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Inpatient diabetes management of those on hemodialysis
poses a major challenge. In a post hoc analysis of a
randomized controlled clinical trial, we compared the
efficacy of fully automated closed-loop insulin delivery vs.
usual care in patients undergoing hemodialysis while in
hospital. Compared to control patients receiving
conventional subcutaneous insulin therapy, those patients
receiving closed-loop insulin delivery significantly
increased the proportion of time when a continuous
glucose monitor was in the target range of 5.6-10.0 mmol/l
by 37.6 percent without increasing the risk of
hypoglycemia. Thus, closed-loop insulin delivery offers a
novel way to achieve effective and safe glucose control in
this vulnerable patient population.
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T he prevalence of diabetes is increasing globally, as is the
number of people with diabetes requiring hemodialy-
sis.1,2 Glucose management in this population imposes

challenges on both patients and health care professionals. End-
stage renal disease and hemodialysis predispose these patients
to both hypo- and hyperglycemia,3 which are associated with
adverse medical outcomes.4,5 The situation is aggravated when
patients are admitted to the hospital due to acute illness.6

Optimal insulin dosing regimens are difficult to establish given
the altered glucose metabolism and insulin kinetics in this pop-
ulation.7,8 Hence, glucose management may be better facilitated
by an algorithm-driven insulin therapy, also known as closed-
loop insulin delivery or artificial pancreas, which is an emerging
therapeutic approach combining continuous glucose monitoring
with insulin pump therapy to achieve a more physiological
means of replacing insulin.9 The role of the control algorithm
is to continuously modulate insulin delivery based on real-
time sensor glucose values, thereby responding to the inherent
variability of insulin requirements. The closed-loop system
used in the present study incorporates a control algorithm
that is initialized based on the subject’s body weight and esti-
mated total daily insulin dose, and calculates the required insulin
infusion rate, aiming at a target glucose level between 5.8 and 7.2
mmol/l by continuously adapting model parameters.10

We hypothesized that fully closed-loop insulin delivery im-
proves glycemic control without increasing the risk of hypogly-
cemia in inpatients with type 2 diabetes undergoing hemodialysis.
Here, we report a post hoc analysis in 17 such inpatients who took
part in a randomized parallel-design study.11 The aim of the
original study (n ¼ 136) was to assess the efficacy and safety of
fully automated closed-loop insulin delivery in comparison with
conventional insulin therapy at non–critical care units irrespective
of underlying pathophysiology.

RESULTS
Study population
Baseline characteristics were comparable between closed-loop
versus control subjects, with mean values as follows: 77%
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versus 63% male; age 73 years (SD: 8) versus 67 years (SD:
10); body mass index 31.2 kg/m2 (SD: 6.5) versus 32.8 kg/m2

(SD: 6.9); glycated hemoglobin 7.1% (SD: 0.6) versus 6.9%
(SD: 1.5); diabetes duration 25 years (SD: 13) versus 28 years
(SD: 7); total daily insulin dose 42 U/24 h (SD: 25–55) versus
44 U/24 h (SD: 30–69). At recruitment, none of the closed-
loop and 4 of the control participants received adjunctive
anti-diabetic treatment (all dipeptidyl peptidase–4 inhibitors,
with one patient additionally receiving metformin and the
other glucagon-like peptide [GLP]-1 receptor agonist ther-
apy). Participants were followed for up to 8.0 days (SD: 3.1)
and 7.7 days (SD: 4.8) in the closed-loop and control groups,
respectively, and they underwent 4.2 (SD: 1.5) and 3.6 (SD:
2.5) hemodialysis sessions (both differences nonsignificant).

