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Abstract

We analytically and numerically study coupling mechanisms between 1D photonic crystal (PhC) and 2D

array of plasmonic nanoparticles (NPs) embedded in its defect layer. We introduce general formalism to ex-

plain and predict the emergence of PhC-mediated Wood-Rayleigh anomalies, which spectral positions agree

well with the results of exact simulations with Finite-Difference Time-Domain (FDTD) method. Electro-

magnetic coupling between localized surface plasmon resonance (LSPR) and PhC-mediated Wood-Rayleigh

anomalies makes it possible to efficiently tailor PhC modes. The understanding of coupling mechanisms in

such hybrid system paves a way for optimal design of sensors, light absorbers, modulators and other types

of modern photonic devices with controllable optical properties.
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1. Introduction

Hybrid systems comprised of nanoparticles (NPs) with localized surface plasmon resonance (LSPR) op-

tically coupled to Fabry-Pérot cavities have gained a lot of attention over the last decade [1] due to their

exceptional properties which can be used for narrow-band absorption [2, 3], lasers [4], plasmonic loss miti-

gation [5], electric field enhancement [6], and sensing [7–9]. Apart from various practical implementations

of Fabry-Pérot cavities, 1D photonic crystal (PhC) with defect layer represents a case of specific interest

due to non-trivial coupling of NPs with PhC defect modes. The latter phenomenon may yield in improved

performance of surface-enhanced Raman spectroscopy [10], ultrafast light modulation [11], PhC mode split-

ting [12, 13], and controllable discretization of NPs optical absorption [14].
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To the day, there is a number of well-established numerical procedures and theoretical models which allow

to calculate electromagnetic properties of NPs embedded in half-space [15, 16] or stratified media [17–20].

As a rule of thumb, resonant properties of regular 1D [21, 22] or 2D [23] arrays are significantly suppressed

in the presence of the substrate. Though, in the stratified medium, the existence of different coupling

scenarios between plasmonic and photonic modes can be exploited in sensors [24], nanoantennas [25], and

other applications [26–28].

So-called surface lattice resonances (SLRs) which have gained significant attention during the past

decade [29–38] represent the case of specific interest due to their unique properties. Strong coupling between

LSPRs and the grating Wood-Rayleigh anomalies [39, 40] in regular arrays of NPs gives rise to remarkably

narrow resonances with exceptionally high quality factor. While the most of publications study only general

properties of regular NPs arrays embedded in the non-homogeneous environment, the physics behind sophis-

ticated coupling regimes between plasmonic and photonic modes is usually hindered. The understanding

of modes coupling in such systems, and the development of analytical models that predict their optical

properties represent quite important applied problem.

In this paper, we study hybrid nanostructure comprised of a 1D PhC with a defect layer and a 2D

periodic lattice of plasmonic Au nanodisks embedded in it. We reveal different mode hybridization scenarios

by varying geometrical parameters of PhC-NPs system: radius of NPs, period of NPs array, and thickness

of PhC defect layer. We introduce theoretical model to predict the position of Wood-Rayleigh anomalies

created by PhC, and to reveal possible coupling scenarios in PhC-NPs system.

2. Methods

We consider PhC with unit cell which consists of two layers: silica dioxide (SiO2) with thickness da =

120 nm and permittivity εa = 2.1, and zirconium dioxide (ZrO2) with thickness db = 70 nm and permittivity

εb = 4.16. We assume that PhC is comprised of 6 unit cells and the defect layer (with thickness L and

permittivity εdef = 2.25) in between, as shown in Fig. 1a. Regular 2D array of Au nanodisks with period h,

height H and radius R is embedded in the middle of the PhC defect layer as shown in Fig. 1a. Tabulated

values for ε of Au [41] have been used in simulations.

