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Abstract
Additional reliable anatomical markers are needed for differentiating archaeological wolves and dogs, to support clarify-
ing the origin(s) of dogs. Candidate structures should have good potential to survive various taphonomic conditions. The 
petrous bone is one potential differentiating structure, and could be further useful when aDNA cannot be extracted other-
wise. The petrous bone houses the bony labyrinth (semicircular canals, vestibule, and cochlea). Across a number of taxa, its 
intricate shape has been shown to carry indicator taxonomic information, supporting clear distinctions between and among 
mammalian groups. In this report, we explore the three-dimensional shape of the bony labyrinth of wolves and dogs, using 
micro-computed tomography and 3D geometric morphometrics. We examined 20 modern Eurasian wolves and 20 modern 
mesaticephalic dogs with comparable skull lengths. We show that dogs have on average a significantly smaller bony laby-
rinth than wolves. In shape space, wolves and dogs form significantly different, non-overlapping clusters with dogs having a 
larger relative size of the lateral semicircular canal, smaller relative size of the vertical canals and oval window, and shorter 
relative cochlea streamline length, with a more antero-ventrally tilted modiolus. These shape differences are not related to 
allometric effects. Results of this study warrant examination of preserved archaeological and paleo-ontological petrous bones 
from the oldest possible dogs and isopatric wolves.

Keywords  Inner ear · Cochlea · Semicircular canals · Geometric morphometrics · Wolf · Dog · Domestication

Introduction

Zoologists, geneticists, and archaeologists have been work-
ing to resolve the timing, location, and stimuli that surround 
the domestication of wolves. Eurasian wolves clearly are 
ancestors of domestic dogs, but the actual founding wolf 
population is not yet known. Pivotal questions that first must 
be resolved involve the ability to differentiate archaeological 
wolf and dog remains correctly. Factors that contribute nega-
tively include fragmented, incomplete ancient specimens, 
and insufficient ancient DNA (aDNA) for study.

Many phenotypic traits that were proposed historically 
to differentiate wolves and dogs now have been rejected, 
based on new data and high-quality re-analysis of older 
data (Ameen et al. 2017; Drake et al. 2015, 2017; Drake 
and Klingenberg 2010; Janssens et al. 2016a, b, c, 2019). 
Traits that have remained valid for sub-speciation include 
dog size reduction; dog brain size ratio reduction; smaller 
dog P4 mesiodistal diameter; small M1 mesiodistal diam-
eter; large dog orbital angle; and wider dog snout width 
and skull height indices. However, one problem with these 
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remaining traits is that the oldest archaeological canine 
skulls mostly are incomplete, leaving only P4 (if present) 
and relative size as possible differentiating criteria. Thus, 
the differences between valid species-differentiating canid 
traits and those that actually are available highlight a need 
for new anatomical diagnostics. The petrous bone is a 
potential candidate for development as a species-differ-
entiating trait.

The petrous part of the temporal bone (Fig. 1) contains 
the bony labyrinth (anterior, lateral, posterior semicircular 
canals, vestibule, and cochlea), a complex structure that 
houses the organs of balance and hearing (Costeur et al. 
2017; Jeffery and Spoor 2004). The petrous bone is the most-
dense bone in the mammalian body (Lam et al. 2003), and it 
preserves well in fossil mammalian skeletal remains (Lam 
et al. 1999; Lyman 1984). In research to date, non-invasive 
microcomputed tomography (micro-CT) and geometric mor-
phometric (GM) semi-landmark-based 3D shape analysis of 
the bony labyrinth have defined clear differentiations among 

mammalian subspecies (Gunz et al. 2012) and even among 
populations (de León et al. 2018).