Glycemic control and insulin dose
The proportion of time spent in the target glucose range,
which was between 5.6 and 10 mmol/l, was significantly
greater in the closed-loop group compared with the control
group (69.0% [SD: 12.0] vs. 31.5% [SD: 13.5], respectively;
difference 37.6% [SD: 6.2; 95% confidence interval 24.4 to
50.8]; P < 0.001; primary endpoint; Table 1). The mean
sensor glucose level was significantly lower in the closed-loop
group than in the control group (8.1 mmol/l [SD: 0.6] vs.
11.0 mmol/l [SD: 2.3]; difference 2.9 mmol/l [SD: 0.8; 95%
confidence interval 1.2 to 4.6]; P ¼ 0.003). The proportion of
time spent at concentrations above the target range (>10
mmol/l) was significantly lower in the closed-loop group
(difference 37.2% [SD: 9.2; 95% confidence interval 17.7 to
56.9]; P ¼ 0.001), whereas the time spent at concentrations
lower than the target range (<5.6 mmol/l) did not differ
between groups (P ¼ 0.96). Time spent at concentrations
lower than 3.0 mmol/l, as well as the burden of hypoglycemia
measured by area under the curve less than 3.0 mmol/l, was
low and similar between groups (P ¼ 0.82 and P ¼ 0.89,
respectively). Total daily insulin dose did not differ between
groups (P ¼ 0.41). Glucose variability, as measured by SD of
sensor glucose was significantly reduced compared with
conventional insulin therapy (P ¼ 0.012). The coefficient of
variation of sensor glucose between 24-hour periods was
significantly lower in the closed-loop group than in the
Table 1 | Primary and secondary endpoints during the entire stu

Study endpoint Closed-loop (

Time spent at glucose level in mmol/l (%)
5.6–10.0a 69.0 (12
>10 20.1 (9.
<5.6 10.9 (4.
<3.0 0.0 (0.0, 0

Mean glucose (mmol/l) 8.1 (0.6
SD of glucose (mmol/l) 2.3 (0.5
CV of glucose (%) 28.4 (4.
Between days CV of glucose (%) 13.4 (3.
AUCDay <3.0 mmol/l (mg/dl � min) 0.0 (0.0, 2
Total daily insulin dose (U/24 h) 40.7 (25

AUCDay, area under the curve for a glucose concentration of <3.0 mmol/l per 24-hour
aPrimary endpoint.
Data are given as mean (SD), or median (interquartile range).
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control group (P ¼ 0.008). Twenty-four-hour sensor glucose
and insulin delivery profiles are shown in Figure 1. Hypo-
glycemic (<3.5 mmol/l) or hyperglycemic (>20 mmol/l)
events based on capillary glucose were detected, respectively,
in 1 control and in none of the closed-loop patients, and in 1
closed-loop and 2 control patients, although none of them
had concomitant ketonemia.

DISCUSSION
Increasing evidence shows that closed-loop insulin delivery is
superior to conventional insulin treatment in different target
groups, such as children, adolescents, pregnant women with
type 1 diabetes, and more recently, inpatients with type 2
diabetes.11–13 Glucose management in hospitalized patients
undergoing hemodialysis is particularly challenging, and until
now, whether a control algorithm can accommodate their
specific requirements has been unclear. For the first time, we
have shown here that a fully automated closed-loop system
clearly improves glucose control in this vulnerable population.

The closed-loop system increased time in the glycemic target
range (5.6–10.0 mmol/l) throughout a 24-hour period by 37.6%,
compared with control (additional 9 hours). The difference in
time spent with target glycemia between closed-loop and control
in nonhemodialysis patients of the main study11 was 22.4%,
indicating a trend toward a greater beneficial effect of the closed-
loop system in the hemodialysis cohort. Hemodialysis patients in
the control group spent less than one-third of the time in the
target range, possibly due, at least in part, to fear of inducing
hypoglycemia. A recent observational study in hospitalized dial-
ysis patients with type 2 diabetes showed6 that 1 in 5 (21.7%)
individuals experienced glucose levels <3.0 mmol/l.

Guidelines for inpatient diabetes care suggest14 the use of a
basal-bolus insulin regimen. However, implementation can be
challenged by high within- and between-day variation in in-
sulin requirements. An outpatient study using euglycemic
clamp methodology showed that insulin requirements are
reduced by 25% up to 24 hours after hemodialysis.7 Gener-
alizability of this findings to an inpatient setting, however,
may not be appropriate, especially in the context of variable
daily dialysis schedules and concomitant acute illness.15

