10-4) s-1 nM 

PBS-Herc 3.05 ± 0.04 1.99 ± 0.13 6.55 ± 0.35 10.51 ± 0.29 
1.90 ± 

0.54 
1.81 ± 0.47 

Tmab WT 5.76 ± 1.01 4.75 ± 0.41 8.25 ± 0.69 11.41 ± 2.06 
1.29 ± 

0.64 
1.13 ± 0.32 

L115 > N 0.65 ± 0.26 0.78 ± 0.44 11.92 ± 3.57 3.35 ± 0.85 
2.74 ± 

0.23 
8.17 ± 1.60 

T117 > N ND ND 

A121 > N ND 2.78 ± 1.99 1.95 ± 0.43 7.01 ± 3.84 

Q160 > N 4.01 ± 0.32 1.85 ± 0.27 4.62 ± 0.32 21.17 ± 4.95 
8.01 ± 

2.95 
3.78 ± 0.46 

L177 > N 2.95 ± 1.82 6.88 ± 4.26 
23.28 ± 

44.62 
2.83 ± 0.22 

3.02 ± 

0.05 
10.67 ± 1.03 

Q178 > N ND 1.95 ± 0.20 
0.98 ± 

0.20 
5.04 ± 1.47 

L182 > N ND 3.12 ± 0.25 
1.95 ± 

0.20 
6.24 ± 1.30 

T198 > N ND 2.25 ± 0.14 
0.86 ± 

0.15 
3.81 ± 0.41 

 

SPR-derived binding kinetic parameters of the mutants on immobilized HER2 displayed a modest 

decrease in the binding affinity constant (KD) compared to wild-type trastuzumab (Table 5). KD 

values for the Tmab variants ranged from 29.10 – 83.44 pM compared to 12.11 ± 2.72 pM for 

Tmab WT, which represents a 2.4 – 6.9-fold reduction in binding affinity. Most variants displayed 

a decrease in binding rate constant (Ka) and an increase in dissociation rate constant (Kd), with 

the exception of A121N and T198N that had higher Ka values, yet they also possessed the highest 

increase in Kd constants. Thus, the A121N and T198N mutations displayed the lowest binding 

affinity constants to HER2. 
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Conversely, binding affinity to captured FcγR1A was improved for all mutants relative to both 

Tmab WT and Herceptin, exhibiting KD values 1.5 – 4 times lower than Tmab WT. Mutants 

Q178N and T198N recorded the highest binding affinity to FcγR1A, with KD constants of 1.25 

and 1.72 nM respectively. SPR assays with immobilized FcγR2B yielded curves with lower 

similarity to the wild-type references. Dissociation times for mutants A121N and Q178N were too 

long to obtain reliable kinetic binding affinity parameters. L182N showed a drastic decrease in 

binding affinity. Mutants L115N, Q160N, and L177N exhibited modest increases in binding 

affinity constants to FcγR2B. Binding affinity to FcγR3A was reduced across all mutants, 

displaying 3.35 – 9.44-fold increases in KD values. 

Discussion 

The insertion of novel N-glycosylation sites on the primary structure of IgG1 molecules is a highly 

promising approach to enhance the physicochemical properties of therapeutic proteins, having 

previously demonstrated important enhancements in solubility and physical stability in 

bevacizumab, adalimumab, and the Li33 anti-LINGO antibody. However, implementation of this 

approach in clinical development could be challenging due to the concomitant increase in 

structural heterogeneity. This is especially relevant when considering mAbs whose therapeutic 

efficacy relies, at least partially, on eliciting effector functions; given that the technique entails the 

incorporation of a relatively large molecule that should not alter detrimentally the binding affinity 

towards the various receptors involved in its biological activity (i.e., cognate antigen, Fc receptors, 

C1q). Further considerations include potential modifications in immunogenicity and 

pharmacokinetic profiles. Moreover, elucidation of the underlying mechanisms that drive 

improvements in stability demands thorough structural analysis of the glycan structures attached 

to the engineered site. In light of this, we inserted N-glycosylation motifs in trastuzumab in several 

amino acid positions previously identified by others on conserved regions of the IgG1 molecule 

and performed a detailed structural analysis of the ensuing glycan profile. 

Preliminary prediction and confirmation of glycan attachment 

N-glycosylation is a complex biochemical process, for which the requirements for glycan 

attachment are not yet fully understood. Three key factors determining glycan occupancy have 

been identified: (1) location of the asparagine residue within the consensus motif Asn-X-Ser/Thr, 

(2) location of the N residue in the ER lumen during translation, and (3) the adjacent secondary 
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structure of the protein must enable glycan transfer. Based on these, numerous servers have been 

developed to map N-glycosylation sequons and predict the probability of glycan attachment, and 

have been instrumental in the study of the glycosylation profile of proteomes. We thus employed 

two such servers to assess the validity of their prediction values applied to this antibody 

engineering strategy. This is particularly important considering the fact that previous studies have 

not pursued potential APR shielding regions experimentally due to low glycan transfer probability. 

Specifically, residue Q178 was deemed ineligible by Courtois et al. based on low solvent 

accessible surface area obtained from MD simulations. Our preliminary evaluation of glycan 

attachment probability on trastuzumab shed similar results (Table 2) to those obtained by Courtois 

et al. on their panel of glycosylation sites identified through SAP, wherein Q178N had negative 

predictions by both NetNGlyc and NGlycPred, and SASA was amongst the lowest calculated (20.5 

Å2). Importantly, L115N also obtained a negative prediction value from NGlycPred. It was thus 

remarkable that our experimental data contradicted the negative prediction for residues L115N and 

Q178N. The Q178N mutant had previously been implemented by Pepinsky et al. in the anti-

LINGO IgG1 antibody with important improvements in solubility, although no compelling data to 

confirm glycan attachment was reported.  Moreover, our data strongly suggest that Q160N does 

not undergo glycan attachment, despite the high SASA and prediction values calculated for the 

residue. This was equally observed in the equivalent mutation in adalimumab (data to be 

published). These results emphasize the importance of confirming glycan attachment and 

performing structural analysis of the resulting structural modifications, to better interpret the 

results derived from aggregation experiments. Furthermore, they reveal a conspicuous need for 

further understanding of the factors that determine successful glycan transfer to refine this antibody 

engineering approach. 

Glycan profile analysis 

Compared to plasma proteins and other recombinant therapeutic proteins, monoclonal antibodies 

display limited heterogeneity in their Fc N-glycan profile, as reported herein. This observation is 

ascribed to the decreased surface exposure of Asn N297 and the attached glycan as it engages in 

several interactions with the protein backbone and residue side chains at the inner face of the 

domain [28, 29]. Although most plasma IgG molecules possess only the conserved N-

glycosylation sequon in the Fc region, roughly 15-25% also express additional glycosylation sites 
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on the variable domain of the Fab region [30, 31]. Glycan profiling of Fab-glycosylated serum 

IgGs has revealed contrasting structural characteristics between Fc-derived and Fab-derived 

glycans, most notably higher overall heterogeneity and sialylation [32, 33]. All mutations 

evaluated in this study are located in the Fab region, although only L115N lies on a variable domain 

– in close proximity to the VH-CH1 interface. The global glycan profile acquired through 

capillary/nanoLC-ESI-MS/MS demonstrated that increased structural heterogeneity is similarly 

obtained when engineered glycosylation sites are incorporated through mutagenesis in the Fab 

region of a recombinant mAb.  

There was no evident association between the degree of heterogeneity or apparent glycan 

maturation and the solvent accessible surface area calculated. For instance, low-SASA mutant 

L115N possessed a relatively high abundance of sialylated glycans, indicative of higher glycan 

processing. Remarkably, high mannose glycans (HexNAc(2)Man(8) and HexNAc(2)Man(9)) 

were also detected in L115N. Similarly, residue Q178N displayed high glycoform heterogeneity 

despite having the lowest SASA among the mutants, including sialylated and triantennary glycans. 

As the en bloc transfer of the dolichol oligosaccharide precursor occurs on nascent proteins 

undergoing translation, low surface exposure calculated from the WT structure might not preclude 

glycan attachment and the resulting orientation of the glycan could be surface-exposed for enzyme 

accessibility. Ideally, SASA would be calculated from the crystal structure of the mutated protein, 

but performing such analyses for all mutations entails prominent experimental challenges.  

Overall, the degree of sialylation was markedly higher in most engineered mutants relative to both 

wild-type references, i.e., Tmab WT and Herceptin. Similar findings have consistently been 

reported for both polyclonal and recombinant monoclonal IgG proteins containing naturally-

occurring N-glycosylation sequons in the Fab region [34]. The higher abundance of sialic acid 

glycans in Fab glycosites has been attributed to increased accessibility to enzymes involved in 

glycan maturation relative to the Fc glycan. In this case, however, we also found various high 

mannose and hybrid glycans not detected in Tmab WT. In the seminal exploration of SAP 

reduction by Courtois et al., a G0 glycan was selected for molecular dynamic simulations of the 

Fab region to shed light into the factors driving resistance to aggregation upon glycosite insertion 

[18]. Here, it was posited that the added glycans on some of the mutated sites produce limited APR 

shielding and hence the improvements in physical stability could stem from steric hindrance due 
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to the large hydrodynamic size and hydrophilic character of the added glycans. The diversity of 

glycoforms reported here indicates that this structural heterogeneity must be accounted for when 

performing these analyses, particularly considering the important presence of negatively charged 

sialic acid residues on some of the mutants. 

HEK-293F cells were chosen for transient expression of the Tmab variants due to high transient 

transfection efficiency and yield relative to CHO cells. Comparison of the glycan profile of CHO-

produced Herceptin with HEK-derived Tmab WT shows that galactosylation was more abundant 

in HEK-293F expression. This observation was also consistent across the mutant panel when 

considering uniquely Fc glycans. Galactosylation of the conserved Fc glycan is not considered to 

affect significantly mAb binding to FcγR receptors, yet there is consistent evidence that the 

presence of terminal galactose promotes activation of the classical complement route [35]. Hence, 

the higher content of G1F and G2F glycoforms could lead to potency advantages in mAbs with 

significant modulation of complement activity.  

Alterations in HER2 and Fc receptor affinity 

A crucial consideration in this engineering approach must be the conservation of biological 

activity. The proximity of the mutations to the CDRs and to regions involved in Fc receptor binding 

warrants examination of alterations in receptor binding affinity. Taking this into consideration, we 

evaluated the binding kinetics of the panel of mutants to their molecular target (HER2) and to Fc 

receptors involved in effector function, using single-cycle SPR.  

The kinetic constants obtained indicate that HER2 binding affinity is moderately diminished for 

all mutants, reflected by 2.4 – 6.9-fold reductions in the binding affinity constant (KD). All KD 

values, however, were subnanomolar – demonstrating that strong binding to HER2 is retained 

despite modest decreases in affinity. Remarkably, the highest reduction in affinity was obtained 

with T198N, which is located farthest from the HER2 binding region. This reduction in binding 

affinity could have resulted from conformational changes affecting the antigen binding region. KD 

values derived herein for wild-type Tmab binding to HER2 were in agreement with those reported 

in previous literature, spanning 19 pM – 5.48 nM [36-38]. 

Overall, the mutant library exhibited minor modifications in Fc receptor binding affinity. Binding 

to FcγR1A was marginally improved in all Tmab variants. Curve fitting was less reliable for 
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FcγR2B, and it was not possible to calculate these parameters for mutants A121N, Q178N, L182N, 

and T198N. Still, sensorgram interpretation suggests that L182N binding to FcγR2B was 

drastically disrupted. Binding affinity to FcγR3A also showed moderate disruption across all Tmab 

variants, with 3.35 – 9.44-fold increases in KD values. 

The affinity screening to biologically relevant receptors performed in this work served as a proof-

of-principle that N-glycosylation sites can be incorporated in the Fab region of therapeutic 

monoclonal antibodies without major modifications in antigen and Fc receptor binding. 

Nonetheless, evaluation of ADCC, CDC and inhibition of cell proliferation is still required to 

ascertain potential variations in biological activity. 

Concluding remarks 

The rational addition of N-glycosylation sequons represents a highly promising strategy to 

improve the physical stability of therapeutic antibodies, as is highlighted by the important 

enhancements in physical stability obtained in previous studies with bevacizumab, adalimumab 

Fab, and the Li33 anti-LINGO antibody. Moreover, we have previously performed the panel of 

mutations reported here in full-size adalimumab and demonstrated enhancements in 

thermodynamic stability through this approach. However, our data established that for this strategy 

to move forward in the clinical development pathway, there is an evident need to control or 

minimize the structural heterogeneity that results from glycan addition. The latter is also required 

to obtain further insight into the conferred physicochemical properties responsible for the 

improvements in stability. Native Fc glycosylation, albeit less diverse than most glycoproteins, 

already constitutes a challenge concerning the assessment of critical quality attributes. This, 

however, could be overcome with glyco-engineering strategies to curtail glycoform heterogeneity. 

Technologies to reduce glycan diversity in recombinant expression are being pursued in the 

context of refining the production of biopharmaceuticals. Prime examples of these include 

engineered Pichia pastoris (GlycoSwitch) and human (GlycoDelete) cell lines. We foresee great 

value in combining these two glyco-engineering strategies towards the development of therapeutic 

antibodies with enhanced physicochemical and biological properties. Albeit introducing 

heterogeneity, molecular engineering approaches such as this one offer a great deal of flexibility 

and control over preparation of new generation therapies. This glycoengineering strategy can also 
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be employed to enhance the biophysical stability of other protein-based therapies with short half-

life and low formulation stabilities. 
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Abstract 

Abstract: Monoclonal antibodies (mAbs) have become a cornerstone in the therapeutic guidelines 

of a wide range of solid tumors. The targeted nature of these biotherapeutics has improved 

treatment outcomes by offering enhanced specificity to reduce severe side effects experienced with 

conventional chemotherapy. Notwithstanding, poor tumor tissue penetration and the 

heterogeneous distribution achieved therein are prominent drawbacks that hamper the clinical 

efficacy of therapeutic antibodies. Failure to deliver efficacious doses throughout the tumor can 

lead to treatment failure and the development of acquired resistance mechanisms. Comprehending 

the morphological and physiological characteristics of solid tumors and their microenvironment 

that affect tumor penetration and distribution is a key requirement to improve clinical outcomes 

and realize the full potential of monoclonal antibodies in oncology. This review summarizes the 

essential architectural characteristics of solid tumors that obstruct macromolecule penetration into 

the targeted tissue following systemic delivery. It further describes mechanisms of resistance 

elucidated for blockbuster antibodies for which extensive clinical data exists, as a way to illustrate 

various modes in which cancer cells can overcome the anticancer activity of therapeutic antibodies. 

Thereafter, it describes novel strategies designed to improve clinical outcomes of mAbs by 

increasing potency and/or improving tumor delivery; focusing on the recent clinical success and 

growing clinical pipeline of antibody-drug conjugates (ADC), immune checkpoint inhibitors and 

nanoparticle-based delivery systems. 

Introduction 

Therapeutic monoclonal antibodies (mAbs) successfully entered the clinic over 25 years ago and 

have become one of the central components of the healthcare system [1, 2]. Their arrival brought 

about a therapeutic revolution due to their capacity to target specific molecular components, with 

a large number of mAbs already approved in oncology, autoimmune disorders, chronic diseases 

and many more conditions. Currently, over 80 antibody therapeutics have received regulatory 

approval in Europe and/or the United States and just in 2017 sales of therapeutic antibodies 

exceeded $100 billion worldwide [3].  

In oncology, therapeutic antibodies offer the possibility to treat tumors in a targeted fashion and 

reduce the severe side effects of conventional chemotherapy. Recent developments in cancer 
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biology have aided the discovery of molecular biomarkers in a wide range of solid malignancies 

that can be used as targets with beneficial therapeutic outcomes. At present, over 15 distinct 

monoclonal antibodies are indicated for the treatment of solid tumors [4]. Notwithstanding, in spite 

of their remarkable clinical success some patients do not benefit from the treatment due to intrinsic 

resistance mechanisms or the emergence of acquired resistance following treatment initialisation 

[5, 6]. 

In solid tumors, the development of acquired resistance mechanisms is thought to emerge primarily 

from continuous genetic alterations that modify the cellular phenotype and undermine the initial 

therapeutic efficacy. This capacity of cancer cells to overcome the anticancer effect of the antibody 

is facilitated by the exposure to subtherapeutic concentrations of the drug [7, 8]. The tumor 

microenvironment poses physical barriers, most notably a markedly increased hydrostatic 

pressure, that hinder penetration of macromolecules into the tumor following systemic 

administration [9, 10]. This reduces the overall amount of antibody molecules that reach the target 

tissue and exposes areas of the tumor that are difficult to penetrate to marginal doses of the 

antibody, leading to acquired resistance and treatment failure [8]. In fact, therapeutic mAbs in 

oncology are more commonly administered as combination therapy in conjunction with 

chemotherapeutics due to relatively limited efficacy as single agents [11]. 

Identifying and understanding primary and acquired resistance mechanisms and overcoming the 

barriers that impair efficient delivery of the drug into the tissue is critical to enhance therapeutic 

outcomes. Most of the understanding regarding primary and acquired resistance comes from the 

evaluation of clinical data available for early-approved blockbuster antibodies, such as 

trastuzumab and cetuximab. This review gives an overview of the key factors affecting tumor 

distribution upon systemic delivery and describes relevant mechanisms of resistance identified in 

trastuzumab (anti-HER2) and cetuximab (anti-EGFR) therapy. Additionally, it describes recent 

developments in the implementation of novel antibody-based therapeutics, such as antibody-drug 

conjugates, immune checkpoint inhibitors, and antibody-targeted nanoparticles that have the 

potential to increase therapeutic outcomes of solid tumors. 
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Limitations that impact clinical efficacy 

Poor penetration and heterogeneous distribution in solid tumors 

Therapeutic IgG antibodies must overcome pronounced physical and physiological obstacles in 

order to penetrate and distribute uniformly throughout the tumor. In solid malignancies, impaired 

lymphatic drainage due to the sparse presence of lymphatic vessels leads to the accumulation of 

macromolecules in the interstitial tissue and a consequent increase in hydrostatic pressure [9, 12-

14]. Hence, the altered pressure differential from vascular vessels to the interstitial compartment 

limits convection and extravasation of macromolecules from the vascular lumen into the tumor 

(Figure 1) [15]. Moreover, antibody distribution following extravasation is further impeded by 

cellular internalization and subsequent endocytic clearance at the tumor edge (an effect coined the 

“binding-site barrier”), leading to poor penetration and regions of marginal antibody 

concentrations [10, 16, 17]. The binding-site barrier suggests that higher affinity and higher 

antigen expression, especially at the tumor edge, can retard mAb tumor percolation and impair 

homogeneous distribution; although this barrier can be overcome by increasing the administered 

dose.  
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Figure 1. Structural features of the tumor microenvironment that increase interstitial 

pressure and hinder mAb extravasation and distribution. (A) Blood vessels that irrigate 

healthy normal tissue possess a continuous inner lining of endothelial cells, enveloped by 

perivascular cells called pericytes that grant integrity to the vascular tube. The extracellular 
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matrix (ECM) contains a lax network of collagen and proteoglycan fibers, and the presence 

of macrophages and fibroblasts is scarce. Lymph vessels efficiently remove and prevent the 

accumulation of macromolecules and interstitial fluid. (B) Increased demand of oxygen and 

nutrients in tumor tissues causes blood vessels to form defectively and irregularly shaped. 

