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 2 

Abstract 22 

We revisit the bias correction problem in current climate models, taking advantage of state-23 

of-the-art atmospheric reanalysis data and new data assimilation tools that simplify the 24 

estimation of short-term (6-hourly) atmospheric tendency errors.  The focus is on the extent to 25 

which correcting biases in atmospheric tendencies improves the model’s climatology, variability, 26 

and ultimately forecast skill at subseasonal and seasonal time scales.  Results are presented for 27 

the NASA/GMAO GEOS model in both uncoupled (atmosphere only) and coupled (atmosphere-28 

ocean) modes. 29 

For the uncoupled model, the focus is on correcting a stunted North Pacific jet and a dry bias 30 

over the central US during boreal summer – long-standing errors that are indeed common to 31 

many current AGCMs.   The results show that the tendency bias correction (TBC) eliminates the 32 

jet bias and substantially increases the precipitation over the Great Plains.  These changes are 33 

accompanied by much improved (increased) storm track activity throughout the northern middle 34 

latitudes.  For the coupled model, the atmospheric TBCs produce substantial improvements in 35 

the simulated mean climate and its variability, including a much reduced SST warm bias, more 36 

realistic ENSO-related SST variability and teleconnections, and much improved subtropical jets 37 

and related sub-monthly transient wave activity. 38 

Despite these improvements, the improvement in subseasonal and seasonal forecast skill over 39 

North America is only modest at best.  The reasons for this, which are presumably relevant to 40 

any forecast system, involve the competing influences of predictability loss with time and the 41 

time it takes for climate drift to first have a significant impact on forecast skill.  42 
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 43 

1. Introduction 44 

Substantial progress has been made over the last few decades to improve the ability of 45 

climate models to reproduce the observed climate.  For example, Flato et al. (2013) provide an 46 

overview of the quality of the CMIP5 climate models (IPCC, 2013), including a synthesis of our 47 

confidence in the ability of models to simulate various features of the 20th century climate 48 

including means, various modes of variability, trends, and extremes.  They conclude that overall, 49 

climate models are indeed getting better in simulating climate (e.g., compared to CMIP3 50 

models), providing greater confidence in the appropriateness of these models for climate change 51 

studies.   52 

Nevertheless, despite these overall improvements, current climate models are far from 53 

perfect, and specific biases appear to be especially detrimental to forecast skill on subseasonal to 54 

seasonal time scales, our focus here.  For example, during boreal summer, the middle latitude 55 

jets serve as wave-guides for Rossby waves entering North America and Europe (e.g., Schubert 56 

et al. 2011, Wang et al. 2017).  Any deficiencies in the simulation of the summer jets would 57 

therefore likely affect our ability to predict Rossby wave impacts on weather and climate 58 

extremes over the northern continents. During boreal winter, the hydroclimate of North America 59 

is strongly affected by moisture influx from the North Pacific (e.g., Wang and Schubert 2014) 60 

that is linked to North Pacific synoptic systems steered by the jet stream.  Indeed, the occurrence 61 

of drought along the west coast of the U.S. is especially sensitive to the strength and position of 62 

the planetary waves, especially the west coast ridge (e.g., Seager et al. 2015); such waves are 63 

linked to modes of internal atmospheric variability such as the Pacific North American (PNA) 64 
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pattern as well as to ENSO and other tropical SST anomalies (e.g., Seager et al. 2015; Seager 65 

and Henderson 2016. 66 

The degree of verisimilitude required in simulating these modes (as well as the mean state) 67 

for improving forecast skill at subseasonal and seasonal scales is unclear.  Corrections to model 68 

biases can be made “after the fact”; operational forecasts can be post-processed to deal with 69 

climate drift estimates determined from long histories of reforecasts (e.g., Kirtman et al. 2014), 70 

and biases in variability can be corrected through such methods as quantile mapping (e.g., 71 

Cannon, 2016.  Such approaches, however, can only go so far – they cannot correct, for example, 72 

for the complete absence of a critical atmospheric mode or linkage during a forecast.  Indeed, 73 

certain forecast deficiencies can only be avoided by improving the accuracy of the model 74 

simulation itself. 75 

Given the difficulty of addressing certain model biases quickly through model improvement, 76 

some have considered a stopgap approach: introducing empirically determined “on-line” 77 

corrections to the model’s tendency equations.  A number of studies have examined the impact 78 

of such statistical corrections to early operational and/or simplified numerical models with a 79 

focus on developing methods for improving weather forecasts (e.g., Leith 1978; Schemm and 80 

