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Abstract. In the field of software testing, several meta-heuristics algorithms 

have been successfully used for finding an optimized t-way test suite (where t 

refers to covering level). T-way testing strategies adopt the meta-heuristic algo-

rithms to generate the smallest/optimal test suite. However, the existing t-way 

strategies’ results show that no single strategy appears to be superior in all prob-

lems. The aim of this paper to propose a new variant of Jaya algorithm for gen-

erating t-way test suite called Improved Jaya Algorithm (IJA). In fact, the per-

formance of meta-heuristic algorithms highly depends on the intensification and 

diversification capabilities.  IJA enhances the intensification and diversification 

capabilities by introducing new operators search such lévy flight and mutation 

operator in Jaya Algorithm. Experimental results show that the IJA variant im-

proves the results of original Jaya algorithm, also overcomes the problems of 

slow convergence of Jaya algorithm.   

  

Keywords: T-way testing, Meta-heuristics, Jaya Algorithm, improved Jaya Al-

gorithm. 

1 Introduction 

Optimization is a mathematical method used for solving complex problems many 

disciplines, including engineering, biology, physics, business, and economics, by 

finding the best/optimal solution from the alternative set of solutions. Many meta-

heuristic algorithms have been used successfully for finding an optimal or near opti-

mal solution  within reasonable time including  Simulated Annealing (SA),Tabu 

Search(TS) Genetic Algorithm (GA),  Particle Swarm Optimization (PSO), Differen-

tial  Evolution (DE), Sine Cosine Algorithm (SCA), Flower Pollination Algorithm 

(FPA), Ant Colony Optimization (ACO), Jaya Algorithm (JA), Optimization Algo-

rithm (TLBO) Cuckoo Search (CS) and Teaching–Learning-Based [1]. 

The performance of meta-heuristic methods highly depends on the intensification 

and diversification of the search process. Intensification explores the promising re-

gions in the hope to find better solutions. On the other hand, diversification ensures 
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that all regions have been visited, which allows the algorithm to jump out of local 

optimum [2].  

In the field of software testing, several meta-heuristics algorithms have been suc-

cessfully used for finding an optimized t-way test suite based on defined interaction 

strength (t)[3]. Nowadays, many researchers turn into t-way testing. T-way testing is a 

very efficient approach for minimizing the test cases based on the 𝑡 interaction cover-

age. Finding an optimized set of test cases is a non-deterministic polynomial-time 

hard problem where increasing software inputs lead to an increase in computational 

time in an exponential manner and the complexity as well[4]. As a consequence, 

much existing research adopts meta-heuristic algorithms as the basis of their imple-

mentation including TS, SA, GA, ACA, PSO[5], HS[6] CS[7] and FPA [8]. 

This paper proposes a t-way test suite generation method, called IJA based on an 

improved of Jaya Algorithm [9] by enhanced its search capabilities. First, the pro-

posed method utilizes lévy flight for enhanced its exploration part. In fact, lévy flight 

consists of random walks that are interspersed by long jumps which can help to get 

out of local minima [10]. Second, a mutation operator is added to improve the con-

vergence rate which to measure how fast JA converge. 

The rest of this paper is organized as follows. An overview of t-way testing will 

highlight in Section 2 while Section 3 reviews existing t-way strategies. Section 4 

elaborates the description of the proposed strategy. Section VI highlights and discuss-

es the results. Lastly, Section VI gives the conclusion and future work. 

2 Overview of T-way Testing 

T-way testing ensures that every t-combinations (where t refers to interaction 

strength) of the inputs are covered in the final test suite.  For mere understanding, 

consider the following insert page numbers dialog box in Microsoft word processor. 

In this example, three are parameters (with ignoring the buttons) which are: 

1. Position has two values (top and bottom). 

2. Alignment has three values (Left, center and Right). 

3. Show-number-on-first-page has two values (Selected/Yes and Unelected/No). 

 

Fig. 1. Page Numbers dialog box. 

For testing such a simple dialog box, ideally, all the combinations of the inputs are 

considered. Here are 12 test cases need to be tested that can cover all the interactions.  