The lack of pericytes makes the vascular tube unstable and leakier. The abundant presence 

of fibroblasts and infiltrating macrophages promote the formation of a dense extracellular 

matrix, with a condensed network of collagen and proteoglycan fibers. The paucity of lymph 

vessels leads to the accumulation of macromolecules and an increase in interstitial fluid 

pressure (IFP). The fibrotic nature of the ECM and the altered pressure differential between 

the vascular lumen and the tumor hinder antibody convection into the targeted tissue. 

A vast body of research studying some of the blockbuster therapeutic mAbs has highlighted the 

significance of increasing tissue penetration to improve the outcome of antibody therapy [15, 18]. 

A study on cetuximab and trastuzumab in mouse xenografts confirmed that tumor distribution can 

be improved with an increase in dose; however, hypoxic areas remained difficult to reach even at 

higher doses. Moreover, xenografts expressing intermediate levels of ErbB1 (cognate antigen for 

cetuximab) displayed more homogeneous distribution of cetuximab compared to xenografts with 

higher ErbB1 expression [19]. 

An alternative approach consists in improving diffusion by employing smaller antibody fragments, 

such as Fab fragments (~50 kDa), single-chain variable fragments (scFv ~30 kDa) and single-

domain antibodies (sdAb 12-15 kDa). Yet, while these formats indeed possess higher diffusion 

rates, the tumor distribution achieved in physiological settings is poor because the clearance rates 

for smaller fragments is markedly higher relative to full size antibody molecules [15, 20]. IgG 

immunoglobulins undergo salvage recycling through interaction of the Fc region with the neonatal 

Fc receptor (FcRn), leading to prolonged half-lives of more than 20 days for most therapeutic 

mAbs [21]. Conversely, antibody fragments lacking an Fc region display half-lives of hours, or 

even minutes for formats below the glomerular filtration cutoff (30-50 kDa). The high elimination 

rates upon systemic delivery prevent most antibody fragments from saturating the tumor and 

achieving uniform distributions [22, 23]. Increasing tumor tissue penetration thus poses significant 

challenges given the intricate pharmacokinetic properties of IgGs.  
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Resistance to monoclonal antibody therapy 

Understanding the resistance mechanisms that affect monoclonal antibody therapy in cancer has 

proven to be a strenuous task, insofar as the antitumor activity of mAbs stems from a multiplicity 

of molecular mechanisms – eg, signaling pathway disruption, antibody dependent cellular 

cytotoxicity (ADCC), antibody dependent cellular phagocytosis (ADCP) and complement 

dependent cytotoxicity (CDC). To this day, the clinical contribution of the various modes of action 

involved in the anticancer activity of most mAbs remains controversial [24-26]. On that account, 

intrinsic phenotypic variations in tumor cells or tumor-related cells affecting any of the involved 

modes of action can compromise treatment efficacy. Moreover, adaptive phenotypic modifications 

can arise following repeated exposure to sub-optimal doses of the biotherapeutic resulting in 

acquired resistance [27, 28]. 

Most of the current understanding of the contributing factors in the development of intrinsic or 

acquired resistance and their clinical significance comes from preclinical and clinical trials of 

benchmark therapeutic antibodies. Notwithstanding that the modes of action of different mAbs are 

not identical, the vast clinical data available for these benchmark antibodies are pivotal to 

comprehend host response and optimize monoclonal antibody therapy. The next sections briefly 

discuss resistance mechanisms identified in clinical settings for trastuzumab in HER2 positive 

breast cancer, and for cetuximab in colorectal cancer as archetypes of solid tumor treatment. 

Resistance to trastuzumab (anti-HER2 therapy) 

Trastuzumab was the first therapeutic monoclonal antibody to be approved for a solid carcinoma 

(FDA approval in the year 1998) [29]. Trastuzumab targets the extracellular domain of the human 

epidermal growth factor receptor 2 (HER2/Neu or ErbB2) that is overexpressed in a broad range 

of malignancies. HER2 overexpression is detected in 15-20% of breast cancers and this subset is 

associated with poor prognosis and higher rates of recurrence [30, 31]. 

HER2 exists primarily as a monomeric receptor that can form heterodimers with other members 

of the ErbB family of receptors (HER1, HER3 and HER4) upon ligand-mediated activation of the 

latter. Heterodimerization activates the MAPK and PI3K/AKT/mTor intracellular pathways, 

inducing cell proliferation and inhibition of apoptosis, respectively [32, 33]. Direct binding of 

trastuzumab with HER2 can hinder heterodimerization and promote proteolysis of the receptor 
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through receptor-mediated endocytosis. This interaction inhibits downstream signaling and causes 

cell cycle arrest by accumulation of the cyclin-dependent kinase (CDK) inhibitor p27 [34]. 

Additionally, trastuzumab can mediate antibody-dependent cellular cytotoxicity (ADCC) [35, 36] 

and antibody-dependent cellular phagocytosis (ADCP) [36-38]. Induction of complement 

dependent cytotoxicity (CDC) has also been documented in in vitro experiments, but it is thought 

to contribute only minimally to the anticancer effect in patients [36, 39]. 

Intrinsic alterations of the HER2 receptor involving regions associated with the binding epitope of 

trastuzumab have been linked to intrinsic (or primary) resistance mechanisms. For instance, 

alternate transcription initiation sites can result in the expression of a truncated variant of the 

receptor (p95-HER2) that lacks the cognate epitope for trastuzumab [40]. Insertions and point 

mutations in the tyrosine kinase domain of HER2 have been identified in various cancers, some of 

them associated with resistance to trastuzumab and lapatinib, however evidence of such mutations 

in HER2 overexpressing breast cancers has not been reported to date [41, 42]. A further alteration 

resulting in impaired target binding comes from the overexpression of mucin-4, which has been 

shown to induce association with HER2 causing steric hindrance to abrogate trastuzumab binding 

to HER2 [43]. 

Additional intrinsic and acquired resistance mechanisms predominantly involve alterations in the 

P13K/Akt/mTOR axis, activation of other ErbB receptors (especially EGFR and HER3) by 

increased ligand production, and circumvention of HER2 binding by activation of the PI3K 

cascade through alternative pathways. Mutations in PIK3CA and function impairment of PTEN 

(both downstream of HER2 signaling) have been implicated in bypassing HER2 blockade [44, 45]. 

Overexpression of the insulin-like growth factor (IGF-IR) has been documented as an adaptive 

response to trastuzumab by some tumors, resulting in resistance to the antibody. IGF-IR can form 

heterodimers and heterotrimers with HER2 and HER3 in breast cancer cells resistant to 

trastuzumab [46, 47]. Similarly, increased levels of EpoR, EpHA2 and RTK MET can activate 

P13K/Akt/mTOR by interacting with other members of the ErbB family or through activation of 

intracellular kinases [47-49]. 

Resistance to cetuximab (anti-EGFR therapy) 

The epidermal growth factor receptor (EGFR; HER1; ErbB1) forms part of the ErbB family of 

receptors. EGFR is pivotal in modulating proliferative mechanisms and has been implicated in a 
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broad range of cancers [50-52]. Cetuximab (chimeric IgG1) was the first anti-EGFR mAb to 

receive regulatory approval in 2004 [53]. Since then, two more anti-EGFR mAbs (panitumumab 

and necitumumab) and six anti-EGFR small molecule inhibitors (gefitinib, erlotinib, lapatinib, 

neratinib, vandetanib and osimertinib) have obtained regulatory approval for various cancers [4].  

The anticancer activity of cetuximab partially resembles that of trastuzumab in that it targets 

another member of the ErbB family of receptors with intrinsic protein tyrosine kinase activity. 

Accordingly, dimerization of EGFR can activate the PI3K/AKT/mTOR, RAS/RAF/MAPK and 

JAK/STAT signaling pathways to promote cell growth and proliferation [54, 55]. In contrast to 

HER2, EGFR can undergo a conformational transition triggered by binding of specific ligands, 

predominantly EGF and TGFα, that promotes the formation of homodimers and heterodimers with 

other members of the HER family [56]. Cetuximab can block ligand activation of EGFR by binding 

directly to the extracellular domain III of the receptor and inducing receptor internalization and 

proteolysis [57]. A further contributing mechanism of action involves suppression of VEGF (a 

pro-angiogenic factor) production resulting in impaired angiogenesis [58]. Moreover, ADCC and 

CDC are also believed to contribute to cetuximab efficacy in EGFR over-expressing cancers [59, 

60]. 

There is vast documentation of primary and acquired resistance to anti-EGFR therapy in patients 

with colorectal and head and neck cancer. Indeed, roughly 80% of metastatic colorectal cancer 

patients do not display susceptibility to EGFR blockade [61]. This low response rate has been 

linked to a broad spectrum of alterations in several of the components of the downstream signaling 

pathways. Specifically, mutations in the PIK3CA [62], NRAS, BRAF and KRAS [63]. genes that 

confer constitutive activation of the EGFR are amongst the best studied contributing factors in 

intrinsic and acquired resistance. Further alterations such as low EGFR copy numbers or low 

expression of specific EGFR-ligands (eg, EREG and AREG) have been implicated in resistance 

to EGFR therapy [64, 65]. 

EGFR downregulation and structural modifications in the binding region can also compromise 

treatment efficacy [66]. The role of mutations in the extracellular domain (ECD) of EGFR in 

cetuximab resistance remains unclear. Recent publications have identified several point mutations 

that abrogate cetuximab binding to the receptor [67]. Still, RAS mutations are found more 
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frequently in refractory patients than ECD mutations and have been associated with worst clinical 

outcomes [68]. 

Novel approaches to enhance efficacy 

Increasing the therapeutic index with antibody drug-conjugates 

Antibody drug conjugates (ADCs) were conceived as an approach to enhance the therapeutic 

window of its primary components, namely the targeted antibody and a cytotoxin or an 

immunotoxin covalently attached to the antibody. Endowing the drug with specificity towards a 

molecular target – by virtue of the attachment of an antibody – allows for the utilization of highly 

potent cytotoxic compounds, that otherwise display intolerable systemic toxicity.  

ADCs increase the intrinsic potency of the targeted treatment – relative to the antibody agent, 

therefore lower doses are required to reach the tumor to effectively destroy the targeted cells. 

Moreover, depending on the chemical nature of the drug and its release in the tumor (either 

intracellular or extracellular), some payloads can subsequently diffuse and kill surrounding cells 

(‘bystander killing’) [69, 70]. Consequently, these features could ameliorate the drawbacks of the 

heterogeneous tumor distributions of therapeutic antibodies and decrease the risk of developing 

resistance. 

Despite the potential of the concept, the clinical implementation of ADCs has met with significant 

challenges, mostly regarding off-target toxicity. To date, only four ADCs (Mylotarg, Adcetris, 

Kadcyla and Besponsa) have received regulatory approval. Gemtuzumab ozogamicin (Mylotarg) 

(anti-CD33) was the first to enter the market in 2000 under an accelerated approval process [71]. 

It was originally approved as stand-alone treatment for refractory CD33-positive acute myeloid 

leukemia (AML), but it was voluntarily withdrawn in 2010 after failure to display benefits relative 

to standard therapies in a phase III comparative controlled clinical trial (NCT00085709 or SWOG-

0106) [72]. Moreover, Mylotarg caused a significantly higher rate of fatal induction toxicity in this 

confirmatory trial. Gentuzumab ozogamicin had previously raised hepatotoxicity concerns due to 

high incidence (~20%) of Grade 3 or 4 liver transaminitis and hyperbilirubinemia, and reports of 

hepatic veno-occlusive disease [73]. Mylotarg received FDA approval once again in 2017 

following a careful review of the dosing regimen, whereby fractionated lower-dose regimens 

demonstrated a decrease in early mortality without compromise in complete remission rate [74, 
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75]. Brentuximab vedotin (Adcetris) (anti-CD30 for Hodgkin lymphoma and anaplastic large cell 

lymphoma) and ado-trastuzumab emtansine (Kadcyla) (anti-HER2 for HER2-positive metastatic 

breast cancer) gained approvals in 2011 [76] and 2013 [77], respectively. More recently, the FDA 

granted approval to inotuzumab ozogamicin (Besponsa) (anti-CD22) for treatment of relapsed or 

refractory B-cell precursor acute lymphoblastic leukemia (ALL) in 2017 [78]. 

The clinical development of ADCs has been hampered predominantly by systemic toxicity due to 

off-target release of the payload. Most adverse effects reported in clinical reports are ascribed to 

the potent cytotoxicity of the payload, underlining the importance of improving ADC design to 

enhance therapeutic index [79, 80]. On that account, the linker chemistry plays a crucial role in 

determining plasma stability to prevent premature release.  

Linker chemistry 

Earlier ADC formats carried mostly chemically-labile linkers, such as pH-labile moieties intended 

to be released within the cell. These linkers should be stable at the neutral pH of the blood (pH 

7.3-7.5) and undergo hydrolysis once they are internalized within the cell by receptor-mediated 

endocytosis, where the more acidic environment of the endosome (pH 5.0-6.5) or the lysosome 

(pH 4.5-5.0) trigger the release of the payload [81-83]. Both Mylotarg and Besponsa employ a pH-

labile hydrazone linker. Other early constructs bore reducible disulfide linkers that enable payload 

delivery in the intracellular reducing environment. The higher concentrations of glutathione in the 

intracellular compartment induce disulfide bond reduction and cytotoxin release [84]. 

Since then, plasma stability has been improved by the implementation of alternative release 

strategies. Most commonly, the linker is designed to possess a dipeptide sequence that is 

recognized and cleaved by lysosomal proteases following receptor-mediated endocytosis. Most 

ADCs currently in development employ this approach [83, 85].  Specifically, the dipeptide valine-

citrulline group – recognized and cleaved by cathepsin B (lysosomal protease) – is the most widely 

implemented technology in the current clinical pipeline [85]. A further approach consists in 

utilizing non-cleavable linkers, whereby release of the drug requires cellular uptake and proteolysis 

(Figure 2). 
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Figure 2. Structural components of an antibody drug conjugate. Trastuzumab emtansine is 

a commercially approved anti-Her2 antibody with a potent maytansinoid payload attached 

to lysines in the mAb polypeptide chain through a non-cleavable linker. 

Conjugation methods 

Most of the ADC formats that have entered clinical trials employ stochastic conjugation methods 

to lysine residues in the antibody, or to free SH groups in cysteines obtained by partial reduction 

of the interchain disulfide bonds. These techniques, although widely used, suffer from several 

disadvantages. In IgG molecules, lysine side chains are abundant and lysine conjugation yields 

consequently highly heterogeneous drug attachments, some of them occurring on residues where 

attachment can be detrimental to the physicochemical stability of the antibody [86]. Additionally, 

highly heterogeneous drug-to-antibody-ratios (DAR) are obtained, where the ADCs with high 

DARs (>8) show more narrow therapeutic indices [87]. Conjugation to free SH groups offers 

greater homogeneity as the maximum amount of available SH groups after partial reduction of the 

interchain disulfide bonds is limited to 8. Nonetheless, the disruption of these bonds can result in 

alterations in the quaternary structure of the IgG molecule [88]. The impact of these conjugation 

techniques on the physicochemical stability of ADCs is thoroughly described in [89]. 

 Novel developments in linker technologies intend to enhance the homogeneity of ADCs by 

providing site-specific attachment of the drug-linker to the antibody, thereby controlling the 
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number of drugs affixed as well as preventing attachment to regions in the antibody that may 

impair binding to the cognate epitope or to Fc receptors on immune effector cells. The THIOMAB 

platform, developed by Genentech, was the first site-specific technique to be implemented and it 

consists in the insertion of engineered unpaired cysteines on protein surface [90]. Site-specific 

methods also include recombinant techniques to introduce unnatural amino acids – eg, p-

acetylphelylalanine, N6-((2-azidoethoxy)carbonyl)-L-lysine, selenocysteine – in the primary 

sequence of the antibody that can be readily modified [90-92]. Furthermore, other formats have 

employed short peptide tags or specific attachment to the glycan moiety in the CH2 domain [93, 

94]. Several preclinical studies have reported superiority in efficacy and safety of site-specific 

homogeneous ADCs compared to conventional lysine or cysteine-conjugation chemistry [95, 96]. 

Site-specific conjugates currently account for approximately 15% of ADC formats in development 

[97]. 

Cytotoxic payloads 

A further increasing trend in ADC optimization focuses on the development and employment of 

more potent payloads. In particular, DNA alkylators – predominantly calicheamycins, 

pyrrolobenzodiazepines (PBDs) and duocarmycins – have seen a significant increase in popularity 

in the development of novel ADC platforms [98]. This strategy gained relevance after several 

ADCs failed to demonstrate adequate efficacy in clinical trials early in the decade. In 2013, 80% 

of the clinical pipeline was made up of conjugates bearing antimitotic agents, namely auristatins 

or maytansinoids (mostly DM1, DM4, MMAE and MMAF). Since then, this fraction has dropped 

by more than 15% owing to the introduction of novel formats carrying DNA alkylating agents and 

other novel cytotoxic compounds, e.g. trastuzumab deruxtecan [99], trastuzumab duocarmazine 

[100], vadastuximab talirine [101]. [102]. 