The optical properties of described structures have been calculated with commercial Finite-Difference

Time-Domain (FDTD) package [42]. Nanostructures are illuminated from the top by the plane wave with

normal incidence along z axis and polarization along y axis. Transmission T has been calculated at the

bottom of the simulation box. Periodic boundary conditions have been applied at the lateral boundaries of

the simulation box, while perfectly matched layer (PML) boundary conditions were used on the remaining

top and bottom sides. An adaptive mesh has been used to reproduce accurately the nanodisk shape.

Although FDTD method is a comprehensive and well-established tool which shows excellent agreement
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Figure 1: (a) Schematic representation of PhC and 2D array of NPs embedded in its defect layer; (b) Transmittance of bare

PhC with L = 1230 nm; (c) Transmittance of 2D lattice of Au nanodisks with height H = 50 nm and radius R = 40 nm

embedded in homogeneous environment with εdef = 2.25. Solid lines represent Wood-Rayleigh anomalies of (p, q) order, while

vertical dashed line indicates the position of dipolar LSPR of the isolated NP.

with experimental results for SLRs [33, 36, 43] and PhCs [44, 45], extensive convergence tests for each set

of parameters have been performed to avoid undesired reflections on the PMLs.

3. Results and Discussion

3.1. Bare NPs Array and Bare PhC

Before going into details, it is instructive to briefly discuss optical response of bare PhC and regular array

of NPs embedded in homogeneous medium separately. The spectral position and transmission coefficient of

PhC modes can be efficiently controlled by varying layer’s materials and thicknesses in PhC [46]. In this

paper, PhC has the band gap from 500 to 820 nm with 3 distinct modes at 551, 617 and 703 nm, as shown

in Fig. 1b. In what follows, we will refer to modes at 551 and 703 nm as odd modes, and at 617 nm as

even mode. The use of this terminology is justified by odd and even number of electric field anti-nodes,

respectively.

Figure 1c explicitly shows the existence of strong coupling between LSPR and Wood-Rayleigh anoma-

lies [39, 40] in regular 2D array of NPs embedded in homogeneous environment. Such far-field coupling leads

to the emergence of high-quality collective resonances [35, 38] with spectral positions close to Wood-Rayleigh

anomalies. In the case of normal illumination, the latter can be found with the following equation:

λp,q = h

√
εdef

p2 + q2
, (1)
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where p, q are integers which represent the order of the phase difference in x and y directions. Eq. (1)

describes condition of constructive interference for particles within the XOY plane [47]. These anomalies

of (0,±1), (±1, 0) and (±1,±1) orders are shown in Fig. 1c. Note that λ is the vacuum wavelength.

3.2. Understanding Mode Hybridization

In the case of more complicated alignment of NPs array in PhC defect layer, additional Wood-Rayleigh

anomalies emerge due to the coupling with PhC. In general case, the wavevector k in the defect layer reads

as:

k2 = k2x + k2y + k2z = εdef

(
2π

λp,q,s

)2

, (2)

where kx,y,z are corresponding components of k. The conditions of constructive interference for PhC with

NPs embedded in the middle of its defect layer, can be found from:

kxh = 2πp, kyh = 2πq, kzL = 2πs− ϕ . (3)

Here s is the integer which denotes the order of the phase difference in z direction. Eq. (3) takes into

account the coupling of NPs through the multiple reflections from PhC. Note that for L→∞, the coupling

between NPs and PhC becomes negligible, and kz vanishes in Eq. (2) and Eq. (3), which yields in Eq. (1)

for Wood-Rayleigh anomalies of NPs array embedded in homogeneous medium.

Equation (3) takes into account the phase shift ϕ [48] that occurs due to reflection from the PhC:

ϕ = arg

[
CUN−1

AUN−1 − UN−2

]
. (4)

Here UN = sin [(N + 1)KΛ]/ sin[KΛ], K = arccos [(A+D) /2] /Λ is the Bloch wavenumber, Λ = da + db,

and N is the number of PhC periods. A, C and D are the elements of the 2×2 ABCD complex matrix

which relates the amplitudes of plane waves in layer 1 of the unit cell to the corresponding amplitudes for

the equivalent layer in the next PhC unit cell [48].