Faller 1986; Saha 1992; DelSole and Hou 1999).  In a recent study, Danforth et al. (2007) 81 

addressed the problem of estimating and correcting model errors using two simplified but 82 

realistic GCMs. They found that online state-independent corrections result in significant 83 

improvements in the skill of weather forecasts, improvements that are larger than those obtained 84 

with a posteriori corrections.  They further found that state-dependent corrections resulted in 85 

worse prediction skill due to sampling errors in the estimation of the full covariance matrix, 86 

though they were able to obtain some improvements by localizing the covariance matrix, or 87 
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alternatively by introducing an SVD-based formulation of the correction operator.  We note that 88 

another approach, based on historical analogs, that takes into account the possible state-89 

dependence of errors has been shown to be successful (when applied after the fact) in reducing 90 

biases in the planetary-scale waves in medium range forecasts (Yu et al. 2014a,b).   91 

In this study, we revisit the bias correction problem, employing a state-of-the-art reanalysis 92 

(MERRA-2) and modern data assimilation tools to correct the systematic model tendency errors 93 

in both uncoupled (atmospheric general circulation model, AGCM) and coupled (atmospheric-94 

ocean general circulation model, AOGCM) versions of the NASA Global Modeling and 95 

Assimilation Office (GMAO) GEOS model.  Rather than weather forecasting, our focus here is 96 

on examining the extent to which correcting the short-term model tendency biases leads to 97 

improvements in some of the GEOS model’s long-standing mean climate biases (e.g., in the 98 

North Pacific Summer Jet (NPSJ), the boreal winter stationary waves, and the Intertropical 99 

Convergence Zone (ITCZ)) – biases that are indeed found in a number of AGCMs and 100 

AOGCMs.  In addition, we examine whether there are any associated improvements in the 101 

simulation of weather and climate variability as well as in the forecast skill attained over North 102 

America at subseasonal to seasonal time scales. 103 

Section 2 describes the methodology used, the GEOS model, and the experiments performed.  104 

Section 3a (Section 3b) shows the impact of the bias corrections on the climatic means, 105 

variances, and covariances simulated in the uncoupled (coupled) versions of the model, and 106 

Section 3c examines their impact on subseasonal and seasonal forecast skill over North America.  107 

Discussion and conclusions are provided in Section 4. 108 

 109 
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2. Methodology and Model Experiments 110 

a. Estimating the tendency biases 111 

The GEOS data assimilation system currently uses an increment analysis update (IAU) 112 

procedure designed to reduce analysis-induced initial shocks in the model forecast phase of the 113 

assimilation cycle (Bloom et al. 1996). The IAU procedure incorporates a constant analysis 114 

increment due to each atmospheric analysis, gradually (over the course of the analysis period) as 115 

a forcing term in the model tendency equations. Any non-zero long-term average of the IAU 116 

increments is what we define here as the “tendency bias” of the model – a bias that presumably 117 

causes the model to drift away from the reanalysis climate during the course of a long-term 118 

forecast.  To be clear on terminology, our use of the word “bias” refers to time mean differences 119 

between the model forecasts and observations (or reanalysis) that are functions of forecast lead-120 

time.  As such, the tendency bias (as defined above) and the model’s climatological bias (that 121 

obtained from a free-running climate simulation) represent the two end points of the bias 122 

evolution (also referred to here as the drift), with the former measuring how the model initially 123 

starts to drift away from the observed climate, and the latter measuring where it ends up (after 124 

the model loses all memory of the initial state). A key question we address here is to what extent 125 

does correcting the initial bias correct the climatological bias of the free running model. 126 

The IAU approach can be applied “after the fact” by using an existing reanalysis and a 127 

sequence of short term forecasts to estimate the increments, correcting the model accordingly at 128 

each time step – basically mimicking the IAU procedure used during an assimilation.  Such an 129 

approach, referred to as “replay” (Orbe et al. 2017; Takacs et al. 2018), can be used with an 130 

existing reanalysis to force a model to remain close to that reanalysis at each time step.  The 131 



 7 

tendency bias correction (hereafter, TBC) method is essentially a replay but instead of applying 132 

the increment from a specific forecast-analysis difference, applies a long-term averaged 133 

increment (retaining the diurnal and annual cycles) at every time step.  Details of the 134 

methodology are provided in Appendix A.  In this way, TBC takes advantage of an existing 135 

assimilation or previously generated replay to estimate the long-term mean model tendency 136 

biases and uses them as additional forcing terms in the model equations. It is assumed that the 137 