Further optimization of ADC design is sure to bring about major improvements to the field of 

antibody therapeutics and precision medicine. The field has grown dramatically in recent years 

and will likely continue to experience major developments in the near future as novel technologies 

and strategies are implemented in preclinical and clinical development. The ADC field will also 

benefit from advancements in the identification of novel target antigens.  
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Engaging the immune system  

Immune checkpoint blockade 

One of the most important recent developments in antibody therapy in oncology has been the 

introduction of immune checkpoint inhibitors (ICI) in the clinic. ICI therapy consists in the 

utilization of monoclonal antibodies to disrupt key signaling pathways involved in the suppression 

of immune effector cells [103]. Releasing the brakes of the immune system in this way can trigger 

potent and durable antitumor responses. One of the most advantageous features of ICI therapy is 

the capability of eliciting antitumor responses in a wide range of malignancies, since the treatment 

engages the immune machinery as opposed to traditional targeted therapy that is specific to 

antigens expressed in cancer cells. A further key feature of immune checkpoint blockade is the 

observed long-term durability of the anticancer response [104]. 

Two crucial inhibitory pathways have been exploited in the development of these therapeutics, 

namely the cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and the programmed cell death 

(PD-1) receptor or its ligand PD-L1. The first FDA approval was granted in 2011 to ipilimumab 

(anti-CTLA-4) for late-stage melanoma, following the review of a phase III randomized, 

controlled trial that included 676 melanoma patients (stage III or IV) and demonstrated an increase 

in overall survival rate. This was the first drug to achieve a significant improvement in overall 

survival in advanced melanoma and it marked a key development in the field of cancer 

immunotherapy [105]. Following the first approval of ipilimumab the field has experienced a 

remarkable expansion. Anti-PD-1 antibodies pembrolizumab and nivolumab received regulatory 

approval in 2014. More recently, the anti-PD-L1 atezolizumab entered the clinic in 2016 and anti-

PD-L1 mAbs avelumab and durvalumab in 2017 (table 1).  

Table 1. Approved immune checkpoint inhibitors and FDA indications 

Antibody Target FDA indications FDA 

approval 

date  

Ipilimumab 

(Yervoy) 

CTLA-4 Unresectable or metastatic melanoma 2011 
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Adjuvant treatment in cutaneous melanoma 

following surgery 

2015 

Unresectable or metastatic melanoma in 

paediatric patients 12 years of age or older 

2017 

Nivolumab 

(Opdivo) 

PD-1 Unresectable or metastatic melanoma 2014 

Advanced (metastatic) squamous non-small 

cell lung cancer (NSCLC) 

2015 

Advanced (metastatic) renal cell carcinoma 2015 

Classical Hodgkin lymphoma  2016 

Metastatic squamous cell carcinoma of the 

head and neck (HNSCC) 

2016 

Metastatic urothelial carcinoma  2017 

Microsatellite instability-high (MSI-H) or 

mismatch repair deficient (dMMR) 

metastatic colorectal cancer (mCRC) 

2017 

Hepatocellular carcinoma (HCC) 2017 

Pembrolizumab 

(Keytruda) 

PD-1 Advanced or unresectable melanoma 2014 

Advanced (metastatic) NSCLC 2015 

Metastatic HNSCC 2016 

Refractory classic Hodgkin Lymphoma 2017 

Metastatic urothelial carcinoma 2017 

Metastatic solid tumors with microsatellite 

instability-high or mismatch repair 

deficient* 

2017 

Metastatic gastric or gastroesophageal 

junction adenocarcinoma with PD-L1 

expression 

2017 
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Metastatic cervical cancer with PD-L1 

expression 

2018 

Refractory primary mediastinal large B-cell 

lymphoma  

2018 

Hepatocellular carcinoma 2018 

Metastatic Merkel cell carcinoma  2018 

Atezolizumab 

(Tecentriq) 

PD-L1 Urothelial carcinoma 2016 

Metastatic NSCLC 2016 

Avelumab 

(Bavencio) 

PD-L1 Metastatic Merkel cell carcinoma 2017 

Urothelial carcinoma 2017 

Durvalumab 

(Imfinzi) 

PD-L1 Metastatic urothelial carcinoma 2017 

Advanced NSCLC 2018 

Ipilimumab + 

Nivolumab 

CTLA-4 + 

PD-1 

BRAF V600 wild-type unresectable or 

metastatic melanoma 

2015 

BRAF V600 wild-type and BRAF V600 

mutation-positive metastatic melanoma 

2016 

Intermediate- and poor-risk advanced renal 

cell carcinoma 

2018 

Microsatellite instability-high or mismatch 

repair deficient metastatic colorectal cancer  

2018 

*First approval based on the presence of a biomarker instead of the tissue affected 

CTLA-4, cytotoxic T-lymphocyte-associated antigen; PD-1, programmed cell-death 1; 

programmed cell-death ligand 1; NSCLC, squamous non-small cell lung cancer; HNSCC, 

squamous cell carcinoma of the head and neck. 

CTLA-4 therapy 

The CTLA-4 and PD-1 immunosuppressive checkpoints are key regulatory mechanisms in 

immune response modulation and self-tolerance. In cancer, the presentation of neoantigens by 

antigen presenting cells (mainly dendritic cells) in the lymph nodes induces an initial activation of 

naïve T cells that leads to expansion and proliferation of cytotoxic and helper T cells specific to 
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tumor antigens. These activated T cells can subsequently infiltrate the tumor and mount a local 

immune response against cancer cells. The initial activation that takes place in the lymph nodes 

requires two co-stimulatory events: (1) T cell receptor (TCR) activation through interaction with 

an MHC-peptide complex on the APC and (2) co-stimulation through T cell CD28 and APC B7 

ligand (CD80 or CD86) interaction [106]. Upon T cell activation, CTLA-4 (CD152), which is 

localized in intracellular vesicles in naïve T cells, is upregulated and translocates to the cellular 

membrane [107-109]. CTLA-4 is a homologue of CD28 with higher affinity towards CD80 (or 

B7-1) and CD86 (B7-2), therefore its exposure on the cell surface can lead to disruption of CD28-

CD80 stimulation and T cell suppression through CD80-CTLA-4 signaling (Figure 3) [103, 110]. 

CTLA-4 works as a signal damper of T cell activation and compromises the potency of the immune 

antitumor response. Recent data indicate that the therapeutic efficacy of anti-CTLA-4 antibodies 

in oncology could also stem from a selective depletion of intratumoral regulatory T cells (Treg) 

through ADCC or ADCP, mediated by antibody binding to overexpressed CTLA-4 in these Tregs 

[111-113]. Comprehensive reviews of the mechanism of action of anti-CTLA-4 therapy can be 

found in [114], [115]. 

 

Figure 3. CTLA-4 and PD1/PD-L1 blockade using immune checkpoint inhibitors. Dendritic 

cells process and present tumor neoantigens through the MHC to the TCR on T-cells in the 

draining lymph nodes. T-cell activation further requires a co-stimulatory signal by CD80-

CD28 binding. Upon T-cell activation, CTLA-4 can be upregulated in T-cells. CTLA-4 has 

a higher affinity towards CD80 than CD28, therefore the overexpression of CTLA-4 

interferes with the co-stimulatory CD80-CD28 signal preventing T-cell activation. 

Ipilimumab prevents this mechanism by binding to CTLA-4 thus blocking its interaction 
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with CD80. Once activated T-cells migrate to the tumor to mount an immune anti-tumor 

response, tumor cells and macrophages can upregulate PD-L1 and suppress the immune 

response by interacting with the upregulated PD-1 on T-cells. Anti-PD1 and anti-PD-L1 

antibodies inhibit this adaptive immune resistance mechanism. 

PD-1/PD-L1 therapy 

The PD-1/PD-L1 pathway plays a crucial role in adaptive immune responses. PD-1 is expressed 

by activated T cells, B cells, macrophages, natural killer (NK) cells and several APCs [116]. PD-

1 expression on naïve T cells is induced upon TCR stimulation or TGF-β and cytokine (eg, IL-2, 

IL-7, IL-15, IL-21) autocrine/paracrine signaling. When activated tumor-specific T cells infiltrate 

the tumor, TCRs are triggered by recognition of the MHC-cognate antigen complex, resulting in 

the release of interferon-γ (IFN-γ) and other inflammatory cytokines. Secretion of IFN-γ can 

induce the expression of PD-L1, and PD-L2 to a lesser extent (PD-1 ligands), on the cell surface 

of tumor cells and tumor macrophages [117]. PD-1 binding to PD-L1 suppresses the T cell 

response of previously activated T cells at the tumor-invasive margin, leading to adaptive immune 

resistance (Figure 3) [118, 119]. The proposed mechanism of action of PD-1/PD-L1 inhibitors thus 

consists in suppression of the PD-1 regulatory signal exerted on activated tumor-infiltrating T cells 

[120]. Nonetheless, further mechanisms of action have been suggested and are reviewed elsewhere 

[120-122]. 

Targeting PD-1 or PD-L1 has been presumed to be a more tumor-specific approach than CTLA-4 

blockade, given the involvement of the former in restoring T cell function at the effector stage 

which requires previous tumor specific T-cell activation. This is supported by clinical data 

showing improved outcomes and a lower rate of grade 3-4 adverse events with anti-PD-1 therapy 

compared to ipilimumab (anti-CTLA-4) [123]. The open-label, randomized, phase III clinical trial 

KEYNOTE-006 provided a head-to-head comparison of advanced melanoma treatment with 

ipilimumab or two different dose regimens of pembrolizumab (anti-PD-1). Pembrolizumab 

treatment achieved a more than two-fold increase in 24-month progression-free survival rates 

compared to ipilimumab while the 24-month overall survival rate was 55% (pembrolizumab) to 

43% (ipilimumab) [123, 124]. Moreover, pembrolizumab has shown clinical efficacy in advanced 

melanomas refractory to ipilimumab by increasing progression-free survival [125]. A clinical trial 
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comparing nivolumab (anti-PD-1) to ipilimumab in advanced melanoma also reported substantial 

improvements in overall survival and progression free survival rates with PD-1 therapy [126]. 

Moving forward with ICI 

Despite the remarkable clinical outcomes of ICI therapy, immune checkpoint blockade is still a 

relatively new concept and is undergoing extensive efforts for optimization. Key limitations being 

addressed include low objective response rates and primary and acquired resistance to treatment. 

Low objective response rates are presumably associated with primary resistance mechanisms. 

Achieving higher response rates will likely come from a better understanding of tumor biology 

and the elucidation of biomarkers that can identify patients that are more likely to respond to 

specific immunotherapeutics.  

Moreover, since CTLA-4 and PD-1 are non-redundant inhibitory mechanisms, combination 

therapy targeting both pathways can significantly increase objective response rates. This was 

shown in a phase II trial where nivolumab plus ipilimumab therapy displayed a 61% objective 

response rate compared to 11% with ipilimumab mono-therapy [127]. Dual immune checkpoint 

inhibition has shown great promise in increasing therapeutic efficacy and nivolumab plus 

ipilimumab combination has already gained approval for metastatic melanoma, renal cell 

carcinoma and microsatellite instability-high or mismatch repair deficient metastatic colorectal 

cancer (table 1). Notwithstanding, combined therapy also seems to increase the frequency of 

immune-related toxicities [128]. Thorough reviews on strategies and novel concepts for 

combination therapy can be found in [129, 130]. Additionally, alternative inhibitory pathways of 

the antitumor immune response are also being targeted for clinical development; for example, 

blockade of LAG-3, TIM-3, TIGIT, VISTA, and others have started early clinical trials; and are 

reviewed elsewhere [131].  

Bispecific antibodies (BsAbs) 

A conceptually different strategy to engage the immune system in tumor cell depletion consists in 

the use of bispecific antibodies (BsAbs), wherein one arm of the BsAb targets a tumor cell antigen 

while the other arm recruits and activates T cells, or other immune effector cells. Additionally, 

various BsAb formats have been designed for therapeutic approaches that do not involve direct 

immunomodulation; eg, cross-linking or inhibition of two different receptors [132, 133]. A 
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plethora of bispecific antibody formats have started clinical development, and have been reviewed 

by others [134-136]. Nonetheless, only two bispecific formats have obtained approval by 

established regulatory agencies for cancer therapy. The first case – catumaxomab – comprises a 

hybrid rat-mouse full-size mAb with specificity towards tumor-expressed EpCAM and to the CD3 

T cell co-receptor. Catumaxomab was approved by the EMA in 2009 for treatment of malignant 

ascites in EpCAM positive carcinomas [137]. Conversely, the other marketed BsAb – 

blinatumomab – comprises two scFv proteins connected by a peptide linker; a BsAb format called 

Bispecific T cell Engagers (BiTE). Blinatumomab binds to CD19 expressed on malignant B 

lymphocytes, while also engaging the CD3 co-receptor to recruit T cells. Blinatumomab was 

approved by the FDA in 2014 under the accelerated approval program, for use in precursor B-cell 

acute lymphoblastic leukemia [123]. 

Another flourishing strategy in cancer immunotherapy with bispecifics involves the recruitment 

and activation of Natural Killer (NK) cells. Analogous to BiTEs, Bispecific Killer cell Engagers 

(BiKEs) possess two scFv fragments; one directed towards a tumor antigen and another scFv that 

engages FcγRIIIa (CD16) on NK cells. Moreover, trispecific formats (TriKEs) have been created 

by incorporating an additional scFv fragment targeting another tumor antigen [138].; or 

alternatively containing IL-15 to induce NK cell expansion [139]. Several BiKEs and TriKEs are 

undergoing preclinical development [140, 141]. Other strategies to target NK cells for tumor 

eradication have been reviewed in [142]. 

Nanoparticle delivery vehicles to improve tumor delivery 

In cancer therapy, nanoparticle (NP) delivery systems offer the possibility to modify the 

pharmacokinetic profile of small molecule cytotoxins and increase tumor targeting as a means to 

improve therapeutic indices and safety profiles. Nanoparticle delivery systems are typically in the 

10-100 nm range, making them susceptible to accumulation in tumor tissues as a consequence of 

the EPR effect. The EPR refers to the enhanced accumulation of nanostructures in tumor tissue 

following extravasation through the endothelium that irrigates the neoplasm. The vasculature in 

these sites is formed rapidly due to an increased demand of oxygen and nutrients and secretion of 

vascular effectors, leaving large fenestrations or endothelial gaps that allow diffusion of 

nanoparticles (NPs) that are otherwise too large to penetrate through healthy capillaries [143-145]. 

Moreover, accumulation of NPs is further enhanced by a decrease in lymphatic drainage [143, 
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146]. Preferential accumulation due to the EPR effect is termed passive targeting and is an inherent 

property of nano-sized materials. Importantly, the contribution of the EPR effect in preclinical and 

clinical settings has been debated and it is known to depend on myriad factors relating to tumor 

characteristics, including localization, stage, vascular density, fibrotic tumor microenvironment, 

lymphatic drainage and vascular architecture [144, 147, 148]. Still, the EPR remains a fundamental 

principle behind the design and development of nanoparticle delivery strategies for solid tumors. 

Several nanoparticles have also been developed as imaging agents, however this section discusses 

only those formats intended for therapeutic purposes in oncology.  

Since the first reports of the EPR effect in 1986 [143], interest in the development of nanoparticle-

delivery platforms has increased substantially and has led to the approval of several NP 

formulations. At present, liposomal delivery systems comprise the vast majority of nanoparticle-

based therapeutics approved for clinical use in oncology and those undergoing clinical 

development [149]. Doxil (doxorubicin encapsulated in PEGylated liposomes) was the first nano-

carrier to be licensed in the US in 1995 for treatment of AIDS-related Kaposi’s sarcoma. The first 

approval of Doxil served as a benchmark for the validation of NP systems in oncology; and the 

formulation is currently also FDA approved in ovarian cancer and multiple myeloma [150]. 

Importantly, the approval granted for the aforementioned indications was based on superior safety 

profiles compared to established therapy; and it also demonstrated superior efficacy in Kaposi’s 

sarcoma [151-153]. Thereafter, ten other nanotherapeutics have entered the clinic (table 2). Except 

for Abraxane (albumin-bound paclitaxel) and NanoTherm (iron oxide nanoparticles), all other 

approved nanomedicines consist of liposomal chemotherapeutics [149, 154].  

Table 2. Approved nanoparticles in oncology 

Name NP carrier Targetin

g 

Payload Indications Approval 

date (FDA) 

Doxil/Caely

x [149]. 

Pegylated 

liposome 

Passive Doxorubicin • HIV associated 
Kaposi’s 
sarcoma 

• Ovarian cancer 
• Multiple 

myeloma 

1995 (FDA) 

1996 (EMA) 
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Daunoxome 

[171]. 

Non-

pegylated 

liposome 

Passive Daunorubicin • HIV associated 
Kaposi’s 
sarcoma 

 

1996 (FDA) 

Discontinue

d 

DepoCyt 

[172]. 

Non-

pegylated 

liposome 

Passive Cytarabine • Lymphomatous 
meningitis 

1999 (FDA) 

Discontinue

d 

Myocet 

[173]. 

Non-

pegylated 

liposome 

Passive Doxorubicin • Metastatic 
breast cancer 

2000 (EMA) 

Abraxane 

[174]. 

Albumin 

nanoparticl

e 

Passive Paclitaxel • Advanced non-
small-cell lung 
cancer 

• Metastatic 
breast cancer 

• Metastatic 
pancreatic 
adenocarcinom
a 

2005 (FDA) 

2008 (EMA) 

Oncaspar 

[175]. 

PEG protein 

conjugate 

Passive L-

Asparaginase 

• Acute 
Lymphoblastic 
Leukemia 

2006 (FDA) 

MEPACT 

[176]. 

Non-

pegylated 

liposome 

Passive Mifamurtide • Non-metastatic 
resectable 
osteosarcoma 

2009 (EMA) 

Nanotherm 

[177]. 

Iron oxide 

nanoparticl

e 

Passive Thermal 

ablation* 

• Glioblastoma 2010 (EMA) 

Marqibo 

[178]. 

Non-

pegylated 

liposome 

Passive Vincristine • Philadelphia 
chromosome-
negative acute 
lymphoblastic 
leukemia 

2012 (FDA) 

Onivyde 

[179]. 

