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ABSTRACT

Patients with Lock-In-Syndrome (LIS) lost their ability to control any body part besides
their eyes. Current solutions mainly use eye-tracking cameras to track patients’ gaze as
system input. However, despite the fact that the interface design strongly impacts the
user experience, only a few guidelines have been used so far to ensure an easy, quick, fluid
and non-tiresome computer system control for these patients. On the other hand, the
emergence of dedicated computer software has been greatly increasing the patients’ ca-
pabilities, but there is still a great need for improvements as existing systems still present
low usability and limited capabilities. Most interfaces designed for LIS patients aim at
providing internet browsing or communication abilities. State of the art augmentative
and alternative communication systems mainly focus on communication based on words
to form sentences without considering the need for emotional expressions inextricable
from human communication.

This thesis aims at exploring new types of system control and expressive modali-
ties for people with LIS. Firstly, existing gaze-based web-browsing interfaces were in-
vestigated. Page analysis and high mental workload appeared as recurring issues with
common systems. To address these issues, a novel user interface using an innovative
menu control reducing eye movements and therefore fatigue was designed and evalu-
ated against a commercial system. The results suggested that it is easier to learn and
to use, quicker, more satisfying, less frustrating, less tiring and less prone to error. The
mental workload was greatly diminished with this system. Other types of system control
for LIS patients were then investigated in particular using a gaze-controlled game. It was
found that galvanic skin response may be used as system input and that stress related
bio-feedback helped lowering mental workload during stressful tasks.

Improving communication was one of the main goals of this research and in parti-
cular emotional communication. A system including a gaze-controlled emotional voice
synthesis and a personal emotional avatar was developed with this purpose. The assess-
ment of the proposed system highlighted its capability to enhance dialogs and to allow
emotional expression. Enabling emotion communication in parallel to sentences was
found to help with the conversation. Automatic emotion detection seemed to be the
next step toward improving emotional communication. Several studies established that
physiological signals relate to emotions. The ability to use physiological signals sensors
with LIS patients and their non-invasiveness made them an ideal candidate for this study.
One of the main difficulties of emotion detection is the collection of high intensity affect-
related data. Studies in this field are currently mostly limited to laboratory investigations,
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using laboratory-induced emotions, and are rarely adapted for real-life applications. A
virtual reality emotion elicitation technique based on appraisal theories was proposed
here in order to study physiological signals of high intensity emotions in a real-life-like
environment. While this solution successfully elicited positive and negative emotions, it
did not elicit the desired emotions for all subjects and was therefore, not appropriate for
the goals of this research. Collecting emotions in the wild appeared as the best method-
ology toward emotion detection for real-life applications. The state of the art in the field
was therefore reviewed and assessed using a specifically designed method for evaluat-
ing datasets collected for emotion recognition in real-life applications. The proposed
evaluation method provides guidelines for future researcher in the field. Based on the
research findings, a mobile application was developed for physiological and emotional
data collection in the wild. Based on the appraisal theory, this application provides guid-
ance to users to provide valuable emotion labelling and help them differentiate moods
from emotions. A sample dataset collected using this application was compared to one
collected using a paper-based preliminary study. The dataset collected using the mo-
bile application was found to provide a more valuable dataset with data consistent with
the literature. This mobile application was used to create an open-source affect-related
physiological signals database.

While the path toward emotion detection usable in real-life applications is still long,
we hope that the tools provided to the research community will represent a step toward
achieving this goal in the future. Automatically detecting emotion could not only be used
for LIS patients to communicate but also for total-LIS patients who have lost their ability
to move their eyes. Indeed, giving the ability to family and caregiver to visualize and
therefore understand the patients’ emotional state could greatly improve their quality of
life.

This research provided tools to LIS patients and the scientific community to improve
augmentative and alternative communication, technologies with better interfaces, emo-
tion expression capabilities and real-life emotion detection. Emotion recognition meth-
ods for real-life applications could not only enhance health care but also robotics, do-
motics and many other fields of study.

A complete system fully gaze-controlled was made available open-source with all the
developed solutions for LIS patients. This is expected to enhance their daily lives by im-
proving their communication and by facilitating the development of novel assistive sys-
tems capabilities.
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1
INTRODUCTION

1.1 Motivations

Amyotrophic Lateral Sclerosis (ALS) is an “idiopathic, fatal neurodegenerative disease
of the human motor system”, which can lead to a locked-in syndrome (LIS) [Kiernan
et al., 2011]. LIS is a medical condition “characterized by quadriplegia and anorthic with
preservation of consciousness. Patients retain vertical eye movement“ [Jacob, 1995]. LIS
patients’ abilities are limited, especially in terms of computer system control and com-
munication. Their remaining ability to control their eyes is often used as input for user in-
terfaces thank to eye-tracking technology. However, few guidelines are available to build
gaze-controlled interfaces and other types of system input may be investigated. When it
comes to communication, most patients use spelling boards (Fig. 1.1) or simple blinking
codes in order to express themselves. Several systems provide adapted communication
modalities using gaze-controlled software systems. However, existing dedicated systems
usually focus on word spelling not taking into consideration that human-human com-
munication goes way beyond words. It also includes actions such as face expressions,
hand gestures, para-verbal signals and physical contacts. While written expressions like
emoticons are commonly used in Computer-Mediated Communication (CMC) to trans-
fer those emotions, it is not a naturalistic way to express emotions and it is not adapted to
text-to-speech communication systems used by ALS patients. Considering this context,
the main goal of this research is to build novel modalities of technologically mediated
communication designed to improve ALS patients’ quality of life. Such solutions must
provide novel interfaces adapted to LIS patients capabilities and provide them a more
extensive, and complete communication systems. It should improve their ability to ex-
press emotions as well as words. To further explore this goal, this research also aims at
providing tools for research in emotion detection from physiological signals for real-life
applications.
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2 1. Introduction

Figure 1.1: E-TRAN letter board. Image Courtesy of Low Tech Solutions.

1.2 Hypothesis

Based on the previously presented motivations, two hypothesis were raised:

• Novel interface designs can increase user experience.

• Emotion expression can improve the communication abilities of LIS patients

1.3 Approach

In order to improve interface control for LIS patients, available inputs were investigated,
in particular, eye-tracking solutions and physiological signals. The extent of their usabil-
ity and limitations were established. A gaze-controlled speaking tool was then developed
aiming at expressing emotions as well as words. While selecting the desired emotion was
possible, studying the possibility of an automatic detection seemed like the next step
toward an improved communication experience. A virtual reality (VR) game aiming at
inducing emotion for physiological signal data collection was developed. However, the
limits of induced emotion studies seemed too important and a decision to move toward
real-life emotional data collection was made for investigations in ecologically valid set-
tings. The possibility of detecting real emotions better meets the end needs of the re-
search. The state of the art in terms of emotion recognition outside the laboratory and
emotion recognition for real-life application was established. Only few studies investi-
gated emotion recognition outside of the laboratory and this research line remains at an
early stage. Considering that no emotionally labelled physiological signal dataset in the

1
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1.4. Contributions 3

wild were available in open-access, a data collection had to be conducted. In order to
comprehend the challenges of data collection in the wild, a preliminary study was car-
ried out using standard paper-based methods. It showed great flaws in user-labelled data
making the collected data nearly unusable. It then seemed necessary to develop a better
way of collecting data to acquire the ground truth. To do so, a mobile application was de-
veloped using both the guidelines found in the literature and the lessons learnt from the
preliminary study. A data collection using the mobile application confirmed the validity
of the developed mobile application compared to the paper-based solution. The appli-
cation was then used to collect a great number of data in order to create an open-source
dataset available to researchers desiring to pursue this topic. Finally, a complete system
fully gaze-based was designed for LIS patients including all developed tools.

1.4 Contributions

This thesis aims at improving user experience regarding both computer system control
and communication for LIS patients.

1.4.1 Improving control

Two types of system controls were considered. First of all, the limitations of the classic
and most commonly used computer system input was studied: gaze. The guidelines for
gaze-based interface designs are limited. The impact of internet browsing interfaces on
capabilities, speed and mental workload was studied. A novel design was developed us-
ing an innovative menu control reducing eye movements and therefore fatigue.

Secondly, other types of inputs were explored. Especially, voluntary physiological sig-
nal alteration based on Galvanic Skin Response (GSR). GSR-based control associated with
gaze-based control were used as inputs for a video game. It was found that GSR could be
voluntarily controlled by users and successfully used as computer system input. Addi-
tionally, bio-feedback display was found to lower mental workload in stressful environ-
ments.

1.4.2 Improving communication

A classic gaze-controlled keyboard interface with word autocompletion was first devel-
oped. In order to improve communication, the later was enhanced to provide emotion
communication in addition to words. The interface provides emoticon selection manag-
ing an emotional avatar as well as a emotional voice synthesis. The emotional system was
found more helpful for communication compared to a classic system. Additionally, the
possibility of an automatic emotion detection system was considered to improve such
system. A VR-game was developed successfully inducing positive and negative emotions
on subjects. Tools helping research towards emotion detection in real-life settings were
developed. Notably a review of existing works on emotion stress and mood recognition
outside of the laboratory for real-life applications, and the creation of new method for
assessing these studies. In order to improve the quality of self-report collection in the

1



4 1. Introduction

wild, a mobile application was created to help the user provide ground-truth emotion
labels. The application was then used to create a large dataset of emotionally-labeled
physiological signals in real-life settings.

1.5 Overview of the Thesis

The thesis is organized as follow: Chapter 2 presents research contributions regarding
user interfaces control. Chapter 3 focuses on emotion communication systems. Chapters
4, 5 and 6 discuss emotion detection for real-life application in greater details. Chapter 4
investigates emotional data collection methodologies. Chapter 5 focuses on alternative
data collection methods in the laboratory while Chapter 6 presents a novel solution for
emotion detection for real-life application and the database created using this solution.
Chapter 7 presents the resulting system made available to LIS patients. Finally, conclu-
sions and possible future research directions are provided in Chapter 8.

1



2
IMPROVING USER INTERFACES CONTROL

Eye-tracking technologies greatly assist the interactions and communication acts of motor-
impaired people, specially of those only able to control their ocular movements (Locked-
In Syndrome, LIS, as in late stages of Amyotrophic Lateral Sclerosis, ALS) [Kiernan et al.,
2011]. It allows, for instance, to select letters on a screen to compose a message in an intu-
itive fashion [Söderholm et al., 2001]. However, eye-tracking technologies can show lim-
itations in terms of user experience [Majaranta and Räihä, 2002]. For instance, it can
increase users’ mental workload due to repetitive ocular movements in demanding tasks
[Yuan and Semmlow, 2000]. It can lead to users’ frustration, and to a degradation in the
engagement and motivation in using eye-tracking. Thus, it is necessary to design novel
solutions improving the user experience with particular attention to its aspects related to
users’ workload. Other types of input may also be investigated to extend the range of LIS
capabilities.

2.1 Design and Evaluation of an Open-source Gaze-controlled GUI
for Web-browsing

Few ocular control modalities have been explored so far, with a dearth of guidelines to
build gaze-controlled systems [Majaranta, 2011]. In particular, most gaze commands are
based on dwelling [Jacob, 1995] (activating a UI item when the user looks at it for a certain
time - dwell time) or on eye gestures [Porta and Ravelli, 2009] (e.g., looking from left to
right). Gaze control often represents the LIS people’s sole interaction method, thus it is
essential to make it easier, quicker and more efficient. The interaction mechanic of the
system should, therefore, avoid inducing actions known to be tiring such as repetitive
saccadic eye movements [Yuan and Semmlow, 2000].

With the purpose of increasing LIS people’s web-surfing experience, this section presents
an open-source internet browser design based on eye-tracking. It promotes a way of
quickly controlling the browser while imposing minimal screen clutter and requiring
minimal eye movements. The interface provides the user with full freedom to control
any website, generally including the ones not specifically designed for people with dis-
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6 2. Improving user interfaces control

abilities. Here, the usability, user experience, and performance of the proposed browser
were compared to those of a typical eye-tracking Graphical User Interface (GUI): the de-
fault configuration of The Grid 3 [ThinkSmartBox, 2011]. The new open-source system
is referred as SightWeb. It can be freely downloaded with technical documentation [Lar-
radet, 2018].

2.1.1 Internet browsing control modalities

Only solutions proposed by dedicated gaze-controlled internet applications are discussed
here such as The Grid 3 [ThinkSmartBox, 2011] rather than systems available to control a
complete operating system such as Optikey [Sweetland, 2015].

The main functions for internet browsing are link selection, scrolling and text typing.
In the case of common accessible and gaze-controlled web-browsers such as The Grid 3,
links and buttons are extracted from the page by the system. They can then be selected
using different techniques. Side buttons might allow to travel from link to link or a menu
might contain all links displayed as buttons [ThinkSmartBox, 2011]. Many solutions con-
sist in gazing at the desired link. An increased precision might be done by progressively
zooming in the gazed area [Menges et al., 2017] or by confirming the desire to click on
a specific link through color coding [Kondaveeti et al., 2016]. Other methods might in-
clude gaze gesture such as performing an upside then downside gaze movement [Porta
and Ravelli, 2009].

To perform scrolling, existing solutions include side buttons [ThinkSmartBox, 2011]
that might trigger an additional speed selection menu [Porta and Ravelli, 2009]. Those
methods do not provide contextual scrolling of specific areas and therefore would not be
able to deal with a website containing several windows with several scroll bars, such as
the one in Figure 2.2.a. Additional methods allow to contextually scroll an area by looking
at the corner of it [Menges et al., 2017].

When it comes to text input, most existing solutions require manual trigger of the
keyboard using side buttons [ThinkSmartBox, 2011]. Gazable buttons added to the top of
the page when textfields are detected represent another solution found in the literature
[Menges et al., 2017] (Fig. 2.1). However, this solution occludes the page and might in-
duce erroneous selections. Displaying the keyboard presents a choice between providing
comfortable size buttons [Menges et al., 2017] or allowing the user to visualize the page
while writing by diminishing the size of the keys [ThinkSmartBox, 2011]. The first solu-
tion however prevents from modifying an existing text (e.g., a draft email), and viewing
text proposals (e.g., Fig. 2.2.c).
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Figure 2.1: Gaze The Web interface, example of gazable buttons for text input

An important limitation for most of the previously cited techniques is the need for
page analysis. Indeed, the systems must know where the links are in the page, what is a
text-field, what is scrollable. Because of rapidly changing web technology, such system
should be frequently updated to detect which UI items are clickable or can be written
in. It is risky and challenging to use page analysis in order to provide functionalities for
actions as an oversight or a fail to upgrade might make the page features inaccessible.

Finally, most gaze-controlled internet applications include side buttons which re-
quire constant movement back and forth from the action buttons to the web view. This
motion could cause fatigue [Yuan and Semmlow, 2000]. Such buttons should therefore be
limited as much as possible. Next subsections will present SightWeb in details and com-
pare its design with The Grid 3, notably in terms of speed, appreciation, eye movements
and screen usage.

2.1.2 GUI design approach

The ideal gaze-controlled internet browser must satisfy several requirements. First of all,
it needs to be quick to use (high ‘action-speed’) and have a minimally invasive screen-
space usage. It should be able to understand users’ actions without confusing their nat-
ural eye movements with a command [Jacob, 1993]. In terms of gaze detection, several
solutions are available for a great range of prices (increasing with precision). However,
financial accessibility is a priority to provide systems to many patients. Thus, it is neces-
sary to overcome the low control precision and the risk of errors through proper design.

Furthermore, a system that is too demanding in terms of mental workload also in-
duces fatigue [Ahsberg et al., 2000]. Therefore, two factors affecting mental workload
should be considered. First of all, the intuitiveness of the system [Naumann et al., 2007]
is important so that the user do not have to intensely and repeatedly think about how to
use the system to perform actions. Secondly, repetitive eye movements must be mini-
mized as they have a negative impact on mental workload [Yuan and Semmlow, 2000].
Consequently, the design of the proposed system took as requirements the needs to work
with low-cost eye-tracking devices, to provide an intuitive interaction paradigm, and to
minimize necessary eye movements for control.
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8 2. Improving user interfaces control

The ideal system would permit a LIS person to perform the same actions as a regu-
lar user, such as: clicking on regular buttons, clicking on links, clicking on other items
such as form-like items (e.g. drop-down menu, radio buttons), hovering (which includes
mouse aspect changes, color changes, and contextual menus opening), scrolling in the
case where there are several windows and several scroll bars, e.g. Figure 2.2.a. It is im-
portant to be able to update an already written text (modify a draft for example), see the
suggestions from the website while writing (Fig. 2.2.c), and be able to select this sugges-
tion.

Lastly, the system needs to stay usable regardless of new web technologies updates.
Building a system dependent on knowledge of the web components in the page would
need constant system updates to keep it usable. For this reason, the system should not
depend on current web technology knowledge and therefore would not need updating.

2.1.3 Proposed design

To control any kind of website (including web-based instant messaging and social net-
working) with general-purpose interfaces, not designed for people with motor disabili-
ties, the control of the cursor was given to the user in the same fashion as a computer
mouse. This provides all interface possibilities such as ‘hovering’, which is used in web-
sites, for example, to temporarily display a menu as the mouse passes over specific com-
ponents, change menu color, or change the mouse aspect. Mouse control also provides
the possibility to scroll in specific areas, in the case of websites containing several screen
parts with several scrolls (Fig. 2.2.a), or clicking on items that are not buttons or links
such as dropdown form options.

For the general aspect of SightWeb (Fig. 2.2), the size of the browser itself was maxi-
mized and, therefore, the number of buttons on the main page were greatly limited. At
the top, 6 buttons are available to the user to control the system. Firstly, a menu button;
it opens a menu to allow user customization of dwell times. The second button puts the
system into ‘sleep mode’, which allows the user to look at the page or simply rest without
worrying about unwanted button clicks. The next two buttons are used to go backwards
or forwards a page while the following button zooms the page. The last button allows
control of the mouse and therefore the performance of actions.
In the browser’s page itself, 4 semi-transparent scrolling buttons are placed on each cor-
ner of the page (Fig. 2.2.a). Looking at a corner of the page will scroll it in the desired
direction. In case of a multiple window page, the area of the page containing the mouse
will be scrolled. A classic dwell time control was implemented for all menu buttons. The
dwell times may be changed by the user in the customization menu (Fig. 2.3).
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Figure 2.2: General aspect of SightWeb.
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10 2. Improving user interfaces control

Figure 2.3: SightWeb customisation menu

The system first opens the home page selected by the users. The mouse is fixed in the
middle of the screen by default. To perform an action, it is needed to look at the ‘Move’
button for the selected dwell time (default dwell time is set to one second). The Move
button will change color according to its state as a visual feedback (Fig. 2.4). Once the
‘Move mode’ is on (red button), the users may control the computer mouse.

Figure 2.4: Move button states.

When "Move mode" is on, the browser’s mouse follows the users’ eyes. The gaze po-
sition is filtered to create fluid movement and remove jittering. The users can move the
mouse around freely for as long as they want, explore the hover actions on the buttons,
discover the hover menus etc. They then need to fixate their gaze on the position where
they want to do the action. A fixation is established when all the gaze points are within
a certain radius (dwell activation radius) during a certain time. Both the radius and the
time are customizable by the users in the menu. A large radius will allow for an easy fix-
ation of the mouse but, if too big, could induce false fixation detection and a less precise
final position. On the other hand, a smaller radius will have more precise positioning but
would be more difficult for users to fixate. Customization is then necessary considering
the great differences in the capacities of users.

Once a fixation is detected, a circular menu similar to Huckauf and Urbina [2008]
temporarily appears around the mouse (Fig. 2.2.b) and the scroll buttons are temporarily
removed from the screen (in case there is not enough space to display the menu around
the mouse, it is displayed to the side of the mouse). This solution enables the users to
directly access the menu without moving their eye gaze from the side of the screen and,
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Figure 2.5: Radial menu functionality explanation.

therefore, it helps minimize the required amount of eye movements. The center of the
menu is left empty to permit the users to see the mouse and to provide a ‘safe area’ to look
at the screen without triggering any actions. Around it, two buttons permit performing a
mouse click where the mouse is positioned or to fix the mouse position without perform-
ing a click.

The system was designed to work with Tobii 4C [Tobii Group, 2001], an entry level eye-
tracker, in order to be a low-cost and easily accessible system. However, using a device
for the general public results in an inaccurate gaze position measurement. Furthermore,
websites can often have very small buttons, links, and GUI items that necessitate precise
actions. For this reason, SightWeb provides a way to readjust the mouse position with
high precision to facilitate access to desired UI elements. This is done with buttons built
in a radial design (Fig. 2.2.b). Users can look anywhere in the direction of the button
in order to select it (Fig. 2.5). This allows a greater range of flexibility in clicking but-
tons without impacting the visual interface. The menu itself is slightly transparent to not
obscure the view.

The ‘Ok’ button permits either the dismissal of the menu or the fixation of the mouse
without performing an action. It is necessary for the contextual scrolling and zooming.
Indeed, the scroll action (corner buttons) can act in the area where the mouse is posi-
tioned. For instance, in Figure 2.2.a, fixing the mouse in the left area and then scrolling
would scroll the messages. On the other hand, positioning the mouse in the right area
would scroll the selected message. This functionality allows to fix the mouse once and
then always scroll from this point of the screen.