TBCs reflect error growth that is linear and therefore should provide a reasonable estimate of the 138 

biases in the model tendencies, subject to any observational/analysis biases (e.g., Xue et al., 139 

2013; Bhargava et al. 2018).   140 

Since the uncoupled model used here is the same as that used to produce MERRA-2 (though 141 

run at a lower resolution), the tendency bias terms for u, v, T, q, and ps are taken directly from 142 

the MERRA-2 increments for the period 1980-2015, averaged to the lower resolution (nominally 143 

1o).  This, while likely not optimal as compared to using a new replay to MERRA-2 at the lower 144 

resolution, was done for practical reasons.  Recent work suggests some dependence of the results 145 

on resolution (e.g. Achuthavarier et al. 2017). 146 

Our initial attempt at correcting the coupled model was to simply correct the atmospheric 147 

fields (i.e., to impose the tendency bias terms derived from MERRA-2) and then couple the 148 

corrected atmosphere to the ocean.  This however resulted in spurious feedbacks to the 149 

corrections in the tropics that apparently result from a mismatch between the atmospheric biases 150 

in the coupled and uncoupled models.  We instead found it necessary to carry out a replay to 151 

MERRA-2 while running in coupled mode.  It is important to note that, even for the coupled 152 



 8 

model, we correct only atmospheric quantities1. Thus, in our coupled simulations, the ocean is 153 

only indirectly constrained by imposed corrections.  There is, however, one important difference 154 

between our use of TBC in our coupled and uncoupled simulations: in the coupled simulations, 155 

only the fields u, v, T, and ps are corrected with the mean increments.  Specific humidity is not 156 

corrected2. 157 

 158 

b. The uncoupled and coupled GEOS-5 model 159 

The results presented here are based on two different versions of the GEOS-5 model: an 160 

atmosphere-only version and a coupled atmosphere-ocean version.  This allows us to address 161 

different model deficiencies and their corresponding impacts on forecast skill.  More generally, it 162 

lets us assess the performance of the TBC approach within both coupled and uncoupled 163 

environments. 164 

The uncoupled GEOS model used here is the same AGCM used to generate MERRA-2, 165 

though here the model is run at a coarser horizontal resolution (approximately 1°).  As described 166 

in Gelaro et al. (2017), this AGCM includes the finite-volume dynamical core of Putman and Lin 167 

(2007), which uses a cubed sphere horizontal discretization and 72 hybrid-eta levels from the 168 

surface to 0.01 hPa.  Recent upgrades to the physical parameterization schemes (in going from 169 

the original MERRA to MERRA-2) include increased re-evaporation of frozen precipitation and 170 

cloud condensate, changes to the background gravity wave drag, and an improved relationship 171 

                                                            
1 We did not consider trying to also correct the ocean since it is unclear that the ocean analysis 
are of sufficient quality to estimate the necessary biases, though this may ultimately be the 
best approach. 
2 This was done out of an initial concern about possible negative impacts on fresh water flux 
into the oceans, though this has since been found to not be an issue. 
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between the ocean surface roughness and ocean surface stress.  The model also includes a 172 

Tokioka-type trigger on deep convection as part of the Relaxed Arakawa-Schubert (RAS, 173 

Moorthi and Suarez 1992) convective parameterization scheme (Bacmeister and Stephens 2011). 174 

A new glaciated land representation and seasonally-varying sea ice albedo were implemented for 175 

MERRA-2, leading to improved air temperatures and reduced biases in the net energy flux over 176 

these surfaces (Cullather et al. 2014).  The model includes the Catchment land surface model 177 

developed by Koster et al. (2000).  Further details about this version of the GEOS AGCM can be 178 

found in Molod et al. (2015).   179 

The coupled model (AOGCM) used here is part of the Subseasonal to Seasonal (S2S) 180 

prediction system that is (at the time of this writing) being used by the GMAO to provide 181 

forecasts to the North American Multi-Model Ensemble (NMME) project on a real time basis 182 

(though here our coupled model is run at coarser resolution).  The model is described in more 183 

detail in Molod et al. (2018).  The AGCM component of the AOGCM is a more recent version of 184 

the GEOS AGCM (described above) though it is fundamentally the same as the MERRA-2 185 

version. The new AGCM includes parameter changes to enhance surface drag over land and 186 

oceans, to enhance form drag, and to enhance parameterized convection in the extratropics, all 187 

designed to improve weather forecast skill. 188 

The ocean component of the GEOS AOGCM is the Modular Ocean Model version 5 189 

(MOM5) developed at the Geophysical Fluid Dynamics Laboratory described in Griffies et al. 190 