Pegylated 

liposome 

Passive Irinotecan • Metastatic 
pancreatic 
adenocarcinom
a 

2015 (FDA) 
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Vyxeos 

[180]. 

Non-

pegylated 

liposome 

Passive Daonorubicin

/ 

cytarabine 

• Acute myeloid 
leukemia 

2017 (FDA) 

FDA, Food and Drug Administration; EMA, European Medicines Agency; HIV, human 

immunodeficiency virus. 

Subsequent advancements in nanoparticle synthesis and engineering have allowed for the 

development of multifunctional NP delivery platforms with expanded therapeutic capabilities. For 

instance, a highly attractive characteristic of nanoparticles is the possibility to functionalize their 

surface with multiple bioactive substances that can aid in tumor localization, treatment and 

diagnosis. A representative case is CYT-6091, a construct composed of PEGylated gold 

nanoparticles carrying tumor necrosis factor alpha (TNFα) on its surface that has shown promising 

results in a phase I clinical trial, wherein the maximum tolerated dose of nano-formulated TNFα 

exceeded that of native TNFα by 3-fold due to enhanced localization in tumors [155]. Furthermore, 

NPs can be functionalized with biomolecules that target the tumor stroma to induce changes in the 

extracellular matrix (ECM) and facilitate uptake. This strategy is conceptually appealing, and it is 

thought to hold great promise, yet it requires further understanding of the cross-talk between the 

multiple paracrine interactions that take place during the formation of the ECM [156, 157]. 

Additionally, the physicochemical properties of the NP format can be tailored to enable controlled 

release of a drug cargo upon exposure to tumor-specific or external stimuli. Examples of these NP 

vehicles include pH responsive polymeric micelles, temperature responsive polyN-

isopropylacrylamide nanoparticles, light responsive mesoporous silica nanoparticles and redox 

responsive copolymer-based micelles [91, 158-160].  

 Active-targeting to increase specificity 

Conceptually, the targeting capacity of nanoparticles can be further enhanced through the 

attachment of target-specific biomolecules, such as mAbs, antibody fragments, aptamers, affimers 

and peptides. In this modality, nanoparticles can initially accumulate in tumor tissue due to passive 

targeting and subsequently engage in high affinity interactions with tumoral targets (Figure 4) 

[161-163]. Most commonly, upregulated cell surface receptors (eg, HER2, EGFR, transferrin 

receptor, folate receptor) are targeted, wherein the multivalent presentation of targeting agent on 

the NP surface can cause receptor cross-linking and induce receptor-mediated endocytosis – an 
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advantageous feature for intracellular drug delivery [164].  Monoclonal antibodies play a pivotal 

role in this strategy due to their exquisite specificity; as well as to the existence of well-established 

techniques – primarily phage display – that allow for high-throughput development of mAbs to 

specific antigens. Additionally, the prevailing clinical success of monoclonal antibodies is 

favorable for regulatory approval. 

 

Figure 4. Harnessing the EPR effect to improve tumor delivery using nanoparticle carriers. 

Blood vessels that irrigate the tumor tissue are defective. The lack of pericytes and altered 

structural features make the vessels less stable and leakier. Larger fenestrations between the 
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endothelial cells allow nanoparticles to extravasate into the tumor. The fibrotic ECM lacks 

proper lymphatic drainage, therefore nanoparticles can accumulate in the tissue following 

extravasation (passive targeting). Nanoparticles can be functionalized with monoclonal 

antibodies, or other active targeting agents, to promote specific internalization and drug 

delivery into targeted cells (cancer cells or other cells in the tumor microenvironment) once 

they accumulate in the tumor through passive targeting. 

At present, a plethora of active-targeted nanoparticles have undergone preclinical development, 

however only a few have initiated clinical trials. A notable example is BIND-014, a docetaxel-

containing polymeric nanoparticle targeting the prostate-specific membrane antigen (PSMA) that 

has recently completed phase II clinical trials for various cancers, where it has demonstrated 

clinical efficacy and acceptable safety profiles [165]. Recently, paclitaxel solid lipid nanoparticles 

conjugated to various antibodies as targeting agents have demonstrated remarkable 

pharmacokinetic properties and efficacy in mouse models, and have started clinical development 

[166]. 

In its inception, active targeting was intended to aid tumor localization and retention in conjunction 

with passive targeting. Notwithstanding, experimental data has demonstrated that while 

engagement and internalization within cancer cells are significantly increased, tumor accumulation 

is only marginally improved [20, 163, 167]. An extensive analysis of in vivo data published from 

2005-2015 showed that passive targeting results in 0.6% (median) of the injected dose 

accumulating in tumor tissue, compared to 0.9% with active-targeted nanoparticles [147]. It is 

noteworthy to underscore that these data were obtained with several different nanoparticle formats 

administered in a wide variety of solid tumors. Still, it suggests that accumulation via passive 

targeting is essential for enhanced delivery of payloads through active-targeting. Consequently, 

successful clinical implementation of both passive and active-targeted nanoparticles will require a 

better understanding of the physiological factors that determine the extent of EPR accumulation in 

order to identify patients that can benefit from this approach [168]. Alternatively, therapeutic 

strategies to increase EPR-related accumulation can be implemented, such as administration of 

angiotensin-II receptor blockers to increase vessel perfusion, or sonoporation to promote vascular 

permeability [169, 170]. 
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Conclusion 

Improving tumor penetration and distribution upon systemic delivery are crucial requirements in 

mAb therapy to improve clinical outcomes and prevent the emergence of acquired resistance 

mechanisms. Preventing treatment failure due to intrinsic resistance will require a better 

understanding of cancer biology and the identification of novel biomarkers for a better selection 

of therapeutic agents and treatment regimens. The clinical pipeline of alternative mAb based 

approaches to enhance clinical efficacy has experienced a marked expansion in the last decade. 

The formats discussed in this review – ADC, immune-checkpoint inhibitors and nanoparticle-

delivery systems – are among key strategies with demonstrated clinical benefits in the treatment 

of solid tumors. Of note is the accelerated growth of the ICI class having obtained regulatory 

approval for 6 distinct antibodies since the year 2011 (first approval) and a remarkable broadening 

of clinical indications. Despite their clinical success, these therapeutics are based on relatively new 

technologies that are still undergoing extensive efforts to optimize therapeutic potential. Numerous 

ICI antibodies targeting alternative targets for immune inhibition (eg, LAG-3, TIM-3, TIGIT, 

VISTA, B7-H3) are in phase I/II clinical trials. Safety concerns inherent to the high potency and 

structural versatility of ADCs and nanoparticles have been prominent barriers in their 

implementation, but clinical validation of novel designs could bring about major breakthroughs in 

these fields in the coming years. 
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Abstract 

Nanoparticle carriers offer the possibility of enhanced delivery of therapeutic payloads in tumor 

tissues due to tumor-selective accumulation through the enhanced permeability and retention effect 

(EPR). Gold nanoparticles (AuNP), in particular, possess highly appealing features for 

development as nanomedicines, such as biocompatibility, tunable optical properties and a 

remarkable ease of surface functionalization. Taking advantage of the latter, several strategies have 

been designed to increase treatment specificity of gold nanocarriers by attaching monoclonal 

antibodies on the surface, as a way to promote selective interactions with the targeted cells—an 

approach referred to as active-targeting. Here, we describe the synthesis of spherical gold 

nanoparticles surface-functionalized with an anti-HER2 antibody-drug conjugate (ADC) as an 

active targeting agent that carries a cytotoxic payload. In addition, we enhanced the intracellular 

delivery properties of the carrier by attaching a cell penetrating peptide to the active-targeted 

nanoparticles. We demonstrate that the antibody retains high receptor-affinity after the structural 

modifications performed for drug-conjugation and nanoparticle attachment. Furthermore, we show 

that antibody attachment increases cellular uptake in HER2 amplified cell lines selectively, and 

incorporation of the cell penetrating peptide leads to a further increase in cellular internalization. 

Nanoparticle-bound antibody-drug conjugates retain high antimitotic potency, which could 

contribute to a higher therapeutic index in high EPR tumors. 

Introduction 

Most solid malignancies display a tumor microenvironment with increased interstitial fluid 

pressures (IFP) that significantly impairs tumor penetration of conventional anticancer agents 

following systemic delivery. This effect hinders movement of the therapeutic agent from the 

vascular lumen to the tumor tissue, requiring higher doses to achieve therapeutic efficacy [1, 2]. 

Consequently, the therapeutic index is reduced, and off-target side-effects compromise clinical 

outcomes. Moreover, inefficient localization in the target tissue can lead to tumor regions exposed 

to subtherapeutic doses of the drug, whereby cancer cells can undergo phenotypic alterations that 

render them resistant to the agent administered [3].  

In this context, nanoparticles (NPs) have emerged as drug delivery vehicles that can harness the 

preferential accumulation of nanosized materials in the tumor due to the well-described enhanced 
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permeability and retention (EPR) effect [4]. Several liposome-encapsulated cytotoxic drugs have 

received regulatory approval on the basis of superior therapeutic indices relative to the free drug 

[5]. A further attractive feature of nanoparticles is their functional versatility, as their design can 

be tailored to confer diverse physiological and physicochemical properties to broaden treatment 

modalities. Myriad distinct NP formats are undergoing preclinical development for various 

therapeutic and diagnostic applications, e.g., gene delivery, thermal ablation therapy, magnetic 

resonance imaging (MRI), photoacoustic imaging [6–9].  

Among the diverse range of inorganic NPs, gold nanoparticles (AuNP) have been widely appraised 

as attractive systems for therapeutic applications, e.g., drug delivery, photothermal therapy and 

radiosensitization [9, 10]. AuNPs are easy to synthesize with tunable shapes and sizes, and the 

strong gold-sulfur (Au-S) interaction allows for the modification of the nanoparticle surface with 

sulfhydryl containing linkers, through which functional groups can be incorporated to confer 

biological properties for therapeutic purposes [11]. An analysis of nanoparticle tumor delivery 

efficiency in in vivo models derived from published data from the year 2005 to 2015 showed that 

AuNPs had the highest median delivery efficiency among the analysed inorganic nanoparticle 

types (including iron oxide, silica, quantum dots and others) [12]. Moreover, a PEGylated AuNP 

format coated with TNF-α has already shown a promising safety profile and enhanced 

accumulation in various solid tumors in a phase I dose escalation trial, setting a clinical precedent 

for gold nanoparticles [13, 14].  

Adding to the inherent passive accumulation of NPs in solid tumors, the targeting capacity of a 

nanoparticle carrier can potentially be enhanced by the incorporation of an active targeting agent 

on the NP surface. Active targeting moieties—e.g., antibodies, peptides, aptamers, affimers—can 

engage in high-affinity specific interactions with biomolecules overexpressed in cancer subtypes 

to increase treatment specificity [15]. Within this concept, systemic delivery of the nanocarrier 

results in passive accumulation in the tumor microenvironment, where the subsequent interaction 

of the affixed targeting agent with cancer cells can induce receptor crosslinking, receptor-mediated 

endocytosis and intracellular cargo delivery [16]. 

In this work, we employed an anti-HER2 antibody, Trastuzumab (Tmab), as an active targeting 

agent on spherical gold nanoparticles. Tmab is a therapeutic monoclonal antibody that binds to the 

human epidermal growth factor receptor 2 (HER2) and is approved for the treatment of HER2-
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positive breast cancer and metastatic gastric cancer [17, 18]. Moreover, HER2 overexpression has 

been documented in esophageal [19], ovarian [20]. and endometrial cancer [21]. and has been 

identified as a negative prognostic factor in several of these malignancies [22–24]. Trastuzumab 

exerts its anticancer activity by binding to the extracellular domain of HER2 to prevent 

dimerization with other ErbB receptors, thereby inhibiting its key function in cell proliferation and 

migration. In addition, immune effector components can be engaged through the Fc region of the 

antibody to destroy cancer cells via antibody-dependent cellular cytotoxicity (ADCC), antibody-

dependent cellular phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC) [25, 26]. 

Monoclonal antibodies (mAbs) have become a cornerstone of cancer care since the first therapeutic 

mAb market approval in 1997 (Rituximab) by virtue of their enhanced treatment specificity. As of 

early 2019, more than 20 distinct mAbs are indicated for a wide array of solid malignancies, 

predominantly administered through systemic routes [27]. This notwithstanding, poor tumor 

penetration and distribution are prominent obstacles that compromise the therapeutic index of 

mAbs [28, 29]. To this end, enhancing drug accumulation in the tumor through the employment 

of enhanced delivery systems could provide major improvements in therapeutic safety and 

efficacy. 

Conventional designs of active-targeted nanoparticles for drug delivery typically consist of 

nanoparticles carrying a surface-incorporated targeting agent and a cytotoxic payload either 

encapsulated within the NP core or loaded onto the surface. In this work, we sought to employ a 

novel strategy, wherein a cytotoxic drug is conjugated to the antibody initially, and the resulting 

antibody-drug conjugate (ADC) is employed as a targeting agent-drug carrier on the nanoparticles, 

thereby broadening the functionality of the active-targeting agent. Herein, we describe the 

synthesis and physicochemical characterization of ADC-targeted spherical gold nanoparticles. The 

ADC was produced by chemical attachment of monomethyl auristatin E (MMAE) to Tmab 

through a cathepsin-cleavable valine-citrulline linker; and further reacted with a sulfhydryl-

containing linker for surface conjugation to the gold nanoparticles. We demonstrate that 

Trastuzumab can be chemically modified in this fashion while retaining high affinity towards its 

cognate receptor. Since the valine-citrulline linker must be internalized for payload release, we 

analysed the intracellular uptake of active-targeted AuNPs on various cancer cell lines. 
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Furthermore, we evaluated the effect of surface incorporation of a cell penetrating peptide to the 

active-targeted nanoparticle on intracellular uptake. 

Materials and Methods  

Materials 

Herceptin® (Trastuzumab) was a generous donation from Genentech (San Francisco, CA, USA). 

Thiol PEG NHS (NHS-PEG-SH) (5 kDa) linker (Cat. No. PG2-NSTH-5k) was purchased from 

Nanocs (Boston, MA, USA). The MC-Val-Cit-PAB-MMAE (vcMMAE) linker (Cat. No. 

BP23969) was obtained from Broadpharm (San Diego, CA, USA). The HIV-1 TAT protein (47-

57) (HIV-TAT or CPP) (Cat. No. H0292) was purchased from Sigma-Aldrich (Castle Hill, NSW, 

Australia). The Series S Sensor Chip CM5 (Cat. No. 29-1049-88), the amine coupling kit (Cat. 

No. BR-1000-50) and the anti-HIS capture kit (Cat. No. 28-9950-56) employed in the Biacore SPR 

instrument were purchased from GE Healthcare (Parramatta, NSW, Australia). The recombinant 

HIS-tagged soluble HER2 (Cat. No. SRP6405) was obtained from Sigma-Aldrich (Australia). 

Phosphate buffered saline (PBS) was purchased from Astral Scientific (Gymea, NSW, Australia). 

Amicon 3 kDa (Cat. No. Z740168) and 50 kDa (Cat. No. Z740177) cutoff centrifugal filter units 

were acquired from Sigma-Aldrich (Australia). Millex-GV syringe filters (0.22 µm, PVDF, Cat. 

No. SLGV033RS) were purchased from purchased from Sigma-Aldrich (Castle Hill, NSW, 

Australia). RPMI 1640 and DMEM (high glucose) media were obtained from Life Technologies 

(Mulgrave, VIC, Australia). All other chemicals and reagents were purchased from Sigma Aldrich 

(Australia).  

Synthesis of Spherical Citrate-Capped Gold Nanoparticles 

Spherical gold nanoparticles were synthesized by citrate reduction of gold chloride in aqueous 

solution as described by Turkevich [45], and revised by Frens [46]. All glassware employed in this 

procedure was soaked in aqua regia (3:1 HCl/HNO3 molar ratio) for 3 h prior to the reaction and 

rinsed with double distilled H2O. Briefly, 100 mL of a 254 µM HAuCl4 solution in double distilled 

H2O was heated to boiling under stirring. Once boiling, 2 mL or 1 mL of a 1% w/v (34 µM) sodium 

citrate solution was added to prepare 20 nm and 50 nm, respectively. Following citrate addition, 

the solution was boiled for 15 min, then cooled to room temperature under stirring for 2 h. 

Unreacted citrate was removed by decanting after centrifugation at 10,000 g or 3,500 g for 30 min 
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to pellet the 20 nm and 50 nm nanoparticles. The synthesized gold nanoparticles were resuspended 

in double distilled water. Nanoparticle size, size distribution and morphology were assessed 

through transmission DLS (hydrodynamic size) electron microscopy (size, size distribution and 

morphology) and shifts in the surface plasmon resonance (SPR) absorption band. 

Tmab PEGylation (Tmab-PEG-SH) 

Trastuzumab 21 mg/mL in formulation buffer (L-histidine 4.64 mM, α,α-Trehalose 52.86 mM, 

polysorbate 20 concentration 73.31 µM, HCl 2.58 mM) was buffer exchanged to sodium 

bicarbonate (NaHCO3) 0.1 M pH 8.0 using 50 kDa cutoff centrifugal filters to a final antibody 

concentration of 10 mg/mL (6.87 × 10−5 M). The extinction coefficient ε280 = 2.25 × 10+5 M−1 

cm−1 was used for all antibody concentration determinations. Buffer exchange was carried out 

thoroughly to reduce to a minimum the concentration of L-histidine in the formulation buffer, as 

the primary amine in L-histidine will react readily with the NHS group in the linker. A 5 mg/mL 

(1 mM) NHS-PEG-SH (5 kDa) linker stock solution was prepared in NaHCO3 0.1 M pH 8.0 and 

immediately added to Trastuzumab in 2:1, 5:1, 10:1, 20:1 and 25:1 NHS-linker/Tmab ratios and 

incubated at 4 °C overnight under stirring. The NHS-linker stock solution in NaHCO3 pH 8.0 was 

prepared immediately before adding to the Trastuzumab sample, since the NHS ester can undergo 

rapid hydrolysis at basic pH. Following PEGylation, unreacted NHS-PEG-SH linker was removed 

by centrifugation through 50 kDa cutoff filters and the PEGylated Trastuzumab (Tmab-PEG-SH) 

was buffer exchanged to phosphate buffered saline (PBS) 0.01 M pH 7.4 with 1 mM EDTA to a 

final antibody concentration of 5 mg/mL. EDTA 1 mM was added to inhibit disulfide bond 

formation between the free SH groups in the linker [47, 48]. 