The ‘click button’ allows clicking at the position of the mouse. The keyboard is brought
up automatically when the users click on a text-field-like item (Fig. 2.2.c). It is detected
through the change of mouse appearance and not through the name of the html element
making it independent of web technologies updates. The web browser will stay displayed
while the keyboard is up so that the users can see the direct effect of their writing in the
page, for example propositions from the page (Fig. 2.2.c). The browser is automatically
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Figure 2.6: Steps to perform several actions with both systems.

zoomed on the text field. Pressing the up and down arrow keys in the keyboard allow
navigation through the page propositions. Pressing ‘send’ simulates the ‘entry key’ and
closes the keyboard. The steps to perform actions with each system can be found in (Fig.
2.6)

For the radial menu directional arrows and scrolling buttons, the users will likely re-
peat the same action in the same direction until the desired position is reached. There-
fore, the dwell time is reduced after the first time if the gaze rests on the same button. It is
reset to default if the users look anywhere else. The scrolling buttons were not integrated
in the radial menu as adding 4 buttons would require a 2-stage menu as in pEYE [Huckauf
and Urbina, 2008], increasing the time to do any action. Furthermore, while actions such
as clicking are punctual, scrolling may need to be done many times in the same page to
read a text for instance. It needed to be more accessible and always present while the
radial menu only appears when needed.

This design aims to provide a safe reading zone, with convenient scrolling functional-
ity and a responsive and easy way to control the mouse. The browser was made in Unity
with the “Embedded Browser" asset [LLC, 1016]. Unity was used in order for it to be in-
cluded with the other works presented in this thesis, therefore using only one technology.

2.1.4 Experimental evaluation

To assess SightWeb, it was compared to the default design of the reference product in
this class of assistive solutions: The Grid 3 [ThinkSmartBox, 2011] (Fig. 2.7), which was
regularly used by the 2 patients involved in this research. Only irrelevant buttons were
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removed (favorites, back to main menu, web address).

Figure 2.7: The Grid 3.

18 subjects without motor impairments were involved, 14 males and 4 females, ac-
cording to the IIT ADVR TEEP02 protocol (approved by the Ethical Committee of Lig-
uria Region). They were separated into two equal groups with similar average age (M=29
years, SD=5.9 years for group 1, SD=2.7 years for group 2) and gender balance. The sub-
jects were divided by condition according to a within-group experimental design with
2 factors, each one with 2 levels: task-factor (task 1, task 2), GUI-factor (The Grid 3,
SightWeb). The experiment was designed as within-subject as adaptative capabilities
greatly differ from subjects to subjects according to preliminary studies. A between-
subjects experiment design would therefore be biased or require a great number of par-
ticipants. None of the participants used an eye tracker before. The preliminary trial pe-
riod was designed to make sure participants understood its usage. While learning how to
use an eye-tracker may take many trials, it was considered here that both systems were
tested using the same knowledge and capabilities and therefore comparable. The alter-
nation of which system was tested first prevented the learning of the eye-tracking usabil-
ity and the learning of the tasks to bias the results.

Each participant accomplished two tasks with each system. Both tasks were achiev-
able by both tools. The first group of participants started the session with The Grid and
the other with SightWeb (Fig. 2.8). The first task consisted of searching for a personal
page on the IIT website. It was a short and simple task, without complex buttons or ac-
tions. The second task was more complex yet very common. It included actions such
as drop-down menus and auto-scrolling. It consisted of typing “eyetracker" into Google
search, sorting the results by month, going to the “Tobii gaming" page, clicking on the
“device/monitor" menu and following the “buy on Amazon" link, going to the reviews
and adding the device to the basket.

After signing the informed consent, the subjects were presented the first design (ei-
ther The Grid or SightWeb, according to the group) and the controls were explained. A
demonstration of the system was performed by the experimenter including basic actions
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Figure 2.8: Experimental flow.

such as clicking on a desired link, scrolling a page and writing on a text field. The sub-
ject then assumed a comfortable position in front of an external monitor equipped with a
Tobii 4C eye-tracking device. The participants calibrated the eye-tracker using the Tobii
software. This step was repeated as many times as necessary until the calibration was
considered successful. The proprietary calibration from The Grid was also used when
necessary (i.e. if the user was not able to click on certain buttons). The subject was then
asked to reproduce the same basic actions demonstrated by the experimenter. Help was
provided if necessary. Once the subject understood the controls of the software, the ex-
perimental tasks were performed. Recalibration was performed between tasks, if nec-
essary (e.g., participant moved, software seemed unusable). Questions from the subject
were not answered during the tasks unless they were related to the usage of the system
itself or to the task. Questions such as “I don’t remember how to scroll" were answered
but not questions such as “How do I reach this link, should I click “next link"?"

The subjects were then asked to fill in a user experience questionnaire with 9 state-
ments:

• (q1) My performance required too much time;

• (q2) The task was extremely demanding in terms of mental effort;

• (q3) Controlling the system was easy to learn so I could start using it quickly;

• (q4) Considering all the difficulties I experienced with the control system, the task
was frustrating;

• (q5) It was satisfying to use the tool;

• (q6) The system control was easy;

• (q7) The control of the system induced fatigues, stress and discomfort in my eyes;
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• (q8) My performance with this system in this task was frustrating;

• (q9) It is easy to make errors with this system.

While traditional questionnaires like SUS and NASA-TLX do not consider gaze control-
specific features, this questionnaire was designed according to Barresi et al. [2016] to
evaluate the user experience in such conditions. According to preliminary tests with both
people with and without motor impairments, default values of 15 pixels (0.4 cm) for the
SightWeb dwell activation radius and 1 second for the dwell time were selected. This was
the best compromise between accessibility and speed.

For each statement, the subjects were asked to answer using a rating scale from 0 to
100 (0 being “strongly disagree”, 50 “neither agree nor disagree” and 100 being “strongly
agree”). These Likert-type scales allow for the adoption of many inferential statistical
analyses, since they are perceptually similar to visually continuous scales [Jaeschke et al.,
1990]. The same steps were then repeated with the second system. When both tasks and
questionnaires were completed for both systems, the subjects were asked which system
they preferred. During tasks 1 and 2, a separate application was running in the back-
ground to calculate the total distance covered by the eyes during the task and the elapsed
time. The same experiment was conducted with two people with ALS in the late stages
of the disease, with preserved voluntary gaze movements (a 55 year-old male and a 58
year-old female) to assess the system with the intended end-users following the IIT ADVR
TEEP03 protocol (approved by the Ethical Committee of Lazio Region 2).

2.1.5 Data analysis and results

All measures (questionnaire scores, times, accumulative eye distances) collected from
subjects without motor impairment were analyzed through the Wilcoxon signed-rank
test because of a lack of normality in the distributions.

In terms of browser size (only page content, without buttons), on a 34.5cm by 19.4cm
screen, SightWeb displayed a 34.5cm x 16cm browser and The Grid 3 a 27cm x 14cm one.

2.1.5.1 User experience questionnaire

The questionnaire showed an overall significant preference of SightWeb compared to The
Grid (Fig. 2.9). The system control was found to be easier to learn (W=28.5 - p=0.08) and
to use (W=18 - p=0.02), more satisfying to use (W=4 - p=0.004) and less easy to make
errors (W=158 - p=0.002). The participants estimated that SightWeb was less demand-
ing in terms of mental effort (W=108.5 - p=0.006), they were more satisfied with their
performance (W=0 - p < 0.001) and less frustrated (W=113.5 - p=0.02) during the tasks.
The participants estimated that their tasks required less time with SightWeb (W=155.5 -
p=0.002), which correlated with the actual execution times. Finally, SightWeb induced
less fatigue, stress and discomfort in the eyes (W=103.5 - p=0.01), which correlated with
the actual accumulated eye distance for the task. Both patients preferred SightWeb to
The Grid in all aspects of the questionnaire.
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Overall, 16 subjects without disabilities and the 2 patients preferred SightWeb. 2 sub-
jects without disabilities preferred The Grid even if they ranked SightWeb better on av-
erage in almost all questions beside the overall satisfaction for the system (Q5). Once
the experiment finished, they were interviewed on such choice: they explicitly stated
that The Grid was good but, in their opinion, they were simply lacking skill in using The
Grid. However, the objective data (see sections 2.1.5.2 and 2.1.5.3) of the 18 participants
showed that the difficulty in using The Grid is not related to the skills of the individual.

Figure 2.9: Questionnaire results (means with standard deviations) for subjects without
motor impairment (* p < 0.05; ** p < 0.01).

2.1.5.2 Time

Figure 2.10: Total time (means with standard deviations) for each task and each system.
(** p < 0.01).

The average time to complete the first task was similar for both systems (Fig. 2.10): 2.7
minutes (162.2s) for SightWeb against 3.15 minutes (188.5s) for The Grid. On the first task,
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SightWeb was quicker on average but not significantly (W=121 - p=0.130). The second
task, more complex, took an average of 5 minutes (301.1s) for SightWeb and 12.5 minutes
(754.57s) for The Grid. SightWeb was significantly superior in terms of speed (W=171 -
p < 0.001). Similar results were found with the 2 patients in both Task1 (302s and 234s
with The Grid; 166s and 201s with SightWeb) and Task2 (1024s and 1228s with The Grid;
474s and 285s with SightWeb).

2.1.5.3 Accumulated gaze distance

Figure 2.11: Total accumulated eye distance (means with standard deviations) for each
task and each system. (** p < 0.01).

Accumulated eye distance during the tasks was calculated (Fig. 2.11). A shorter distance
would imply less saccades, therefore less fatigue. For each task, the total accumulated
eye displacement was compared for both systems (1000 px is displayed 1 Kpx). Total
accumulated eye distance equivalence in pixel, cm and cm/s can be found in Table 2.1.
The equivalence in cm was calculated using a 60 cm diagonal screen. The results of the
2 patients show similar scores in both Task1 (167Kpx and 142Kpx with The Grid; 109kpx
and 83kpx with SightWeb) and Task2 (514 kpx and 779 kpx with The Grid; 313 kpx and 95
kpx with SightWeb).
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Table 2.1: Total accumulated eye distance equivalence in pixel, cm and cm/s for people
without motor impairment.

Task1 Task2

SightWeb The Grid Wilcoxon 
test SightWeb The Grid Wilcoxon 

test

Kpx 105 169 W = 161 
p< 0.001 187 773 W = 166 

p< 0.001

cm 2846.9 4608.5 5107 21054.9

cm/s 17.5 23.6 16.9 26.5

Since only 2 subjects with ALS were available to participate, no statistical inference
could be performed on their (subjective and objective) data. However, their appreciation
of SightWeb can be highlighted.

2.1.6 Discussion

On similar tasks, the subjects were significantly quicker with SightWeb. The time for com-
pleting the second task took on average over double the time for The Grid compared to
SightWeb. Furthermore, due to the radial menu being around the target area, our design
allowed for the reduction of the eye movements, diminishing fatigue and effort. This is
corroborated by both the reduced accumulative eye distance in SightWeb and the ques-
tionnaire answers (statements 2 and 7). SightWeb was found to be easier to learn and to
use, more satisfying, less prone to errors, and less frustrating.

SightWeb needs less accumulative distance than The Grid for completing the same
tasks which confirms that side buttons increase the need for eye travel (and therefore
fatigue), while a circular menu centered on the point of interest greatly decreases this
distance. In terms of browser size, SightWeb represents the best option for screen real-
estate for the browser.

The test conducted with ALS patients confirms that this design is appropriate for this
type of user and their enthusiasm for this system is very encouraging. Figure 2.13 shows
an ALS patient using WhatsApp Web 1 for the first time. Figure 2.12 shows the same pa-
tient writing on her own home system (Dialog) her opinion on SightWeb and The Grid
3. The text is written in Italian with the following translation: "It [SightWeb] was essen-
tial, with few commands and easy to use even for people with little expertise in computer
systems. The other [The Grid3] was too confusing, with too many commands that scare
people that approach this system for the first time.". Testing with patients highlighted the
great importance of customization (dwell time, fixation time fixation radius) as their ca-
pabilities differed greatly. This customization must be available at any time by the patient

1https://web.whatsapp.com/
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as those capabilities may improve over time when regularly using the system or decrease
as their disease progresses or due to their age.

Overall, all results confirm that SightWeb represent an important open-source soft-
ware contribution to both patients and the research community. While this study fo-
cuses on systems specifically designed for web-browsing, additional study could be done
to analyze different methodologies used by systems designed to control complete com-
puter systems. This study was published in the CEEC 2019 conference [Larradet et al.,
2018]

Figure 2.12: ALS patient’s opinion on SightWeb and The Grid 3.

Figure 2.13: ALS patient using WhatsApp Web for the first time.

2



20 2. Improving user interfaces control

2.2 Effects of galvanic skin response feedback on user experience in
gaze-controlled gaming

Additional input solutions for computer system available to LIS patients were investi-
gated. While ALS patients lost the ability to perform any movements, their vital body
function are still intact as well as their Autonomic Nervous System (ANS) reactions to
emotions [Lulé et al., 2005]. Such physiological signals such as Galvanic Skin Response
(GSR) could therefore be accessed and used to alter specific variable in an interface. Pre-
vious studies have demonstrated that adapting the parameters of eye-tracking to the
users’ physiological indices related to their mental processes can be useful to improve
both the system performance and the user experience [Barresi et al., 2016]. Furthermore,
physiological data are consistent with user experience-related measures of stress, frus-
tration, and workload experienced by the user during the control of a device [Lin et al.,
2005]. Accordingly, such physiological signals can be monitored to provide a biofeedback
designed to shape the user’s affective states. This could be used, for example, to maintain
optimal engagement by adapting the difficulty level in computer games [Chanel et al.,
2011].

Following this approach, the effects of a relaxation-biofeedback solution on different
dimensions of user experience during eye tracking control were investigated. In particu-
lar, subjects tested a gaze-controlled system that is mentally and temporally demanding:
an eye-tracking-based video game designed to be compatible with a biofeedback sys-
tem controlled by the user’s Galvanic Skin Response (GSR). This methodology has also
been implemented in portable systems [Dillon et al., 2016]. Here, different aspects of
user experience were estimated, through a questionnaire, under two test conditions: eye-
tracking-gaming without biofeedback, and eye-tracking-gaming with GSR biofeedback
to provide an additional control modality to the scenario.

2.2.1 Experimental study

2.2.1.1 Experimental setup

The experiment was conducted using a laptop and a game based on the Unity3D as-
set Survival Shooter tutorial (Fig. 2.14). The controls and the object (Game Character)
moved by the user were changed to be based on eye-tracking. The Tobii EyeX was used as
the eye-tracking device. Each subject performed a calibration task and each calibration
profile was sent to the dedicated Unity3D software that managed the gaze-control. The
Thought Technology FlexComp Infiniti system was used to measure GSR through two
SC-flex sensors, strapped around two fingers (index finger and little finger) of one hand
of each participant, according to the FlexComp manual. The Biograph Infiniti software
processed the GSR data in real-time. Finally, a GSR interface (developed throughConnec-
tion Instrument SDK) allowed to send those data to the Unity3D software for producing
visual feedback (Fig. 2.15).

The experiment consisted of a game (Fig. 2.14.a) in which the player moved the Game
Character: a ball intersected with a disc (Fig. 2.14.b). The Game Character’s movements
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Figure 2.14: The setup (a) and the animated Game Character (b).

were controlled by the gaze in a 3D environment (isometric perspective). Enemies pro-
gressively appeared in the game, and the primary player’s goal was to move of the Game
Character to escape such enemies. The secondary player’s goal was to release an omnidi-
rectional attack covering a wide area-of-effect (AoE) to defeat the surrounding enemies.
Before the AoE event, 3 animations of the game character occurred according to the con-
trol options of the game (see section 2.2.1.2). The first animation was a change in the
ball color, shifting between red and white (Fig. 2.14.b, Animation 1). The second anima-
tion was a circular yellow area filling out the disc from the center to the periphery (Fig.
2.14.b, Animation 2). When the disc became completely yellow, the AoE animation oc-
curs: the disc enlarged to hit all enemies (Fig. 2.14.b, Animation 3). The AoE design was a
choice defined by the limitations of eye-tracking control. Since the game was designed to
fit the conditions of typical eye-tracking users with motor impairments, implementing a
control modality for aiming the Game Character’s weapon would have required controls
that were too complex. Thus, an omnidirectional AoE attack presented an optimal design
concept for producing a fast gaze-controlled gameplay.
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Figure 2.15: The flow of information between player and game.

2.2.1.2 Experimental conditions

Two conditions (Fig. 2.16) defined how the Animations occurred, and both were related
to the modality and timing used to release an AoE attack against the enemies. In the
Biofeedback condition the AoE attack was released thanks to the GSR-estimated volun-
tary relaxation. In the No Biofeedback condition the AoE attacks were triggered by time.
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Figure 2.16: The animation features of the Game Character in the No Biofeedback and
Biofeeedback conditions.

The subjects in Biofeedback condition (BF) recharged their attack power thanks to
their voluntary relaxation, identified through lowering values of their GSR [Fehring, 1983].
Each subject of BF undertook a GSR training session of 30 seconds to test how much they
were able to lower their GSR from a value to another without any intermediary oscilla-
tions. This reduction in GSR was labeled as ∆G. Positive changes of GSR lower than 0.01
(0.07% of maximal range) were ignored during the decreasing periods. Once this training
was done, the game started and the users were required to lower their GSR the previously
recorded ∆G in order to change the color of the ball (Animation 1 - relaxation makes it
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shifts from red to white). To do so, a GSR threshold to reach was set to GSRi-∆G (GSRi
being the current GSR value, as described later). Once this level has been reached, the
disc started to change color radially from the center to the periphery (Animation2). The
AoE event occurred automatically once the disc changed color completely (Animation 3).

Since GSR typically increases quickly but decreases slowly, it would takes too much
time for anyone to lower their GSR to a previously set threshold after their GSR increased.
For this reason, the threshold is adaptive. Indeed, if the current GSR went over the GSRi,
the GSRi and the threshold were updated as previously. Once the threshold was reached
by the user, the GSRi and the threshold were updated progressively which incites the user
to keep relaxing. The relaxation was represented as the ball color shifting from red to
white. Red was for high stress, white was for relax, this way the subjects were able to see
their relaxation level over time. The subjects were also able to monitor when the AoE was
ready from the amount of disc colored in yellow before the transition from Animation 2 to
Animation 3. When the stress level increased and the ball became red, the portion of the
disc not yet yellow-colored was indicating how long the person had to relax again in order
to completely change the color of the disc and trigger the AoE. Indeed, the design choice
to display all information on the Game Character was necessary, since the eye-tracking
users cannot look elsewhere while they are controlling the object motion with their gaze.
Furthermore, having a visual feedback about their relaxation level on the Game Character
enabled the user to see continuously the effects of relaxation during the game session.

In the No Biofeedback (NBF) condition the GSR was not recorded. The Animations
were controlled only by a timer and their sequence was similar to BF: the ball first went
from red to white, then the disc was filled up by the yellow area, and finally the AoE shoot-
ing occurred. This presented in NBF a condition perceptually similar to BF. Considering
how task success can affect time estimation when measuring mental workload [Hertzum
and Holmegaard, 2013], the time required for AoE events in NBF had to be similar to
the average one in BF. Thus, the mean time needed for BF subjects to relax and trigger
AoE was calculated (27 seconds) and labeled as MeanTimeBF. The time required to shoot
in NBF was calculated randomly in a range from MeanTimeBF±4 seconds (the optimal
range according to an assessment performed before this study). This solution allowed to
obtain an equivalent number of AoE events in both conditions, making them compara-
ble.

2.2.1.3 Experimental design

18 healthy people were involved, 16 males and 2 females: 9 passed the BF condition and
9 the NBF condition. The composition of the two groups balanced the age and gender of
the members: each group was composed of 1 female and 8 males with an average age of
27.33 years (SD=3.32 years) for the BF group, and 27.56 years (SD=4.42years) for the NBF
group. The gender was not balanced within each groups due to difficulties in recruiting
females. The participants’ gaming time per week was also balanced between the two
groups, with 4 playing less than 1 hour per week and 5 playing more than 1 hour per
week in each group. The investigation was included into the IITADVRTEEP01 protocol,
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approved by the Ethical Committee of Liguria Region on June 14th, 2016.

In both conditions, subjects were first seated in front of the computer in a self-adjusted
ergonomic position to perform the eye-tracking calibration. The subjects in BF condition
had to pass also 30 seconds of GSR calibration. All subjects played the game a first time
for 2 minutes of training, before undertaking the experimental session for 7 minutes. If
the Game Character was defeated (each collision with an enemy was consuming part of
its life-points according to the duration of the contact) the game would automatically
start again.

The number of AoE events, score (how many enemies were destroyed during a ses-
sion), and defeats were recorded during the experimental session as performance mea-
sures. For BF the GSR level was also recorded.

After the 7 minutes of gaming, each participant was asked to say how many minutes
they thought the experimental sessions had lasted: according to the literature, such per-
ceived task time can be used to evaluate the workload of a person during that task [Block
et al., 2010]. Here, subjects were not told in advance that they would have to estimate the
time spent playing.