Although we assume that linearly polarized external radiation impinges normally on the PhC surface,

the light scattered by the NPs in general case has nonzero kx and ky. Thus, the normal vector to the surface,

the wave vector k and polarization of electric field E do not lie in the same plane. For this reason, in our

case we have to consider both TE and TM polarizations of the electric field scattered by NPs. In this paper,

we denote TE polarization as perpendicular to the plane of incidence, while TM is parallel to it.

Thus, for TE mode:
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A = eikazda
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;

(5)

and for TM mode:
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(6)

Here

kaz =

√
εa
εdef

k2z +

(
εa
εdef
− 1

)
k2x +

(
εa
εdef
− 1

)
k2y ,

kbz =

√
εb
εdef

k2z +

(
εb
εdef
− 1

)
k2x +

(
εb
εdef
− 1

)
k2y

are the wave vectors for corresponding layers of PhC.

The numerical solution of Eq. (2) for the given configuration of PhC and array of NPs (which are

described in Eq. (3) and Eq. (4)) provides the set of (p, q, s)-order Wood-Rayleigh anomalies for both TE

and TM polarizations. It should be noticed, that solutions of Eq. (2) are symmetrical with respect to the

following permutations and transformations: p ↔ q, p → −p, and q → −q. Thus, for convenience and

without losing the generality, we consider q ≥ p ≥ 0. Due to the symmetry of the system, we limit the

discussion with non-negative values of kz and s. Finally, it should be noticed that the modes with wave

vector parallel to the 2D array (i.e. with kz = 0) and observed in bare NPs array are also preserved in the

presence of PhC and described by Eq.(1). In what follows, we will denote such modes as (p, q,−).

We would like to emphasize that the PhC-mediated interaction between Wood-Rayleigh anomalies of

different orders is not taken into account in presented theoretical treatment. Such interaction can be de-

scribed within the framework of vector-coupled-mode theory [49]. However, as it will be shown below, our

formalism predicts positions of Wood-Rayleigh anomalies with satisfying accuracy. In the case of NPs with
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Figure 2: Transmittance of 2D array of gold nanodisks embedded in PhC defect layer: (a) in the middle, and (b) shifted

along z axis by 100 nm. Symbols denote Wood-Rayleigh anomalies of (p, q, s) order for TE and TM polarization. Note that

for convenience of the Reader, only position of strongly coupled Wood-Rayleigh anomalies are shown.

height H significantly smaller than the thickness of defect layer L, one could ignore the interaction between

diffractive modes, though, this approximation has to be used with caution for larger NPs.

3.3. Coupling Scenarios Between Plasmonic and Photonic Modes

We start the discussion with NPs arrays embedded in the middle of PhC defect layer. Fig. 2a represents

transmission spectra of this system for different lattice periods h. It can be seen that the multiple splittings

of PhC defect modes take place for different h for odd modes only. Interestingly, even mode remains

completely intact despite the fact that its frequency almost coincides with the frequency of LSPR. Figure 3

shows detailed insets with regular Wood-Rayleigh anomalies from Fig. 1c and additional anomalies created

by coupling of NPs in the array with each other via reflections from PhC. It should be mentioned that

anomalies described by Eq. (1) couple with the long wavelength PhC mode only. It can be explained by

strong coupling of LSPR and Wood-Rayleigh anomalies at long wavelength wing of LSPR, which is related

to the behavior of dipole sum and inverse dipole polarizability of NP [31]. Figures 2a and 3 show that

PhC-mediated anomalies couple with short wavelength PhC mode only. We believe that it is also related to

the behavior of the dipole sum and inverse NP polarizability.