HIV-TAT Cell Penetrating Peptide (CPP) PEGylation (CPP-PEG-SH) 

HIV-TAT (47–57) peptide was dissolved in NaHCO3 0.1 M pH 8.0 to a 1 mg/mL (641 µM) 

concentration. A 10 mg/mL (2 mM) NHS-PEG-SH (5 kDa) solution in NaHCO3 0.1 M pH 8.0 

was added to the HIV-TAT peptide in a 4:1 NHS-linker/CPP molar ratio and incubated overnight 

at 4 °C under stirring. Unreacted CPP was removed by centrifugation through 3 kDa cutoff filters 

and the PEGylated CPP (CPP-PEG-SH) was buffer exchanged to phosphate buffered saline 0.01 

M pH 7.4 with 1 mM EDTA. 
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Tmab-vcMMAE Conjugate Synthesis 

Antibody Partial Reduction 

Trastuzumab in formulation buffer was buffer exchanged to PBS 0.01 M with 10 mM EDTA in a 

final concentration of 5 mg/mL (34 uM). A freshly prepared 10 mM stock solution of dithiothreitol 

(DTT) in PBS 0.01 M EDTA 1 mM was added to the antibody in a 3:1 DTT/Tmab ratio and the 

reaction was incubated at 37 °C for 90 min under stirring. DTT was then removed by buffer 

exchanging the partially reduced Tmab with 50 kDa cutoff centrifugal filters to PBS 0.01 M 

containing 10 mM EDTA to a 10 mg/mL (34 µM) concentration. After partial reduction, the 

integrity of the full-size IgG molecule was confirmed by SE-HPLC. In addition, free sulfhydryl 

(SH) groups per antibody were quantified by reaction with DTNB (5, 5’-dithiobis(2-nitrobenzoic 

acid)) and determination of the absorbance at 412 nm for free SH concentration. The final 

flowthrough of the buffer exchange prior to the DTNB reaction was used as a blank to subtract the 

potential contribution of residual DTT in the solution. The extinction coefficient ε412 = 1.42 × 

10+5 M−1 cm−1 for the TNB2− reaction product was employed for sulfhydryl quantification.  

Conjugate Synthesis 

vcMMAE was dissolved in DMSO at a 1.26 mM concentration and added to a chilled 10 mg/mL 

partially reduced Tmab solution in a 4.6:1 vcMMAE/Tmab ratio. The reaction mixture was 

incubated at 4 °C with stirring for 1 h. A 20-fold molar excess of cysteine—relative to maleimide—

was added to quench the reaction. Unreacted vcMMAE and cysteine were removed by 

centrifugation through 50 kDa cutoff centrifugal filters and buffer exchanged to PBS 0.01 M pH 

7.4 for storage, or NaHCO3 0.1 M pH 8.0 for subsequent PEGylation. The average drug-antibody 

ratio (DAR) was calculated based on absorbance values at 248 nm and 280 nm as has been 

described previously [49]. The following formula was employed: 

𝐷𝐷𝐷𝐷𝐷𝐷 =  
𝜀𝜀248𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 −  𝐹𝐹𝐹𝐹280𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝐹𝐹𝐹𝐹280𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 −  𝜀𝜀248𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  

F=A248/A280 and the extinction coefficients utilized are listed in Table 4. 

Table 1. Extinction coefficients of Trastuzumab and monomethyl auristatin E (MMAE) employed 

for the calculation of drug-to-antibody ratio (DAR) based on UV-Vis spectroscopy 
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Sample 248 nm 280 nm 

Trastuzumab 7.75 × 10+4 2.25 × 10+5 

MMAE 1.59 × 10+4 1.50 × 10+3 

 

PEGylation of Tmab-vcMMAE (ADC-PEG-SH) was achieved following the same procedure as 

for the unconjugated antibody. 

Intact Mass Analysis 

Trastuzumab and Tmab-vcMMAE were concentrated using 50 kDa cutoff centrifugal filters and 

buffer exchanged to 10% acetonitrile with 0.1% formic acid. The antibody samples were analysed 

through direct injection into a Triple TOF 6600 mass spectrometer (Sciex, Framingham, MA, 

USA). Infusion was performed at 50 µL/min. The mass range for detection was 100–5,000 m/z. 

Deconvolution of the raw data was achieved using SCIEX Peakview 2.2 (Concord, ON, Canada) 

and Bruker BioTools software packages (Billerica, MA, USA). 

Binding Kinetics to Recombinant HER2 through Surface Plasmon Resonance 

The binding kinetics of derivatized Trastuzumab (Tmab-PEG-SH, Tmab-vcMMAE and ADC-

PEG-SH) were tested against a recombinant HER-2 protein using surface plasmon resonance 

(SPR) in a Biacore T200 instrument (GE Healthcare, Parramatta, NSW, Australia). Briefly, an 

anti-HIS antibody was bound to a CM5 sensor chip through amine coupling chemistry. 

Subsequently, a recombinant HIS-tagged HER-2 (4 nM) was bound to the anti-HIS antibody on 

the sensor chip at a 5 µL/min flow rate for 5 min. 2-fold serial dilutions of the Trastuzumab variants 

ranging from 8–0.5 nM in HBS-T running buffer (10 mM HEPES, 150 mM NaCl, 0.05% (v/v) 

Tween 20, pH 7.4) were assayed at 25 °C as single cycle kinetic titrations. The analytes were 

applied to the sensor surface at 20 µL/min for 2 min, followed by 60 min dissociation times. 

Analyses of the sensorgrams were performed by fitting a Langmuir 1:1 binding model to derive 

the association constant (Ka), the dissociation constant (Kd) and the binding affinity (KD—

calculated as Ka/Kd). The analytes were run in duplicate to calculate average values and standard 

deviation. A goodness of fit (χ2) value within 5% of the maximum response level (Rmax) was 

used as acceptance criteria. 



216 
 

Gold Nanoparticle Surface Functionalization 

Trastuzumab-coated (Tmab-PEG-AuNP), OH-PEG coated (OH-PEG-AuNP) and CPP-coated 

(CPP-PEG-AuNP) gold nanoparticles were produced by incubating citrate-capped gold 

nanoparticles (OD = 1) with a 1 × 10+5 molar excess of SH-PEG-Tmab, SH-PEG-OH or SH-PEG-

CPP in NaHCO3 0.01 M pH for 2 h at room temperature while stirring. The unconjugated reagents 

were removed by pelleting the nanoparticles at 3,500 g for 30 min and removing the supernatant. 

The conjugated nanoparticles were centrifuged four times and resuspended in PBS 0.01 M pH 7.4 

for storage at 4 °C. ADC-PEG-AuNP were produced by incubating the nanoparticles with ADC-

PEG-SH following the same procedure. CPP+Tmab-PEG-AuNP were obtained by incubation with 

a 1 × 10+5 molar excess of CPP-PEG-SH for 5 min followed by the addition of a 1 × 10+5 molar 

excess of Tmab-PEG-SH, and further incubation under stirring for 2 h. 

UV-Vis Spectroscopy 

UV-Vis absorption spectra were obtained over a wavelength range of 800–200 nm for gold 

nanoparticles or 400–200 nm for protein samples, using a Shimadzu 2600 UV-Vis 

spectrophotometer (Shimadzu, Japan). AuNP samples in RPMI media were corrected by blank 

subtraction of the RPMI. 

Size-Exclusion High-Performance Liquid Chromatography (SE-HPLC) 

Size-exclusion chromatograms were obtained with a Zorbax GF-250 column connected to an 

Agilent 1200 Liquid Chromatography system (Agilent Technologies, Santa Clara, CA, USA), 

running potassium phosphate buffer 150 mM pH 6.5 as a mobile phase at a 0.5 mL/min flow rate. 

Peak absorption was detected at 280 nm with an in-line UV signal detector (Agilent Technologies, 

Santa Clara, CA, USA). 

DLS and Zeta Potential Measurements 

DLS and zeta potential measurements of the functionalized gold nanoparticles were conducted 

with a Malvern Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK) with a 633 nm 

Helium Neon Laser and an avalanche photo diode (APD) detector. The measurements were 

conducted in triplicate and the values are reported as mean Z-average ± standard deviation. For 

zeta potential measurements, the functionalized nanoparticles suspended in PBS 1X (phosphate 
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buffer 0.01 M, NaCl 0.137 M, KCl 0.0027 M, pH 7.4) were diluted 1:10 in deionized water. Cit-

AuNPs were directly resuspended in PBS 0.1X. The zeta potential was derived from the Henry 

equation using an f(Ka) of 1.5. 

Cellular Uptake Quantification through Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) 

The SKBR-3 cell line was provided by Dr. Thomas Grewal. The DLD-1 cell line was purchased 

from the American Type Culture Collection (ATCC). The MDA-MB-231 and MCF-7 cell lines 

were obtained from Dr. Fanfan Zhou. SKOV-3 cells were provided by Dr. Pegah Varamini. 

To compare the cellular uptake of gold nanoparticles coated with OH-PEG and Tmab-PEG, 

SKBR-3 cells were seeded at density of 1 × 10+5 cells/well in 24-well plates in RPMI media 

containing 10% FBS. Following incubation at 37 °C for 48 h, the cell media was removed, the 

cells were washed twice with PBS, and fresh RPMI media (10% FBS) containing 50 µg/mL 20 

nm and 50 nm gold nanoparticles (coated with OH-PEG or Tmab-PEG) was added, using 6 wells 

per AuNP sample. The cells were further incubated for 24 h. The AuNP containing media was 

removed and the cell monolayer washed 4 times with PBS. The cells were detached from the plate 

using 0.05% trypsin and collected in 1.5 mL centrifuge tubes. Trypsin was removed by pelleting 

the cells at 300 g for 5 min and the cells were washed twice more with PBS. The cell pellet was 

digested with 200 µL concentrated HNO3 (15.9 M) overnight at room temperature. 800 µL 

concentrated HCl (12.1 M) was then added to dissolve the gold nanoparticles. A 1:4 dilution in 

Milli-Q water was performed for quantification of gold content through ICP-MS. ICP-MS 

measurements were carried out with a Perkin Elmer Nexion 300× ICP-MS instrument (Perkin-

Elmer, Waltham, MA, USA), calibrated with 5, 10 and 20 parts per billion (ppb) gold standard 

solutions.  

To compare cellular uptake in SKBR-3, DLD-1, MDA-MB-231 and MCF-7 cells, the uptake 

assays were carried out following the same procedure as described above albeit with the following 

modifications: (1) 25 µg/mL AuNP concentrations were used, (2) DLD-1, MDA-MB-231 and 

MCF-7 cells were seeded at 3 × 10+4 cells/well, (3) MDA-MB-231 and MCF-7 cell lines were 

cultured in DMEM media containing 10% FBS, (4) each nanoparticle sample was run in triplicate. 
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The concentration of the gold nanoparticles was determined based on their absorbance at 450 nm 

using ε450 = 5.41 × 10+8 M−1 cm−1 and ε450 = 9.92 × 10+9 M−1 cm−1 for 20 nm and 50 nm, 

respectively, according to previous determinations [32]. ICP-MS quantification of gold content in 

the AuNP suspensions was utilized to corroborate that the extinction coefficients used in this 

method provide appropriate estimations of gold concentrations. The nanoparticles in cell culture 

medium were filter sterilized through 0.22 µM filters prior to addition to the cells. 

Cellular Uptake Evaluation by Transmission Electron Microscopy (TEM) 

SKBR-3 cells were seeded at a density of 1 × 10+5 cells/well on collagen-coated Thermanox plastic 

coverslips placed inside each well (24-well plates) and incubated at 37 °C for 48 h in RPMI media 

containing 10% FBS. Fresh RPMI containing 50 ug/mL 50 nm OH-PEG-AuNP or Tmab-PEG-

AuNP was added to the wells and further incubated at 37 °C for 24 h. The wells were washed 

thrice with PBS. The cells were fixed with 2.5% glutaraldehyde in 0.1 M phosphate buffer pH 7.4. 

The cell monolayers were subsequently fixed with osmium tetroxide 1% (w/v) in phosphate buffer 

0.1 M pH 7.4, then embedded into an epon resin. The monolayers were microtomed into 70 nm 

sections and stained with uranyl acetate 2% and Reynold’s lead citrate. TEM images were obtained 

with a JEOL JEM-1400 (Tokyo, Japan) microscope with an accelerating voltage of 120 kV.  

Cell Cytotoxicity Evaluation 

SKBR-3 and SKOV-3 cells were seeded at 5 × 10+3 and 3 × 10+3 cells/well on 96-well plates and 

incubated at 37 °C for 24 h in RPMI media containing 10% FBS. Fresh RPMI media containing 

free MMAE, ADC, ADC-PEG-AuNP, Trastuzumab or OH-PEG-AuNP were added to the wells 

at the corresponding concentrations in triplicates. RPMI media was replenished for negative 

control samples. Images (10x magnification) of four different regions per well were acquired at 2-

h intervals for 72 h after addition of the antimitotic or control sample using an Incucyte® ZOOM 

Live-cell Analysis System (Essen BioScience, Ann Arbor, MI, USA). Cell confluence was 

analysed with the Incucyte® ZOOM integrated analysis software (v2016A) to generate cell growth 

curves over time. Growth rate inhibition metrics were employed to assess the antimitotic effect of 

the samples. Growth rate inhibition metrics have been developed recently to provide more robust 

and biologically relevant drug response parameters [50]. GR values were calculated as: 

𝐺𝐺𝐺𝐺(𝑑𝑑) = 2
𝑙𝑙𝑙𝑙𝑙𝑙2�

𝑥𝑥(𝑑𝑑)𝑓𝑓
𝑥𝑥(𝑑𝑑)0

�/𝑙𝑙𝑙𝑙𝑙𝑙2�
𝑥𝑥(𝑐𝑐)𝑓𝑓
𝑥𝑥(𝑐𝑐)0

�
− 1 
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Where 𝑥𝑥(𝑑𝑑)0 and 𝑥𝑥(𝑑𝑑)𝑓𝑓 are the confluence values of cells treated with a cytotoxic agent at time t 

= 0 h and t = 72 h, respectively. 𝑥𝑥(𝑐𝑐)0 and 𝑥𝑥(𝑐𝑐)𝑓𝑓 are confluence values of control wells at t = 0 h 

and t = 72 h. 

GR values were plotted against treatment concentration and the data was fitted to a four-parameter 

dose-response curve. GR50 was obtained by interpolating the treatment concentration at which 

GR = 0.5. 

Statistical Analysis 

Gold uptake quantification was analysed with a two-tailed, unpaired Student t-test. Values are 

denoted as mean ± standard deviation, and p < 0.05 was established as statistical significance. 

Results 

Nanoparticle Design 

Figure 1 displays an outline of the nanoparticle design and conjugation strategy. Attachment of 

the bioactive moieties—anti-HER2 mAb and HIV-TAT cell penetrating peptide (CPP)—to the 

gold surface was achieved through the covalent thiol-gold interaction using a bifunctional 5 kDa 

poly ethylene glycol (PEG) linker with a thiol (SH) and an N-hydroxysuccinimide (NHS) ester 

end groups (NHS-PEG-SH). The NHS group reacts with ε-amines in lysine residues (and with α-

amines present at the N-terminals to a lesser extent) under slightly alkaline conditions to produce 

stable amide bonds with the protein or peptide [30]. The 5 kDa PEG linker was employed to 

increase exposure of the functional groups and prevent non-specific interactions between the 

bioactive groups and the gold surface. Furthermore, PEGylation of gold nanoparticles has proven 

to be highly beneficial in increasing circulation half-life by preventing adhesion of serum proteins 

that facilitate uptake by the reticuloendothelial system (RES)—an effect that drastically decreases 

the amount of nanoparticles that can eventually reach the tumor site [31].  

Trastuzumab (anti-HER2 mAb) was employed as an active targeting agent to confer specificity 

towards HER2 overexpressing cancer cell lines. To enhance the anticancer potency of the 

antibody, MMAE was attached to Trastuzumab (Tmab) through a valine-citrulline dipeptide 

cleavable linker (vcMMAE) to produce Tmab-vcMMAE (Figure 1). The valine-citrulline moiety 

is cleaved by the lysosomal protease cathepsin B; thus, MMAE release occurs primarily following 
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endocytosis and subsequent localization into endosomes or lysosomes. The HIV-TAT cell 

penetrating peptide was further added onto the surface via the same NHS-PEG-SH linker to 

increase cellular uptake for intracellular release of the drug cargo (Figure 2B, C). 

 

Figure 1. Molecular structures of the bioactive agents utilized for gold nanoparticle (AuNP) 

surface functionalization. (A) Valine-citrulline momomethyl auristatin E (vcMMAE) linker 

for antibody-drug conjugate (ADC) construction. (B) Human immunodeficiency virus twin-

arginine translocation (HIV-1 TAT 47–57) protein. 
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Figure 2. Schematic outline of the design and synthesis of ADC-coated gold nanoparticles 

with enhanced cell penetrating properties. (A) ADC synthesis. (B) Trastuzumab and CPP 

PEGylation for AuNP attachment. (C) Conjugation of bioactive agents onto the surface of 

AuNPs. 

Antibody-Drug Conjugate (Tmab-vcMMAE) Synthesis 

MMAE was conjugated to free sulfhydryl groups in Trastuzumab via reaction with the maleimide 

group in the vcMMAE linker (Figure 2A). To enable protein attachment, Trastuzumab was 

partially reduced by incubation with dithiothreitol (DTT) at 37 °C in a 3:1 DTT:Tmab molar ratio. 

Partial reduction produces cleavage of the inter-heavy chain disulfide bonds while preserving non-

covalent inter-heavy chain (HC) and heavy-light chain (LC) interactions to conserve full IgG 

structure.  

A colorimetric reaction with 5, 5′-Dithiobis(2-nitrobenzoic acid) (DTNB) was performed to 

confirm the presence of free SH groups following partial reduction. DTNB reacts with SH in a 1:1 
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molar ratio to produce 2-nitro-5-thiobenzoic acid (TNB2−). Absorption at 412 nm (λ max of 

TNB2−) can be utilized to calculate the amount of free SH groups per antibody monomer (Figure 

S1A).  