After answering the question on perceived time, each subject filled out a question-
naire designed to measure different aspects (represented by 7 statements) of their user
experience in playing the game. The subjects had to mark their degree of disagreement or
agreement with each of the 7 statements on the session (Fig. 2.18) along evaluation scales
with 100 points each one (from 0 for strong disagreement to 100 for strong agreement).
This solution was used to match the criteria for performing a wider range of statistical
analyses than with traditional Likert-type scales.

Summing up, the experimental design was characterized as a between-group with
2 levels of the independent variable ”Animation Control”: BF and NBF. The dependent
variables were the recorded performance measures (AoE events, score, defeats), the an-
swer to the question on perceived session time estimation to evaluate the workload, and
the questionnaire scores on user experience.

2.2.2 Data analysis and results

Firstly, we can notice that subjects in the BF group took an average of 27 seconds to vol-
untarily relax and trigger the shooting effect. Secondly, the analyses (t-tests) on the per-
formance (Tab. 2.2) and the questionnaire (Fig. 2.18) indices did not show any significant
effect. However, a significant between-group difference was observed for the perceived
time through the Welch’s t-test with t (12.63)=32 and p-value=0.0072 (Fig. 2.17). The
test normality assumption was checked through Shapiro-Wilk test in both groups, with
p-value>0.05: for BF, W(8)=0.92439 with p-value=0.4298; for NBF, W(8)=0.8762 with p-
value=0.1431.
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Table 2.2: Performance Measures

Performance
Measures

Conditions
No Biofeedback Biofeedback

M SD M SD
AoE events 26.11 1.3 26.11 17.65

Score 1605.56 101.38 1252.22 385.09
Defeats 1.11 1.17 2.22 1.2
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Figure 2.17: Means and Standard Deviations of the session time duration estimated by
the subjects in each group (actual time: 7 minutes).

It is interesting to note how different scales of the user experience questionnaire (Fig.
2.18) suggest differences between the two groups that can enrich the explanations for the
significant difference of perceived times. In particular, BF could improve the relaxation
(Statement 2) of the players more than NBF. On the other hand, NBF could provide a more
satisfying performance than BF (Statement 3) because of the automated generation of the
AoE events that defeats the enemies - losses in BF are more frequent than in NBF (Tab.
2.2). Moreover, BF was more engaging and entertaining (Statement 5) than NBF, which is
also reflected in the higher desire to continue to play the game (Statement 7). This study
was published in the EMBC 2017 conference [Larradet et al., 2017]
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The time pressure I was feeling due to the pace 
of the game was excessive. 1

After playing the game I feel relaxed. 2

I’m satisfied about my performance in this game. 3

I think this game was frustrating and stressful. 4

This game is engaging and entertaining. 5

This game required a continuous and intense 
effort in terms of perception and attention. 6

I want to play the game again. 7

0 10 20 30 40 50 60 70 80 90 100
Strong
Disagreement

Strong
Agreement

No Biofeedback Condition

Biofeedback Condition

User Experience Questionnaire Results

38.67 21.40
39.89 19.35

44.78 28.60
57.89 18.38

69.22 25.06
53.89 28.35

25.89 24.73
31.00 24.73

64.11 34.72
77.78 19.16

78.22 21.96
76.00 20.01

66.22 41.19
77.56 23.77

M            SD

Figure 2.18: The results of the subjective questionnaire: Means and Standard Deviations
of agreement scores per statement in each group.

2.2.3 Discussion

The average time needed (27 seconds) for BF subjects to lower their GSR level suggest
that they were able to voluntarily relax when necessary to trigger the shooting event even
in a stressful environment. This result highlights possibilities to design alternative inter-
faces for LIS patients including both eye-tracking and GSR as system input. Additionally,
data analysis has shown a significant session time-estimation difference between BF and
NBF. Participants in BF declared significantly lower estimated time than the ones in NBF.
According to the premises on estimated time and mental workload, BF can be considered
as less demanding in terms of mental workload than NBF. One would expect that the task
in NBF would require less user’s attention and effort than the one in BF since the AoE was
timed. Indeed, users ranked BF as more frustrating and stressful than NBF(Statement 4).
The low workload in BF could have derived from the voluntary relaxation process or from
the user’s engagement (Statements 5 and 7), regardless of the player’s satisfaction (State-
ment 3). The results implied that self-relaxation through GSR-based feedback can indeed
reduce the workload during demanding eye-tracking tasks, while potentially increasing
the user’s relaxation state and engagement.

2.3 Conclusions

Eye-tracking is the most common technique used by LIS patients to control computer
systems. However, the design of assistive GUIs needs advances to facilitate access, di-
minish errors, and reduce the fatigue and mental workload for the users.
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A new minimalistic gaze control paradigm, implemented within an open-source stan-
dalone web browser, was proposed: SightWeb. This system enables LIS patients (as in
late stage of ALS) to navigate the web with minimal effort, high freedom, and precise ac-
tions. SightWeb was designed to achieve better performance than typical gaze-controlled
GUIs, allowing for precise actions even with entry-level sensors for eye-tracking, while
also minimizing screen obstruction. It imitates the original mouse control to stay rel-
evant regardless of website technology updates. While at this time it does not include
advanced interactions such as copy-pasting or text selection, it allows people with LIS to
use common websites.

This system fulfills all of the design requirements, maximizing precision, browser size,
and interaction simplicity. According to the presented results (gaze movements, exe-
cution times, user experience questionnaire scores), this new solution was found to be
quicker, easier to learn and to use than a state-of-the-art system adopted by many pa-
tients today. It decreases the amount of eye movements required to perform a task, thus,
it reduces fatigue and mental workload. The subjects felt higher satisfaction and reduced
risk of error with this new system. Nonetheless, Gaze-controlled web surfing needs fur-
ther improvements to perfect the balance between user capabilities, system intuitive-
ness, and screen space usage.

SightWeb exploits an interaction paradigm analogous to the Microsoft Eye Control
system [Microsoft Corp., 2018] which was first released to control Windows machines
when this study was already in progress. SightWeb has the peculiarity and benefit of be-
ing an open source system specifically dedicated to web browsing. Moreover, given the
similarities, the assessment methods and key results presented here are also valid for the
Microsoft EyE Control and other eventual future systems based on the interaction con-
cepts presented above.

Additional system input may be considered such as physiological signals monitoring.
The ability to voluntary control one’s GSR to control a specific UI variable was studied as
well as the effects of a relaxation-biofeedback system on user experience dimensions dur-
ing a demanding eye-tracking-based gaming task. It was shown that the presence of GSR
biofeedback contributes to lowering the level of mental workload required by such tasks.
This confirms the opportunity to use relaxation-biofeedback features in eye-tracking sys-
tems to improve the user experience. Further results allow to assume that the biofeed-
back game enhanced also the users’ relaxation level and engagement.

In both presented systems, all of the information, whether it was for menu display
(SightWeb) or for relaxation feedback (ball color), was displayed in the area of action. This
type of display was found to be a reliable way to make information easily accessible by
users without the need for tiring eye movements. While the ability of subjects to willingly
decrease their GSR to control a UI is a promising result for LIS-specific GUIs, the time
necessary to do so needs to be taken into account. Indeed, this type of input seems to
be too slow to be used as classic control such as a mouse click. It can however be used
for less crucial commands such as a background color adapting to one’s stress level for
self-awareness, similarly to the work done by Roseway et al. [2015].
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3
AFFECTIVE COMMUNICATION ENHANCEMENT

SYSTEM

The first communication systems for LIS patients consisted in codes using eye blinking to
signify yes and no or more complex sentences using techniques such as Morse codes [Lau-
reys et al., 2005]. Other types of communication exist such as transparent letter board held
by the interlocutor [Laureys et al., 2005] (Fig. 1.1). The patients may then indicate a letter
by gazing at it. The interlocutor must then write down or remember the letters sequence to
form words. This systems is still widely used nowadays.

More advanced systems have been established since. Notably, the ability to control
their gaze was used to send commands to computer systems through eye-tracking cameras
[Majaranta and Räihä, 2002]. This technique enabled LIS patients to select letters through
keyboards displayed on computer screens and to “read” the written sentence out loud using
voice synthesis [Majaranta and Räihä, 2002]. Such systems mostly focus on composing
words letter by letter. However, when we communicate, we do not only use words but also a
great range of additional non-verbal communications cues such as voice intonation, facial
expression or body gesture [Mehrabian, 2017]. Such additional input helps the interlocutor
to properly understand the context of the message itself. A simple sentence such as " let’s go
now" can be read with excitement or anger and deliver a completely different message.

This need for enriching words with emotional features has led to the creation of addi-
tional textual communication cues in Computer-Mediated Communication (CMC) such
as emoticons [Lo, 2008]. These solutions are now widely used in text communications such
as SMS or in social medias. For this reason, it is essential for LIS patients to also be able
to communicate such affective state to their interlocutors in the most natural way possi-
ble. Focusing on the most common emotional cues in communication, voice and facial
expression, we may find a great number of work in recreating such concept for CMC. For
instance, emotional speech synthesis has been widely studied in the past [Burkhardt, 2005;
Lee et al., 2017; Xue et al., 2015]. Additionally, facial expression was often associated with
avatars and 3D characters as a way to express emotions online [Fabri et al., 1999; Mor-
ishima, 1998; Neviarouskaya et al., 2007]. The usage of those two technologies together
were also studied in the past for CMC [Tang et al., 2008].
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However, to our knowledge, those advances in technology related to emotion expres-
sion haven’t yet been adapted for LIS patients. Augmentative and Alternative Communica-
tion (AAC) systems for persons with disabilities rarely provide tools for emotion expression
[Baldassarri et al., 2014]. Focusing on children with disabilities, [Na et al., 2016] reviews
the past studies on AAC and exposes the great need for emotional communication in such
tools. Additionally, the effect of such affective capabilities on communication abilities for
patients with LIS haven’t been studied so far. To fill this gap in the literature we propose
a novel open-source system controlled with eye gaze, including emotional voice synthesis
and an emotional personalized avatar for enhance affective communication.
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3.1 The proposed solution

Figure 3.1: General aspect of the keyboard display (AG: Affective Group; CG: Control
Group).

In order to allow LIS patients to communicate their emotions in addition to words, we
proposed a system including a gaze-based keyboard, an emotional voice synthesis and
a personalized emotional avatar. We focused on the 3 most common basic emotions:
Happy, Sad and Angry. An additional option allowed the patients to generate a laughing
sound. The system display was done using the Unity platform.
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3.1.1 Gaze-based keyboard

The general aspect of the keyboard can be found in Fig. 3.1. It uses a standard dwell time
system for key selection [Jacob, 1995]. A menu button allow for the settings of this dwell
time. Autocompletion words were proposed using the Lib-face library [Matani, 2011] and
displayed in the center of the keyboard to reduce gaze-movements that have been proven
to induce fatigue [Yuan and Semmlow, 2000]. Additionally, we thought that users would
most likely see the proposed words positioned in this way rather than above all the keys
as their gaze would often pass over the words.

3.1.2 Emotional voice synthesis

The open-source voice modulation platform Emofilt [Burkhardt, 2005] was used to mod-
ulate the voice according to emotions. To tune the emotional voice, we took as an hy-
pothesis that a great voice differentiation between emotions was primordial to insure the
emotion recognition by the interlocutor in the long-term. The selected Emofilt settings
for the happy (H), sad (S) and angry (A) voice can be found in Figure 3.2.

Figure 3.2: Emofilt settings.

The settings containing an asterisk are additions to the original system. The pitch
were capped to a maximum and a minimum to avoid unnatural voices. The user are able
to select the desired emotion using 3 emoticons buttons positioned above the keyboard
(Fig. 3.1). If no emotion is selected the voice is considered as neutral.

3.1.3 Emotional avatar

Because LIS patients are not able to communicate their emotion through facial expres-
sion, we decided to simulate this ability using a 3D avatar shaped to look-alike the user.
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To do so, the AvatarSDK Unity asset [ItSeez3D, 2014] was used. It allows to create a 3D
avatar using a simple picture of the user. 3D animations such as blinking and yawning
are provided. We created additional 3D animations of the 3 previously cited emotions.
An example of such avatar expressions can be found in Figure 3.3. The avatar facial ex-
pressions are triggered using the same emoticons buttons used for the emotional voice.
The selected facial expression is displayed until the emotion is deactivated by the user.

Figure 3.3: Example of the emotional avatar generated from a picture.

3.2 Methodology

In order to test the capability of this system in enhancing patients’ communicative abil-
ities, we performed a between-subject study with 36 subjects without motor disabilities
(26 males, 10 females) separated into two gender-balanced group (5 females, 13 males,
avg. age 29 years): a control group (CG) and an affective group (AG). The experimental
flow may be found in Figure 3.4).

Figure 3.4: Experimental flow.
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For the control group, unlike the affective group, the affective features (emoticon but-
tons, emotional voice, emotional avatar, laugh button) were hidden and therefore in-
accessible. During each session, a subject was assigned to represent either "the patient"
(SP) or "the healthy interlocutor" (SI). After signing the inform consent, we first tested the
validity of the emotional voice. 5 sentences were randomly picked among 10 sentences
(Table 3.2) and were each played in the 3 different emotions.

Therefore, in total, 15 sentences were played to the subjects in random order who had
to decide if it was a Happy, Sad or Angry voice (Trial 1). Both SP and SI rated the emotional
voices separately, in written form, without consulting each other. SP was then seated in
front of a commercial eye-tracking monitor system (Tobii 4C [Tobii Group, 2001]) and SI
next to him. The eye-tracker was calibrated using the dedicated Tobii software. For the
affective group, a picture of SP was taken using the camera from the computer. The 3D
avatar was then built from this picture. A second screen displayed the emotional avatar
positioned so that both subjects could see it. For both groups, the dwell time was origi-
nally fixed to 1 second but SP was able to adjust it at any time through the menu. They
were then given a talk scenario designed to simulate an emotional conversation (Table
3.1).

Table 3.1: Conversation scenarios.

The subjects were asked to have a conversation with each other. They were free to
say whatever they desired while respecting the scenario. AG-SP was instructed to use the
emotional buttons as much as possible. Once the conversation finished, both subjects
were asked to answer a questionnaire on a 7 point Likert-type scale (Table 3.3). The first
part of the study was then repeated with the remaining 5 sentences (Table 3.2) (Trial 2).
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Table 3.2: Emotional sample sentences.

Table 3.3: Questionnaire.
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3.3 Results

3.3.1 Speech synthesis emotion recognition

Figure 3.5: Recognition of emotional sentences for each trial.

The control group were able to recognize 81% of the emotions from the emotional voice
synthesis in the first trial and 87% in the second trial. The affective group had a 80%
recognition in the first trial and 92% in the second trial (Fig. 3.5).

3.3.2 Questionnaire

The answers to the questionnaire may be found in Fig. 3.6. The conversation was found
closer to a normal dialog for the affective group (Q1-AG-SP: 4.5 and Q1-AG-SI: 4.75) than
for the control group (Q1-CG-SP: 3.375 and Q1-CG-SI: 3.25). An ordinal logistic regres-
sion analysis was performed to obtain the results of an Omnibus Likelihood Ratio Test
that showed a significant effect of the affective condition (chi-squared (1)=13.277 with
p<0.001).

The questionnaire data are analyzed through appropriate non-parametric tests be-
cause of the dependent variables are constituted by ordinal scale measures. The assump-
tions of the tests are checked

The “patients” from the affective group found that they were more able to express
their emotions (Q2-AG-SP: 5.875) compared to the control group (Q2-CG-SP: 3.25). A
significant difference was found between the 2 conditions (AG and CG) (Mann-Whitney
U(16)=1.5 with p<0.001).

The “healthy subjects” from the affective group found that they were more able to
identify emotions from their interlocutors (Q2-AG-SI: 5.5) compared to the control group
(Q2-CG-SI: 3.75). A significant difference was found between the 2 conditions (Mann-
Whitney U(16)=10.5 with p=0.008).
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The “patients” in the affective condition found that the ability to convey their emo-
tions improved the communication (Q3-AG-SP: 5.875 ) and the ones from the control
group thought that it would have helped (Q3-CG-SP: 5.2 ). The “healthy subjects” in that
affective condition found that the ability to identify their interlocutor’s emotion helped
with the communication (Q3-AG-SI: 6.1) and the ones from the control group thought
that it would have helped (Q3-CG-SI: 5.5).

Figure 3.6: Questionnaire results (** p < 0,01 ).

3.4 Discussion

Firstly, we can see that the overall recognition of the emotional voice in the first task was
sufficient for it to be used meaningfully in this experiment. Additionally, we can see that
this recognition quickly increases with time since the recognition on task2 is much higher
than the one on task1. This increase is higher for the affective group that had additional
time to familiarize with the voice modulation during the scenario part of the experiment,
reaching a score of 92 %. This ability to successfully express emotion (Q4-AG-SP) and
identify emotions (Q4-AG-SI) through the voice synthesizer were confirmed by the ques-
tionnaire. Furthermore, the affective group found this emotional voice helpful for the
communication (Q7-AG) and the control group thought it would be a useful feature (Q7-
CG). It confirms our hypothesis that strongly distinctive emotional voices are easily rec-
ognizable in the long term and improve communicative abilities.
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The emotional avatar was found to successfully represent the desired emotion (Q5-
AG-SP), to provide easily identifiable emotions (Q5-AG-SI) and to help with the com-
munication in the affective group (Q6-AG). It is interesting to notice the affective group
found the avatar to be more helpful for the communication than the voice (Q6-AG and
Q7-AG).

Overall, the communication was found more natural to the affective group than to
the control group (Q1). SP subjects found that they were more able to express their emo-
tion (Q2-SP). It highlights the positive impacts of both the emotional avatar and the emo-
tional voice on the communication which is confirmed by Q3-AG-SP and Q3-AG-SI. Con-
currently, the control group that did not have access to any emotional tools, also found
that the ability to express emotion (Q3-CG-SP) and to identify emotion (Q3-CG-SI) would
have helped with the communication.

It is interesting to notice that in the affective group the “healthy” subject ranked higher
how much the avatar and the voice helped (Q6-AG-SI and Q7-AG-SI ) compared to the
“patient” (Q6-AG-SP and Q7-AG-SP). This highlights the fact that this system is particu-
larly useful for the interlocutor who is the one looking for cues about the emotion felt by
the patient. The “patients” subjects often stated that they did not really pay real attention
to the avatar as they were focused on writing on the keyboard.

3.5 Conclusions

People in LIS have limited methods to communicate. In the past decades, technology
have greatly improve their quality of life by providing a great range of communication
tools. However AAC are still constrained in communicating words and rarely include
ways of expressing emotions. This work proposes to study the impact of expressing emo-
tion on communicative ability for LIS patients. To do so we created a platform that allows
the user to select an emotion between happy, angry and sad. A 3D avatar representing the
user was then animated according to the selected emotion along-side with an emotion-
ally modulated voice synthesis. This system was tested by 36 subjects who were suc-
cessfully able to recognize the emotions from the voice modulation and the avatar. They
found that the two emotional tools helped with the communication as they were more
able to convey and identify emotions. This system is available in open-source [Larradet,
2019b].

While today the avatar is only expressing fixed emotions it shows the need for extend-
ing AAC tools to include more non-verbal communication cues. This system could in
the future include additional animations such as lip synchronization, visual reaction to
detected skin temperature (sweating, shivering), additional gesture (wink, hand gesture,
eye raised...), additional type of sounds ("waaaw", "uhm uhm", "oooh"). The avatar could
therefore become an extensive communication tool as well as a quick visual aid for the in-
terlocutor, family and caregiver to understand the internal state of the patient. Advanced
avatar control could be used for instance to perform art [Aparicio, 2015].

While voice modulation and facial expression are the most common in non-verbal
communication, other types of natural communication may be simulated such as physi-
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cal contact. Indeed, systems such as heating wristbands placed on family and loved ones
may be activated by the patient using gaze control and therefore convey the idea of arm
touching.

In the future, the emotion could be automatically detected for instance from physi-
ological signals [Jerritta et al., 2011]. However it would raise the concern of the patients’
willingness to constantly display their emotion without a way to hide their true feelings
from their interlocutor [Petronio and Bantz, 1991]. This capability to detect users’ emo-
tions will be further discussed in next chapters. This study was accepted to the HCI in-
ternational 2020 conference.
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4
INVESTIGATING EMOTIONAL DATA COLLECTION

METHODOLOGIES

The capability to detect patient’s emotions from physiological signals would allow to greatly
improve the system presented in the previous chapter. For this reason, this particular topic
was investigated further in this chapter.

Emotion, mood and stress recognition (EMSR), whether it is from facial expression
[Fasel and Luettin, 2003], speech [El Ayadi et al., 2011], full-body motion [Castellano et al.,
2007], words [Hirschberg and Manning, 2015], physiological signals [Jerritta et al., 2011]
or other data type, have been studied intensively for at least two decades. While all the
previously cited techniques follow similar methodologies in terms of data collection, this
chapter will focus on physiological signals.

One of the biggest challenges in EMSR consists in collecting and annotating data for
both model creation and testing [Constantine and Hajj, 2012]. This chapter will address
this challenge by providing a thorough discussion of existing methodologies for physiologi-
cal dataset creation as well as proposing evaluation criteria and tools to compare datasets.