The coupling of defect modes with Wood-Rayleigh anomalies can be controlled by moving NP array

along z axis. Figure 2b demonstrates that in the case of asymmetric alignment of NPs whose positions are

shifted by 100 nm along z axis, even mode strongly couples to NP array, while odd modes exhibit weak

coupling. The transmission spectra of the structure for symmetric and asymmetric cases and different h are

shown in Fig 2. Variation of the NPs array period h allows to achieve the coupling of any PhC mode with

SLR using symmetric geometry for odd PhC modes and asymmetric geometry for even modes.
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Figure 3: Detailed illustration of various hybridization scenarios for Wood-Rayleigh anomalies shown in Fig. 2a.

The various coupling scenarios for symmetric and asymmetric alignment can be understood as follows.

Let us turn to the electric field distribution within the defect layer, which is shown in Fig. 4. In the case of

even mode with λ = 617 nm, the array is located in the central node of electric field (see Fig. 4a) and the

coupling between the defect mode and SLR vanishes. However, for odd modes with λ = 551 and λ = 703 nm,

the field is localized at the NPs (see Fig.4b,c,f,g) and defect modes are split. The splitting of even modes

can be achieved when the NPs array is located at antinode of the electric field, which is easily controlled by

shifting the NPs array along z axis. The corresponding field distribution for split defect mode is shown in

Fig. 4d,e.

Now let us turn to the investigation of the influence of NPs size and PhC defect layer thickness on

optical properties and mode coupling scenarios in plasmonic-photonic system. The transmission spectra of

the plasmonic-photonic structure for different values of R and for h = 380 nm are shown in Fig. 5a. In this

case, splitting of the defect mode at λ = 551 nm is observed. It should be noticed that the splitting of this

defect mode doesn’t depend on R for R > 40 nm. In this case, the spectral position of the transmission

maxima also does not change. This is explained by the fact that the position of the additional Wood-

Rayleigh anomalies doesn’t depend on the frequency of localized plasmon resonance. It should be noted

that for R > 80 nm, a combined band gap as a superposition of the PhC band gap and the opacity region of

the plasmonic array can be emerged. As a result, the width of the band gap increases roughly by half. At

the same time, splitting of the defect mode is not observed when a PhC is coupled with a two-dimensional

lattice of NPs with R < 20nm. In this case, the wavelength of SLR doesn’t coincide with the wavelength of

the defect mode, but falls into the frequency interval lying between the PhC defect modes with λ = 617 nm

and λ = 703 nm. Finally, the even mode λ = 617 nm remains intact in all cases both for h = 380 nm

and h = 470 nm, as expected from Fig. 2a, while odd mode at λ = 703 nm is significantly suppressed for

R > 50 nm at h = 380 nm and around R = 35 nm at h = 470 nm (see. Fig. 5b).
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Figure 4: (top panel) Transmission spectra for symmetric (i and iii) configuration with h = 470 nm and h = 380 nm,

respectively, and for asymmetric configuration (ii) with h = 435 nm. Corresponding configurations are shown by white dashed

lines in Fig. 2. Vertical dashed lines represent positions of PhC modes; (bottom panel) Normalized electric field distribution

within the defect layer of PhC with embedded NPs for corresponding alignments (i, ii, and iii) at following wavelengths λ:

a) 617 nm; b) 697 nm; c) 721 nm; d) 613 nm; e) 626 nm; f) 546 nm; g) 557 nm. White rectangles denote boundaries of

nanodisks. Illumination is along z axis, from the top.

The variation of the PhC defect layer thickness L is also the efficient way to control the spectral properties

of PhC-NPs structure. Figure 6a shows that the spectral position of PhC modes slightly shifts to longer

wavelength region with the increasing of L. At the same time, the number of PhC modes also increases from

2 for L = 500 nm to 4 for 1400 nm. Figure 6b demonstrates that for L = 1060 and L = 640 nm, the defect

modes between λ = 600 nm and λ = 700 nm can be suppressed. This suppression is explained by the fact

that the wavelengths of the defect modes coincide with the wavelength of the SLR for these values of L.