However, by considering 2-way interaction, test suite size can be minimizing from 12 
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to 6 test cases. Two-way interaction testing ensures that every two-combination of 

parameters is covered in the final test suite at least one time. It should be noted that 

there is 50 percent reduction test suite size however the faults detection rate can be 

reached to 90 percent. Similar to two-way testing, three-way testing increase the 

faults detection reach to 99 percent [11].  

3 Related Works 

In the literature review, T-way Testing has been generally treated as an algebraic 

problem. In this approach, lightweight algebraic computations are adopted for gener-

ating the t-way test suite. Generating t-way test suite using the algebraic approach 

used two methods. The first method is based on mathematical functions where each 

cell of the test suite is computed directly based on the corresponding row and column 

using mathematical functions.  Whereas the second one employs a recursive process 

to construct test suite by constructing a large test set from small test sets such as CA, 

MCA and TConfig, are limited to small configurations [12]. 

Computational approaches adopt a greedy algorithm to generate the test suite. Each 

iteration of the generation process tries to cover as many t-way combinations as pos-

sible, by generating one parameter at a time(OPAT) or one test at a time(OTAT). 

OPAT strategies start by generating the test suite for the smallest t-combinations. 

Then the test suite is extended horizontally by adding a parameter per iteration until 

all the parameters are covered. Examples of such approach are IPO, IPOG, IPOG-D, 

IPOF and IPAD2 [13]. 

OTAT strategies start generating one test case per iteration involved all the parame-

ters that cover the maximum number of combinations. The iteration continues until all 

the t-combinations are covered. Due to its efficiency, there are many strategies that 

adopt OTAT techniques such as AETG [14], Jenny [15], TConfig [16], and WHITCH 

[17]. Recently, many OTAT based strategies adopt meta-heuristic algorithms for gen-

erating t-way test suite Applying a meta-heuristic algorithm, or in general search algo-

rithms, in the field of testing also called Search-based software Testing (SBST).  

The first publication on SBST was in 1976 however it was completely different 

from techniques that were used at the time. It was simply generating the test suite that 

consists of floating-point inputs [18]. Recently, the role of the search algorithm in 

SBST is to guide the search for a better solution within a limited time.  

In the literature, there are many meta-heuristic algorithms has been used successful-

ly for generating t-way test suite such as Genetic Algorithm(GA) [14], Ant Colony 

Algorithm(ACA)[19], Particle Swarm Optimization[20], Harmony Search[6], Flower 

Pollination Algorithm(FPA)[21], and Cuckoo Search (CS) [22]. 

Unlike the aforementioned strategies, new strategies based on more than single 

search engine methods have been proposed [3, 4, 23-25]. The new strategies attempt 

to improve the search process for generating test suite by adopting hybridization 

methods such as hybrid-FPA (eFPA) [3], Tabu search hyper-heuristic (HHH) [4], Q-

learning sine-cosine [25], and fuzzy-TLBO (ATLBO) [23]. 
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4 Proposed Strategy  

4.1 Original Jaya Algorithm  

Jaya Algorithm [9] is one of the population-based algorithms, designed for solving 

constrained and unconstrained problems. The main idea behind the algorithm is that 

any candidate solution should approach to the best solution and evade worse solution 

at the same time. Therefore, for updating current solution Xi,j , Jaya Algorithm needs 

only to update the best and worse solutions then update the current solution using the 

following equation: 

𝑋𝑖,𝑗
′  =  𝑋𝑖,𝑗  +  𝑅𝑛𝑑1 (𝑋𝑏𝑒𝑠𝑡,𝑗  −   │𝑋𝑖,𝑗│) −  𝑅𝑛𝑑2 (𝑋worst,j  −   │𝑋𝑖,𝑗│)         (1) 

Where Xbest , Xworst are the best and worst obtained solutions, and X'I,j  is the new 

candidate solution. 

In term of parameter tuning, Jaya Algorithm is free parameters algorithm and need 

only to define common parameters such as population size and iteration number. Fig. 