In a recent geometric morphometrics (GM) study of mod-
ern dogs, modern wolves, and archaeological dogs, using 
micro-CT imaging, bony labyrinth shape did not support a 
species-differentiating hypothesis (Schweizer et al. 2017). 
Actually, the study found substantial overlap between wolves 
and dogs. The shape of the bony labyrinth varied similarly 
among dogs and wolves, mostly generated allometrically 
as covariation of size and shape (Schweizer et al. 2017). 
Schweizer et al. (2017) had evaluated a thorough spec-
trum that included many modern dog breeds that spanned 
miniature, giant, chondrodystrophic, dolichocephalic, and 
brachycephalic types. They also evaluated several subspe-
cies of non-Eurasian wolves (C. l. chanco; C. l. arabs; C. 
l. lycaon) that clearly are not ancestors of modern dogs 
(Aggarwal et al. 2007). Correlations between body size and 
morphology of the mammalian ear region have been previ-
ously shown (Nummela 1995; Lebrun et al. 2010; Spoor 

Fig. 1   a Dorsal view of a dog 
skull with opened skull cap 
and inner view on the skull 
base. The right petrous bone is 
colored purple; b dorsal view 
of a wolf right petrous bone; 
c identical view with the bony 
structure made transparent, to 
show the position of the hollow 
bony labyrinth, colored purple; 
d lateral view of the right bony 
labyrinth, denuded from bone, 
showing the anterior (ASC), 
posterior (PSC) and lateral 
semicircular canal (LSC), coch-
lea and oval window
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et al. 2007). Thus, despite evidently disappointing results 
from Schweizer et al. (2017), it is worth considering that 
allometric effects on bony labyrinth shape? (Lebrun et al. 
2010; Alloing-Séguier et al. 2013), and more pronounced 
scaling-driven variance of overall shapes, may be important 
when considering groups of more diverse and broader body 
size ranges (Lebrun et al. 2010). If allometric effects obscure 
size-unrelated, subtle differences in labyrinth shape among 
dogs and wolves, species-relevant differences may not be 
obvious.

We hypothesize that allometric effects could obscure 
non-size-related, subtle differences in labyrinth shape. To 
test this hypothesis, we chose an alternative GM approach 
and minimized the effect of allometry by comparing modern 
adult wild wolves of Eurasian origin that are the probable 
ancestor type of dogs (Thalmann et al. 2013) with modern 
mesaticephalic dogs with comparable skull lengths. Mesati-
cephalic skulls have medium skull length and muzzle width 
(Slatter 2003) in all archaeological specimens, but vary from 
some modern dogs that have brachycephalic (pug) or doli-
chocephalic (borzoi) skulls, both reflecting modern gene 
pool isolation and thus not present in wild canids, ancient 
or modern.

Materials and methods

Study population and imaging

We analyzed dry skulls of 20 modern dogs and 20 Eurasian 
wolves. All specimens were adult modern wild wolves or 
adult modern mesaticephalic dogs with comparable skull 
length. The skulls were scanned using micro-CT systems 
with image spatial resolutions ranging between 0.024 and 
0.050 mm. The total skull length was established according 
to Von den Driesch (1976), and detailed image spatial reso-
lution for each of the specimen is given in Table 1.

All modern dog specimens were scanned using the 
custom-made HECTOR (Masschaele et  al. 2013) scan-
ner of the Ghent University Centre for X-ray Tomography 
(UGCT). The wolf specimens, curated at the Museum für 
Naturkunde in Berlin, Germany, were scanned using the 
custom-made diondo d3 microCT scanner at the MPI-EVA 
in Leipzig, Germany. Following the protocol of Gunz et al. 
(2012), micro-CT scan images were used to extract the 3D 
surfaces of the bony labyrinth using the ‘Isosurface’ module 
in Avizo™ 7.1 and 8.1 (Visualization Science Group). Our 
goal was to analyze bony labyrinths from the right side of 
the skull. However, in cases of destruction or fillings of the 
right side, the left labyrinth was reconstructed after mirror-
imaging the original tiff stack. Based on a single threshold 
that best represents the surface of the bony labyrinth (selec-
tion of appropriate threshold done visually), the ‘Isosurface’ 

module calculates a 3D surface directly from the matrix of 
grey-scale voxels (needs homogenous filling of bony laby-
rinth). After removing all reconstructed adjacent structures 
not belonging directly to the bony labyrinth (using ‘Surface 

Table 1   List of individual specimens used in this study

Group Museum ID Provenance/breed Image-spatial 
resolution (mm)

Skull-
length 
(mm)