After confirmation and quantification of the presence of free SH groups, the intact structure (no 

chain dissociation) was confirmed through size exclusion–high performance liquid 

chromatography (SE-HPLC), whereby the elution time of the reduced antibody shifted by 0.0128 

min but did not display peaks at longer elution times indicative of chain dissociation (Figure S1B).  

The drug-linker (vcMMAE) was then attached to free SH groups in the partially reduced Tmab as 

described in the methods section. Successful attachment of vcMMAE was confirmed through 

intact protein mass spectrometry analysis (Figure 3). The deconvoluted mass spectrum of the ADC 

displayed up to 3 vcMMAE attachments per antibody heavy chain in the G0F or G1F glycoforms 

(Figure 3A). Light chain analysis (Figure 3B) showcased a single attachment per LC monomer, 

consistent with a single free SH in LC obtained from partial reduction of the interchain disulfide 

bonds. 
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Figure 3. Protein intact mass analysis of Tmab-vcMMAE. (A) Deconvoluted spectrum of 

Tmab-vcMMAE heavy chain. (B) Deconvoluted spectrum of Tmab-vcMMAE light chain. 
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Figure 4. UV-Vis spectra of unmodified Trastuzumab, Tmab-vcMMAE (ADC) and 

MMAE. The contribution of MMAE to the absorption spectrum of the antibody-drug 

conjugate enables an estimation of the DAR based on the distinct A280/A248 ratios obtained 

with the unmodified antibody and the ADC. 

An average drug-to-antibody ratio (DAR) of 2.91 was obtained from analysis of the UV-Vis 

spectrum of the ADC as described in the methods section (Figure 4). 
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Figure 5. SE-HPLC chromatograms of PEGylated Trastuzumab variants obtained by 

employing varying ratios of PEG:Tmab ratios. Inset shows the zoomed region displaying 

small shifts in elution time. 

Antibody and CPP PEGylation 

Structural Characterization 

Trastuzumab and HIV-TAT were PEGylated via lysine conjugation chemistry (Figure 1). 

Antibody PEGylation was confirmed through SE-HPLC (Figure 5). The SE-HPLC 

chromatograms of the PEGylated Trastuzumab show an increasing shift towards earlier elution 

times as the PEG-linker/tmab ratio increases (Figure 5). Resolving the exact number of PEG 

polymers attached per antibody molecule through SE-HPLC separation and other standard protein 

characterization techniques is challenging, given that the expected molecular weight (MW) 

increment per individual attachment corresponds to less than 4% of the MW of unmodified 

Trastuzumab, namely 5 kDa increments to the ~148 kDa expected MW of the antibody. Moreover, 

PEG molecules display heterogeneity in the number of ethylene glycol units—albeit with only 

small differences in MW—adding to the ensuing heterogeneity. Nonetheless, detailed 

characterization and homogeneity are not crucial for subsequent use as targeting agents, as long as 

the bulk of the protein monomers have been modified and functionality is conserved. A single 
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Trastuzumab monomer possesses 88 lysine residues and 4 amino-terminal groups available for 

reaction with the NHS group. Hence, reaction with a large number of linkers can potentially impair 

receptor binding. Consequently, conservation of the functionality of the PEGylated derivative was 

assessed prior to subsequent surface functionalization of the nanoparticles. 

Binding Kinetics of Functionalized Trastuzumab  

The chemically modified Trastuzumab variants (Tmab-PEG-SH, ADC and ADC-PEG-SH) were 

tested for their capacity to retain the binding affinity and binding kinetics to a recombinant HER2 

protein after functionalization through surface plasmon resonance (SPR) single cycle kinetic 

analysis Figure S5).  

The binding kinetics to the HER2 receptor were not significantly altered under the assay 

conditions. The affinity constant (KD) of the PEGylated antibodies, ranging from 5.46–6.91 pM, 

showed only minor differences compared to the mean KD of unmodified Trastuzumab—6.07 pM 

(Table 1). Kinetic constants for the antibody drug conjugate were also highly similar to the 

unmodified Trastuzumab. The PEGylated ADC, on the other hand, recorded a slight increase in 

binding rate constant (Ka) accompanied by a 32-fold increase in the dissociation rate constant 

(Kd), for a net 14-fold decrease KD.  

The varying molar ratios of PEG-linker utilized for derivatization were deemed appropriate for 

subsequent attachment to the surface of gold nanoparticles, as the modified antibody did not 

display significant alterations in binding affinity to the cognate receptor. Henceforth, the highest 

molar excess (25:1 PEG-mAb ratio) for reaction was employed in order to maximize Trastuzumab 

attachment to AuNPs. PEGylation of Tmab-vcMMAE caused a significant decrease in KD; 

however, the affinity constant remains in the picomolar range, thus it is still expected to exert 

active targeting capacity. 

Table 2. Kinetics and affinity analysis of functionalized Trastuzumab variants. 

Trastuzumab Variant Ka (× 10+6) M−1·s−1 Kd (× 10+5) s−1 KD (pM) 

Tmab 3.24 ± 0.15 1.98 ± 0.50 6.07 ± 1.27 

Tmab-PEG-SH 2X 3.53 ± 0.15 2.47 ± 0.24 6.83 ± 0.68 



227 
 

Tmab-PEG-SH 5X 2.86 ± 0.03 1.97 ± 0.20 6.91 ± 0.78 

Tmab-PEG-SH 10X 2.87 ± 0.11 1.98 ± 0.14 6.89 ± 0.21 

Tmab-PEG-SH 25X 2.05 ± 0.03 1.12 ± 0.11 5.46 ± 0.44 

ADC 2.25 ± 0.01 1.58 ± 0.09 7.05 ± 0.41 

ADC-PEG-SH 7.45 ± 0.07 61.80 ± 0.05 85.01 ± 10.92 

 

Gold Nanoparticle Surface Functionalization 

The surface of 50 nm citrate-capped gold nanoparticles (Cit-AuNP) was functionalized with OH-

PEG-SH (OH-PEG-AuNP), Tmab-PEG-SH (Tmab-PEG-AuNP), CPP-PEG-SH (CPP-PEG-

AuNP), or a combination of CPP-PEG-SH and Tmab-PEG-SH (CPP+Tmab-PEG-AuNP) through 

a sequential addition of the bioactive agents. 

Transmission electron micrograph (TEM) analysis of the synthesized Cit-AuNPs displayed a mean 

diameter of 48.29 ± 5.58 nm showing a narrow size distribution and uniform spherical morphology 

(Table 2). The mean hydrodynamic diameter obtained by DLS was 60.62 ± 0.19 nm (Z-average) 

with a polydispersity index (PDI) of 0.29. The SPR absorption band of the AuNPs had an 

absorption maximum (λ max) at 530.5 nm, consistent with the expected λ max for ~50 nm gold 

nanoparticles according to previously reported determinations of SPR bands of spherical AuNPs 

[32]. Upon surface functionalization, the λ max shifted towards longer wavelengths (red-shift)—

a well-described spectral shift caused by an increase in the local refractive index on the NP surface. 

In increasing order, the λ max shifts were +1.9 nm for OH-PEG-AuNPs, +2.7 nm for CPP-PEG-

AuNP, +3.3 nm for CPP+Tmab-PEG-AuNPs and +3.7 for Tmab-PEG-AuNPs. 

The change in SPR absorption maximum was accompanied by an increase in hydrodynamic 

diameter (Table 2), where Tmab-PEG functionalization showed the highest increment (87.35 ± 

0.41 nm). The PDIs of all surface-functionalized samples decreased relative to Cit-AuNP, 

indicative of enhanced colloidal stability and a consequent reduction of nanoparticle aggregation. 

Surface functionalization caused marked alterations in the zeta potential (ζ) of the colloidal 

dispersions (Table 2). Citrate-capped AuNPs displayed a mean ζ of -34.60 ± 0.91 mV, consistent 

with a negatively charged surface due to the negatively charged OH- groups of the citrate moiety. 
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Conjugation with the PEGylated-CPP yielded a mean ζ of +6.17 ± 071 mV, causing a charge 

reversal attributable to the abundant positively charged arginine residues in HIV-TAT. The 

combination of cell penetrating peptide and Tmab on the AuNP surface (CPP+Tmab-PEG-AuNP) 

also had a slightly positively charged zeta potential (+1.5 ± 0.46 mV). 

Table 3. Size (Z-average), zeta potential (ζ) and absorption maximum (λ max) of surface-

functionalized gold nanoparticles. 

NP Z-ave (nm) PDI  ζ (mV) λ max (nm) TEM (nm) 

Cit-AuNP 60.62 ± 0.19 0.29 −34.60 ± 0.91 530.5 48.29 ± 5.58 

OH-PEG-AuNP 86.61 ± 0.12 0.17 −14.37 ± 0.12 532.4  

Tmab-PEG-AuNP 87.35 ± 0.41 0.17 −1.10 ± 0.46 534.2  

CPP+Tmab-PEG-AuNP 83.42 ± 2.14 0.20 1.5 ± 0.46 533.8  

CPP-PEG-AuNP 81.22 ± 0.39 0.17 6.17 ± 0.71 533.2  

ADC-PEG-AuNP 85.45 ± 1.34 0.19 −2.3 ± 0.37 534.1  

NP: nanoparticle format, PDI: polydispersity index, TEM: transmission electron 

microscope. 

Cellular Uptake in Various Breast Cancer Cell Lines 

Active Targeting in HER2-Positive SBKR-3 Cells 

To evaluate the active targeting capacity of Trastuzumab-conjugated gold nanoparticles (Tmab-

PEG-AuNPs), SKBR-3 cells (HER-2 positive) were incubated with 20 nm and 50 nm AuNPs 

coated with Tmab-PEG-SH or OH-PEG-SH. All reported values for gold uptake were obtained 

from ICP-MS quantification, as described in the methods section. Mean gold nanoparticle uptake 

per cell was significantly higher for 20 nm Tmab-PEG-AuNP (t (10) = 6.61, p > 0.001) and 50 nm 

Tmab-PEG-AuNPs (t (10) = 6.96, p > 0.001) compared to the OH-PEG functionalized AuNPs 

counterparts (Figure 6A). Qualitative assessment of cellular internalization through TEM 

microscopy showed localization into vesicular structures for both nanoparticles formats (Figure 

6B, C).  
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Trastuzumab coated AuNPs did not display enhanced uptake in two other breast cancer cell lines 

(MCF-7 and MDA-MB-231) that are not reported to upregulate HER-2 expression (Figure 7) [33]. 

Uptake into DLD-1 cells (colorectal cancer HER-2 negative cell lines) showed a small increase in 

mean uptake per cell with no statistical significance. ADC conjugated gold nanoparticles were not 

employed for cellular uptake assays as the high potency of the drug can cause significant cell death 

at the concentrations used; thus, evaluation of cellular uptake is not comparable to the other 

formats. 
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Figure 6. Evaluation of the active targeting capacity of Trastuzumab-functionalized gold 

nanoparticles. (A) ICP-MS quantification of OH-PEG-AuNP and Tmab-PEG-AuNP uptake 

into SKBR-3 cells after 24 h incubation. Uptake data are reported as means ± SD. *** p < 

0.001 (Student’s t-test). (B) TEM micrographs of OH-PEG-AuNPs internalized into SKBR-

3 cells. Scale bar 200 nm (C) TEM micrographs of Tmab-PEG-AuNPs internalized into 

SKBR-3 cells. Scale bar: 500 nm. 
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Figure 7. Active targeting of Trastuzumab functionalized gold nanoparticles in various 

cancer cell lines. Uptake data are reported as means ± SD. * p < 0.05 (Student’s t-test). 

Differences between OH-PEG and Tmab-PEG functionalised gold nanoparticle uptake in 

DLD-1 and MCF-7 cell lines were not significant. 

CPP-Driven Enhanced Internalization 

To assess the effect on cell internalization using the HIV-TAT cell penetrating peptide as a coating 

functional group on the surface of the nanoparticles, 4 different cancer cell lines (SKBR-3, DLD-

1, MDA-MB-231 and MCF-7) were treated with 25 µg/mL 50 nm gold nanoparticles 

functionalized with OH-PEG-SH, Tmab-PEG-SH, CPP-PEG-SH, or a combination of Tmab-PEG-

SH and CPP-PEG-SH (CPP+Tmab-PEG-AuNP).  

A significant increase in uptake, relative to OH-PEG-AuNP, obtained by attachment of the anti-

HER2 antibody (Tmab-PEG-AuNP) was recorded for the SKBR-3 cell line (t (4) = 2.22, p > 0.05) 

only (Figure 7). In the same SKBR-3 cell line, AuNP functionalized with the cell penetrating 

peptide (CPP-PEG-AuNPs) showed approximately 1000-fold increase compared to the Tmab-
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PEG-AuNP (Figure 8). Similarly, CPP-PEG-AuNPs displayed a high increase in cell uptake 

relative to OH-PEG-Tmab in all cell lines tested (Figure 8). CPP+Tmab-PEG-AuNP also recorded 

markedly higher uptake across all cell lines compared to OH-PEG-AuNP. CPP-PEG-AuNP 

displayed significantly higher internalization than the combination of CPP+Tmab-PEG-AuNP in 

SKBR-3 and MCF-7 cells, and no statistical difference was observed between these two formats 

in the DLD-1 and MDA-MB-231 cell lines. 

 

Figure 8. Cellular uptake of cell penetrating peptide (CPP) functionalized gold nanoparticles 

into various cancer cell lines. Uptake data are reported as means ± SD. * p < 0.05, ** p < 

0.01, *** p < 0.001 (Student’s t-test). 

In Vitro Cytotoxicity of ADC-PEG-AuNP in HER2 Overexpressing Cancer Cell Lines 

To assess the capacity for intracellular release of the drug payload, the in vitro cytotoxic activity 

of the antibody-drug conjugate bound to the nanoparticles (ADC-PEG-AuNP) was evaluated in 

two HER2 amplified cell lines: (1) SKBR-3 and (2) SKOV-3 (ovarian adenocarcinoma). Growth 

rate inhibition (GR) metrics derived from cell growth curves were determined to compare the 
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GR50 value of free MMAE, Tmab-vcMMAE, ADC-PEG-AuNP and Trastuzumab (Figure 9 and 

Figure S6). Growth rate calculations are specified in the methods section. GR50 corresponds to 

the concentration at which GR(c) = 0.5. ADC and ADC-PEG-AuNP concentrations reported in 

Figure 9 correspond to MMAE concentrations based on DAR and antibody per AuNP estimations.  

The in vitro cytotoxic activity of free MMAE was higher in both cell lines relative to ADC and 

ADC-PEG-AuNP (Table 3). MMAE GR50 values were subnanomolar for both cell lines. SKOV-

3 displayed slightly higher sensitivity to MMAE (GR50 = 0.14 nM) compared to SKBR-3 cells 

(GR50 = 0.33 nM). ADC and ADC-PEG-AuNP displayed similar GR50 values for both cell lines. 

Trastuzumab showed a dramatically decreased potency relative to MMAE containing formats, 

particularly in SKOV-3. Hence, the GR50 value was not determined for this cell line due to the 

high concentration of antibody required to obtain an appropriate dose-response curve. The effect 

on growth rate inhibition was also determined for OH-PEG-AuNP as a control. The stabilized gold 

nanoparticles only caused small reductions in growth rate at high nanoparticle concentrations 

(Figure 9). 
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Figure 9. Growth rate (GR) inhibition of (A) free MMAE, (B) ADC, (C) ADC-PEG-AuNP, 

(D) Trastuzumab and (E) OH-PEG-AuNP in SKBR-3 and SKOV-3 cell lines. Data are 

reported as means ± SD. 95% confidence bands are displayed as dotted lines. Concentration 

of ADC and ADC-PEG-PEG are reported as molar concentrations of MMAE according to 

the estimated DAR and number of ADC per AuNP, respectively. 
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Table 4. GR50 values with confidence intervals (CI) obtained from dose-response curves in Figure 

9. 

Sample SKBR-3 SKOV-3 

Agent GR50 (nM) GR50 95% CI R2 SKOV-3 GR50 95% CI R2 

Free MMAE 0.33 (0.28–0.37) 0.9986 0.14 (0.11–0.17) 0.9851 

ADC 34.91 (29.04–41.02) 0.9847 4.81 (3.56–6.32) 0.9636 

ADC-PEG-AuNP 19.45 (16.52–22.80) 0.9913 10.14 (8.55–11.83) 0.9878 

Tmab 2118.36 (1849.27–2426.61) 0.9931 N.D. N.D. N.D. 

N.D.: not defined, CI: confidence intervals, GR50: concentration required to achieve a 

growth rate inhibition of 0.5. 

Discussion 

The lack of clinical precedent for inorganic nanoparticles has hindered their implementation in 

cancer therapy. However, the results of the Phase I clinical trial (NCT00356980) of CYT-6091 

(PEGylated colloidal gold-rhTNF) published in 2009 were highly promising with regards to safety 

profile and the capacity to accumulate effectively in a wide range of solid tumors [34]. Considering 

the remarkable therapeutic potential of gold nanoparticles and the validation of the EPR effect for 

colloidal gold in human patients, we were prompted to assess three strategies; or a combination 

thereof, to further enhance the potential of AuNPs for clinical implementation: (1) surface 

attachment of PEGylated Trastuzumab for targeted treatment of HER2-positive tumors (active 

targeting), (2) employment of an antibody-drug conjugate as targeting agent to increase the 

anticancer potency of the system, and (2) surface coating with the cationic HIV-TAT cell 

penetrating peptide to enhance intracellular delivery.  

Trastuzumab and HIV-TAT PEGylation 

Attachment of poly ethylene glycol has become a conventional strategy to increase circulation 

times and distribution of nanosized structures. PEGylation prevents opsonization and uptake by 

the RES system—a biological mechanism that severely impedes tumor localization by premature 

clearance [35, 36]. Herein, our results support that Trastuzumab PEGylation for subsequent gold 

surface attachment can be readily achieved without significant modifications in HER-2 affinity or 
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binding kinetics as was reflected by SPR binding measurements to a recombinant HER2 protein. 

The same NHS-linker was used for HIV-TAT PEGylation, taking advantage of the two lysine 

residues in its amino acid composition (Figure 1). 