2 show the summary of Jaya Algorithm. 

 

Fig. 2. Original Jaya Algorithm  

X'i = Xi + r1 (Xbest -  │Xi│) - r2 (Xworst -  │Xi│) 
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4.2 Improved Jaya Algorithm based Strategy for T-way Test Suite 

Generation  

Improved Jaya Algorithm (IJA) strategy is a t-way testing strategy for generating the 

test suite. It uses improved Jaya algorithm as core implementation for finding optimal 

test cases. The strategy starts generating all the t-combinations of the inputs, then 

using improved Jaya algorithm, IJA attempts to cover all those t-combinations using 

the smallest test suite. 

As shown in Fig. 2, after generating all the t-combinations, improved Jaya algo-

rithm generates its random population, then update the population using Equation 1. 

To improve the diversification of generated solutions, lévy flight (i.e. Eq. 2) has been 

deployed on the population. Based on the current solution, a new solution is generated 

using lévy flight. After updating some solution using lévy flight, mutation operation is 

applied as well. The mutation operator used to improve convergence speed and main-

tains the diversity solution of the population from one generation to the next one (i.e. 

as one or more parts of the solution values are changed subtly).  

To maintain the behavior of original Jaya algorithm a portion of the population is 

updated.  Here, we applied elitism technique that used in GA, HS and CS, to ensure 

the high quality solution is passed to next generation; only a fraction of worse solu-

tions are updated using lévy flight or mutation while the elite solutions (i.e. quality 

solutions) passed to next generation. In our proposed, we applied a simple mutation 

operator that randomly changes one parameter of the solution per iteration. Finally, all 

solutions of the population are evaluated based on fitness function, and the best solu-

tion, which cover the maximum number of t-combination, is selected to be added to 

the final test suite. 

𝐿é𝑣𝑦(𝜆) =  
𝜆𝛤(𝜆) 𝑠𝑖𝑛(

𝜋𝜆

2
)

𝜋
 

1

𝑠1+𝜆 , ( 𝑠 ≫  𝑠0 > 0)                               (2) 

The recommended value of the distribution factor λ is selected from 0.3 to 

1.99 [26]. Γ(λ) is standard gamma function. This distribution is valid for large steps s 

> 0. Fig. 2 illustrates the proposed improved Jaya algorithm-based strategy for t-way 

test suite generation (IJA). 
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1: Input:    p: Parameter number,  

𝑉: =  [𝑣0 . . 𝑣𝑗] parameter-values and 

𝑡: interaction level 

P ∈  [0, 1]; 

2: Output: Final test suite F;  

3: Let X be a set of population (candidate test cases);  

4: Generate t-combination L based on 𝑃, 𝑉 and t 

5: Generate initial random population 

6: while L is not empty do   

7:     while stop criterion not meet do 

8:         For each 𝑋𝑖 of the population do 

9:             Update  𝑋𝑖  position using Eq. 1 

10:         End For 
         // Find a fraction of worse solutions and update them using lévy flight or mutation 
11:         For each 𝑋𝑖 of the population do  

12:          If (random > p)   

13:             If (random > 0.5)  

14:                   Generate  𝑋𝑖+1 using lévy flight on 𝑋𝑖 (Eq. 2)  

15:              Else  

16:                   Apply mutation operator on 𝑋𝑖 

17:             End if 

18:           End if 

19:         End for 

20:         Evaluate the solutions 

21:         Find the best solution  

22:     End while 

23: Add the best solution to F.  

24: Remove covered t-combinations from L 

25: End while 

26: End-Procedure 

Fig. 3. Improved Jaya Algorithm Pseudocode for t-way Test Suite Generation 

5 Results and Discussion  

The proposed strategy is compared with existing t-way strategies such as PSO,  CS 

and original Jaya using different t-way testing problems as shown in Table 1. In order 

to assess the enhancement of Jaya algorithm, the results of both the original Jaya algo-

rithm and its proposed improvement are involved in the comparison. In addition, we 

compare the convergence rate of Jaya algorithm against the improved Jaya algorithm. 