Wolf ZMB-22340 Central Asia 0.0274 245
Wolf ZMB-48867 China 0.0274 250
Wolf ZMB-16454 China 0.0238 240
Wolf ZMB-93695 China 0.0238 245
Wolf ZMB-83467 Europe/Russia 0.0238 250
Wolf ZMB-93303 Europe/Russia 0.0256 255
Wolf ZMB-52539 Europe/Russia 0.0256 245
Wolf ZMB-2945 Europe/Russia 0.0256 250
Wolf ZMB-83460 Europe/Russia 0.0256 250
Wolf ZMB-29207 Europe/Russia 0.0256 255
Wolf ZMB-29209 Europe/Russia 0.0256 260
Wolf ZMB-52531 Europe/Russia 0.0256 275
Wolf ZMB-28475 Europe/Russia 0.0256 235
Wolf ZMB-29208 Europe/Russia 0.0247 250
Wolf ZMB-30415 Europe/Russia 0.0238 255
Wolf ZMB-22373 Europe/Russia 0.0238 250
Wolf MAM-xxxx Europe/Russia 0.0912 245
Wolf ZMB-83466 Turkey 0.0256 250
Wolf ZMB-56617 Turkey 0.0238 255
Wolf ZMB-22350 Turkey 0.0238 250
Dog A Belgian shepherd 0.0499 231
Dog B German shepherd 0.0499 249
Dog C Irish setter 0.0499 256
Dog D Rhodesian ridge-

back
0.0499 223

Dog 6232 Unknown 0.0499 274
Dog 6509 Belgian shepherd 0.0499 230
Dog 6512 Gordon Setter 0.0499 242
Dog 6566 Komondor 0.0499 230
Dog 6583 Irish wolfhound 0.0499 247
Dog 6689 Irish wolfhound 0.0499 264
Dog 6592 Bloodhound 0.0499 254
Dog 6655 Bloodhound 0.0499 250
Dog 6664 German shepherd 0.0499 242
Dog 6668 Irish wolfhound 0.0499 239
Dog 6684 Leonberger 0.0499 239
Dog 6589 Leonberger 0.0499 255
Dog 6764 Great dane 0.0499 252
Dog 6770 Canadian shep-

herd
0.0499 233

Dog E Bouvier des 
Flandres

0.0499 238

Dog 6608 German shepherd 0.0499 247
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Editor’), surfaces were saved in STL format and imported 
into GEOMAGIC STUDIO™ 12-20 (Geomagic, Inc.) for 
surface closing and necessary smoothing. The subsequent 
measurement protocol for the digitization of landmark and 
semi-landmark coordinates followed an earlier protocol 
(Gunz et al. 2012; Gunz and Mitteroecker 2013), except for 
minor modifications (see below).

Quantification

Shape analysis of the bony labyrinth is based on evaluating 
a large number of landmarks and semi-landmarks. Land-
marks were digitized using AVIZO™ 6.1–8.1. Processing 
of landmark coordinates was done using Mathematica™ 
(Wolfram Research, Inc.). The measurement protocol for 
obtaining landmark data was described previously (Gunz 
et al. 2012). The procedure involves placing 20 landmarks 
and approximately 280 semi-landmarks, beginning with 
computing a midline skeleton of the surface model by thin-
ning the encased volume. This skeleton serves as a curvature 
template for placing midline landmarks of the semicircular 
canals and the common crus (Fig. 2). For the cochlea, we 
used a manually created midline skeleton. In addition to 
midline landmarks, a set of ‘outline’ measurement points 
were placed on the outer surface of each semicircular canal 
and the common crus, along a curve farthest away from the 
vestibule. To quantify shape of the oval window, another set 
of landmarks was placed along a curve on the margin of the 
oval window. Changes to the measuring protocol of Gunz 
et al. (2012) affected six landmarks (three on midline and 
three on outline) placed on the vestibular side of the ampul-
lae of the three semicircular canals and defining the starting 
point of the curves of each of the three canals. Instead of 
placing these landmarks at the fusion of the ampulla to the 
vestibule, they were placed midmost of the ampulla midline 
skeleton (Fig. 2). On the outline, the landmark is defined 

by the entry of the vestibular nerve into the bony ampulla. 
Another change affects the ending landmarks of the com-
mon crus that we placed in vestibular orientation, rather 
than aligning with the outline border of the vestibule (new 
template included as supporting information).