4.1 Introduction

The studies on EMSR can be differentiated according to the type of emotion theory adopted
to characterize the data. While using labels such as anger, disgust, fear, joy, sadness, and
surprise [Lazarus and Lazarus, 1991] present the advantages of being meaningful to non-
expert , many researchers use multi-dimensional models such as valence-arousal [Rus-
sell, 1980] or pleasure-arousal-dominance [Mehrabian, 1996] to classify emotions in a
two 2 or 3 dimensional space. Valence is defined as the perception of a situation from
positive to negative, the arousal can refer to a level of physiological activation ( from
calm to agitated), and the dominance defines how in control an individual is toward a
situation. Finally, appraisal theories such as the OCC model [Ortony et al., 1990] or Ira
Roseman’s theory [Roseman, 1984], which explain emotion elicitation in terms of cogni-
tive evaluations of significant events, are more rarely used in recognition and detection
studies.
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As for the classification method, most works use approaches based on feature extrac-
tion and machine learning (e.g., support vector machine [Hovsepian et al., 2015], deci-
sion trees [Plarre et al., 2011]), while the solutions based on expertise knowledge (e.g.,
rule-based) are more rare. Recently deep learning methods were proposed (e.g., convo-
lutional deep belief networks [Ranganathan et al., 2016]). The later are, however, limited
by the capacity to collect a sufficient amount of data. EMSR methods might be user-
dependent (or person-specific), built from the data of a specific user to detect his/her
own emotions, or user-independent, built from the data of multiple users to detect emo-
tions of any user.

Building physiological datasets for EMSR was usually performed in laboratory set-
tings by purposely inducing emotions to subjects at specific time intervals. It allows ex-
perimenters to control the stimuli and reduce the number of contextual factors that may
influence the subjects’ reactions.

On the other hand, to this date, only few studies have attempted to create real-life
(not induced) emotions datasets, i.e., collections of affect-related data, outside of the lab,
in reaction to everyday events. In the literature, the terms “in the wild” [Dhall et al., 2013],
“in the fray” [Healey et al., 2010], and “in real-life” [Devillers et al., 2005] are used to de-
scribe such approach, in which the experimenters do not control the emotion elicitation
process. In this methodology, the subjects can be, for example, monitored during their
everyday activities over long time periods in order to collect their most natural reactions.
This kind of study can either be ambulatory [Healey et al., 2010] where people are able
to move freely, or static where people experience real-life emotions but constrained to
a specific location (e.g., a desk in a workplace [McDuff et al., 2012] or during an exam
[Melillo et al., 2011]). This similarity to real-life settings defines the ecological validity of
a study.

In this chapter, the term EMSR for “real-life applications” includes methods able to
recognize emotions, moods or stress, in the wild (not induced, elicited by real-life events
) with the potential to enable many useful application. The previously described sys-
tem aiming at detecting real-life emotions for patients with Locked-in Syndrome is an
example of such real-life application. In this case, there is no need to be concern about
ambulatory challenges. However, the difficulty to find patients in this state might com-
promise the capacity to build a successful EMSR model. Additionally, it might be tiring or
difficult to involve such patients in early testing stages of the model. In those cases pre-
liminary testing might be required with subjects without motor impairments. Such data
model creation and testing would then need to be performed in ambulatory settings to
access the subjects’ emotions during their daily lives.

The perspective of the researcher or software developer who needs to create a new
dataset to be used for EMSR was taken. The categories to consider when building “real-
life application”-focused datasets in-the-wild are discussed. Differences between each
data collection method are presented, their advantages, challenges and limitations. In
particular, the focus was made on physiological data collection outside of the laboratory
as it represents a way to access people’s emotional state without invading their privacy
(e.g., using video, audio) and without being cumbersome (thanks to the minimal size of
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the sensors). The set of guidelines presented may be used by future researchers aiming
to build physiological datasets for EMSR. Furthermore, a method to assess the readiness
of specific studies toward ambulatory real-life applications is presented.

In order to facilitate the comparison and evaluation of such studies, a visual method is
introduced to assess EMSR studies in terms of their ability to be used in real-life applica-
tions. This graphical method is used to visually compare the existing dataset collections
of the literature and their different approaches. Then, an overview of the studies that took
a step toward EMSR using physiological data outside of the laboratory is presented. The
graphical assessment focusses on studies including detection or classification methods
(not the one presenting observations only).

The main contributions are:

• while other recent surveys on EMSR make a census by considering expressive modal-
ity (e.g., Castellano et al. [2007]; El Ayadi et al. [2011]), this work brings a new point
of view to the field by focusing on methodologies for physiological data collection
to build real-life EMSR applications in the wild,

• A complete list of criteria is proposed as well as a novel graphical aid to compare
and evaluate any existing and future affect-related datasets in terms of their appli-
cability in real-life applications.

The currently (1st July 2019) available commercial devices for ambulatory physiolog-
ical data collecting are listed in the annex.

4.2 Existing affect related data collection techniques

While here the focus is given to physiological signals, established techniques to elicit
emotions are common for all types of signals [Kory and D’Mello, 2015]. Techniques de-
scribed in the literature to collect emotion-related data provide a great range of realism
and genuineness of emotions.

Some techniques involved the participation of actors simulating emotions through
facial expressions and speech [Wallbott and Scherer, 1986]. In this case, however, there is
no emotion elicitation protocol as the participants do not actually feel any affective state
but only pretend to react in an emotional way.

Several researchers, however, claim that the spontaneous expressions of emotions are
different from the acted ones [Ekman, 1997]. For instance, Hoque et al. [2012] found sig-
nificant differences in facial expressions of acted and induced emotions. Consequently,
the EMSR models trained on acted data may not work properly in real-life applications.
Using actors is not viable for physiological signals collections as people may not simulate
their own physiological reaction.

Actors may use some techniques such as the Stanislavski’s method [Cole, 1995] to
make their acting more natural. Other methods of self-induction of emotion were used
in scientific literature: e.g., in Vrana [1993] where subjects are asked to apply the guided
imagery method that consist in thinking about specific situations to elicit emotions. Ret-
rospection is another commonly used techniques where participants are asked to narrate
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a story from their past when they experienced a given emotional state, e.g., [Pasupathi,
2003]).

Some studies on emotion, mood or stress try to induce more genuine reactions in
their participants by using established experimental protocols. These usually consist of
exposing the subjects to some pre-defined and pre-validated stimuli for emotion induc-
tion. In such studies the experimenter has control over the environment such as the type,
duration, order of the stimulus and the position of subject (e.g., whether he is sitting or
standing). Various type of stimulus have been used in the past. For instance, the widely
used IAPS database [Lang et al., 2008] contains 956 images chosen to elicit emotions and
rated on valence and arousal by 100 participants. It was used in a great number of studies
[Dikecligil and Mujica-Parodi, 2010; Fox et al., 2010; Schmidt et al., 2011; Walter et al.,
2011]. In addition, the Geneva affective picture database (GAPED) [Dan-Glauser and
Scherer, 2011] contains 730 pictures similarly rated. Showing video-clips is another fre-
quently used method, adopted for instance by Soleymani et al. to create the MAHNOB-
HCI dataset [Soleymani et al., 2011]. While music stimuli on its own is only used in few
studies [Kim and André, 2008], they are commonly associated with other input such as
light and storytelling [Kim et al., 2004]. Methods requiring active participation of sub-
jects were also used, e.g., by using video games [Tognetti et al., 2010] or virtual reality
[Ververidis et al., 2008].

Other less common emotion induction methods such as performance of specific fa-
cial expressions or postures (without being aware of corresponding affect) [Zajonc et al.,
1989] can be found in the literature. These are based on the facial feedback theories
[Izard, 1977; Tomkins, 1962] according to which the emotional facial expression induce
the emotion and not the other way around.

Making a step closer toward real-life scenarios, some researchers induce emotion by
creating social scenarios in the lab simulating some realistic social interactions. For in-
stance, Harmon-Jones and Sigelman [2001] asked the participants to write about an im-
portant subject to them, which was then pretendedly negatively rated (regardless of the
content) by a second participant. An aggressive comment and a low mark was expected
to induce anger in the subjects. Niewiadomski et al. [2016] elicited expressions of amuse-
ment by having participants playing social games. This type of study, especially the ones
focusing on negative emotions, usually require that the participant is not aware of the
experimental procedure.

Amodio et al. [2007] presents additional guidelines for building such scenarios such
as a the elaboration of a credible cover story, a constant experimenter behavior and the
conduct of post-experimental interviews.

Avatars or robots have been also used to create highly controlled experimental social
scenarios with high reproducibility. For instance, [AlZoubi et al., 2012] used an avatar
to induce boredom confusion and curiosity for expression detection. [Kim et al., 2009]
demonstrated that humans can indeed empathize with robots . Using this concept, Turner-
Cobb et al. [2019] studied the stress elicited by subjects performing a mock interview in
front of a robot audience.

Some studies have tried to collect spontaneous affective reactions while controlling
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the experimental environment by doing supervised real-life studies. These consist in
putting the subjects into situation usually bringing strong emotional reactions such as
sky-diving [Dikecligil and Mujica-Parodi, 2010] or driving in difficult conditions [Healey
et al., 2005]. However, these studies usually focus only on stress.

To introduce stress, additional techniques are available [Karthikeyan et al., 2011]. The
Stroop test from 1935 [Stroop, 1935] – presenting words representing a color written in a
different color and asking to verbally state the written color – have been used in many
studies [Pehlivanoğlu et al., 2005; Zhai and Barreto, 2006]. Hassellund et al. [2010] used a
cold stressor, which consists in immerging one’s hand in cold water. Other popular stress
induction stimuli include, for instance, performing mental arithmetic exercises [Ring
et al., 2002], voluntary hyperventilation [De Santos Sierra et al., 2011], public speaking
[Von Dawans et al., 2011], or computer games [Rani et al., 2002].

The previously presented techniques all have their own set of advantages an limita-
tions. They will be further discussed in comparison with the "in-the-wild" methodology
in next subsection.

4.3 The “in-the-wild” methodology

4.3.1 Why are datasets in-the-wild needed?

A large number of studies on automatic emotion recognition from physiological signals
obtained good recognition rates [Jerritta et al., 2011] but very few of the proposed meth-
ods were then tested on data collected in the wild. Their applicability in real-life applica-
tions is therefore not confirmed.

Wilhelm and Grossman [2010] presented the risks of such approach in terms of phys-
iological signals, comparing laboratory induced stress and the ones occurring in eco-
logical settings. They studied the case of physiological reaction to stress and compared
laboratory induced stress to real-life ones such as watching a soccer game. They found
the heart rate during the latter greatly superior to the former. Similarly, Xu et al. [2017]
considered the validity of using in-lab collected data for ambulatory emotion detection.
Their findings suggested that EDA, ECG and EMG greatly differ between real-life and lab-
oratory settings and that using such methodology results in low recognition rates (17-
45%). Thus, it is necessary to validate EMSR methods in the wild to be able to automat-
ically recognize people’s emotional states in real-life applications, such as the ones pre-
viously introduced. Additionally, even if emotion laboratory induction techniques use
highly controlled experimental procedure there is no certainty that the subjects will ac-
tually experience the desired emotion. Indeed, people are very different and can react in
various ways to the same stimuli [Kret and De Gelder, 2012]. For instance, someone might
enjoy horror movies and find the experience entertaining, while someone else might find
it scary and stressful.

Furthermore, it is known that people’s physiological signals adapt with age [Kostis
et al., 1982] or fitness level [Melanson and Freedson, 2001]. Developers of commercial
user-dependent models may then need to either develop adaptive models to include
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such changes or allow the users to punctually re-train the model to adapt to their new
self which may be difficult for laboratory created models (see section 4.3.2.3).

Theoretically, a method addressing the previously stated issues would be able to use
data collected in the lab for training and in-the-wild for testing and still be valid. However,
using in-the-wild data for both the model building and testing phases brings additional
advantages.

Firstly, using in-the-wild data allows for iterative learning. By using data collected in
the wild to build a model, it becomes possible to improve the learnt models over time.
The longer the user provides data, the better the model might become. Such approach
requires the usage of the in-the-wild data collection combined with self-reports (see sec-
tion 4.3.3.2).

Secondly, as mobiles phones and personal sensors become more and more popular,
this data collection approach also allows the usage of big data [Laurila et al., 2012] allow-
ing the application of the latest techniques of data mining and deep learning. Indeed,
model created from users self-report input and real-life emotions could allow for the col-
lection of an extensive database feeding the model and greatly improving it over time.
People are already reporting their emotion on mobile apps for the sole purpose of self-
monitoring (eg. "The Mood Meter"1, "Pixels – mental self awareness"2, "Mood diary"3).
There is only a small step to associate such data labelling to physiological sensors using
mobile applications such as the one that will be presented in section 6.1.

4.3.2 Advantages

In order to present the advantages of the in-the-wild methodology, it was compared with
the previously presented techniques for data collection and model testing in the lab (see
section 4.2).

4.3.2.1 Ethical issues

Inducing negative emotions such as anger or sadness can be problematic due to some
ethical constraints. Usually only low intensity emotion induction methods such as IAPS
images or movie clips (see section 4.2) are acceptable by Ethical Committees Institutions.
The model would therefore not be able to learn from high intensity reactions as they
would not be present in the collected dataset. On the other hand, real-life emotions col-
lected using the “in-the-wild” methodology can be of any level of intensity and valence.

4.3.2.2 Context

Although the creation of emotion elicitation procedures in the lab usually allows for a
better control of the context (by minimizing unrelated factors that may influence the
emotion elicitation process), several other factors may alter the affective reactions. For

1https://moodmeterapp.com
2https://play.google.com/store/apps/details?id=ar.teovogel.yip&hl=en_US
3https://play.google.com/store/apps/details?id=info.bdslab.android.moodyapp
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instance, some participants may already feel stressed or discomfortable when participat-
ing in an experimental study in a laboratory [Britton et al., 1983]. Emotions collected in
the wild appear in a natural context without the presence of an experimenter to alter the
subject’s affects.

4.3.2.3 Experimental effort

Whether the data collection is performed in the lab or in the wild, a certain effort is nec-
essary to build the dataset. In the laboratory, the experimenters need to prepare and val-
idate the experimental protocol for emotion elicitation (e.g., trying interactive scenarios,
preparing emotion induction games, finding appropriate images datasets. See more in
section 4.2). In the wild, this effort is given to the subjects that need to report their emo-
tions. In this case, no effort is required from the experimenter as the stressors/emotional
situations are provided by life itself.

In the case of EMSR models based on induced emotions datasets, the need of re-
training the model (see section 4.3.1) would imply a need to reproduce the elicitation
process. However, for most emotion induction methods cited earlier (see section 4.2),
it would be difficult and probably ineffective to reproduce the method using the same
materials. This problem exists for most visual or auditory stimulation. The previous
knowledge of the material may reduce or totally suppress the emotional reaction. New
material compilation is then needed to reproduce the emotion elicitation, which re-
quires additional effort from the experimenter. It would therefore be difficult to use a
user-dependent emotion-induced system in a commercial application as it would need
manual intervention (research and compilation of the new materials) each time the user
needs to rebuild the classifier. User-dependent models are often used in the case of phys-
iological signals because of the important interpersonal differences in people’s baselines
and reactions to stimuli. Therefore, they tend to give better emotion classification results
[Jerritta et al., 2011].

On the other hand, since user-dependent EMSR models built using the in-the-wild
methodology only need self-reporting effort from the user and do not need any material
compilation they can be re-trained when the user requests it and agrees to self-annotate
additional data. This approach then is more suitable for real-life commercial applica-
tions.

4.3.3 Challenges and limitations

4.3.3.1 Absence of a controlled environment

In-lab data collection provides a controlled environment, similar for all subjects. It allows
for the comparison of different subject reacting to a similar stimuli for a same period of
time. Using a real-life dataset implies an unknown environment. The experimenter is un-
able to predict the emotional stimuli that will occur. Additionally, those stimuli will most
likely be different for all subjects which makes inter-subject data comparison difficult.
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For instance, two subjects might both experience happiness but one due to an accepted
publication and the other because of a conversation with a friend. While both events
will be labelled as "happy", they are elicited in very different environments. Because of
this unpredictability and uncontrolled experimental procedure, the experimenter is un-
aware of the emotions felt by the subjects and therefore this information needs to be
determined. Several ways of acquiring such information will be presented in the next
paragraph.

4.3.3.2 Emotion labelling

There are 2 main methods to acquire the emotions labels, starting and end times in un-
controlled environments:

Self-report

The most commonly used data labelling technique is achieved by the subjects them-
selves. In this method, participants are asked to report the time in which they felt an
emotion, which emotion, and, eventually, some other parameters such as its intensity or
context. This emotion self-labelling may be done following different types of emotion
theories such as writing labels or estimating valence and arousal. However, it may be dif-
ficult for the subjects to estimate valence and arousal as it is a concept non-expert are
usually unfamiliar with. Consequently their report might not be reliable. Indeed, Healey
et al. [2010] found that subjects’ valence and arousal reports did not correlate with their
comments. They identified that subjects misunderstood the functionality of the 2 dimen-
sional map. Techniques such as the SAM images [Bradley and Lang, 1994] makes this pro-
cess more accessible to the subjects. Asking the subjects to self-report emotions by using
the labels such as “angry” or “sad” can also lead to problems. Indeed, Widen and Russell
[2010] highlights the need for a distinction between “descriptive definition” of emotion,
as it is used in everyday life, and a “prescriptive definition”, as it is used by the scientific
community. The concept of an emotional label might differ from the one understood
by the experimenter. Similarly, the label concepts might differ within participants due to
different gender [Kret and De Gelder, 2012], or cultural differences [Mesquita et al., 1997].
All these differences in labels conception might alter the capacity to recognize emotions
for user-independent model. A user-dependent model might not be affected as the con-
ception of a label would most likely stay constant for each subject. This problem will be
addressed in section 6.1 using an appraisal theory-based questionnaire tree to help the
subjects providing precise information about the emotion elicitation stimuli, without the
need for them to choose a specific emotion label.

Oversight is another problem derived from subject labelling their own data. One may
not immediately report the felt emotion and then, simply forget to do it. Depending on
the type of application and model used, rating the emotion in terms of intensity might
also be necessary. However, subjects might underrate their emotions for several reasons
such as ego (e.g., subjects may not admit that they felt sad or scared), or time (emotion
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self-reports tend to be less valid when performed long time after the experienced emo-
tion [Mauss and Robinson, 2009]).

Furthermore, user-given annotation of emotions beginning and end times might not
be precise. Subjects will tend to give approximated times, making the exact data labelling
more difficult. Instead of asking the subject to voluntary report emotions when they feel
them, some studies use alternative electronic systems that prompt the user to report his
emotions at regular intervals [Plarre et al., 2011]. This solution is based on the Ecological
Momentary Assessment (EMA, in Shiffman et al. [2008]) designed to improve typical self-
reports during clinic visits. It is not clear, however, what is the optimal frequency of such
prompting. Asking too often can easily become bothersome to the subjects and there-
fore affect the emotional data collection. Asking too rarely would increase the chance
of the subject lowering the strength rating of the emotion [Mauss and Robinson, 2009],
or forgetting a previously felt emotions. Schmidt et al. [2018] advise to perform an EMA
every 2 hours or five times a day coupled with a possibility to manually report emotions.
Asking at a regular time interval would allow to know the emotions felt the last hour for
instance but it would not provide the precise time it happened. This technique may be
more appropriate to collect information about moods which are longer and less momen-
tary [Mauss and Robinson, 2009], rather than emotions that are usually short [Gray et al.,
2001]. Indeed, Robinson and Clore [2002] states that increasing the time between two
consecutive prompts increases the chances to collect semantic (related to beliefs and
generalizations about oneself) memory of emotions instead of episodic (related to a par-
ticular event) ones. Accessing events details of the day may improve the recall [Lang et al.,
1980; Robinson and Clore, 2001]. However, the retrospective thinking about too many
details may disproportionately bias the emotional report [Kahneman et al., 1999]. Asking
subjects details about their daily lives might not meet the ethical regulations as it would
provide an easy way to recognize the subject. Asking the subjects to mentally reproduce
the event without giving details to the experimenter might be a solution [Clore et al.,
2001]

The other issue linked with emotion labelling is the amount of information not given
by the subjects. Researchers may have research constraints for a particular study. For
instance, a study might focus on happiness and anger and therefore only ask the partici-
pants to report those events. However, the subjects will still experience the whole range
of emotion. Additionally, subjects might do unrelated actions such as smoking or drink-
ing which may not be in the scope of the study and therefore would not be reported by
the participants. These other emotions or actions might however have an impact on the
studied signal (for example coffee intake can affect HR [Green and Suls, 1996]). A real-
life emotion study will therefore include parts of the data affected by unannotated events
which makes machine learning training difficult. Schmidt et al. [2018] recommends to
collect in parallel the physical activities and the sleep quality of the subjects and to con-
duct data-driven screenings interviews with the participants to gather additional context
information.
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Expert labelling

This method consists in having one or several experts examining the data and using
his/their knowledge and expertise to annotate emotions. This can be done either us-
ing the same physiological signal(s) as the one that will be used in the EMSR model [Yin
et al., 2006] or using a different type of signal (e.g., facial expressions, body movements).
For instance, Healey et al. [2005] conducted an experiment where both physiological sig-
nals and video were recorded in the wild. Video was analyzed by experts to validate the
data labels given by the subjects and physiological data was used later on to create an
emotion detection model.