Based on some existing works, the parameters of IJA are set at population size = 50 

and the maximum number of improvements = 300 [6, 21, 24]. Different systems are 

used in this experiment as shown in Table 1. Systems configuration column describes 

the system such that 𝑦𝑥 means the system consists 𝑥 parameters each parameter has 

𝑦 values.  
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5.1 Performance Evaluation 

In this section, IJA’s results are compared with existing meta-heuristic strategies pub-

lished in [5-7].  

Table 1. Comparison with Existing Strategies 

System# 
Systems 

configuration  
𝐭 PSO CS Jaya IJA 

1 210 2 8 8 10 8 

2 310 2 17 17 23 17 

3 210 3 17 16 18 16 

4 36 3 42 43 44 42 

5 57 4 1209 1200 1195 1178 

6 58 4 1417 1415 1345 1331 

7 210 5 82 79 85 79 

8 37 5 441 439 449 435 

9 210 6 158 157 163 159 

10 37 6 977 973 971 971 

11 210 7 NA NA 312 297 

12 210 8 NA NA 519 502 

13 210 9 NA NA 680 584 

14 210 10 NA NA 1024 1024 

Table 1 presents the results of the comparison; each cell presents the best (i.e. 

smallest) test suite size obtained by t-way testing strategies while NA indicates that 

corresponding results not available.  The results in Table 1 show that IJA per-

forms better than PSO, CS, and original Jaya and obtains the best results (marks by 

bold font cell) while PSO obtains the worst results. Comparing only IJA and its coun-

terpart, the results show that IJA performs much better than original Jaya, IJA outper-

forms original Jaya in almost all cases with exception of cases #10 and #14 where 

both strategies obtain the same results. 

IJA strategy appears to obtains the optimum results in most of the cases owing to 

enhancement of its lévy flight which help improve the diversification and intensifica-

tion since the lévy flight can be seen as random walk interrupted by long jump. An-

other point worth to highlight is that during the experiments, the results are improved 

after applying mutation operator, that's because the behaviour of mutation operator 

and how it works are totally different than how Jaya algorithm works. In mutation 

operator, during updating the solutions, only one input or more are changed while 

Jaya algorithm updates all inputs.  

5.2 5.1 Convergence Rate Analysis 

To assess the modification of IJA strategy, the convergence rates of both IJA and 

original Jaya strategies are studied. The convergence rates use to measure the speedup 

of meta-heuristic algorithm to reach the optimal solutions. We apply Jaya and IJA on 
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two systems (Table 1) using different values of iteration (i.e. 5, 10, 20, 30, 40, 50, 

100, 200, 300, 500, and 1000). 

Table 2: Description of Two Problems 

No. Systems 𝒕   System’s Description 

Systems #1 105 2 5 parameters each with 10 values  

Systems #2 52, 73, 31 3 
6 parameters (i.e. 2 parameters with 5 values, 3 
parameters with 2 values, and 1 parameter has 3 

values. 

 

 
Fig. 4: Convergence rate of Jaya and IJA for System #1 

 

 
Fig. 5: Convergence rate of Jaya and IJA for System #2 

Fig. 4 and 5 show the convergence rate of Jaya and IJA for the two problems. As 

the figures show, convergence rates of IJA are faster than convergence rates of Jaya in 

the two problems. From the figures, we can see IJA reach to the optimal solution be-

fore the original Jaya due to its improvements by lévy flight and mutation operator. 
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6 Conclusion  

In this paper, an improvement of Jaya algorithm for t-way test generation, called 

IJA, has been elaborated. IJA enhances the intensification and diversification capa-

bilities by introducing new operators search such lévy flight and mutation operator 

into Jaya Algorithm. The experimental results show that introducing the new opera-

tors into IJA improves the performance of the original Jaya algorithm, also overcomes 

the problems of slow convergence of Jaya algorithm. As part of future work, we are 

planning to extend the experimental study by study the diversifications of IJA and 

include other existing t-way strategies such as eFPA, HHH, and ATLBO which con-

sider as enhanced meta-heuristic based strategies.   
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