Bony labyrinth shape was analyzed using GM methods 
that require all specimens to have the same number of land-
marks (coordinates) at corresponding locations. Therefore, 
curves along the midlines and the outlines of the semicircu-
lar canals, the oval window, and the midline of the cochlea, 
were provided with uniform semi-landmark numbers. Sub-
sequently, semi-landmarks were allowed to slide along their 
respective curves to minimize the thin-plate spline bending 
energy between each specimen and the average shape (com-
puted as the mean of all Procrustes coordinates). This sliding 
step ensures geometric correspondence of the semi-land-
marks among individuals (Bookstein 1997; Gunz et al. 2005; 
Gunz and Mitteroecker 2013; Rohlf and Marcus 1993). The 
3D landmark and slide semi-landmark data on the semicircu-
lar canals, the oval window, and the cochlea, were converted 
into shape variables using Generalized Least Squares Pro-
crustes superimposition (Rohlf 1990). Procrustes superim-
position standardizes position and orientation and also scales 
all specimens to unit centroid size.

Principal component analysis (PCA) was used to evalu-
ate the Procrustes coordinates. Multivariate regression of 
the Procrustes shape coordinates on the natural logarithm 
of centroid size was used to study allometry (Gunz and Mit-
teroecker 2013). A permutation test (Good 2013), based on 
the Procrustes distance between group means, was computed 
to evaluate the statistical significance of shape differences 
among modern dogs and wolves. For this analysis, the length 
of the Procrustes distance between the two group averages, 
with average differences computed after randomly reshuf-
fling group affiliations 5000 times, was compared (Mitter-
oecker and Gunz 2009). All data processing and statistical 

Fig. 2   Only midline (a) and midline and outline (b) set of landmarks (midline: green; outline: red) landmarks and semi-landmarks (orange) used 
for statistical shape analysis
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analyses were performed in Mathematica™ (Wolfram 
Research, Inc.), using software routines developed by PG 
and Philipp Mitteroecker (Gunz and Mitteroecker 2013).

Results

Total skull length in wolves (250 mm ± 8.1 mm) did not 
differ significantly (p = 0.094) from mesaticephalic dogs 
(245 mm ± 12.6 mm). Dogs and wolves overlap broadly 
in bony labyrinth size (Fig. 3), but mean centroid size of 
the landmark configuration in wolves is significantly larger 
(p = 0.011) than in dogs, implying slightly larger bony laby-
rinth in wolves, where skull length is comparable.

The first three principal components (PCs) of canine bony 
labyrinth shape explain 50% of the total variance. Shape 
space of the first three PCs reveals that wolves and dogs 
form non-overlapping clusters (Fig. 4) with mean shapes 
that differ significantly (p < 0.001). The main axis of separa-
tion between wolves and dogs is found along PC 1, explain-
ing 24.8% of total variance (Figs. 4, 5). In contrast, dogs 
and wolves overlap broadly on PC 2 (15.4% of total sample 
variance) and PC 3 (10.1% of total sample variance). The 
variance of shape is similar between wolves (0.00276) and 
modern dogs (0.00286).

Allometry had a significant effect (p < 0.001) on distri-
butions of shape variables over the entire study popula-
tion, explaining 6.7% of the total variance. Scaling explains 
slightly more of the shape variance among modern dogs 
(11.4%) than wolves (10.1%), (p < 0.001). Centroid size cor-
relates more strongly with PC 2 (r = 0.543, explaining 30% 
of variance) than with PC 1 (r = − 0.191, explaining 4% of 
variance), with the latter defining the axis separating dogs 
from wolves.

The most pronounced shape difference involves the rela-
tive size of the lateral semicircular canal, being distinctly 
larger in modern dogs, based on a posterior-medial extension 
(Fig. 6). Wolves reveal slightly larger vertical semicircular 
canals, resulting from a superior elongation of the common 
crus (the part/limb shared by the anterior and posterior semi-
circular canal). The posterior semicircular canal in wolves 
shows more torsion, whereas in dogs it runs more planar. 
The slightly larger oval window in wolves is oriented more 
laterally than in dogs. Finally, relative cochlea streamline 
length is longer in wolves, adding approximately one-third 
of a turn. Relative to the caudal vestibular portion, the more 
rostral central bony axis of the cochlea (the modiolus), 
housing the cochlear nerve and the spiral ganglion, is tilted 
slightly more anteroventrally in dogs, compared to wolves 
(Fig. 6).