However, this method often requires multimodal synchronized recordings which can
be difficult in-the-wild. Additionally, the modalities which are most often used by ex-
perts when performing the annotation, such as video or audio, are usually the most in-
trusive. Additionally, even experts may still misclassify or miss some emotional states of
subjects. If more than one expert is used to perform the annotation, they may disagree on
perceived emotions. Thus, a combination of expert labelling with user post-experiment
cross-validation is often a preferred solution [Yin et al., 2006].

4.3.3.3 Ambulatory

When it comes to real-life dataset collection, there is a distinction to be made between
ambulatory and static studies. Indeed, as previously stated, real-life emotions happen
at unpredictable times. Collecting of such data often implies long-term studies during
which people can more freely. This implies a necessity for ambulatory systems able to
collect physiological signals while the person is moving. Some existing studies focused on
real-life emotions felt by the subject but they limited the collection to a specific physical
space, e.g., to a desk space [Roseway et al., 2015]. This type of studies will be referred as
“static studies” (as opposed to ambulatory ones previously mentioned).

In ambulatory studies, more issues need to be addressed. First of all, the devices
recording the data must be both mobile and comfortable as they must allow the subjects
to move freely for extended periods of time. This is the main reason why studies using
HR or GSR are among the most common real life emotion recognition studies as some
signals such as EEG would be difficult to achieve without very bothersome wearable de-
vices. There are a few devices available in the commerce for physiological signals-based
ambulatory studies which are presented in the supplementary materials. Some studies
chose to develop their own device [Wilhelm et al., 2005].

The choice of sensors for ambulatory studies presents another challenge. While it is
important to choose small sensors to improve the wearability of the device, some sen-
sors might be more affected by movement than others. For instance, in order to calculate
HR, it is possible to use small PPG sensors, from which the BVP is read, the InterBeat In-
terval (IBI) calculated and the HR extracted. This technique is reliable but very sensitive
to sensor movement. Another solution to measure HR is to use ECG. Chest ECG, while
being a much more invasive sensor provides more precise data which are less affected
by movement [Ge et al., 2016]. The choice between the two is then a compromise be-
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tween wearability and accuracy. There are techniques in order to improve the accuracy
of the IBI calculated from PPG [Torres et al., 2016]. The most common is the use of a
3D accelerometer to detect movement [Lee et al., 2010]. Furthermore, HR is also greatly
affected by physical activity (e.g., sports). It is advised to remove from the physiological
data the periods of such activities, so that they would not be mistaken by an emotion.
Once again accelerometer may help detecting such activities with some limitation, for
instance stairs may increase HR and may not be easily detectable by the accelerometer
[Foerster et al., 1999]. Additional elements may need to be considered when conducting
ambulatory studies such as EDA asymmetry. Indeed, while EDA signal might be found
similar in both side in the lab, Picard et al. [2016] noticed differences in EDA measures in
left and right wrists during ambulatory studies. They concluded that the right wrist ac-
quired stronger signal overtime. It is therefore recommended to place this sensor in the
right side in the field.

4.3.3.4 Long-term experiment

In-the-wild conditions implies an unpredictability of the emotions. It is uncertain how
many time the subject will experience a certain emotion during the study or if they will
experience it at all. However, some techniques exist to increase the likelihood of the emo-
tion during the collection period. For instance, some subjects might know specific event
in their future that are likely to trigger emotions (e.g., public presentation, important
meeting, job interview). Performing the data collection during this specific period would
increase the likelihood of collecting the desired emotional data without providing any
certainty. Studies involving multiple emotions might require all subject to experience all
studied emotions (e.g., anger, sadness, happiness, frustration) during the data collection
period. While it would be unlikely to happen in a short period of time (a day), increasing
the duration of the experiment (several days, week, months), would increase the chances
of having subjects experiencing a specific emotion or a different ranges of emotions. This
method will however, greatly impact the length of the study or the number of subjects.
Additionally, the wearability of the device chosen will impact the possible length of the
study. Indeed, the more comfortable the device, the more it would be acceptable for a
subject to wear it over a long period of time.

4.3.3.5 Lack of databases

Considering the great differences between people when it comes to emotion, it is im-
portant to word with data from a large number of subjects. For this reason, open access
databases are very valuable for EMSR research. However, while induced emotion-based
open access databases exist [Abadi et al., 2015; Dan-Glauser and Scherer, 2011; Koelstra
et al., 2011; Sharma et al., 2018], to the best of our knowledge, there is no open access
database of emotional data collected in the wild. Such database was built during this
research (see section 6.2) using the protocol that will be presented in section 6.1
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4.4 The GARAFED method

In this subsection, a new assessment of the data collection methodologies is presented
based on their readiness toward ambulatory real-life application usage: GARAFED
(Graphical Assessment of Real-life Application-Focused Emotional Dataset).

Eight criteria were selected, each containing sub-classes that allow assessing the dis-
tance from the ambulatory real-life EMSR goal. While specific application cases might
have different needs and requirements (e.g., work focusing on detecting stress during an
exam would not need an ambulatory setup), the assessment will be made on the capacity
for the proposed method to be used in any ambulatory real-life applications.

In addition, even though other methodology choices must be considered for EMSR
research ( e.g., emotion labelling methods, see sections 4.2 and 4.3), they are not included
in this assessment model. This is because such choices cannot be ranked from the most
to the least suitable for real-life applications as each decision is equally valid. Here, when
categories ranges include numbers (e.g., between 3 days and 7 days), the lower number
(e.g., 3 days) is included and the higher number (e.g., 7 days) is not included.

4.4.1 The GARAFED categories

• Emotion origin

As previously presented, there are many possible origins for the emotions. The
origin of the emotion may be induced by an experimenter, or, in real-life, can be
caused by other agents, events or objects [Ortony et al., 1990]. By collecting data in
situations closer to ecological settings the creation of a more appropriate dataset is
insured. Here the following emotion origin possibilities are defined.

1. Simulation of the emotion (e.g., actors).

2. Induction of emotions in-lab (e.g., movies, IAPS images).

3. Induction of emotions through supervised real activities (e.g., car driving, sky-
diving).

4. Real-life emotions, static monitoring.

5. Real-life emotions, ambulatory monitoring.

• Invasiveness

The size and portability of the system used to collect data in the wild impacts how
easy it is for the subjects to carry it for longer periods and thus the possibility to
conduct longer experiments. This invasiveness factor has been separated in 4 cat-
egories from "Non portable" to "Portable and non-invasive".

1. Non portable: the system needs to be linked to a power supply and/or require
the experimenter intervention, such as sampling of salivary cortisol level.
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2. Portable and highly invasive: the system is heavy bulky or invasive. It may
include sensors such as nasal respiration sensors. It is not possible to wear
it for many hours a day without it being uncomfortable for the subject. (ex:
Vu-ams [De Geus and Van Doornen, 1996]).

3. Portable and slightly invasive: The system is light. It can be worn for several
hours a day but it is noticeable and/or potentially uncomfortable for the sub-
ject after a certain time. (e.g., Shimmer3 GSR+ Unit ).

4. Portable and non-invasive: The system is light and non-invasive. Others may
not notice the device. It is similar to a commonly worn object such as a watch,
a belt etc. (e.g., Empatica E4 ).

• Privacy

The input data used to classify emotions can infringe the privacy of the subject.
Indeed, input data such as video, voice or calendar activity would give the exper-
imenter access to very personal data. They may also allow for the identification
of the subjects. While the focus is given to physiological data that are usually non-
intrusive, other studies were also consider, using physiological data combined with
other types of data which may be intrusive. Papers will be classified using the 4 cat-
egories bellow.

1. Intrusive data: personal data or data that allows identification.

2. Non-intrusive data: non personal and does not allow identification.

• Number of experimental days

Collecting data over many days increases the probability to gather data in a variety
of situations and environments. It therefore ensures the creation and validation of
a better model.

The number of collection days in papers in the first paragraph in 4.5.1.1 and the first
paragraph in 4.5.2.1 were aggregated. From this data, 4 quartiles were extracted
that will be used to separate each papers proposing an EMSR model into the fol-
lowing 4 categories.

1. Less than 3 days.

2. Between 3 days and 7 days.

3. Between 7 days and 34 days.

4. 34 days or more.

For papers giving a range of experiment days (e.g., 4 to 6 days), the maximum time
was taken (e.g., 6 days).
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• Number of hours per day

The number of hours for data collection per day also greatly impacts the value of
the dataset. Indeed, physiological signals may vary with the time of day [Gjoreski
et al., 2017]. Here again the same studies were used to extract the 4 quartiles that
will represent the following 4 categories.

1. Less than 4h a day.

2. Between 4h and 8h a day.

3. Between 8h and 16h a day.

4. 16 hours a day or more.

For papers giving a range of experiment time per days, (e.g., 12to 14 hours) the
maximum time was taken (e.g., 14h).
.

• Number of subjects

As previously stated, emotions are experienced very differently by people. In order
to validate an emotion recognition system, it is necessary to test it on as many sub-
jects as possible. Similarly, the studies quartiles were used to create the following
categories.

1. Less than 6 subjects.

2. 6 to 12 subjects.

3. 12 to 24 subjects.

4. 24 subjects or more.

Quartiles were averaged to the superior round number.

These criteria represent a data collection paradigm that can be used to build an emo-
tion recognition model usable in any ambulatory real-life application, such as the ones
previously presented. Ideally, the data collection would be done using small non-invasive
and non-intrusive sensors, with a model close to reality and tested in real life. Such study
should be done for an extensive time with a great number of subjects to prove its efficacy.
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4.4.2 The GARAFED visual aid

In order to ease the assessment of existing and future studies toward this goal, a visual aid
is proposed (Fig. 4.1). Inspired by the Adapted ECOVAL framework [Labonte-LeMoyne
et al., 2018], it allows to evaluate any study based on this readiness toward real-life appli-
cation at a glance.

Figure 4.1: The GARAFED method.

4.5 Assessment of existing datasets

This subsection presents works involving real-life or supervised real-life environment.
To build this corpus of studies combinations of the following keywords were used: "emo-
tion", "emotion recognition", "emotion classification", "emotion detection", "valence",
"arousal", "affect", "in the wild", "in the field", "in the fray", "in real life", "ambula-
tory", "physiological signals" , "biosignals" , "heart rate", "HR", "galvanic skin response",
"GSR", "electrodermal activity", "EDA", "skin Conductance", "SC", "photoplethysmo-
gram", "PPG", " blood volume pressure", "BVP".

Although the GARAFED may be applied to different types of input data, in this sub-
section it is used to assess papers focusing on physiological signals acquisition. Here, are
distinguished:

• works using solely physiological signals (see section 4.5.1),

• studies collecting physiological signals and additional inputs such as audio or video
(see section 4.5.2).

Acceleration sensors, while not collecting physiological signals, are wildly used in combi-
nation with physiological signals as an indicator of excessive movement and for filtering
purposes. Therefore, a study using physiological signals and acceleration is considered
as a physiological signals-only study instead of a multi-modal one.

In both cases, research papers will be separated in 3 categories:
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• First of all, the studies proposing an EMSR detection or classification method tested
in the wild.

• Secondarily, the empirical studies exploring physiological signals reactions to emo-
tions, mood or stress in real-life settings without proposing a detection or classifi-
cation method.

• Lastly, the studies using laboratory knowledge or real-life established methods to
recognize emotions, mood or stress for specific real-life applications.

Only the first category will be displayed using the previously presented visualization
method as only them are proposing an EMSR method. The second category represent
the step before EMSR and may help researcher wishing to build such method by provid-
ing empirical information about emotions. The third category represents the step after
EMSR as it presents studies using established models for specific applications. A list of
the currently (2019) available devices to perform such ambulatory studies are available
in the supplementary materials.

4.5.1 Physiological signals-based studies

Here, the studies focusing solely on physiological signals will be presented.

4.5.1.1 In-the-wild detection and classification studies

Studies on stress

.
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Table 4.1: Physiological signal-based stress studies providing a detection or classification
method.

A few studies propose methods to estimate stress in real-life settings. Plarre et al.
[2011] , Hovsepian et al. [2015] and Gjoreski et al. [2016] trained a model with 21 partic-
ipants in the laboratory and tested it in real-life settings with respectively 17, 20 and 5
subjects obtaining 71%, 72% and 92% accuracy.

Using a different approach, Dobbins et al. [2018] , Muaremi et al. [2014] and Hernan-
dez et al. [2011] used data from respectively 6, 10 and 9 participants collected in-the-field
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to estimate stress obtaining 70%, 73% and 78% accuracy.

Other researchers constrained their studies to supervised environment such as
Healey et al. [2005] and Rigas et al. [2011] who aimed to detect stress in drivers obtaining
respectively 97% and 82% accuracy. Similarly, Melillo et al. [2011] used a real evaluation
from a university to collect data from 42 students estimating stress with an accuracy of
95%. Table 4.1 summarizes those studies and present their respective GARAFED .

Studies on emotions and moods

.

There are much fewer studies proposing emotion or mood recognition methods
tested in the wild. Carroll et al. [2013] aimed at studying emotional eating by detect-
ing mood using a dimensional method. They reached 75% recognition for arousal and
72.62% for valence. Zenonos et al. [2016] aimed a recognizing moods in work environ-
ments. They proposed a model that reach an accuracy of 70%. Finally, Healey et al. [2010]
studied emotion recognition in the wild with 19 participants and reached an accuracy of
85% for arousal and 70% for valence.

Table 4.2 presents those studies as well as their graphical representation.

Table 4.2: Physiological signal-based emotion and mood studies providing a detection or
classification method.
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4.5.1.2 Empirical studies in real-life environment

Studies on stress

.

Most studies on stress in the wild are preliminary studies and present findings and
observations of physiological reactions to natural stressors without proposing a detection
model.

The disparities in stress experiences in-lab compared to in-the-wild are assessed by
Dikecligil and Mujica-Parodi [2010] that compared HRV obtained from 33 subjects during
2 short term laboratory measurements (aversive then benign IAPS images), a long-term
hospitalized monitoring (24h) and a supervised real-life study (180 min including a first-
time tandem skydive). They found strongly predictive correlations between laboratory
results and supervised real-life study.

Similar supervised real-life studies were conducted notably by Fenz and Epstein
[1967] that monitored HR and respiration in 10 novice and 10 experienced parachutists
during a jump. They found a sharp rise in physiological activity in novice jumpers and an
inverted V-shaped curve in experimented ones. Wilhelm and Roth [1998] similarly stud-
ied HR and respiration during a plane trip with flight phobics which pointed additional
HR as a reflection of participants anxiety. Kusserow et al. [2012b] present their finding
when monitoring people in the wild as well as a musician, an Olympic ski jumper and a
public speaker. They found correlations between HR and stress arousal. Baek et al. [2009]
tried to evaluate stress in driving using a custom car equipped with sensors (ECG, GSR,
Resp). In this supervised real-life study, temperature, noise, time of day (night vs day-
time) and simultaneous arithmetic calculations separated were altered to create stressful
environments. They found meaningful changes in physiological signals during simu-
lated stress environment. Different physiological reactions in participants were obtained
for the same stressor. This highlights individual differences in reaction to emotional trig-
gers.

Ambulatory in-the-wild studies were also conducted. Verkuil et al. [2016] proposed
an in-lab calibration using rest, standing cycling and stairs to improve the capabilities of
categorizing metabolic and non-metabolic HRV reductions in the wild (24h) using ECG
and 3D accelerometer. Additional HRV was found associated with negative affect and
worrying. Johnston and Anastasiades [1990] studied the relation between HR and stress,
arousal and time pressure in real life with 32 subjects for 24h. No significant relation
were found between the HR and the emotional state in most participants. A significant
relation was obtained only in a small subset of subjects which were found more anxious,
angry and with higher systolic blood pressure. Ramos et al. [2014] attempted to simu-
late out-of-the lab environment by introducing movements. They found a great need in
detection methodologies adapted to real-life applications and assessed the possibility to
use detection of physical activity to improve stress detection increasing stress classifica-
tion (f-measure improved of 130%).
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Studies on emotions and moods

.
Studies on mood and emotions are less common than the ones focusing on stress.

Myrtek and Brügner [1996] studied ECG associated with a 3D Accelerometer to compare
laboratory induced emotional events to real life ones. The self-reports of 500 participants
during a 23h ambulatory study were used and highlighted disparities between emotional
arousal in the wild compared to results obtained in laboratory.

Kusserow et al. [2012a] proposed an evolved solution to the additional heart rate
method to determine arousal by improving the physical activity detection. They used
such technique to assess arousal in daily activities such as taking public transport or of-
fice work.

Picard and Rosalind [2000] proposed innovative ways to gather physiological signals
for ambulatory emotion recognition, notably EDA sensors in earrings, shoes and glasses

Schmidt et al. [2018] collected 1081 EMAs from 10 subjects over 148 days and pro-
posed several guidelines for ground truth data labelling as presented in the second para-
graph in 4.3.3.2.

4.5.1.3 Usage of laboratory knowledge

Studies on stress

.
While no gold standard in terms of stress detection in the wild has been established,

some studies used the previously presented findings in physiological signal reactions to
stressors to assess stress for further purposes. For instance, Massot et al. [2011] uses phys-
iological signals to evaluate stressful part of a walking path for blinds in ambulatory set-
tings. Al-Fudail and Mellar [2008] evaluate teachers’ stress level when using technological
tools in the classroom through GSR.

Myrtek et al. [1999] studied 29 blue and 57 white collar workers to determine stress
and strain at work using HR. Several indices were used to define each type of strain: HR
for total strain, physical activity for physical strain, HRV for mental strain. Later, Myrtek
et al. [2005] took the same approach to evaluate stress and strain in female students. They
found that there is two type of persons “cool” or “emotional” . The subjects in the first
type do not consider anything as moods (no emotion perception) and the ones in the sec-
ond type are very aware of their emotions (high emotion perception). Kimhy et al. [2009]
evaluated the relation between stress and arousal for 20 patients with psychosis using
both EMAs and the Life Shirt [Grossman, 2004] during 36h ambulatory studies. Zhang
et al. [2012], designed a mobile application that estimate stress using HRV and prompted
the user to relax through breathing exercises. Rahman et al. [2014] studied stress in illicit
drug users, daily smokers and drinkers. They used the previously mentioned model of
Plarre et al. [2011] to access stress and found after the first week a significant learning
effect from the subjects in how to provide valuable data. Karlsson et al. [2011] studied
the reaction of ambulance professionals to alarms. They showed that all subjects ex-
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perienced increased heart rate when there was an alarm regardless of their experience,
education and gender which implies a physical arousal detected by the heart rate.

Studies on emotions and moods

.

Similarly, researchers used knowledge of emotions and mood’s effect on physiological
signals established in the lab to use in application conducted in the wild. For instance,
Kim and Fesenmaier [2015] used EDA to estimate 2 travelers’ emotions during a 4 days
trip. Their mean EDA level correlated with their experience of each activity. Roseway et al.
[2015] used EDA to determine arousal and HRV to determine valence in 10 participants
during a 10 days study. Arousal was displayed using a color-changing emotional crystal
to help mood-awareness at work in the workplace. The device improved stress control
abilities in the subjects. Similarly, Snyder et al. [2015] used the color of a desk lamp to
reflect subjects internal state estimated from EDA. It provided information on the way
arousal feedback affects understanding of ourselves and others.

4.5.2 Multimodal approaches

Collecting additional signals in addition to physiological signals might ease the recog-
nition of emotions moods and stress. Here, the studies using a multi-modal approach
including physiological signals will be presented.

4.5.2.1 In-the-wild detection and classification studies

Studies on stress

.
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Table 4.3: Multimodal stress studies providing a detection or classification method.

A few studies used physiological signal combined with additional inputs to study
stress. For instance, Muaremi et al. [2013] used smartphone information such as phone
calls and calendar associated with heart rate to detect stress. They reached a 61% accu-
racy. Rigas et al. [2011] associated driving event information to physiological signals to
detect drivers’ stress and obtained an accuracy of 96% .

The presented studies and their representation may be found in Table 4.3

Studies on emotions and moods

.

Moods and emotions have also been studied using multimodal inputs. Kanjo et al.
[2018] associated noise environment, ambient light levels and air pressure to physiolog-
ical signal to predict emotions with a 86% accuracy. Exler et al. [2016] used smartphone
extracted data such as calls and calendar associated with HR to evaluate valence with a
91% accuracy. McDuff et al. [2012] limited their study to a working desk. They added de-
vices to the subjects desk such as cameras and position sensors. The reached an overall
accuracy of 68% to recognize valence arousal and engagement.

Those studies are presented in Table 4.4 alongside with their GARAFED.
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Table 4.4: Multimodal mood and emotions studies providing a detection or classification
method.