Hence, a closed-loop system such as ours, which enables a
dy

n [ 9) Control (n [ 8) P value

.0) 31.5 (13.5) <0.001
8) 57.4 (25.7) 0.001
5) 11.1 (14.1) 0.96
.2) 0.0 (0.0, 0.6) 0.82
) 11.0 (2.3) 0.003
) 3.6 (1.2) 0.012
9) 32.3 (8.5) 0.26
7) 21.8 (7.3) 0.008
.1) 0.0 (0.0, 8.8) 0.89
.7) 50.3 (20.6) 0.42

period; CV, coefficient of variation.
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Figure 1 | Median (interquartile range) of sensor glucose during closed-loop (the solid red line and the red-shaded area) and
control interventions (the dashed black line and the gray-shaded area) from midnight to midnight. The lower and upper
limits of the glucose target range of 5.6–10.0 mmol/l are denoted by the horizontal dashed lines (a). Median (interquartile
range) of algorithm-directed insulin delivery during closed-loop intervention (b).
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finely tuned instantaneous glucose-responsive modulation of
insulin delivery and continually adapts to changing insulin
needs during the day and between days, may offer a more
effective and safer diabetes therapy.

One strength of the current study is the random allocation
of treatment and the identification of a new target group who
may be particularly likely to benefit from a closed-loop sys-
tem. However, in the absence of randomized outcome trials,
the long-term clinical benefits of maintaining effective gly-
cemic control in hemodialysis patients have yet to be estab-
lished. Findings from observational studies are inconsistent.
Although the study with the longest follow-up showed a clear
association between high glycated hemoglobin and all-cause
mortality,16 this relationship was found to be either only in
patients younger than 60 years17 or without support.18 In
addition to the unclear accuracy of measures of glycated
Kidney International (2019) 96, 593–596
hemoglobin in dialysis patients,19 assessments can be chal-
lenged by hypoglycemia, which is similarly associated with
adverse events.20 We acknowledge the limitation inherent in a
subgroup analysis, such as small sample size and potential
confounders that may limit the validity and generalizability of
the results. However, our findings provide justification for
evaluating further closed-loop insulin delivery use in inpa-
tient and outpatient cohorts on maintenance dialysis.
CONCLUSION
Diabetes management in inpatients with type 2 diabetes un-
dergoing hemodialysis is complex and often results in sub-
optimal glucose control. Fully automated closed-loop insulin
delivery resulted in significantly better glycemic control than
did conventional therapy, without increasing the risk of
595
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hypoglycemia, thereby offering a novel treatment modality in
this vulnerable population.

METHODS
Study design and participants
In a post hoc analysis of a randomized controlled trial, we compared
fully automated closed-loop insulin delivery (n ¼ 9) with conven-
tional insulin therapy (n ¼ 8) in hospitalized patients with type 2
diabetes undergoing hemodialysis for up to 15 days or until hospital
discharge. Randomization was stratified according to glycated he-
moglobin, body mass index, and total daily insulin dose.

The closed-loop group received a subcutaneous study pump
(Dana R Diabecare, Sooil, Seoul, Republic of Korea) filled with rapid-
acting insulin analogue (Humalog, Eli Lilly, Indianapolis, IN, or
Novorapid, Novo Nordisk, Bagsvaerd, Denmark) coupled to a
continuous glucose monitor (Freestyle Navigator II, Abbott Diabetes
Care, Alameda, CA) by means of a model predictive control algorithm
on a computer tablet (Dell Latitude 10 Tablet, Dell, TX). Glucose
levels were controlled without announcement or bolusing for meals.

The control group received conventional subcutaneous insulin
therapy according to local clinical practice, and continuous glucose
monitoring was performed in a blinded mode.

The study did not interfere with or specify nutritional intake or any
other clinical activities. Hemodialysis was carried out according to local
clinical practice. Point-of-care capillary glucose measurements were
performed as part of usual care by nursing ward staff in both groups.

Statistical analysis
Endpoints were analyzed according to intention-to-treat using un-
paired t-tests or nonparametric equivalents for highly skewed vari-
ables. GStat software, Version 2.2 (University of Cambridge,
Cambridge, UK) and SPSS, Version 21 (IBM Software, Hampshire,
UK) were used for calculations. Values are reported as mean (SD) or
median (quartile 1 to quartile 3). Two-tailed P values < 0.05 were
considered statistically significant.
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