Discussion

We found significant differences between bony labyrinth 
mean shapes of modern wolves and similar-sized modern 
dogs, resulting in non-overlapping clusters in shape space. 
Bony labyrinth shape thus allows clear separation between 
the two sub-species.

The total amount of variation in the shape of the bony 
labyrinth was similar in modern dogs and wolves (Schweizer 
et al. 2017). This result is confirmed by our study, although 
we used a different landmark protocol (Gunz et al. 2012). 
This equality of variance likely results from the relatively 
conserved configuration of the bony structures surrounding 
the labyrinth. Indeed, housed inside the petrous bone, the 
bony labyrinth is part of the basicranium, a region known to 
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Fig. 3   Box-plot showing the distribution of centroid size (displayed 
on the y axis) of Procrustes shape variables of the bony labyrinths of 
modern mesaticephalic dogs and modern Eurasian wolves showing 
the on average slightly larger bony labyrinths of the latter group

PC 1 (25%)

PC 2
(16%)

PC 3
(10%)

Fig. 4   3D shape space of Procrustes shape variables (PC1-3). Mod-
ern Eurasian wolves (red) and modern mesaticephalic dogs (blue). 
The central line in each convex hull depicts the dog and wolf trajecto-
ries of allometry in the 3D shape space
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Fig. 5   2D shape space of Pro-
crustes shape variables (PC1 vs. 
PC2 and PC1 vs. PC3). Modern 
Eurasian wolves (red) and mod-
ern mesaticephalic dogs (blue). 
The central line in each convex 
hull depicts the dog and wolf 
trajectories of allometry in the 
2D shape space. Bony labyrinth 
shape changes related to the 
individual PC axes are visual-
ized three standard deviations 
away from the mean, in negative 
(gray) and positive (red) direc-
tion. All shape changes are visu-
alized in lateral and superior 
view for the first three PC axes
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Fig. 6   Mean shapes of modern Eurasian wolves (red) and modern mesaticephalic dogs (blue) in lateral (a), superior (b), and oblique, ventro-
lateral (c) view. ASC anterior semicircular canal, PSC osterior semicircular canal, LSC lateral semicircular canal, OW oval window
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show less anatomical variation compared to other parts of 
the canine skull (Lüpz 1974). Since shape of the mamma-
lian bony labyrinth has been shown to co-vary with aspects 
of the remaining basicranium (Spoor and Zonneveld 1998; 
Gunz et al. 2013), it is likely that dog vs. wolf variation in 
labyrinth shape relates to constraints imposed by develop-
mental integration within the cranial skull base of modern 
dogs and wolves. This developmental differentiation should 
be present prenatally (as development of the bony laby-
rinth is completed before birth), and not based on postnatal 
ontogenetic diversity occurring during growth (Wayne and 
Vilà 2001; Jeffery and Spoor 2004; Costeur et al. 2017; Gei-
ger et al. 2017). Shape variances between dogs and wolves 
suggest that there is no relaxed stabilizing selection on the 
canine bony labyrinth, as the result of domestication (Perier 
et al. 2016). However, relaxed stabilizing selection would be 
expected in domesticated wolves (dogs), based on reduced 
natural selection pressure (e.g. bright coat color survivors 
that are not present in the wild); reduced food stress (anthro-
pogenic food sharing and feeding); and reduced intra- (other 
wolf pack conflicts as the main death cause in wolves) and 
inter-species (e.g., bears) carnivore competition.

Centroid size of the labyrinth is significantly smaller 
among our modern dog sample, implying a smaller overall 
labyrinth size, despite congruence of cranial size. Correla-
tion between inner ear size and brain volume might be an 
underlying explanation, as brain volume ratio is smaller in 
dogs compared to similar-sized wolves (Kruska 1986, 1988a, 
b; Geiger and Haussman 2016). Brain size reduction (about 
25%) is typical for domesticates (Arbuckle 2002; Zeder et al. 
2006; Zeder 2012), and is the result of the reduced stress, 
related to the anthropogenic environment (Hemmer 1973; 
Zeder 2012). Brain size reduction is not a general phenom-
enon but caused by reduction of specific brain structures, 
localized specifically in the metencephalon, specifically the 
reticulo-activated system (RES) (Boitani and Ciucci 1995; 
Kruska 1988a). This region also houses the brain nuclei 
innervating the labyrinth. As a result of this selective brain 
size reduction, there is reduced hypothalamic-adrenocorti-
cotropic hormone production and secondary reduced adre-
nal glucocorticosteroid production (Arbuckle 2002; Belyaev 
et al. 1985; Hemmer 2005; Trut et al. 2009).