4.5.2.2 Empirical studies in real-life environment

Pärkkä et al. [2008] studied the relationship between physiological signals, behavioral
variable, exterior variables such as temperature, room illumination and self-reports of
moods and stress for 3 months with 17 subjects. Self-reported stress reported by the sub-
jects correlated with the variables. Sarker et al. [2016] studied the GPS, activity data and
physiological data of 38 subjects during a 4 weeks experiment. They highlighted patterns
such as the predictability of stress events durations using previous data and likelihood of
stress events depending on the time of day. They proposed a way for predicting the likeli-
hood of a momentary stress episode to become significant, Adams et al. [2014] collected
EDA, microphone input and stress self-reports of 7 participants for 10 days. The found a
correlation between audio profiles , EDA and self-reports of stress. Kocielnik et al. [2013]
used GSR to evaluate arousal during a workday. The system created a 5 level arousal map
(very high arousal to very low arousal) associated with calendar activities. 91% of the
users found the generated arousal map a good reflection of their feelings.

4.6 Conclusions

Accurate emotion recognition in the wild has a great potential to support affective sci-
ence research and to develop applications designed for the general public. Whether it is
applied to robotics, with robots understanding humans emotions, in health care, for an
increased capacity to understand our own emotions or the one of others, in domotics,
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with smart homes adapting settings to your moods or other domains, emotion recogni-
tion has been a goal we are trying to achieved for decades. Emotion recognition is of
particular interest in this research since, as previously stated, it would allow to automati-
cally detect patients emotion and create an affect-aware and adaptative system.

However, research has mainly be limited to laboratory environment and needs to be
broaden out to the wild to really achieve meaningful progress. In this chapter the main
differences between classification and detection of emotions in the wild and in the lab-
oratory were presented. The main decisions to take, according to the goal of the desired
study, their advantages, challenges and limitations were pointed out, and a visual method
to categorize studies based on those main choices was proposed. Studies focusing on
physiological signals were assessed using such method and existing devices suitable for
ambulatory studies, whether they are designed for research or for the general public were
listed. Studies, past or future, using physiological signals or other types of input for emo-
tion, stress or mood recognition may be assessed using this method in the future.

The reason why there is a real need for research to be done in emotions recognition
in the wild was highlighted. It was shown that while a tendency toward this goal has been
seen, very few papers focus on this matter today. The quantified-self trend associated
with the smaller and more portative sensors technology nowadays makes it easier for
researcher to step in this path. This review was submitted to the journal "frontiers in
psychology - emotion science".
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5
EMOTIONAL DATA COLLECTION IN THE

LABORATORY USING VR GAMES

As seen in the previous chapter, one of the greatest challenges in Affective Computing is the
creation of ecological multimodal datasets for emotion detection and recognition. Ideally,
such datasets would contain affective expressions recorded in the wild, i.e., in a real-life set-
ting. Unfortunately, reproducing these ideal conditions is time consuming and very chal-
lenging. This chapter investigate alternative data collection methods in laboratory settings
that would elicit strong emotions.

5.1 Introduction

Currently, Virtual Reality (VR) technologies are widely applied to investigate complex
human behaviors and to elicit similar-to real-life emotions. For example, VR is a well-
established medium for investigating fear perception and treatment [Diemer et al., 2014;
Mühlberger et al., 2007; Rothbaum, 2009]. A characteristic of VR is the possibility to elicit
emotional reactions as, by its nature, it mainly relies on perceptual, visual and auditory
stimulation (including perceptual feedback of one’s own actions). Recent studies have
highlighted the need to consider both bottom-up and top-down perceptual processes, in
order to understand how VR can become emotionally engaging (e.g., how background
narrative can enhance emotional experience [Peperkorn and Mühlberger, 2013]). In
Diemer et al. [2015], authors reviewed the factors influencing presence perception, with
emotional states (e.g., fear) being crucial, according to clinical psychology. In their analy-
sis, they considered the central role of perception in eliciting emotional reactions and the
role of arousal as a basic dimension of emotional experience. Finally, in Meuleman and
Rudrauf [2018] the authors used a set of VR consumer games to elicit emotions in partic-
ipants in lab conditions. According to Scherer’s model [Scherer, 2009], they asked partic-
ipants to self-report appraisal components, physiological reactions, feelings, regulation
and action tendencies in addition to emotion labels and dimensions. Using multivariate
analyses, they shown the relation between reported labels and affect components.

Several works attempting to create emotional states in the laboratory for scientific
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aims are based on appraisal theories. For instance, Conati and Zhou [Conati and Zhou,
2002] implemented a probabilistic model, using Dynamic Decision Networks, to recog-
nize student’s emotional states in an educational game context, following the OCC ap-
praisal theory [Ortony et al., 1990] and considering the students’ goals and personality.

In the video game context, Johnstone [1996] analyzed the relation between the acous-
tic features of the player’s vocal responses and the manipulations of some appraisal prop-
erties of Scherer’s Component Process Model [Scherer, 2009]. Another attempt at using a
video game for the manipulation of appraisals was proposed by Kappas and Pecchinenda
[1999], while van Reekum et al. [2004] used a simple video game to study physiological
effects of the same properties addressed by Johnstone.

5.1.1 Roseman’s appraisal theory

In affective sciences, emotion elicitation refers to the use of emotionally valanced stim-
uli to evoke affective responses. Emotion research often relies on appraisal theories of
emotions, considering emotion as a process, rather than a state.

These theories highlight the central role of appraisal, suggesting that it can trigger and
differentiate emotional episodes, determine intensity and quality of action tendencies,
physiological responses, behaviors and feelings [Lazarus, 1991; Scherer, 2001]. In this
framework, it can be argued that appraisal elicits emotions [Moors et al., 2013].

This chapter relies on the appraisal theory of emotions proposed by Roseman et al.
[1996] for emotion elicitation . According to this theory, the appraisal process categorizes
a given situation according to five dimensions:

• situational state: assessing whether the appraised event is consistent or not with
someone’s motives;

• probability: indicating the certainty or uncertainty of the outcome of the appraised
event;

• agency: indicating whether the person is in control over the event or if some other
agent (or external circumstance) is in charge;

• motivational state: assessing whether the event is consistent with the motive of
obtaining reward or of avoiding punishment;

• power: referring to a person’s control power over the situation.

For instance, the event of receiving a prize would elicit pride, as it is (1) consistent with
one’s motives of being rewarded, (2) certain, and (3) appraised as something depending
on the person’s ability or performance. In the Ironman game, the elicitation of the posi-
tive emotion of joy and of the negative emotion of frustration is the focus. More precisely,
the game play is designed to re-create the situational circumstances that, according to
Roseman’s appraisal theory, elicit joy and frustration. Details about the emotion eliciting
events exploited in the game are provided in Table 5.1.
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Table 5.1: Appraisal variables of the Ironman VR game for emotion elicitation.

Emotion Appraisal variables Emotion eliciting events in the
game

Frustration Circumstance-caused, strongly
uncontrollable events inconsistent

with personal appetitive motives

Uncontrollable circumstances (i.e.
time constraints) make it

impossible for the players to win
the game

Joy Circumstance-caused,
controllable events consistent

with personal appetitive motives
(e.g. obtaining a reward)

Having enough time to complete
the task, players can satisfy their

desire to win the game

Figure 5.1: Two screenshots of the appraisal theory based VR game: at the beginning of
the game the suit pieces are randomly arranged on two tables (left); the player has to
assemble the Ironman suit inside the light blue cylinder as fast as possible (right); a timer
is visible in the top right corner.

5.2 A VR game for emotion elicitation

To address the limitations encountered by previous research, and to investigate alter-
native data collection in laboratory settings that would elicit strong emotions, a virtual
reality game was developed here (Fig. 5.1). It aims at eliciting emotional states and pro-
viding a system for recording synchronized multimodal data streams. Most of the existing
works in the field of affect detection and recognition focus on facial expression and au-
dio. Here, a system recording a novel combination of modalities: physiological (HR, GSR,
ST, muscle contraction), kinematic (acceleration), visual (video of the user and the VR en-
vironment seen by the user) and auditory (user’s respiration) was designed. While some
previous works address them separately (e.g., [AlZoubi et al., 2012; Loghmani et al., 2017;
Lussu et al., 2019]), this system collects all of them at the same time and in sync, with the
possibility to add other sensors and devices thanks to its modular nature.

This emotion elicitation game was designed leveraging the Roseman theory. The
choice of an immersive VR environment affords better control and manipulation of the
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emotion-eliciting stimuli and ensures the replicability of the conditions among partic-
ipants. It is also expected that the immersive environment will produce stronger emo-
tional elicitation.

5.2.1 Game flow

The “Ironman Game” is a single user VR game designed to elicit joy and frustration in the
player. The game is based on the manipulation and assembly of virtual objects to be per-
formed within a limited amount of time. The HTC Vive headset is used for visualization,
while interaction is made simple and intuitive through the use of HTC Vive controllers:
objects can be grabbed and released by pressing and letting go the controller’s trigger
button.

Following Meuleman & Rudrauf’s guidelines on game design for emotion elicitation
[Meuleman and Rudrauf, 2018], this VR game exploits relatively simple game controls
and cognitively demanding tasks and elaborate narratives were intentionally avoided.
The futuristic environment was chosen to give the player the impression of a familiar en-
vironment, similar to that many commercial games, so they can feel engaged and are not
distracted by the data collection process going on during the playing session. Moreover,
a soundtrack was played in the background in order to facilitate immersion.

In the introductory scene, the players are provided with the game instructions. Next,
they play a demo scene in which some pieces of the suit are pre-assembled, to familiarize
with the game interaction modality. Then, the actual game starts and the players have
a limited time to complete the task of assembling the entire suit. On the top left part
of the VR display, a timer is shown only at the beginning and during the last 10 seconds
of the game. During some preliminary tests, indeed, it was noticed that players do not
pay attention to the timer in a continuous manner. Audio messages are also played back
during the game to announce that only 10 seconds are remaining to complete the task.

The game has two playing conditions: normal vs. manipulated. In the manipulated
condition, the duration of the game turn was shortened without announcing it to the
player. Whenever the player is close to accomplish the task (i.e., when 11 of the 13 suit
parts have been correctly positioned), the timer appears and a voice announces that only
10 seconds are left until the end of the turn, making accomplishing the task and suc-
cessfully complete the game in time highly improbable. Consequently, even if the player
managed to easily finish the game in time in the normal condition, performing the same
task using similar skills in the manipulated one will result in a failure.

The game was designed to elicit two emotional states: joy and frustration. By accom-
plishing the task in time in the normal condition, the player will probably, according to
the theory, feel joy. Consistently, it was expected that the proposed manipulation would
elicit frustration, as the unexpected game ending would be seen as a certain undesirable
event caused by circumstances.
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Figure 5.2: Multimodal recording system. Several machines connected through a wired
network receive a SMPTE timecode at 100 Hz. Each one of them manages the commu-
nication with one of the sensors and records the corresponding data along with times-
tamps.

5.2.2 Multimodal recording system

A multimodal recording system was implemented by exploiting the EyesWeb XMI open
research platform, a modular application that allows researchers to quickly design and
develop real-time multimodal systems [Volpe et al., 2016]. The platform is based on
modules, or blocks, that can be visually and intuitively assembled to create programs,
or patches, to process input data streams and generate multimodal output in real-time.
Figure 5.2 illustrates the system architecture.

The recording system has the following main characteristics:

• it can process data from multiple sensors;

• it generates a synchronization signal that is used to add a time-stamp to the
recorded signals;

• it is distributed over a network of wire-connected workstations;

• by adding workstations, it can be extended in order to record a larger number of
sensors without introducing latency.

As reported in Figure 5.2, several machines are connected through a wired network,
on which a SMPTE timecode1 signal is constantly transmitted via UDP packets and acts
as a synchronization clock between the machines. Each machine has an internal clock
that is used to generate timestamps for the recorded data. Whenever a SMPTE timecode
is received, the internal clock is updated, if needed, to match the timecode. The wired
network is a local gigabit Ethernet connection which ensures a high speed transmission
of the UDP packets containing the SMPTE timecodes. The system is an extension of the

1https://en.wikipedia.org/wiki/SMPTE_timecode
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SIEMPRE recording platform [Glowinski et al., 2013], which exploited dedicated hard-
ware, instead of a common network connection, to ensure the time sync between the
machines.

Figure 5.3: A screenshot of multimodal data playback from the EmoVR corpus: physical
(upper-left) and VR (upper-right) environment videos, physiological sensor data (lower-
left) and audio data (lower-right).

Each machine connected to the system acts as an independent recorder and manages
the communication with one of the recorded sensors. The recorded data is always times-
tamped, that is, each single datum (e.g., an audio or video frame, a physiological datum)
is associated to the internal clock of the machine that received and recording it. Figure
5.3 shows an example of the sensors and data streams that our system allows to record
and synchronize, as described next.

5.2.2.1 Sensors and Data

Physiological signals

The Empatica E41 wristband was used to collect physiological data. It is designed to col-
lect physiological signals related to emotions: PPG for BVP as an indicator of HR, EDA and
ST. This device is medically certified and provides reliable data [McCarthy et al., 2016].

During the experiment, it was connected via Bluetooth to an iOS mobile application.
Once the data was transferred, the application forwarded it to EyesWeb via UDP packets.

Forearms EMG

Some existing works used EMG signals to detect expressions of specific emotions, e.g.,
amusement [Perusquía-Hernández et al., 2017] or movement expressive qualities [Ward

1https://www.empatica.com/en-eu/research/e4/

5



5.2. A VR game for emotion elicitation 69

Table 5.2: List of tasks used in the data collection session

Name Code Description Expected emotions

Kitty Rescue game1 T1 rescue the kitten lost a tall sky scarper in construction fear, joy
(i.e., virtual height exposure) satisfaction

Set of videos used in Chirico et al. [2018]

T2a combination of YouTube clips amusement
T2b video of hens wandering across grass neutral
T2c video of high mountains took with the drone camera awe
T2d video sequence of tall trees in a forest awe

Ironman Game T3 see section 5.2.1 for description frustration, joy
Shinrin-yoku: relax in a virtual forest inspired by "Forest Bathing" awe
Forest Meditation and Relaxation2 T4 Japanese relaxation method
RideOp - VR Thrill Ride Experience 3 T5 experience attractions of VR luna park fear

et al., 2016]. More frequently, however, researchers developed multimodal systems to de-
tect emotion-related movement qualities using a combination of signals, including EMG
(e.g., [Girardi et al., 2017; Nakasone et al., 2005]).

In order to increase the portability of our system and to give the player the impres-
sion of an ecological gaming experience, the use any high precision EMG devices were
avoided as they are often bulky. Instead the consumer-level MYO device2 was chosen,
which is shaped as a lightweight band attached to the player’s forearm. The MYO SDK
and Bluetooth communication were used to transmit EMG data to EyesWeb XMI via UDP.

Video

While it will not be used for emotion recognition, multiple synchronized video streams
are recorded for other purposes: it allows to keep track of how the player reacts to stimuli
in the physical environment and the actions they carry in the VR environment.

By looking at those streams it is possible to better identify the player’s actions dur-
ing the data segmentation phase. For example, large/energetic body movements may be
excluded from the dataset, as it is demonstrated that physical activity have detrimental
effects on the reliability of physiological sensors (e.g., PPG) [Ge et al., 2016].

Video is recorded in EyesWebXMI by capturing a portion of the screen of the machine
running SteamVR3 (to record what the payer is seeing in the VR environment) and by
receiving frames from a webcam (to record how the player is moving in the physical envi-
ronment). Both video streams are synchronized by timestamping them with the current
sync clock.

Respiration Audio

The work presented in Lussu et al. [2019] demonstrated the possibility of guessing move-
ment by analyzing the audio of respiration captured with a normal voice microphone
placed near the participant’s nose. It has been also shown that emotional states can be
recognized from movement expressivity [Castellano et al., 2007]. For this reason, it was
expected that audio from respiration can be exploited to detect emotional states.

2https://support.getmyo.com/hc/en-us
3https://www.steamvr.com
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A head mounted wireless microphone was placed close to the mouth of the player.
This approach is similar to the one adopted in Lussu et al. [2019], where user’s respiration
data was extracted from an audio signal. Audio is recorded in stereo at 48 KHz: the first
channel contains the actual respiration audio while the second one contains the SMPTE
clock encoded as an audio signal. In this way, the SMPTE clock may be decoded and the
respiration audio played in sync with the other data streams at a later stage.

5.2.3 EmoVR multimodal corpus

A preliminary data collection was carried out by exploiting the VR game described in
Section 5.2.1 and the recording system illustrated in section 5.2.2. The outcome was the
EmoVR multimodal corpus of emotional states elicited by VR games.

Our long-term goal is to build multimodal classifiers to detect non-basic emotions.
To this purpose, the set of tasks to be performed in the VR environment were chosen to
collect the physiological responses of two negative and two positive affective states, to
avoid that our classifier will classify emotions along the valence axis only. Along with
the Ironman game designed to elicit joy and frustration, other commercial games and
contents available on SteamVR were exploited, half of them focusing on eliciting fear of
height [Meuleman and Rudrauf, 2018], the other half eliciting awe [Chirico et al., 2018,
2017].

5.2.3.1 Protocol

All participants had to perform 5 tasks in a fixed order, as shown in Table 5.2. The games
requiring an active participation of the user were interleaved with video contents requir-
ing a passive participation only. The purpose was to alternate the tasks that may possibly
elicit high arousal in participants, with less agitating sessions.

After each data collection stage, participants were asked to self-report their affective
state, by selecting from a list of 16 labels (see Table 5.2), including most of the emotions
from Roseman’s theory. Each participant could report more than one emotion per task.
The 4 stimuli used in Task T2 were considered separately as it was expected that each of
them might induce a different emotion (see [Chirico et al., 2018, 2017]).

5.2.4 Results an Discussion

Five participants took part in the data collection (2 males, 3 females). From the partici-
pants self-reports (see Table 5.3) it emerges that a large spectrum of positive and negative
emotions were successfully elicited during Tasks T1-T5, showing that VR-based methods
can be used to collect affect-related data. In particular, the emotion that was the focus
here, i.e., frustration, was successfully elicited in 3 out of 5 participants.

Other reported emotions were: joy, pride and surprise. One participant, however, did
not report any emotion. It is important to notice that, according to appraisal theories,
the same event can result in different emotions being elicited, depending on how the
person experiences the event. Therefore, although carefully designed stimuli were used,
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Table 5.3: Self-reported emotions for each task.

Task T1 T2 T3 T4 T5
a b c d

awe/delight 0 0 0 1 1 0 3 3
surprise 1 1 0 0 2 1 1 0
hope 0 0 0 1 0 0 0 0
joy 1 3 0 1 2 1 2 1
relief 2 0 0 1 0 0 2 1
fear 5 0 1 0 1 0 0 4
frustration 2 0 0 0 0 3 0 0
anger 0 1 1 0 0 0 0 0
pride 0 0 0 0 0 1 0 0
guilt 0 0 0 0 0 0 0 0
regret 0 0 0 0 0 0 0 0
sadness 1 0 1 0 0 0 0 0
distress 1 0 0 0 0 0 0 0
no emotion 0 1 3 1 1 1 0 0
other emotion 0 0 1 0 0 0 0 0

the elicited emotions may differ from the ones expected by the experimenter, at least
for some of the participants. For instance, in our experiment, one participant reported
the disgust emotion (the “other emotion” row in Table 5.3) in response to the supposedly
emotionally neutral stimuli (i.e., hen-house video, stimuli T2b). After the experiment,
the participant reported a personal repulsion for that animal. Regarding the elicitation
of the positive emotion of awe (T2c and d, T4),it was experienced by three participants,
confirming the previous results in [Chirico et al., 2018, 2017].

This study was published in the MIG 2019 conference [Bassano et al., 2019]

5.3 Conclusions

This game is the first immersive VR game inducing emotional states based on appraisal
psychological theories and a system for collecting synchronized multimodal data, ex-
ploiting a novel combination of modalities, i.e., physiological data (Empatica and MYO),
kinematic data (MYO), video recordings and audio. Preliminary experimental results
show that it is possible to successfully induce a spectrum of positive and negative emo-
tions in VR scenarios, even if there are some limitations in using a simplified question-
naire for emotion self-reporting.

In the future, more sophisticated validated tools (e.g., GRID [Fontaine et al., 2013])
could be exploited to check whether the participants’ reactions not only corresponded to
the experimenter’s expectations in terms of emotional labels but also in terms of single
appraisal evaluations. Finally, deep learning techniques may be used on the collected
corpus to develop models for automatically recognize of emotional states.
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While this system successfully elicited strong positive and negative emotions on sub-
jects and can be used for other type of research, it did not successfully elicited the desired
emotion on every participants. Therefore, adapting it for LIS patients as a way to elicit
emotion for emotion recognition would not be an adequate route to pursue the goal of
this research. Collecting emotions in the wild seems to be a more adapted solution for
the purpose of this research and will be investigated further in next chapter. 5



6
TOOLS FOR EMOTION DETECTION FOR

REAL-LIFE APPLICATION

As seen in Chapter 4, several works have shown that physiological signals can constitute in-
dices for automatic emotion recognition [Shu et al., 2018]. Differences were observed when
comparing physiological data of emotions induced in the lab to real-life emotional reac-
tions [Wilhelm and Grossman, 2010]. Difficulties in building the affect-related datasets in
ecological settings, e.g., establishing the ground truth, are well documented in the litera-
ture [Schmidt et al., 2018]. Proper data segmentation and labelling is one of the main chal-
lenges [Healey et al., 2010]. This chapter will investigate novel ways to collect physiological
data in the wild while taking into account the challenges of data labelling. Open-source
tools will be proposed to researchers wishing to work toward this goal.