ADC Construction 

MMAE is a cytotoxic payload with exceptionally high potency that has frequently been employed 

in the construction of antibody drug conjugates. Under our experimental conditions, we obtained 

an average drug-to-antibody ratio of 2.91, as per UV-Vis spectroscopy analysis, consistent with 

DARs reported for similar ADC synthesis methods [37, 38]. For further structural characterization 

and confirmation of vcMMAE attachment, the ADC was analysed through intact protein mass 

spectrometry analysis. The ADC was buffer exchanged to MeCN 10% v/v to induce inter-heavy 

and heavy-light chain dissociation, in order to analyse the number of drugs attached to each 

polypeptide chain. Chain dissociation in MeCN 10% v/v was confirmed by SE-HPLC 

chromatograms showing the appearance of two peaks at longer elution times (Figure S2). The 

deconvoluted mass spectra confirmed that vcMMAE can attach to all possible free sulfhydryl 

groups formed upon partial reduction, i.e., a maximum of three attachments on the heavy chain 

and one attachment on the light chain. 

Herein, our results report on the feasibility of combining two common bioconjugation techniques 

(lysine and cysteine attachment) to PEGylate Tmab-vcMMAE for nanoparticle attachment. 

Furthermore, our data show that HER-2 binding affinity decreases by an order or magnitude with 

ADC PEGylation; yet, the binding affinity remains within the picomolar range. Several studies 

have combined targeting agents and cytotoxic drugs on nanoparticles; however, the added 

complexity of the systems also complicates appropriate characterization for implementation, 

especially in regard to dosage determination as the amount of each individual component requires 

quantification. To this end, the use of antibody-drug conjugates as targeting agents carrying the 

payload could simplify this—provided that the DAR is determined, quantification of protein 

content would be sufficient to estimate drug dosage per nanoparticle.  

Gold Nanoparticle Surface Functionalization 

Adding to improved biodistribution and tumor targeting, PEGylation also increases the colloidal 

stability of gold nanoparticles—a key requirement for long-term storage. Attachment of the 
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bioactive groups was achieved through the thiol moiety of the PEG linker, which, at high pH, can 

form covalent gold-sulfur (Au-S) bonds, providing stable conjugation to the surface [11]. Indeed, 

surface functionalization had a pronounced enhancement in nanoparticle stability upon addition of 

1% NaCl and cell culture media (Figure S3). Attachment was confirmed by an increase in 

hydrodynamic size (DLS) and SPR absorption maxima, and most importantly by alterations in the 

zeta potential that allow to discriminate the presence of the bioactive groups. For instance, the 

positively charged HIV-TAT caused a charge reversal in zeta potential (+6.17 ± 0.71 mV) for a 

+40.77 mV shift compared to the citrate-capped gold nanoparticles (−34.60 mV). In contrast, 

coating with the neutral OH-PEG caused a smaller +20.23 mV shift. Zeta potential values closer 

to the isoelectric point are generally detrimental to colloidal stability; however, the hydrophilic 

PEG polymer on the surface impedes nanoparticle aggregation by steric hindrance to prevent 

surface interactions between AuNPs. The large exclusion volume of the hydration cloud of the 

PEG linkers is known to prevent interactions between nanoparticle surfaces that lead to 

aggregation [35]. 

Quantification of the average number of antibodies that coat individual nanoparticles is 

challenging, insofar as common colorimetric methods for protein quantitation are difficult to 

perform due to the much stronger absorption coefficients of gold nanoparticles throughout the 

wavelength ranges used for protein concentration measurements. Instead, we quantified the 

amount of antibody by accounting for the ensuing decrease in antibody concentration following 

attachment, after removal of the functionalized nanoparticles through centrifugation. According to 

these measurements, an average of 156 antibodies covered the surface of 50 nm AuNPs and 40 

antibodies on 20 nm AuNPs (Figure S4).  

Active Targeting and Cellular Uptake 

The multivalent presentation of Trastuzumab on gold nanoparticles has been shown previously to 

promote HER2 receptor crosslinking, leading to enhanced cellular internalization in HER2 

overexpressing cell lines [39]. In our experimental setup, Trastuzumab-coated gold nanoparticles 

were compared to the AuNPs coated with the SH-linker without antibody derivatization, to 

maximize the similarity in physicochemical properties, excluding the presence of protein. Indeed, 

the mean hydrodynamic diameter of both formats differed by less than 1 nm according to DLS 

measurements (Table 2). Electrophoretic mobility determinations, on the other hand, recorded 
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negative zeta potential values for OH-PEG-AuNPs and close to neutral values for Tmab-PEG-

AuNP. The drift towards more neutral values—relative to citrate-capped nanoparticles—is 

consistent with antibody attachment, as Trastuzumab (isoelectric point (pI) 8.7) possesses a net 

positive charge when dissolved in PBS. A small net positive charge is also expected when 

suspended in cell culture media (pH 7.4). The effect of nanoparticle surface charge on cellular 

uptake is well-documented, whereby positively charged nanoparticles have consistently displayed 

higher uptake rates in nonphagocytic cells [40]. The increase in internalization with positively 

charged surfaces has generally been ascribed to favorable electrostatic nanoparticle/cell 

interactions due to the net negative charge of the plasma membrane [40]. In view of the foregoing, 

it is difficult to rule out a contribution of the more neutral zeta potential of Tmab-PEG-AuNP in 

enhancing cellular uptake. This notwithstanding, the observation that internalization enhancement 

was only recorded in a HER2 overexpressing cell line (SKBR-3)—and not in the HER2 basal 

counterparts (DLD-1, MDA-MB-231 and MCF-7)—supports cellular uptake increase through 

Trastuzumab-mediated HER2 receptor crosslinking. Interestingly, TEM micrographs of SKBR-3 

cells did not show clear distinction between both formats in subcellular localization—i.e., both 

AuNP designs were primarily localized within vesicular structures, presumably coated 

preendosomal and carrier vesicles (early endosomes and lysosomes). Alternatively, it is possible 

that some of these structures are autophagosomes, as gold nanoparticles have been shown to induce 

autophagosome accumulation [41]. This observation warrants further elucidation of the effect of 

surface functionalization on uptake mechanism and localization. 

Cellular Uptake Enhancement with HIV-TAT 

Due to the relatively low loading capacity of spherical gold nanoparticles, it is essential to ensure 

maximum cellular internalization when developed as drug delivery vehicles. Having improved 

selective uptake into HER2 overexpressing cell lines through active targeting, we sought to 

evaluate the effect of combining a cell penetrating peptide with the antibody targeting agent. HIV-

TAT internalization mechanism remains a topic of debate; however, evidence of uptake 

saturability and energy dependency suggest an endosomal pathway [42]. Endosomal and 

subsequent lysosomal localization is required for effective drug release of cathepsin B-cleavable 

linkers, such as those containing the valine-citrulline dipeptide. Enhancing uptake is thus 

paramount in HER2-targeted conjugates for intracellular release, considering that most ErbB 
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receptors have shown impaired ligand-induced receptor trafficking [43]. To this end, 

functionalization with the cell penetrating peptide caused a dramatic increase in cellular uptake 

across all cell lines tested. This enhancement was considerably more significant than that obtained 

by antibody functionalization only. Conversely, our results did not show improvement in uptake 

upon combination of both bioactive agents compared to CPP-PEG-AuNP. In fact, uptake was 

significantly higher with CPP functionalization in SKBR-3 and MCF-7 cells. We presume that this 

observation stems from the more positive zeta potential of CPP-PEG-AuNPs, in which case 

engagement through cell membrane/nanoparticle electrostatic interactions is a stronger 

determinant of uptake rate than antibody-mediated receptor cross-linking. 

These findings warrant further investigation into the effect of the highlighted physicochemical and 

physiological attributes in a more physiological setting. While higher uptake may be desirable in 

delivery applications, internalization must be specific to the targeted tumor cells. Previous studies 

have reported that uptake, rather than diffusion, could be the primary mechanism for nanoparticle 

tumor delivery. Consequently, surface charge has been proposed as a major determinant in tumor 

distribution upon systemic administration [44]. If indeed transcellular transport has a crucial 

impact in tumor penetration, then enhancing cellular internalization through strategies such as the 

attachment of a cell penetrating peptide might provide improved tumor tissue distribution, thus 

enhancing efficacy and therapeutic index. 

In Vitro Cytotoxicity of ADC-PEG-AuNP in HER2 Overexpressing Cancer Cell Lines 

Growth rate inhibition sensitivity in SKOV-3 and SKBR-3 cell lines was markedly higher for free 

MMAE than for the antibody-drug conjugate and for ADC-carrying gold nanoparticles (Figure 8). 

It is plausible that the requirement of linker cleavage and self-immolation of the p-aminobenzyl 

carbamate group in the antibody-drug conjugate hinders conjugated vcMMAE activity compared 

to the free drug. Additionally, although HER2 binding and cross-linking can induce receptor-

mediated endocytosis, free MMAE likely penetrates more readily into the intracellular 

compartment. Nonetheless, the structural characteristics that presumably hinder conjugated 

vcMMAE cytotoxicity in isolated carcinoma cells are expected to provide selectivity advantages 

in more physiological settings.  

Comparison of the cytotoxic activity of free ADC and nanoparticle-conjugated ADC displayed 

similar GR50 for both SKBR-3 and SKOV-3 cells (Table 3). GR50 values for ADC-PEG-AuNP 
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were lower for SKBR-3 cells and higher for SKOV-3 cells relative to free ADC; however, due to 

the degree of uncertainty in the estimation of antibodies per nanoparticle it is difficult to establish 

a significant improvement in MMAE intracellular release and antimitotic activity for either one of 

the formats. Still, concentrations of ADC-PEG-AuNP required to achieve a 50% growth rate 

inhibition were extremely low in both HER2 amplified cell lines. As expected, the antimitotic 

activity of MMAE-containing formats is dramatically higher than that of the unmodified 

Trastuzumab and PEG-stabilized gold nanoparticles. OH-PEG-AuNPs only caused small 

reductions in growth rate at high gold concentrations (100 µg/mL) in SKOV-3, which is higher 

than the equivalent gold concentrations required to achieve a 50% growth rate inhibition in ADC-

PEG-AuNPs (> 20 µg/mL). These results confirm that MMAE antibody-drug conjugate retain a 

highly potent cytotoxic activity when bound to the surface of gold nanoparticles. These findings 

warrant further investigation in animal models, as increased accumulation in high EPR tumors 

could confer potency and safety advantages over the free ADC. 

Conclusions 

The results presented herein report on the feasibility of utilizing multiple bioactive agents to 

construct gold nanoparticles with broader therapeutic capabilities. The construction of a thiol-

functionalized PEGylated antibody drug-conjugate (PEGylated Trastuzumab-vcMMAE) proved 

to yield ADCs with conserved high affinity towards the HER2 receptor; thereby enabling coupling 

to gold nanoparticles to function as targeting agents carrying a cytotoxic payload. ADCs attached 

to the surface of gold nanoparticles demonstrated to retain similar in vitro cytotoxic potency 

against HER2 overexpressing cancer cell lines relative to the free ADC. Notwithstanding, 

enhanced accumulation in high EPR tumors could results in wider therapeutic indices. 

Cellular uptake of AuNPs in a HER2 amplified cell line was significantly improved upon covalent 

attachment of the Trastuzumab targeting agent through the PEGylated-SH linker. Internalization 

into different cancer cell lines was further enhanced by employing the HIV-1 TAT protein (47–

57) as a cell penetrating peptide. Yet, the combination of the antibody targeting agent and the 

penetrating peptide did not provide improvements in uptake—relative to the penetrating peptide 

only—in the conditions tested. Our results support previous observations with different 

nanoparticle formats with regards to the prominent role of surface charge on determining uptake 

rate into cells, insofar as the charge reversal obtained by incorporating the cell penetrating peptide 
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had a more pronounced impact than the addition of the antibody targeting agent. Efficient cleavage 

of the valine-citrulline moiety for drug release requires cellular internalization for exposure to 

cathepsin B in lysosomes or endosomes; therefore, incorporation of the CPP might provide 

improved intracellular delivery of the MMAE payload in this format. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure 

S1: Analysis of the presence of sulfhydryl groups and conservation of intact structure of 

Trastuzumab after partial reduction with DTT, Figure S2: SE-HPLC chromatograms of partially 

reduced Trastuzumab in 1 mM EDTA, Tmab-vcMMAE in H2O and Tmab-vcMMAE in 

acetonitrile 10% with formic acid 1%, Figure S3: AuNP stability upon surface functionalization 

with Tmab-PEG-SH. Addition of 1% NaCl to citrate capped AuNPs caused aggregation as 

evidenced by a broad absorption band in the 700–800 nm range, Figure S4: Representative 

tryptophan fluorescence emission spectra for the estimation of Trastuzumab:AuNP ratio for 20 nm 

AuNPs, Figure S5: Representative sensorgrams of (A) Trastuzumab, (B) Tmab-PEG-SH 25X and 

(C) Tmab-vcMMAE binding to recombinant HER2 receptor, Figure S6: Representative SKBR-3 

cell growth curves employed to analyse growth rate inhibition activity of MMAE-containing 

agents at equivalent MMAE concentrations. 
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Landmark discoveries in the field of molecular biology in the 1990’s ushered in a new era in the 

biomedical field with the introduction of a plethora of recombinant products into the 

pharmaceutical market. Biotherapeutics have since experienced tremendous growth, best 

exemplified by the current dominance of antibody therapeutics in the pharmaceutical market. The 

field continues to capitalize on these discoveries, as novel bio-engineering approaches are sought 

to improve established therapies based on further advancements in molecular biology and other 

disciplines. While the latter provide manifold opportunities, these also entail prominent challenges 

towards clinical development and regulatory approval. The experimental work contained in this 

thesis reports on various novel approaches that make use of recent progress in the field aimed 

towards the improvement of biological therapies, showcasing the application of state-of-the-art 

mass spectrometry techniques to address key aspects in various stages of preclinical development.  

The first aim of this thesis consisted in exploiting recently developed methodologies in mass 

spectrometry to study a structural feature of influenza hemagglutinin that has recently gained 

notoriety in the study of viral evolution, namely the alterations in the number and position of N-

glycosylation sequons on the viral glycoprotein. Remarkably, the implementation of rationally-

designed vaccines for influenza and other infectious diseases has remained elusive, despite myriad 

advancements in recombinant technologies and an imminent need to improve currently available 

options. This, in many cases, stems from insufficient understanding of immune response 

mechanisms, antigenic determinants, and viral adaptation mechanisms. Thus, we sought to apply 

a targeted workflow on whole viruses of a specific H1N1 strain to obtain the glycan profile of 

influenza hemagglutnin as a proof-of-concept. Notably, the MS experimental setup employs 

complementary activation modes that enable the determination of glycan structures on specific 

sites of the protein. Hence, not only does it provide identification of glycosylation sites, but by 

deriving structural features of the glycans it allows to assess the impact of localisation on glycan 

maturation. Through this method, we acquired extensive site-specific structural data on H1 

hemagglutinin without the need for protein purification or complex sample preparation. This work 

CONCLUDING REMARKS AND 
FUTURE DIRECTIONS 
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prompts implementation of such analytical workflows to obtain glycosylation profiles of further 

relevant influenza glycoproteins. This information will contribute to the study of influenza 

antigenicity and serve as an important complement to biological activity and comprehensive 

sequence-data based studies for this aim. Notably, understanding the role of N-glycans in 

antigenicity provides opportunities for glycoprotein engineering towards the development of 

optimized vaccines platforms. For instance, protein glycoengineering strategies, such as the one 

covered in chapters 4 and 5, could be employed to modulate the antigenicity of recombinant 

vaccine formats.  

The succeeding sections of this thesis address further facets in the rational design of biomolecules 

for therapeutic purposes. The second aim of this thesis – addressed in chapters 3, 4, and 5 – sought 

to put forward and evaluate an innovative approach to alter the physicochemical properties of the 

conserved structural regions of IgG1 molecules, with the intent of developing a generalised 

strategy to enhance the clinical potential of antibody therapeutics by increasing their physical 

stability. Chapter 3 serves as an introductory chapter to the subsequent research manuscripts 

(chapters 4 and 5), presenting an overview of the complications that physical degradation poses 

on the development and manufacture of antibody therapeutics. The chapter provides a brief 

description of various computational tools that have been developed to enable in silico 

identification of aggregation-prone regions. The structural modifications implemented in chapters 

4 and 5 were derived from one such tool, namely the Spatial Aggregation Propensity (SAP) 

prediction.  

Chapters 4 and 5 report on the targeted insertion of glycosylation sites on monoclonal antibodies 

to deter aggregation propensity and enhance solubility by shielding aggregation-prone regions 

identified by SAP. Rationally designed mutations were introduced on the primary structure of 

blockbuster therapeutic antibodies – adalimumab in chapter 4 and trastuzumab in chapter 5 – to 

explore the possibility of enhancing the clinical properties of established therapeutics mAbs. 

Naturally, this technique can equally be applied to mAb leads in preclinical development. We 

demonstrated in chapter 4 that the hyperglycosylation strategy can confer important improvements 

in the thermodynamic stability of the Fab region, reflected by increases in the corresponding 

melting temperature. Importantly, this was achieved without compromising the high binding 

affinity to the molecular target of adalimumab (TNF-α) or to Fc-receptors involved in effector 
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functions, indicating that the biological activity of an IgG molecule is unlikely to be impaired by 

glycosylation of the targeted sites. Contrary to previous reports employing this technique in other 

antibodies, it was not possible to establish enhancements in aggregation resistance in accelerated 

stability studies when incorporated in adalimumab. To understand these seemingly contradictory 

observations, further insight is needed into the mechanisms that drive antibody aggregation and 

into the structural modifications that emerge upon glycosite addition. Moreover, additional long-

term experiments evaluating the physicochemical stability of the protein at lower temperatures are 

needed to ascertain the colloidal stability of the protein under conditions that better reflect the 

storage of antibody therapeutics in a clinical context.   