Shape differences between bony labyrinths of wolves 
and modern dogs do not result from differences in overall 
labyrinth size since the species segregate by shape changes 
along PC 1, which is affected only weakly by allometry 
(4% of variance explained by PC 1). Hence, shape differ-
ences between wolf and dog labyrinths must result from 
other factors. Simple correlations between vestibular 
bony labyrinth shape and function of the inner ear have 
been disputed (David et al. 2016), and the contribution of 
vestibular functional factors to shape variation cannot be 
tested at present. Similar concerns apply to the functional 

shape of the cochlea (Manoussaki et al. 2008; Pietsch 
et al. 2017). Since sensory capacities of most dog breeds 
and wolves are thought to be similar (Scott 1950), shape 
changes in the canine labyrinth affecting mostly lateral 
canal size and cochlea shape could represent a response to 
the need of maintaining (instead of altering) similar audi-
tory and vestibular functions relative to absolute size dif-
ferences between inner ears of modern wolves and modern 
dogs. Given the close relationship between cranial base 
morphology and bony labyrinth shape in other mammals 
(Spoor and Zonneveld 1998; Jeffery and Spoor 2004; Gunz 
et al. 2013), it appears likely that shape disparity may 
relate mainly to spatial constraints (Pietsch et al. 2017) 
or differences in neurocranial developmental integration.

Our data suggest that bony labyrinth shape is a neomor-
phic feature of modern dog anatomy that allows differen-
tiation of modern wolves and modern dogs. Possibly, these 
observations were obscured in earlier studies by allometric 
effects resulting from the large size range among modern 
dogs (Schweizer et al. 2017). The ability to differentiate 
modern dogs and wolves with similar skull lengths dem-
onstrates that bony labyrinth shape is a viable taxonomic 
marker.

Conclusion

In modern Eurasian wild wolves and modern mesatice-
phalic dogs of comparable skull length, the inner ear dif-
fers statistically in: centroid size (smaller in dogs); relative 
size of the lateral semicircular canal (larger in dogs); rela-
tive size of the vertical canal (smaller in dogs); and is less 
twisted, more planar in form in the vertical canal (dogs). 
Relative size of the oval window and cochlea streamline 
length also differ (smaller in dogs), and the modiolus 
is tilted anteroventrally in dogs. Based on these differ-
ences, inner ears of similar sized modern dogs and modern 
wolves can be differentiated with certainty.

Acknowledgements  We would like to thank Manu Dierickx from 
Ghent University for helping with the making of CT scans in dogs. 
Several dog skulls were provided by Museos, a private osteology 
museum owned by Luc Tyteca, and The University of Ghent, Faculty 
of veterinary medicine, Department of anatomy, under supervision of 
Paul Simons, both are thanked for allowing us to scan their collec-
tions. Christiane Funk and Frieder Mayer from the Naturkundemuseum 
Berlin are thanked for access to wolves. Many thanks go also to Heiko 
Temming and David Plotzki for help with CT scanning. Dominique 
Adriaens is thanked for helping with genetics. Dennis Lawler is 
thanked explicitly for linguistic assistance. The reviewers and editor 
are thanked for accepting this article and their helpful suggestions.

Funding  The study was funded by the Max Planck Institute, no specific 
grant number.



416	 Zoomorphology (2019) 138:409–417

1 3

Compliance with ethical standards 

Conflict of interest  There are no conflicts of interest for any of the 
authors.

Ethical approval  No animals were involved, skulls were from existing 
collections. No humans were involved.

Human and animal rights statement  This article does not contain any 
studies with human participants or animals, performed by any of the 
authors.