6.1 Appraisal Theory-based Mobile App for Physiological Data Col-
lection and Labelling in the Wild

As seen in Chapter 5, appraisal theories have been greatly used in emotion-related ap-
plications in the past. It was used in this section in order to help collecting and labelling
physiological data in the wild through an open-source mobile application (app). The
Ortony, Clore and Collins (OCC) model [Ortony et al., 1990] (Fig. 6.1) has been chosen as
it was successfully used in affective computing applications in the past [Bartneck, 2002;
Conati, 2002]. It can predict 22 emotion labels based on valence and the emotional trig-
ger type (event, object or agent). The app detects additional heart rate to predict emo-
tional events from physiological signals [Myrtek and Brügner, 1996]. Once relevant events
are detected, the app prompts the users to provide the appraisal evaluation of the event,
helping them to define their emotional state. Unlike existing solutions, which often only
use a constrained list of emotional labels [Nasoz et al., 2004] or dimensions [Carroll et al.,
2013], here, a questionnaire is introduced based on appraisal theory to help the user pro-
vide the ground truth for his/her emotional states. By collecting the information about
appraisal process, the hope is to improve the ground-truth labelling and to provide more
consistent annotation of corresponding physiological signals.
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74 6. Tools for emotion detection for real-life application

Figure 6.1: OCC model

6.1.1 Emotion recognition from physiological signals

Emotion recognition from physiological data collected in the lab was often addressed
[Shu et al., 2018]. Most of the studies use measurements of Heart Rate (HR), Skin Con-
ductance (SC), ElectroDermal Activity (EDA), Galvanic Skin Response (GSR), Skin Tem-
perature (ST), and Respiration. Fusions of several signals were also studied. For instance,
the combination of HR, EDA and ST, also used in this work, has been studied in the past
in Nasoz et al. [2004] to classify anger, surprise, fear, frustration, and amusement with an
average recognition rate of 83% [Nasoz et al., 2004].

Studies using data collected in ecological settings are rare, and most of them focus
primarily on stress detection [Gjoreski et al., 2017; Hovsepian et al., 2015; Plarre et al.,
2011]. Some studies investigating affective states focused on moods [Zenonos et al., 2016]
as they can be measured at any time of the day. It is more difficult to collect and label
the data of emotions in ecological settings, as they are usually much shorter and more
momentary than moods [Gray et al., 2001]. Therefore, methods which ask the user to
report emotions at fixed time intervals, e.g., Plarre et al. [2011], might not be appropriate
to collect such data.

6.1.2 Methods for emotional self-reporting in the wild

According to Scherer [2005], existing techniques for emotional state self-reporting can be
divided into two groups: free response and fixed-response labelling. While the first group
allows for a higher precision of labelling (custom labels [Isomursu et al., 2007], verbal re-
ports [Muaremi et al., 2013]), it makes it difficult to develop machine learning recognition
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models due to a potentially wide range of emotion labels selected by users. Constrained
solutions include the usage of a finite list of labels (e.g., Nasoz et al. [2004]) or dimen-
sional models such as valence-arousal (e.g., Healey et al. [2010]) or pleasure-arousal-
dominance (e.g., Kocielnik et al. [2013]). More user-friendly techniques may be used for
reporting such as emoticons [Meschtscherjakov et al., 2009]. Affect dimensions are usu-
ally reported through the Self-Assessment Manikin (SAM) method [Isomursu et al., 2007]
or through 2D point maps [Carroll et al., 2013].

In Schmidt et al. [2018], guidelines are provided for emotional labelling in the wild by
comparing the results of different methods. A combination of manual reports and au-
tomatically triggered prompts is advised, as well as providing the means to the user to
manually correct the timespan of an emotional event. Unlike Schmidt et al. [2018], that
used time-based trigger, in this study prompting based on physiological cues [Myrtek
and Brügner, 1996] was used and an experimenter-free data gathering protocol was im-
plemented. The role of the experimenter was reduce in order to help different research
teams to contribute in future to the creation of a large shared dataset.

6.1.3 Methods for emotional physiological data collection

In real-life settings, the physiological data labelling and segmentation (i.e., defining the
start and end of an emotion) are the main challenge [Healey et al., 2010]. A few studies
used mobile apps to collect both physiological data and affect related states. The most
common ones collect stress levels [Hovsepian et al., 2015; Muaremi et al., 2013] or moods
[Carroll et al., 2013; Zenonos et al., 2016] .

Healey and colleagues [Healey et al., 2010] conducted a real-life experiment using a
mobile phone app to study different labelling methodologies for physiological data col-
lection. They collected data and self-reports in the form of discrete labels and dimen-
sional models (valence and arousal) and drew attention to some difficulties linked to
self-reporting. For instance, from the reports, the label "anxious" was annotated both
as a positive and negative emotion. This example highlights a need for a scheme to help
users pick labels. They reached a rate of 85% for classifying arousal and 70% for classify-
ing valence using GSR and HR on manually extracted data segments of various durations.

6.1.4 Preliminary study

In a preliminary study (PS) physiological data was collected in ecological settings using
a standard paper-based self-reporting method. 4 subjects (3 males, 1 female; avg. age
29 years ) participated in the study. The experimental procedures follow the IIT ADVR
TEEP02 protocol, approved by the Ethical Committee of Liguria Region on September 19,
2017.

6.1.4.1 Study protocol

The subjects wore the Empatica E4 bracelet [Empatica, 2012] for 5 days, 12 hours a day.
They were asked to remove the bracelet at night, during sport and showers. They kept
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a hand-written journal of their emotions. The focus was given to the 3 most common
basic states: happy, sad and angry. For each emotional event, participants were asked to
report its start and end time as well as the intensity using a 5 point Likert scale. The focus
was made on those emotions because of the end goal to use this emotion detection for
automatically modulating the voice and the avatar in the system presented in chapter 3.
Additionally, emotional labels were collected instead of valence and arousal for the same
reason.

6.1.4.2 Issues and lessons learned

Blood Volume Pressure (BVP), EDA and ST data were collected for a total of 234h 02m
29s. This pilot study gave us a great number of insights into the problems faced when col-
lecting physiological data in ecological settings. It also confirmed the issues previously
discussed in the literature e.g., Healey et al. [2010]; Schmidt et al. [2018]. Several subjects
forgot to wear the device and failed to report some relevant events. When the data was
analyzed after the study, some participants were asked about moments in the day where
the physiological signals was particularly different from the baseline. Only then they re-
membered the events which they had failed to report before. Additionally, some subjects
forgot to rate the intensity of certain emotions.

Furthermore, our participants had difficulty with distinguishing what constitutes an
emotion. For instance, an event "Happy: 8AM to 8PM intensity rating 1" was reported by
a participant. However, the long duration and low intensity makes us believe that in this
case the user was referring to a mood rather than an emotion [Gray et al., 2001].

6.1.5 The proposed solution

Collecting and labelling the physiological data of emotions in ecological settings brings
many difficulties. In order to address them, a mobile application was created with the
aim that it:

1. can be used to capture physiological signals of spontaneous emotions during
every-day activities;

2. is minimally intrusive;

3. guides the user through the process of reporting relevant events, by acquiring the
necessary information to infer the related affective states, and without asking the
user to pick any emotional labels;

4. helps the user to provide meaningful annotation by differentiating emotions from
moods;

5. detects the relevant events from the physiological data and prompts the user about
it;

6. provides a limited set of ground-truth labels to be used in recognition and classifi-
cation models.
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Taking into account the results of the preliminary study (see section 6.1.4) a solution
based on appraisal theory was proposed using a commercially available physiological
sensor, a mobile application, as well as a state-of-the-art event detection algorithm.

6.1.5.1 Self-reporting about relevant events

To fulfil the requirements 3, 4 and 6, appraisal theory was used for self-reporting which
acquires the whole appraisal process around the event. The resulting annotation consists
of a limited set of labels (single appraisals or emotional labels corresponding to a com-
binations of appraisals), and it can, therefore, be used to build classifiers with machine
learning.

Unlike user-picked (UP) label-based datasets that use a specific set of labels for a spe-
cific application, exploiting appraisal theory to annotate the data allows one to build
application-independent datasets. Indeed, the same dataset can be used in different
application-specific recognition models, by choosing the relevant subset of emotional
labels, or by detecting single appraisals. It provides for a greater information about the
event (additional details on what led to the emotion) and a large number of labels to the
experimenter without being cumbersome to the user since they do not need to choose
such complex labels from a long list. Additionally, using appraisal theories allows for the
creation of a single appraisal recognition model from physiological data [Mortillaro et al.,
2012]. Such models have rarely been studied so far but the results are promising [Smith,
1989]. The OCC model was chosen for its simplicity to create an adapted questionnaire
comprehensible by non-experts.

6.1.5.2 Sensors

The Empatica E4 bracelet allowed us to fulfil requirements 1 and 2. This medical device
was chosen for its sensors relevant to emotion detection: BVP, EDA and ST as well as
kinematic data through a 3D accelerometer. Its small size allows for long duration exper-
iments without being bothersome. The device comes with an API for mobile applications
and an already processed BVP to Inter Beat Interval (IBI). Both raw BVP and calculated
IBI are collected by the app to allow experimenters to perform their own peak detection
method. The sensor has also been used in the past for research purposes [Gjoreski et al.,
2017].

The iPhone-based (iOS) mobile app use a Bluetooth connection to collect physiolog-
ical data from the E4 bracelet.

6.1.5.3 The application modules

The emotion definition module

This module is designed to collect information about relevant emotional events. Using
this module, the users first provide the duration of a relevant event. The maximum du-
ration of the event was set to 5 minutes to limit the collection of moods as emotions are

6



78 6. Tools for emotion detection for real-life application

Figure 6.2: OCC-based questionnaire.

usually shorter. Next, they answer a series of questions according to the questionnaire
(Fig. 6.2) and give the strength of the emotion.

To collect the information about the relevant events, the OCC model was converted
into a question tree (see Fig. 6.2). For instance someone frightened by an incoming meet-
ing would probably answer the example path in Fig. 1. Small changes were introduced to
the original model to differentiate mood from emotions. Indeed, according to Clore and
Ortony [2013], moods are unconstrained in meaning, while emotions are directed at spe-
cific objects, events or people. Therefore, a branch was added to the tree to provide the
possibility to report such "unconstrained in meaning" experiences (see "Mood" branch
in Fig. 6.2).

The event detection module

This module is used to detect relevant events from the data in real-time. The additional
heart rate method [Myrtek and Brügner, 1996] was used to detect relevant events and
prompt the user to report his/her emotion at this time. It consists in detecting heart rate
increases that are unrelated to activity (estimated using the accelerometer). Detected
events create a mandatory events list, which is always accessible to the user on a separate
tab of the app. By implementing this algorithm requirement 5 was fulfilled from the list
presented in 6.1.5.

As the exact length of the detected event is unknown, it was set to the maximum time
allowed for voluntary report: 5 minutes, 150s before and after the detected peak. The
minimum time interval between two detected mandatory events is fixed at 1 hour to
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avoid life disturbance with too many prompts. If two or more events are detected within
an hour, only the first event is added to the mandatory list and the remaining ones are
ignored.

The Notification module

It reminds the user to wear the device when needed and to report the events from the
mandatory event list, if any. Reminders, when needed, are done at a rate of once every 15
min since emotional reports become less accurate as time passes [Mauss and Robinson,
2009]. When connection with the wristband is lost, notifications are prompted by the
phone every 15 seconds until reconnection.

(a) Prompt. (b) Reminder.
(c) Reminder,
locked screen.

Figure 6.3: Mandatory emotion.

Figure 6.4: Notifications - Disconnection.
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6.1.5.4 The application functionalities

The mobile application is separated into 5 tabs:

Voluntary reports

The users can voluntarily report an undetected event. They select the start and end time
(max. duration of 5 min) then continue with the emotion definition module.

(a) Prompt. (b) Reminder.
(c) Reminder,
locked screen.

Figure 6.5: 1/ Time selection

(a)
2/ Valence.

(b)
3/ OCC question-
naire.

(c)
4/ User-picked la-
bels.

Figure 6.6: Voluntary tab.
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Mandatory event list tab

When an event is detected by the event detection module (see second paragraph in
6.1.5.3, a mandatory event is added to the list. An event will also be added if the E4
bracelet’s button is pressed. Our preliminary study highlighted that reporting the events
as they happen may be difficult. However, referencing them later may decrease the time
range precision. By pressing the button, the users manually add a new entry to the
mandatory list with a precise timing (150s before and after the button press). They can
then report the event later.

(a)
1/ Event list.

(b)
2/ Event picked.

(c)
3/ Valence.

Figure 6.7: Mandatory tab.

The remaining 3 tabs allow for a better experience with the app: to temporarily stop
the notifications, check the battery level and visualize the reports using appropriate
graphics. A video of the app is available in the supplementary materials.

Figure 6.8:
Stop tab -
temporary stop.

Figure 6.9: Graph tab -
Visualize emotional reports.
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6.1.6 Data collection

Figure 6.10: IBI averages for anger and baseline for each dataset (UP-PS: Database from
the Preliminary using User-Picked labels; UP-App: Database using the mobile applica-
tion and User-Picked labels; OCC-App: Database using the mobile application and the
OCC-inferred labels.

A data collection was performed with 4 subjects (3 males, 1 female, avg. age 28 years)
who wore the Empatica E4 bracelet and an iPhone 5C running the app for 5 days each.
An additional question was added at the end of the appraisal tree where the users were
asked to choose an emotional label between "happy", "sad", "angry" and "no emotion"
(User-Picked- UP - labels). 65% of the automatic prompts were rated as emotions, which
suggest the suitability of the event detection.

Additionally, some OCC labels were associated to both "angry" and "sad" user-picked
labels. This highlights the shortcomings of the user-picked choice list to report emo-
tional states. Finally, while HR is known to rise during anger events (lower IBI) compared
to baseline [Schwartz et al., 1981], the normalized IBI average (aIBI) from anger events
in the preliminary study (0.41) is higher that the aIBI from no emotion periods (0.39)
(Fig. 2) which is not consistent with literature and might indicate a poor quality dataset.
While the aIBI from the user-picked anger events collected with the app (0.34) is lower
than the one from no emotion periods (0.39), they are still very similar. The aIBI during
OCC-labelled anger collected with the app is much lower (0.24) than the one during no
emotion periods (0.39), which is consistent with literature and supports our hypothesis
that this mobile application allows for the collection of valuable emotional labels.

Only anger was used to validate this dataset collection as it was the only emotion label
present in all datasets. Other emotions may be used in the future for validation using
different protocols.

6.2 An emotional physiological signal database built in-the-wild.

As previously discussed, open-access databases represent therefore very useful tools for
researchers allowing them to test various machine learning methodologies on one single
dataset. There are some emotionally labelled physiological signals open-access datasets
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in the literature e.g. Abadi et al. [2015]; Dan-Glauser and Scherer [2011]; Koelstra et al.
[2011]; Sharma et al. [2018]. However, in all cases, emotions have been induced in labo-
ratory settings. To the best of this author’s knowledge, there is no, to this day, equivalent
with in the wild data.

This section proposes an open-source dataset of emotionally labelled physiological
signals collected in the wild. It uses both emotional labels created from appraisal theory
using the methodology described in section 6.1 as well as arousal and valence [Russell,
1980].

6.2.1 Data collection protocol

15 subjects participated in this study. 4 females and 11 males, average age 31 (SD: 5,2).
The experimental procedures follow the IIT ADVR TEEP02 protocol, approved by the Eth-
ical Committee of Liguria Region on September 19, 2017. Subject first came to the lab-
oratory where they were explained the goal of the research. After signing the informed
consent, they wore the Empatica E4 [Empatica, 2012] wristband for 7 days. During this
time they were asked to report their emotions using the mobile application previously
described in section 6.1.

The collected reports are of 3 types : Mood, Emotion or No emotion. All reports con-
tained a start time, an end time, an optional comment and a path form the question tree
(Fig. 6.11). Mood and emotions also had an intensity, an integer between 1 and 3. The
Arousal and Valence were integers between 1 and 5.

The Valence rating was used to identify "No emotion" reports (rated as 3 - neutral).
While they therefore had a path to the question tree, the Valence is not reported in the
database.

The collected physiological signals had the following frame rates :

• GSR : 4 data point per second

• BVP : 64 data point per second

• ST : 4 data point per second

• ACC : 32 data point per second

• IBI : Calculated from BVP, one data point for each BVP peak.

6.2.1.1 Mobile app alteration

For this data collection the question tree from the previously validated mobile applica-
tion (see section 6.1) was adapted to collect in addition valence and arousal estimates.
While this modification do not alter the collected data and therefore do not compromise
its validity, it provides additional information on the collected emotions that can be used
by researcher working on recognition model with this dataset. Indeed, as seen in sec-
tion 4.5, the valence-arousal model was greatly used in emotion recognition research. It
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Figure 6.11: OCC-based questionnaire with valence and arousal estimation.

would therefore add additional insight to collect both OCC inferred labels and Valence-
Arousal ratings. In this section, collected "labels" will refer to the labels inferred from
the OCC path chosen in the question tree since, as previously explained in section 6.1,
the users of the application do not provide labels to annotate the emotion but appraisals
instead.

6.2.2 Results

In total, 822 hours of data were collected. This represents an average of 7.8 hours per day
per subject. 336 emotion reports, 49 mood reports and 50 no emotion reports were col-
lected. It represents in average, 3.2 emotion reports, 0.5 mood reports and 0.5 no emotion
reports per day per person.

The average duration of emotional labels was 136 seconds (2min 16s) which confirm
the short duration of emotions found in the literature [Gray et al., 2001]. It also shows the
need for precise timespan reports when collecting data about emotional events in the
wild.

Out of 15 persons, only 11 wore the wristband for the 7 days as required by the proto-
col.

Analysis was performed on the collected data. Firstly, relation between positive,
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Table 6.1: Number of time a label was felt for each subject.

s1 S2 S3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 Total
Happy-for 3 2 0 0 1 0 0 0 0 1 0 0 0 0 0 7 Happy-for
Gloating 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 Gloating
Hope 3 0 0 1 0 2 13 2 0 8 0 2 0 2 0 33 Hope
Love 0 1 0 1 0 0 5 4 0 4 2 4 0 1 1 23 Love

Gratification 3 0 3 2 1 1 10 15 8 2 1 0 1 2 0 49 Gratification
Pride 0 0 7 0 0 0 1 0 6 0 0 3 0 0 0 17 Pride

Gratitude 3 2 5 3 1 1 6 3 2 4 2 1 1 3 0 37 Gratitude
Admiration 0 2 0 0 1 1 0 0 11 4 0 3 2 0 0 24 Admiration

Mood 0 3 2 1 1 10 0 0 1 1 0 10 3 0 3 35 Mood
Relief 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Relief

Satisfaction 1 1 0 8 0 1 1 3 2 3 2 0 0 0 0 22 Satisfaction
Joy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 Joy

0
Resentment 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 Resentment

Pity 0 0 1 1 0 0 0 2 0 0 1 1 1 0 1 8 Pity
Fear 0 0 3 2 2 2 3 1 0 2 1 1 0 0 1 18 Fear
Hate 0 0 0 0 0 0 2 0 8 0 1 3 0 0 0 14 Hate

Remorse 2 1 0 1 0 0 0 0 0 2 0 0 0 1 0 7 Remorse
Shame 2 2 0 1 2 0 1 1 1 0 1 1 0 0 1 13 Shame
Anger 1 0 2 1 0 0 1 2 0 0 0 0 0 0 2 9 Anger

Reproach 0 2 3 2 0 2 3 7 6 2 1 3 2 1 2 36 Reproach
Disapointment 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 3 Disapointment
Fear-confirmed 2 0 0 0 0 0 1 0 0 2 0 0 0 0 0 5 Fear-confirmed

Distress 0 0 1 0 1 0 1 0 1 0 0 1 1 0 0 6 Distress
Mood 0 1 0 0 1 3 0 0 2 1 0 1 0 4 1 14 Mood
Total 20 17 29 24 11 23 48 42 50 36 12 34 11 15 13 385 Total

negative emotions and their number of occurrence was investigated. Table 6.1 identifies
how many times each emotion was felt. Additionally, the relation between valence and
the mandatory or voluntary character of the report was calculated. Table 6.2 references
the number of positive, negative, mandatory and voluntary reports collected. Table 6.3
presents how may time each label was associated with one arousal value (valence/label
association was not analyzed as valence was used to deduce the label). The average
arousal from the database (µ) was compared to the average arousal found in the litera-
ture (L) [Whissell, 1989]. For each label, it was ensured that :

F 1 :µ−σ< L <µ+σ

With σ, the arousal standard deviation from the collected database.

Additionally, participants were able to add comments when they desired. Such dis-
closure of personal information was made optional in order to respect the subjects’ pri-
vacy. These comments associated with the inferred label as well as the subject number
are reported in Table 6.4.
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Table 6.2: Number of positive, negative, mandatory and voluntary reports.

+ - Total

Mandatory 183 90 273

Voluntary 67 45 112

Total 250 135 385

Table 6.3: Arousal and valence association with each label (in percentages).