Figure 6c shows that the splitting of the PhC modes can be achieved in a wide spectral range for

h = 470 nm. Thus, the splitting is observed at 721 nm, 632 nm, and 567 nm for L = 1230 nm, L = 1050 nm,

and L = 530 nm, correspondingly.

4. Conclusion

To conclude, we have developed a simple yet comprehensive analytical model to explain the emergence

of additional Wood-Rayleigh anomalies in 2D arrays of NPs embedded in the defect layer of 1D PhC caused
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Figure 5: Transmittance of 2D lattice of NPs with (a) h = 380 nm and (b) h = 470 nm embedded in the middle of the defect

layer of PhC with L = 1230 nm.

Figure 6: Transmittance of (a) PhC without NPs; and PhC with array of NPs embedded in the middle of its defect layer for

two periods h: (b) 380 nm, and (c) 470 nm.

by multiple reflections inside PhC. Non-trivial coupling between LSPRs in arrays of NPs and defect modes

of PhC implies the existence of PhC-mediated Wood-Rayleigh anomalies which spectral positions can be

defined within the framework of proposed model with reasonable accuracy. Exact simulations with the

FDTD method show excellent agreement between the predicted positions of Wood-Rayleigh anomalies and

regions of PhC modes hybridization. Strong coupling between PhC and NPs leads to multiple splittings of
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the defect modes which can be tailored by varying period h of NPs array, size of NPs, and PhC defect layer

thickness. It was shown that due to the features of electric field distribution within defect layer both even

and odd PhC modes can be coupled with SLR by varying the position of NPs array within it. Thus, deeper

understanding of modes coupling in hybrid NPs-PhC system paves a way for more efficient control of its

optical response for photonics applications which is not easy to achieve with other alternative strategies.
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[26] R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P.-M. Adam, T. Maurer,

Plasmonic mode interferences and Fano resonances in Metal-Insulator- Metal nanostructured interface, Scientific Reports

5 (1) (2015) 14419. doi:10.1038/srep14419.

URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4585844&tool=pmcentrez&rendertype=

abstracthttp://www.nature.com/articles/srep14419

[27] A. N. Shaimanov, K. M. Khabarov, A. M. Merzlikin, I. V. Bykov, A. V. Baryshev, Plasmon resonances in a two-dimensional

lattice of metal particles in a dielectric layer: Structural and polarization properties, Journal of Experimental and Theo-

retical Physics 124 (4) (2017) 584–591. doi:10.1134/S1063776117030165.

URL http://link.springer.com/10.1134/S1063776117030165

[28] A. Yu, W. Li, Y. Wang, T. Li, Surface lattice resonances based on parallel coupling in metal-insulator-metal stacks, Optics

Express 26 (16) (2018) 20695. doi:10.1364/OE.26.020695.

URL https://www.osapublishing.org/abstract.cfm?URI=oe-26-16-20695

[29] S. Zou, G. C. Schatz, Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver

nanoparticle arrays, Journal of Chemical Physics 121 (24) (2004) 12606–12612. doi:10.1063/1.1826036.

[30] S. Zou, N. Janel, G. C. Schatz, Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,

Journal of Chemical Physics 120 (23) (2004) 10871–10875. doi:10.1063/1.1760740.

[31] V. A. Markel, Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-

dimensional periodic arrays of nanospheres, Journal of Physics B: Atomic, Molecular and Optical Physics 38 (7) (2005)

L115–L121. doi:10.1088/0953-4075/38/7/L02.

URL http://arxiv.org/abs/physics/0505186%5Cnhttp://stacks.iop.org/0953-4075/38/i=7/a=L02?key=

crossref.c12ad68a9b3ff19f7dae327dfd1ce03a%5Cnhttp://stacks.iop.org/0953-4075/38/i=7/a=L02?key=crossref.

c12ad68a9b3ff19f7dae327dfd1ce03a
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