References

Aggarwal R, Kivisild T, Ramadevi J, Singh L (2007) Mitochondrial 
DNA coding region sequences support the phylogenetic distinc-
tion of two Indian wolf species. J Zool Sys Evol Res 45:163–172

Alloing-Séguier L et al (2013) The bony labyrinth in diprotodontian 
marsupial mammals: diversity in extant and extinct forms and 
relationships with size and phylogeny. J Mamm Evol 20:191–198

Ameen C et al (2017) A landmark-based approach for assessing the 
reliability of mandibular tooth crowding as a marker of dog 
domestication. J Archaeol Sci 85:41–50

Arbuckle BS (2002) Experimental animal domestication and its appli-
cation to the study of animal exploitation in prehistory. In: Vigne 
J-D (ed) International conference of archaeozoology. Oxbow 
books, Durham, pp 18–33

Belyaev DK, Plyusnina IZ, Trut LN (1985) Domestication in the silver 
fox (Vulpes Fulvus Desm): Changes in physiological boundaries 
of the sensitive period of primary socialization. Appl Anim Behav 
Sci 13:359–370

Boitani L, Ciucci P (1995) Comparative social ecology of feral dogs 
and wolves. Ethol Ecol Evol 7:49–72

Bookstein F (1997) Morphometric tools for landmark data: geometry 
and biology. Cambridge University Press, Cambridge

Costeur L et al (2017) Prenatal growth stages show the develop-
ment of the ruminant bony labyrinth and petrosal bone. J Anat 
230:347–353

David R et al (2016) Assessing morphology and function of the semi-
circular duct system: introducing new in situ visualization and 
software toolbox. Sci Rep 6:32772

de León MS et al (2018) Human bony labyrinth is an indicator of popu-
lation history and dispersal from Africa. PNAS 115:4128–4133

Drake A, Klingenberg C (2010) Large-scale diversification of skull 
shape in domestic dogs: disparity and modularity. Am Nat 
175:289–301

Drake A, Coquerelle M, Colombeau G (2015) 3D morphometric analy-
sis of fossil canid skulls contradicts the suggested domestication 
of dogs during the late Paleolithic. Sci Rep 5:8299

Drake A et al (2017) Three-dimensional geometric morphometric 
analysis of fossil canid mandibles and skulls. Sci Rep 7:9508

Geiger M, Haussman S (2016) Cranial suture closure in domestic 
dog breeds and its relationships to skull morphology. Anat Rec 
299:412–420

Geiger M et al (2017) Neomorphosis and heterochrony of skull shape 
in dog domestication. Sci Rep 7:13443

Good P (2013) Permutation tests: a practical guide to resampling meth-
ods for testing hypotheses. Springer, New York

Gunz P, Mitteroecker P (2013) Semilandmarks: a method for quantify-
ing curves and surfaces. Ital J Mamm 24:103–109

Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three 
dimensions. Modern morphometrics in physical anthropology. 
Springer, New York, pp 73–98

Gunz P et al (2012) The mammalian bony labyrinth reconsidered, 
introducing a comprehensive geometric morphometric approach. 
J Anat 220:529–543

Gunz P et al (2013) Morphological integration of the bony labyrinth 
and the cranial base in modern humans and Neandertals. PESHE 
2:104

Hemmer H (1973) Zur Abstammung des Haushundes und zur 
Veränderun der relativen Hirngrösse bei der Domestikation. In:  
Zoologische Beitragen, vol  21, pp 97–104

Hemmer H (2005) Neumuhle-Riswicker Hirsche-Erste planmassige 
Zucht einer neuen Nutztierform. Naturwissenschaftliche Rund-
schau 58:255–261

Janssens L, Miller R, Van Dongen S (2016a) The morphology of the 
mandibular coronoid process does not indicate that Canis lupus 
chanco is the progenitor to dogs. Zoomorphology 135:269–277

Janssens L, Spanoghe I, Miller R, Van Dongen S (2016b) Can orbital 
angle morphology distinguish dogs from wolves? Zoomorphol-
ogy 131:149–158

Janssens L, Verhaert L, Berkowic D, Adriaens D (2016c) A standard-
ized framework for examination of oral lesions applied to a series 
of Middle)East wolf skulls (Carnivora: Canidae: Canis lupus). J 
Mamm 97:1111–1124

Janssens L et al (2019) An evaluation of classical morphologic and 
morphometric parameters reported to distinguish wolves and 
dogs. J Arch Sci Rep 23:501–533