1 2 3 4 5

Joy 0 100 0 0 0 2,0 0,0 3,9 - Joyful
Satisfaction 52 13 13 22 0 2,0 1,3 3,1 TRUE Satisfied
Gratification 37 37 10 10 6 2,1 1,2 2,8 TRUE Boastful

Hope 45 9 6 18 21 2,6 1,7 2,8 TRUE Hopeful
Gratitude 30 22 19 14 16 2,6 1,5 - -
Pride 6 41 24 29 0 2,8 1,0 3,5 TRUE Proud

Admiration 8 28 28 36 0 2,9 1,0 - -
Love 17 22 9 35 17 3,1 1,4 3,5 TRUE Content

Happy-for 0 43 0 57 0 3,1 1,1 - -
Gloating 0 0 0 0 100 5,0 0,0 - -
Relief 0 0 0 0 0 - - - -

Remorse 0 29 29 43 0 2,6 0,9 2,4 TRUE Remorsful
Disappointment 0 33 0 67 0 3,3 1,2 3,8 TRUE Disappointed

Fear 13 17 13 35 22 3,3 1,4 3,6 TRUE Affraid
Shame 8 23 8 46 15 3,4 1,3 2,5 TRUE Ashamed

Fear-confirmed 20 20 0 20 40 3,4 1,8 3,3 TRUE Sorrowful
Hate 0 29 29 7 36 3,5 1,3 3,7 TRUE Disagreeable

Reproach 3 8 17 47 25 3,8 1,0 3,9 TRUE Antagonistic
Pity 0 13 13 50 25 3,9 1,0 - -

Resentment 0 0 0 100 0 4,0 0,0 3,7 - Resentful
Anger 0 11 11 44 33 4,0 1,0 3,1 TRUE Angry
Distress 33 33 33 4,0 0,9 4,3 TRUE Anxious

Arousal Average 
arousal 

datanase (µ)

Equivalent label
 from literature

Standard
deviation 
arousal 

database (σ)

Arousal 
from 

literature 
(L)

F1
(Whissel 

1989)
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Table 6.5: Ratio mood emotion per subject.

subjects
Ratio 

mood/emotion (%)
1 0,0
2 23,5
3 6,9
4 4,2
5 18,2
6 56,5
7 0,0
8 0,0
9 6,0
10 5,6
11 0,0
12 32,4
13 27,3
14 26,7
15 30,8

Average 15,9

Table 6.4: Comments reported by subjects associated with the end label of the report. In
green hunger and pain reports, in yellow mood reports.

ID Comment Emotion subject
1 software crash and I lost 3 hours of work Distress 3
2 food & chatting Gratification 4
3 meeting Fear 4
4 itchy annoying mosquito bite Anger 4
5 experiment with robot Love 4
6 really hungry Shame 4
7 pre work out Hope 4
8 eating & chatting Satisfaction 4
9 pity watched someone else get a ticket Pity 4

10 annoying phone all with electrician Reproach 4
11 eating lunch with friends Satisfaction 4
12 excited to visit new town Satisfaction 4
13 playing with dog Satisfaction 4
14 playing video game Gratification 4
15 eating food with friends Satisfaction 4
16 writting work email Reproach 4
17 A bit agitated for a repetitive request from a person Mood 6
18 talk about topic I like Mood 6
19 Funny jokes Mood 6
20 Talking about my next job Hope 6
21 Making fun of <Name> Mood 6
22 Reading Mood 6
23 Empatica disconnection Distress 12
24 Review Hate 12
25 I hurt myself Shame 12
26 Music I like Mood 12
27 Driving fast Mood 12
28 Bored Mood 12

Table 6.5 presents the percentage of mood in reports by each subject.
The mobile application was programmed in such a way that it was possible to iden-

tify when subjects changed their mind half way through the question tree. For instance,
one may select "A specific event", then, once the next question is displayed, go back and
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select "A person" instead. This allowed to record 28 times where people change their
opinion which represents 0.1% of all emotional reports.

6.2.3 Discussion

Firstly, it can be noticed that positive emotions are reported more often than negative
ones (Table 6.2). This may be because those specific subjects did not experience nega-
tive emotions as often or because they felt less comfortable reporting them. In addition
to the low number of emotional reports (3.7 reports/day/subjects in average), reported
emotions are unevenly distributed (Fig. 6.1) with labels such as "gratification" counting
a total of 49 reports when labels such as "disappointment" counting only 3 reports. This
suggests the need for longer data collection times, lasting several weeks or months in
order to collect sufficient emotion labels for each person, especially for user-dependent
models. However, the fact that only 11 subjects wore the wristband for required duration
suggest the need for a method to reward the participants based on their respect of the
protocol, especially for long data collection.

Some people reported few emotions, such as subject 5 with a total of only 11 emo-
tional labels in 1 week, when others reported much more, such as subject 7 reporting up
to 48 emotions. This disparity might come from a difference in the number of emotional
stimuli during their respective weeks. It is however known that some people are less sub-
ject to emotions and more aware of them than others [Myrtek et al., 2005]. The first type
of person would require a much longer data collection time than the second type in order
to gather the same amount of data.

Table 6.3 highlights the fact that negative emotions were in average rated as higher
arousal compared to positive ones. All average arousal from each labels calculated from
the collected database were found similar to literature (Table 6.3).

The comments that were gathered (Table 6.4) brought light to certain aspects of the
data collection. For instance, subjects 4 and 12 reported hungry and pain as emotions
(ID 6 and 25). The path chosen was "Negative [emotion] /[toward ]Myself/No [There
have not been consequences for me]" and therefore, according to the model, were la-
belled as "Shame". The question on whether or not hunger and pain are emotion has
been debated in the literature. Hunger often induce impulsivity, aggressivity or negative
moods in people, an emotional state also called "Hanger" [MacCormack and Lindquist,
2018]. Hunger have been found to have effect on physiological signals notably on pulse
pressure and temperature [Engel, 1959]. Specific instructions on whether or not physical
drives such as pain or hunger should be considered in the data collection should be given
to the participants. A specific path for such internal state may be needed in the question
tree. Alternatively it is also possible that the subjects felt shameful of being hungry or in
pain.

Most of the comments seem to fit the emotion label, a "software crash" (ID 1) is likely
to induce "distress", and a meeting to induce "fear" (ID 3). The comment " itchy annoy-
ing mosquito bite" (ID 4) is particularly interesting as it could be classified in the "pain"
category previously discussed, however, in this case, the participant’s emotion appears to
be directed toward the reason of the pain, the mosquito, as the subject selected the path

6



6.2. An emotional physiological signal database built in-the-wild. 89

"[I feel negatively toward ] A person" which resulted in the label "Anger". This shows
the advantages of using appraisal theory for labelling as this theory states that emotions
do not depend of the event that brought the emotion but rather by the way the person
experienced it.

Table 6.4 also allows to notice the trend of certain subjects to always select " None of
those" in the question tree resulting in a Mood label such as subjects 6 and 12. However,
comments bring additional insights suggesting that this labelling might not be correct
in certain cases. For instance, "A bit agitated for a repetitive request from a person" (ID
17) could have probably be labelled as anger or reproach. It is surprising that this person
wrote such a comment but did not pick the "person" or "event" categories. The cause
might be that such participants were less able to understand the categories and were less
able to match the emotion to the category that were the most appropriate. It might also
be a technique to answer the form quicker as no other question is asked after the "none of
those" answer, however, it is less likely as those participants took the time to write a com-
ment which was optional. Additionally, the subjects giving inconsistent comments were
also the ones with a disproportionally high ratio of mood reports compared to emotion
reports (Table 6.5). Indeed, while the average number of moods report is 17%, subject
6 reported more moods than emotions (56%) and subject 12 reported an unusually high
amount of moods (32%). While the "none of those" option was added to the question
tree in order to detect mood as they are unconstrained in meaning (see section 6.1.5.3 ) ,
it seems that it might be necessary to rename it "Nothing" in order to avoid participants
selecting "None of those" when their emotion is constrained in meaning but they think
that it does not match with the other options. In this way they would most probably be
more willing to analyze the situation and try to find the most appropriate category be-
tween "An event", "An object", "Myself", "A person". Unfortunately, only 4 participants
decided to use comments, which constrained the possibilities of analysis.

On the one hand, the mandatory reports were rated as emotion 56% of the time and
78% of the emotional reports were mandatory, which highlights the usefulness of the
mandatory prompts as they allowed to collect many additional emotional reports to the
database. On the other hand, 10% of the mandatory reports were labelled as mood and
88% of the Mood labels were picked in mandatory reports. The reason is most probably
that participants feel the need to provide an emotion report when a mandatory trigger is
raised. However, those reports appear to be mainly of moods. This findings confirms the
need for differentiating moods from emotions in the question tree to validate emotional
reports especially mandatory ones.

A high number of times subjects seemed to have change their mind half way through
the question tree. It is likely that by reading the next question they realized that this path
was probably not appropriate for their emotion and that another path would be a better
fit. It would be interesting to reproduce this experiment adding post-experiment inter-
views to ask the thought process behind the change to understand it better. It is interest-
ing to notice that those changes only occurred at the first layer of the OCC tree.

Finally, the Empatica E4 wristband that was used in this data collection resulted in
many disconnection due to Bluetooth sensibility. Unfortunately, the Empatica API did
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not provide the possibility to save the data internally until the connection was restored
or to automatically reconnect once the Bluetooth device was in range again. This re-
sulted in a significant amount of lost data. The mobile application was designed to alert
the user of this disconnection through vibrations, however, subjects reported leaving the
room without the mobile phone and returning long time later, only then realizing their
oversight and loosing many hours of data. Subjects also reported many disconnections
and need for reconnection to be irritating. A different device including both automatic
reconnection and internal data saving would be advised for future research.

The collected database is made open-source [Larradet, 2019a] and might be used by
future researchers to unravel the challenges of emotion detection in the wild. It proposes
a large spectrum of emotional labels rarely used in emotion studies nowadays.

6.3 Conclusions

Based on the in-the-wild methodology presented in chapter 4, a new tool was proposed
to collect and label physiological signals, acquired during relevant events in ecological
settings. This solution was designed according to appraisal theories, allowing the user
to self-report the whole appraisal process around relevant events. The system is able to
prompt the user to report the emotional self-assessment. The hypothesis is that the pos-
sibility of precise selection of relevant events timing and duration, the assistance given to
the user to differentiate moods from emotions and the ability to report appraisals instead
of emotion labels will improve the quality of the dataset compared to standard paper-
type collection.

To our knowledge, this is the first app for emotion reporting based on appraisal theory.
It is open-source [Larradet, 2019a] and can be used by other researchers to extend the
existing dataset. It provides the novel methodology to evaluate the physiological data
collection of emotions in the wild. It allows to collect application-independent dataset
containing an increased number of information about the emotional trigger and a great
variability of label without it being cumbersome for the user. The same dataset might be
used in the future, e.g., to create different application-specific classifiers, by choosing the
relevant subset of the appraisals and emotional labels. The increased information of the
event accessed thanks to the use of appraisal theory, allow researchers to make informed
decision about how to use each event according to the need of their research. This study
was published in the Ubicomp 2019 conference [Larradet et al., 2019].

This mobile application was used to collect data from a great number of subjects to
create an open-source database of emotionally labelled physiological signals collected in
the wild. It was collected using a state of the art mobile application to ensure ground
truth. Both appraisals and valence-arousal sets were collected. Analysis of the data
showed that a single week of data collection might not be enough for user-dependent de-
tection or classification models. Participants reported consequently more positive emo-
tions than negative ones and some subject reported much more emotions as a whole
compared to others. Negative emotions were found to be associated to higher arousal in
average compared to positive ones. Additionally, it was found that specifications must be
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given to the participants on whether or not to report affects related to physical states such
as hunger or pain. It was found that mandatory prompts provides useful information and
requires mood filtering. Hopefully, this open-source dataset will help future researchers
to make a step forward toward emotion detection in the wild.

The three tools introduced( dataset assessment method, mobile application,
database) in this research advance the field of emotion recognition in the wild and rep-
resent stepping stones for future researcher working on such topic. Indeed, emotion
detection for real-life application has a great potential in many different fields. Roboti-
cists have already started to design affect-aware robots using emotion recognition from
speech for instance [Hegel et al., 2006]. Giving a robot the ability to detect its owner’s
emotions from physiological signal in a natural context would allow it to react accord-
ingly [Kim et al., 2009], for instance by proposing relaxing or positive activities. Similarly,
domotics may use such emotion detection capability to adapt the environment such as
the music [Khowaja et al., 2015]. Detecting emotions from physiological signal has the
advantage to work in environment were typical methods such as video-based or audio-
based detection would fail. For instance, cases where the user is away from cameras, not
speaking or in dark environments would be challenging for classical methods while phys-
iological signals would still be accessible. It is also logical to assume that using several
methods in parallel for emotion recognition would increase the validity of the detection.

While this data collection was made on people without motor impairment, a similar
collection can be done on LIS patients. Indeed, similarly to the mobile app, the gaze-
controlled system provided in this thesis used on daily basis for communication, can be
adapted to prompt the patients to register their emotions based on their physiological
signals accessed using the Empatica wristband. A separate menu can be added to the
main menu to allow for voluntary emotion registration. In this way, a user-specific model
can be created for emotion detection of the patient, and later, used for emotional voice
modulation and avatar facial expression modulation.
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7
A COMPLETE SYSTEM FOR LIS PATIENTS

All developed systems presented in the previous chapters were combined to form a com-
plete system for LIS patients allowing efficient web browsing, emotional communication,
gaming, telepresence robot control and stress reduction. This computer-based system (lap-
top or desktop) is fully controlled using eye-tracking technology. This work was part of a
bigger project called TEEP-SLA: "Tecnologie Empatiche ed Espressive per Persone con SLA"
(Empathic and Expressive Technologies for People with ALS) aiming at satisfying the pa-
tients’ social interaction and communication needs with innovative patient interfaces and
associated robotic technologies 1.

7.1 System structure

7.1.1 Menu

The first menu allows the patient to choose between the different options (web browsing,
emotional communication, gaming, telepresence robot control and stress reduction) us-
ing dwell time selection.

Figure 7.1: Main menu.

1https://teep-sla.eu/
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7.1.2 Web browsing

In the path toward designing the most efficient web-browsing several designed were de-
veloped. While chapter 2 demonstrated the efficiency of the presented design, the advan-
tages of flexibility and customization were also considered. The choice of browser were
therefore given to the user between 4 different designs.

7.1.2.1 version 1

The first version of the browser is similar to classic interfaces. It contains side control
buttons that are constantly present. The browser’s size is therefore diminished. The con-
trol system is similar to the one described in chapter 2. This system, while requiring more
screen-space, being less efficient and more tiring, will be preferred by users affected by
changes and appreciative of more classical interfaces.

Figure 7.2: Web browser version 1.

7.1.2.2 version 2

The second version of the browser still uses a classical side button interface but that is
displayed only when necessary and on top of the browser’s page in the opposite side of
the area of action. This classical interface also allow for a greater browser size. However,
it will be tiring because of the necessary eye movements as seen in chapter 2.

Figure 7.3: Web browser version 2.

7.1.2.3 version 3

The third version of the browser introduce a radial menu as the one described in chapter
2. However, In this interface, unlike version 4, all the commands are present in the menu.
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While increasing simplicity and comprehension it decreases speed of actions since they
are performed in two steps and therefore need twice the dwell time.

Figure 7.4: Web browser version 3.

7.1.2.4 version 4

Finally, the fourth version of the browser is the one described in chapter 2. It represent
the best choice in terms of screen-space usage and mental workload. It is selected as the
default browser on download.

Figure 7.5: Web browser version 4.

7.1.3 Communication

The enhanced communication system presented in chapter 3 was included in the final
system.

7.1.4 Gaming

The game presented in chapter 2 was included in the final system. Two choices were
given to the user: they could either play using a random shooting (not controlled by the
player) or using a shooting control by the player’s GSR using the Empatica wristband.
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Figure 7.6: Game menu.

7.1.5 Telepresence

The system also included the work from another team as part of the TEEP-SLA project
allowing the control of a telepresence robot using eye-tracking.

7.1.6 Relaxation

The method to display stress levels using a ball color as biofeedback seen in chapter 2 was
reproduce to control a relaxation game. It was designed to help users lower their mental
workload as seen in chapter 2 .

Figure 7.7: Relaxation game.

7.1.7 Affect-aware system

This system was designed to be aware of patients’ critical emotional states. Indeed, using
the additional heart rate method (see section 6.1), high arousal was detected, activating
propositions of calming activities such as the relaxation game or speaking to family on-
line using the web browser system.
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Figure 7.8: Relaxing proposition after stress detection.

7.2 Overall system evaluation

The evaluation of each part of the system was individually assessed as presented in the
previous chapters ( see Table 7.1).

Table 7.1: Overall evaluation of the system.

The final system was greatly appreciated by ASLS patients. This was specially noted
during the final presentation of the system, which included a private visit of the Vati-
can museum using a telepresence robot and the gaze-based communication system (Fig.
7.9).
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Figure 7.9: Gaze-controlled telepresence visit of the Vatican museum.
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8
CONCLUSIONS AND FUTURE WORK

People with LIS have reduced capabilities due to their loss of movements. Systems avail-
able to such patients are limited and can be tiring when used for long periods of time.
This thesis aimed at improving computer system control and enhancing communication
for people with LIS.

Firstly, gaze-based system control was improved by proposing a novel web-browsing
interface using a menu centered in the area of action. This solution was found to improve
the action-speed and reduce mental workload. Users found this interface easy to learn
and to use, less frustrating, more satisfying and less prone to error. It was found to induce
less fatigue stress and discomfort in the eyes. Using this concept, a dedicated video game
controlled by eye gaze was designed. The player’s stress level was estimated from GSR
and represented by the character color. The users appeared to be capable of voluntarily
controlling their stress level to activate a specific UI in the game. This biofeedback dis-
play associated with the reward following the relaxation was found to decrease mental
workload. These findings represent new solutions for LIS dedicated computer interfaces.
Their abilities being limited, interfaces design matter much more to ensure a satisfying
experience. Developing, testing and comparing different GUIs with both healthy subjects
and patients allows to better understand their needs and helps to determine the advan-
tages and disadvantages of each solution. Exploring new types of input can increase the
patients abilities and open the door to different and more empathic user interfaces.

The main concern for LIS patients is communication. Their inability to speak make
them dependent of novel communication systems or technologies to express themselves.
While common systems allow users to communicate through eye gaze commands, they
rarely involve any emotion communication system that is intrinsic to human-human ex-
changes. A novel solution was developed simulating humans most natural emotion ex-
pression: voice modulation and facial expression. Users were given control of an emo-
tional voice synthesis as well as an emotional avatar. This solution allowed user to have
more natural dialog and to better express their emotions.

While this system was found to help with the communication, it seems that it could
be improved by automatically detecting emotions from the user rather than manually
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selecting the emotion. However, this would require an emotion detection model able
to recognize the patients’ emotion for real-life applications. However, to this day very
few studies have been conducted outside the laboratory and there is still a long way to
go before detecting emotions in real-life. In order to help toward this goal, several tools
were developed and made available to the scientific community. Firstly a method was
proposed to assess emotion, mood and stress detection based on their readiness toward
real-life applications. Secondly, an open-source mobile application was designed using
psychology concepts and state of the art guidelines to help gathering valuable ground
truth from users when collecting emotional self-reports. Finally, this mobile application
was used to collect a large dataset of emotionally labelled physiological data in the wild.

Those tools are made open-source in order to help future researchers willing to make
a step toward detecting emotion in the wild. The data labelling was purposely broad
enough and informative enough to be used by different types of research. State of the
art machine learning methods may be applied in the future to this dataset to detect or
classify emotions in the wild whether it is from valence and arousal, emotion labels or
appraisals. While emotion detection may be used for enhancing communication for LIS
patients, it would be especially useful to build systems for total LIS patients that lost there
eye movement capabilities. Indeed, today their communication abilities are reduced to
binaryEEG systems [Mir et al., 2019] or no communication at all. Providing the patient’s
family and caregivers the ability to visualize their emotional state via tools such as the
avatar system presented in chapter 3 would be a great improvement to understand the
affective states of such patients. Emotion recognition in the wild may also be applied to
a great range of other types of applications such as healthcare, self-awareness, robotics
or domotics. It would open new doors to have affect-aware systems in our lives. A final
system was made available open-source to patients including all the developed novel
tools.

Being in Locked-in state represent an every-day challenge. Fortunately, thanks to
technology we have the power to provide new solutions to such patients and to improve
their daily life. It is to be hoped that future technological development will allow addi-
tional solutions to enable even greater capabilities in such patients.
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A
SUPLEMENTARY MATERIALS

In order to collect physiological signals in the wild, researchers must choose which de-
vice to use. As mentioned in the previous sections , decisions must be done regarding
comfort, invasiveness and data accuracy. A list devices available for ambulatory data
collection are listed below with indications of their characteristics. Companies with sev-
eral similar products are marked with SP. Invasiveness is marked from 1 to 3, 1 being the
bulkier and 3 the less invasive as described in section 4.4.1. If several combination of sen-
sors are available for a certain product a range of invasiveness will be displayed. It will be
specified for each device if it was made for research (R) or for the general public (GP).
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Table A.1: Commercialy available devices for ambulatory physiological signal collection
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