Hyperglycosylation of trastuzumab in chapter 5 revealed an important consequence of the 

technique: the overall structural heterogeneity of the protein increases markedly due to extensive 

glycan maturation in the Fab glycosylation sites. In comparison, glycan heterogeneity in the 

conserved Fc-region is relatively limited as a result of the atypical orientation of these glycans 

towards the core of the protein. Although controlling Fc glycosylation is presumably more 

important, due to the well-studied interactions that glycoforms in this position establish with Fc-

receptors, the large increase in heterogeneity obtained through hyperglycosylation is likely to have 

important implications for regulatory approval if this strategy is to be pursued in therapeutic 

antibodies. These findings prompt further study of the impact of individual glycoforms on self-

association mechanisms and enhancements in thermodynamic stability of the domain.  

Altogether, the experimental data reported herein for the glycosite insertion strategy highlight the 

potential of this method to enhance the physical stability of therapeutic antibodies, yet it also 

underscores aspects of the technique that require further refinement for implementation. We 

presume that combining this approach with other glycoengineering technologies that minimise 

glycan heterogeneity could have great potential. It is important to note that inserting engineered 

glycosylation sites can be employed to enhance the biophysical properties of further therapeutic 

proteins. Moreover, the method enables protein functionalisation in a targeted fashion, since the 

glycan can be used as a chemical handle with a predetermined localisation that grants site-

specificity and homogeneity relative to stochastic protein labelling chemistry. For instance, this 

could be advantageous for the construction of site-specific protein-drug conjugates.  
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The third aim of this thesis involved the exploration of alternative applications of protein 

engineering in the design of novel therapeutic agents. Chapter 7 showcases the feasibility of 

chemically modifying an IgG molecule (trastuzumab) to expand the versatility of the protein. The 

two most common protein labelling techniques (i.e., lysine and native cysteine chemistry) were 

employed concomitantly on trastuzumab to produce an antibody-drug conjugate capable of 

binding covalently to the surface of gold nanoparticles. We showed that the antibody retains its 

antigen binding capacity upon chemical functionalisation, and that it is capable of enhancing 

targeting to tumor cells in vitro. The antibody-targeted nanocarriers synthesized in this chapter are 

expected to improve selective tumour delivery by harnessing the preferential accumulation of 

nanosized materials combined with the active-targeting capacity of the antibodies exposed on its 

surface. The utilisation of an antibody-drug conjugate as a targeting agent provides several 

advantages, including better control of drug loading and the use of commercially available “smart” 

linkers that enable localised release of the payload to diminish off-target toxicity. Future work will 

involve the assessment of safety and efficacy in mouse xenograft models with overexpression of 

HER2. Furthermore, the nanoparticle system presented in chapter 7 provides remarkable 

versatility. A promising possibility consists in tagging the nanoparticle surface with two (or more) 

antibodies with distinct specificities. This “multispecific” format could conceptually allow 

circumvention of resistance mechanisms that evoke downregulation of one of the molecular 

targets.  

Various mass spectrometry methodologies were employed to tackle the different aims of this 

thesis, highlighting the numerous applications that novel MS tools offer in protein engineering. 

Data-dependent acquisition employing HCD and CID activation modes was utilised to derive site-

specific structural information of influenza hemagglutinin glycosylation. For the second aim, a 

combination of workflows and activation modes, including CID, HCD, and ETD, were performed 

to confirm unambiguously the amino acid mutations and the attachment of glycans on the inserted 

asparagine residues, and were subsequently focused on the structural analysis of the glycan 

molecules. In the last aim, intact protein mass analysis was used to confirm the chemical 

attachment of the drug-linker moiety to trastuzumab in the construction of the antibody-drug 

conjugate. The latter also provided information concerning the number of drug molecules attached 

per antibody chain. Mass spectrometry has stood out as a key analytical technique in the current 

era of biopharmaceuticals; and constant technological advancements will continue to extend the 
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capabilities of these techniques to address crucial considerations in the development of novel 

biotherapeutics. 
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Supplementary information from Chapter 2: Site-specific Glycosylation Profile 

of Influenza A (H1N1) Hemagglutinin through Tandem Mass Spectrometry 

Supplementary table 1. Influenza protein coverage across all bands obtained by SDS-PAGE 

fractionation (Fig. 2) and subsequent mass spectrometry analysis. 

Description Coverage 

(%) 

# 

Peptide

s 

# 

PSMs 

# Unique 

Peptides 

# 

AAs 

MW 

[kDa]. 

FDR 

A2 

hemagglutinin  71.50 62 2, 018 62 565 63.2 0% 

nucleocapsid 

protein   

79.72 59 1, 050 59 498 56.2 0% 

polymerase PB2 65.88 64 251 63 759 86 0% 

matrix protein 1 78.57 29 1, 238 29 252 27.9 0% 

neuraminidase 38.59 19 217 19 469 51.5 0% 

polymerase PB1 44.85 50 231 49 758 86.6 0% 

polymerase PA 58.66 57 196 57 716 82.5 0% 

nonstructural 

protein 1   

64.35 15 69 15 230 25.8 0% 

PB1-F2 protein  24.44 4 20 4 90 10.8 23.10

% 

nuclear export 

protein 

24.79 3 9 3 121 14.4 21.40

% 

matrix protein 2  38.14 2 9 2 97 11.1 50% 

Supplementary table 2. Influenza protein coverage for band 4 (Fig. 2) obtained by SDS-PAGE 

fractionation and subsequent mass spectrometry analysis. 

Description Coverage 

(%) 

# 

Peptides 

# 

PSMs 

# Unique 

Peptides 

# 

AAs 

MW 

[kDa]. 

FDR 

A2 

hemagglutinin  56.81 48 855 48 565 63.2 0% 

nucleocapsid 

protein 

71.08 49 121 49 498 56.2 0% 
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matrix protein 1  78.17 27 104 27 252 27.9 0% 

neuraminidase, 

partial  

26.44 16 76 16 469 51.5 0% 

polymerase PB1 32.59 27 42 27 758 86.6 0% 

polymerase PA  37.29 23 31 23 716 82.5 0% 

polymerase PB2  32.81 24 28 24 759 86 0% 

PB1-F2 protein 8.89 1 4 1 90 10.8 20% 

nonstructural 

protein 1  

24.78 3 3 3 230 25.8 0% 

matrix protein 2 38.14 2 3 2 97 11.1 18.80

% 

 

Supplementary table 3. Influenza protein coverage for band 5 (Fig. 2) obtained by SDS-PAGE 

fractionation and subsequent mass spectrometry analysis. 

Description Coverage 

(%) 

# 

Peptides 

# 

PSMs 

# Unique 

Peptides 

# 

AAs 

MW 

[kDa]. 

FDR 

A2 

nucleocapsid 

protein  

80.12 56 556 56 498 56.2 0% 

hemagglutinin  48.85 37 162 37 565 63.2 0% 

matrix protein 

1 

66.67 22 123 22 252 27.9 0% 

neuraminidase 20.64 12 45 12 470 51.6 0% 

polymerase 

PB2  

31.62 21 23 21 759 86 0% 

polymerase 

PB1  

16.36 14 39 14 758 86.6 0% 

polymerase PA  19.55 11 12 11 716 82.5 0% 

polymerase 

PB1  

3.83 3 5 3 757 86.4 18.80

% 
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matrix protein 

2  

10.31 1 1 1 97 11.1 23.50

% 

PB1-F2 protein  8.89 1 1 1 90 10.8 22.20

% 

 

Supplementary table 4. Influenza protein coverage for band 6 (Fig. 2) obtained by SDS-PAGE 

fractionation and subsequent mass spectrometry analysis. 

Description Coverag

e (%) 

# 

Peptid

es 

# 

PSM

s 

# Unique 

Peptides 

# Protein 

Groups 

# 

AA

s 

MW 

[kDa]. 

FDR 

A2 

hemagglutinin  37.35 34 429 34 1 565 63.2 0% 

nucleocapsid 

protein  

51.81 34 59 34 1 498 56.2 0% 

matrix protein 

1  

59.52 19 80 19 1 252 27.9 0% 

nonstructural 

protein 1 

36.52 8 10 8 1 230 25.8 0% 

polymerase 

PA 

11.73 10 11 10 1 716 82.5 0% 

neuraminidase 17.87 8 15 8 1 470 51.6 0% 

polymerase 

PB2 

7.11 5 5 5 1 759 85.9 0% 

nuclear export 

protein 

5.79 1 1 1 1 121 14.3 16.70

% 

matrix protein 

2 

10.31 1 1 1 1 97 11.1 15.40

% 

polymerase 1.98 2 3 2 1 757 86.4 14.30

% 
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Supplementary information from Chapter 4: Enhancing the stability of 

adalimumab by engineering additional glycosylation motifs 

 

Figure S1. HCD spectrum of the chymotryptic peptide 

LSTASSLDYWGQGTNVTVSSASTK for the L116N mutant. 

 

Figure S2. ETD spectrum of the chymotryptic peptide 

LSTASSLDYWGQGTNVTVSSASTK for the L116N mutant. 
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Figure S3. HCD spectrum of the de-glycosylated chymotryptic peptide 

GQGTNVTVSSASTKGPAVFPLAPSSK for the L116N mutant. 

 

Figure S4. HCD spectrum of the chymotryptic peptide 

LSTASSLDYWGQGTLVNVSSASTK for the T118N mutant. 

 

Figure S5. ETD spectrum of the chymotryptic peptide 

LSTASSLDYWGQGTLVNVSSASTK for the T118N mutant. 

 

Figure S6. CID spectrum of the de-glycosylated chymotryptic peptide 

LSTASSLDYWGQGTLVNVSSASTK for the T118N mutant. 
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Figure S7. ETD spectrum of the de-glycosylated chymotryptic peptide 

LSTASSLDYWGQGTLVNVSSASTK for the T118N mutant. 

 

Figure S8. HCD spectrum of the chymotryptic peptide GQGTLVTVSSNSTK for the 

A122N mutant. 

 

 

Figure S9. ETD spectrum of the chymotryptic peptide GQGTLVTVSSNSTK for the 

A122N mutant. 
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Figure S10. CID spectrum of the de-glycosylated chymotryptic peptide 

LSTASSLDYWGQGTLVTVSSNSTK for the A122N mutant. 

 

Figure S11. ETD spectrum of the de-glycosylated chymotryptic peptide 

LSTASSLDYWGQGTLVTVSSNSTK for the A122N mutant. 

 

Figure S12. HCD spectrum of the chymotryptic peptide 

KVDNALQSGNSNESSVTEQDSKDSTY for the Q160N mutant 
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Figure S13. ETD spectrum of the chymotryptic peptide 

KVDNALQSGNSNESSVTEQDSKDSTY for the Q160N mutant 

 

Figure S14. CID spectrum of the chymotryptic peptide NSGALTSGVHTFPAVK for the 

L178K mutant. 

 

Figure S15. ETD spectrum of the chymotryptic peptide NSGALTSGVHTFPAVK for the 

L178K mutant. 
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Figure S16. SHCD spectrum of the chymotryptic peptide PAVNQSSGLY for the L178N 

mutant. 

 

Figure S17. ETD spectrum of the chymotryptic peptide PAVNQSSGLY for the L178N 

mutant. 

 

Figure S18. HCD spectrum of the chymotryptic peptide 

NSGALTSGVHTFPAVLQSSGNY for the L183N mutant. 
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Figure S19. ETD spectrum of the chymotryptic peptide NSGALTSGVHTFPAVLQSSGNY 

for the L183N mutant. 

 

Figure S20. ETD spectrum of the chymotryptic peptide SLSSVVTVPSSSLGNQTY for the 

T198N mutant. 

 

Figure S21. ETD spectrum of the de-glycosylated chymotryptic peptide 

SLSSVVTVPSSSLGNQTY for the T198N mutant. 
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Supplementary information from Chapter 5: Glycan profile analysis of 

engineered trastuzumab with rationally added glycosylation sequons for 

enhanced stability 

Full MS spectra of the Tmab variants 

 

Figure S1. Full MS spectra of released glycans from Tmab WT. 

 

Figure S2. Full MS spectra of released glycans from Herceptin. 
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Figure S3. Full MS spectra of released glycans from L115N. 

 

Figure S4. Full MS spectra of released glycans from A121N. 
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Figure S5. Full MS spectra of released glycans from Q160N. 

 

Figure S6. Full MS spectra of released glycans from L177N. 
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Figure S7. Full MS spectra of released glycans from Q178N. 

 

Figure S8. Full MS spectra of released glycans from L182N. 
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Figure S9. Full MS spectra of released glycans from T198N. 
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MS2 spectra 

 

Figure S10. MS2 spectra of glycan 1 (table 4). 

 

Figure S11. MS2 spectra of glycan 2 (table 4). 
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Figure S12. MS2 spectra of glycan 3 (table 4). 

 

Figure S13. MS2 spectra of glycan 4 (table 4). 
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Figure S14. MS2 spectra of glycan 5 (table 4). 

 

Figure S15. MS2 spectra of glycan 6 (table 4). 
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Figure S16. MS2 spectra of glycan 7 (table 4). 

 

Figure S17. MS2 spectra of glycan 8 (table 4). 
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Figure S18. MS2 spectra of glycan 9 (table 4). 

 

Figure S19. MS2 spectra of glycan 10 (table 4). 
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Figure S20. MS2 spectra of glycan 11 (table 4). 

 

Figure S21. MS2 spectra of glycan 12 (table 4). 
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Figure S22. MS2 spectra of glycan 13 (table 4). 

 

Figure S23. MS2 spectra of glycan 14 (table 4). 
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Figure S24. MS2 spectra of glycan 15 (table 4). 

 

Figure S25. MS2 spectra of glycan 16 (table 4). 
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Figure S26. MS2 spectra of glycan 17 (table 4). 

 

Figure S27. MS2 spectra of glycan 18 (table 4). 
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Figure S28. MS2 spectra of glycan 19 (table 4). 

 

Figure S29. MS2 spectra of glycan 20 (table 4). 
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Figure S30. MS2 spectra of glycan 21 (table 4). 
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Glycopeptide spectra 

 

Figure S31. CID spectrum of the chymotryptic peptide 

DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLY from the L115N mutant containing 

amino acid positions 177, 178 and 182. 

 

Figure S32. CID spectrum of the chymotryptic peptide 

DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLY from the A121N mutant amino acid 

positions 177, 178 and 182. 
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Figure S33. CID spectrum of the chymotryptic peptide SGALTSGVHTFPAVLQSSGLY 

from Tmab WT amino acid positions 177, 178 and 182. 

 

Figure S34. CID spectrum of the chymotryptic peptide 

VDNALQSGNSNESVTEQDSKDSTYSLSSTLTLSK from the Q160N mutant confirming 

the mutation at position 160. 
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SPR sensorgrams 

 

Figure S35. Analysed SPR sensorgrams of single cycle kinetic assays of Tmab variants to 

surface captured HER2. (A) Herceptin, (B) Tmab WT, (C) L115N, (D) A121N, (E) L177N, 

(F) Q178N, (G) L182N, (H) T198N, and (I) Q160N. 
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Figure S36. Analysed SPR sensorgrams of single cycle kinetic assays of Tmab variants to 

surface captured FcγR1A. (A) Herceptin, (B) Tmab WT, (C) L115N, (D) A121N, (E) 

L177N, (F) Q178N, (G) L182N, (H) T198N, and (I) Q160N. 
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Figure S37. Analysed SPR sensorgrams of single cycle kinetic assays of Tmab variants to 

surface captured FcγR2A. (A) Herceptin, (B) Tmab WT, (C) L115N, (D) A121N, (E) 

L177N, (F) Q178N, (G) L182N, (H) T198N, and (I) Q160N. 
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Figure S38. Analysed SPR sensorgrams of single cycle kinetic assays of Tmab variants to 

surface captured FcγR3A. (A) Herceptin, (B) Tmab WT, (C) L115N, (D) A121N, (E) 

L177N, (F) Q178N, (G) L182N, (H) T198N, and (I) Q160N. 
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Supplementary information from Chapter 7: Synthesis and Enhanced Cellular 

Uptake In Vitro of Anti-HER2 Multifunctional Gold Nanoparticles 

 
Figure S1. Analysis of the presence of sulfhydryl groups and conservation of intact structure 

of Trastuzumab after partial reduction with DTT. (A) UV-Vis spectra of Ellman’s reagent 

(DTNB) and of partially reduced antibody after reaction with DTNB. (B) SE-HPLC 

chromatogram of intact Trastuzumab and reduced Trastuzumab. 
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Figure S2. SE-HPLC chromatograms of partially reduced Trastuzumab in 1 mM EDTA, 

Tmab-vcMMAE in H2O and Tmab-vcMMAE in acetonitrile 10% with formic acid 1%. 

 

Figure S3. AuNP stability upon surface functionalization with Tmab-PEG-SH. Addition of 

1% NaCl to citrate capped AuNPs caused aggregation as evidenced by a broad absorption 

band in the 700-800 nm range. Tmab-PEG-SH attachment prevented aggregation upon 

addition of NaCl. 
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Figure S4. Representative tryptophan fluorescence emission spectra for the estimation of 

Trastuzumab:AuNP ratio for 20 nm AuNPs. The estimation is based on the loss of 

fluorescence intensity following AuNP surface attachment and centrifugation of the 

functionalized gold nanoparticles. The decrease in intensity is assumed to come from 

removal of the Trastuzumab monomers attached on AuNPs through nanoparticle 

sedimentation. C denotes controls and S the reacted samples. The ratio (R) is calculated as: 

𝑅𝑅 = �1 −
𝐼𝐼𝑆𝑆
𝐼𝐼0
�  × 𝐹𝐹 

Where: 

Is = fluorescence intensity of the supernatant after AuNP removal by centrifugation post reaction 

I0 = fluorescence intensity of the control (identical original concentration of antibody as that in the 

reaction) 

F = Tmab:AuNP molar ratio in the reaction 
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Figure S5. Representative sensorgrams of (A) Trastuzumab, (B) Tmab-PEG-SH 25X and 

(C) Tmab-vcMMAE binding to recombinant HER2 receptor. The sensorgram is shown in 

red and the derived 1:1 binding model fit in black. 
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Figure S6. Representative SKBR-3 cell growth curves employed to analyse growth rate 

inhibition activity of MMAE-containing agents at equivalent MMAE concentrations. (A) 

Cell confluence change over time monitored every 2 hours. Data are reported as means ± 

SD. (B) Representative images of SKBR-3 cells obtained with the Incucyte® ZOOM Live-

cell Analysis System showing decrease in confluence and morphological changes for 

MMAE treated cells. 
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