Jeffery N, Spoor F (2004) Prenatal growth and development of the 
modern human labyrinth. J Anat 204:71–92

Kruska D (1986) How fast can total brain size change in mammals? J 
Hirnforsch 28:59–70

Kruska D (1988a) Effects of domestication on brain structure and 
behavior in mammals. Human Evol 3:473–485

Kruska D (1988b) Mammalian domestication and its effect on brain 
structure and behavior. Intelligence and evolutionary biology. 
Springer, New York, pp 211–250

Lam Y, Chen X, Pearson O (1999) Intertaxonomic variability in pat-
terns of bone density and the differential representation of bovid, 
cervid, and equid elements in the archaeological record. Am Antiq 
64:343–362

Lam Y, Pearson O, Marean CW, Chen XJ (2003) Bone density studies 
in zooarchaeology. J Archaeol Sci 30:1701–1708

Lebrun R, De León M, Tafforeau P, Zollikofer C (2010) Deep evolu-
tionary roots of strepsirrhine primate labyrinthine morphology. J 
Anat 216:368–380

Lüpz P (1974) Biometrische Untersuchungen an den Schädelbasis des 
Haushundes. Zool Anzeitungen 192:383–413

Lyman R (1984) Bone density and differential survivorship of fossil 
classes. J Anthropol Archaeol 3(4):259–299

Manoussaki D et al (2008) The influence of cochlear shape on low-
frequency hearing. PNAS 105:6162–6166

Masschaele B et al (2013) A 240 kV micro-CT setup optimized for 
research. J Phys Conf Ser 463:012012 (IOP Publishing)

Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. 
Evol Biol 36:235–247

Nummela S (1995) Scaling of the mammalian middle ear. Hear Res 
85:18–30

Perier A, Lebrun R, Marivaux L (2016) Different level of intraspecific 
variation of the bony labyrinth morphology in slow-versus fast-
moving primates. J Mamm Evol 23:353–368

Pietsch M et al (2017) Spiral form of the human cochlea results from 
spatial constraints. Sci Rep 7(1):7500

Rohlf F (1990) Morphometrics. Ann Rev Ecol Syst 21:299–316
Rohlf F, Marcus LF (1993) A revolution morphometrics. Trens Ecol 

Evol 8:129–132
Schweizer A et al (2017) Size variation under domestication: conserva-

tism in the inner ear shape of wolves, dogs and dingoes. Sci Rep 
7:13330



417Zoomorphology (2019) 138:409–417	

1 3

Scott J (1950) The social behavior of dogs and wolves: an illustration 
of sociobiological systematics. Ann N Y Acad Sci 51:1009–1021

Slatter D (2003) Textbook od small animal surgery. Saunders, 
Philadelphia

Spoor F, Zonneveld F (1998) Comparative review of the human bony 
labyrinth. Am J Phys Anthropol 107:211–251

Spoor F et al (2007) The primate semicircular canal system and loco-
motion. PNAS 104:10808–10812

Thalmann O et al (2013) Complete mitochondrial genomes of ancient 
canids suggest a European origin of domestic dogs. Science 
342:871–874

Trut L, Oskina I, Kharlamova A (2009) Animal evolution during 
domestication: the domesticated fox as a model. BioEssays 
31:349–360

Von den Driesch A (1976) A guide to the measurement of animal 
bones from archaeological sites: as developed by the: Institüt fur 

Palaeoanatomy, Domestikanzionsforschung und Geschichte der 
Tiermedizin, University Munich. Cambridge Peabody Museum 
Press, Cambridge

Wayne R, Vilà C (2001) Phylogeny and origin of the domestic dog. 
Genet Dog 1:13–21

Zeder M (2012) The domestication of animals. J Anthropol Res 
68:161–190

Zeder MA,  Emshwiller E,  Smith BD,  Bradley DG (2006) Document-
ing domestication: the intersection of genetics and archaeology. 
Trends Genet 22:139–155

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Bony labyrinth shape differs distinctively between modern wolves and dogs
	Abstract
	Introduction
	Materials and methods
	Study population and imaging
	Quantification

	Results
	Discussion
	Conclusion
	Acknowledgements 
	References