(2005).  The sea ice component is the CICE 4.1 model developed by the Los Alamos National 191 

Laboratory (Hunke and Lipscomb 2008).  The ocean and atmosphere exchange fluxes of 192 

momentum, heat and fresh water through a ''skin layer'' interface that includes a parameterization 193 

of the diurnal cycle. 194 
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 195 

c. The experiments 196 

The AGCM and AOGCM experiments analyzed in this study are listed in Table 1.  Both 197 

models were forced with time varying GHGs as described in Appendix A of Schubert et al. 198 

2014.  The AGCM simulations (forced with the same observed SST and sea ice fraction used in 199 

MERRA-23) consist of: (i) a long term control simulation (CNTRL-A), and (ii) a simulation 200 

(TBC-A) equivalent to CNTRL-A except for the continual correction of the model tendency 201 

biases using the TBC approach, with the correction terms (in u, v, T, q and ps) taken directly 202 

from MERRA-2.  The CNTRL-A model and the TBC-A model were also used to produce 203 

hindcasts (with observed SST) initialized from MERRA-2. In this set of hindcasts, the hindcast 204 

year’s data are excluded from the estimation of the bias correction terms.  205 

The AOGCM simulations consist of a long control simulation (CNTRL-C), a run replayed to 206 

the MERRA-2 atmosphere fields of u, v, T, and ps (REPLAY-C), and a third run (TBC-C) in 207 

which the TBC approach is used to correct the u, v, T, and ps tendencies, using corrections 208 

estimated from REPLAY-C.  In addition, seasonal hindcasts were produced using both the 209 

CNTRL-C model and the TBC-C model, with initial conditions taken from REPLAY-C (again, 210 

with the hindcast year’s data excluded from the estimation of the bias correction terms). 211 

 212 

3. Results 213 

                                                            
3 As summarized in Gelaro et al. (2017), the MERRA-2 SST are based on a combination of 
different high resolution daily NOAA OISST and OSTIA products, though prior to 01 Jan 1982, 
it is based on the CMIP mid-monthly 1° data. 
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We present here the results of applying the TBC to the GEOS model. Sections 3a and 3b 214 

focus on the impacts on the climatological biases of the AGCM and AOGCM, respectively, 215 

while Section 3c examines the impact on forecast skill. 216 

 217 

a. TBC in the uncoupled model 218 

The impact of TBC on the mean climate and climate variability in the AGCM is estimated 219 

from the TBC-A and CNTRL-A simulations (see Table 1).  Climatological biases are defined 220 

here as long-term averaged differences from MERRA-2 and other observations as indicated 221 

below.   222 

Figures 1 and 2 show the impact of the TBC on the zonal mean climatological biases for DJF 223 

and JJA respectively for the u-wind and specific humidity.  We present, in the left panels, the 224 

climatological biases (CNTRL-A – MERRA-2), in the middle panels the improvement with TBC  225 

(TBC-A - MERRA-2), while in the right panels we show (TBC-A - CNTRL-A) to more clearly 226 

illustrate the impact of the TBC. The zonal wind biases in CNTRL-A are characterized by a 227 

poleward shift of the jets in both summer hemispheres (evident from the north/south dipole 228 

structure of the differences), with some tendency for an equator-ward shift in the winter 229 

hemispheres.  In TBC-A, the poleward shift of the summer jets is substantially corrected, 230 

especially during JJA.  There is less improvement in the winter jets; in fact, the SH high latitudes 231 

show, for TBC-A, an increased positive zonal wind bias during JJA (top center and right panels 232 

of Fig. 2).  The reason for this is unclear but likely reflects a cold bias that develops during JJA 233 

throughout the troposphere over the SH polar regions in TBC-A. Section 4 provides a discussion 234 

of possible reasons for why the TBC does less well in correcting the climatological biases in 235 

some regions/seasons.  TBC also acts to reduce substantially the zonal mean specific humidity 236 
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climatological biases, especially the relatively large positive biases that occur in the 237 

lower/middle troposphere on either side of the equatorial moisture maximum during DJF (bottom 238 

panels of Fig. 1), as well as the biases in the midlevel tropics (just south of the equatorial 239 

maximum) and lower tropospheric NH middle latitudes during JJA (bottom panels of Fig. 2). We 240 

note that in both seasons the TBC-A acts to correct (strengthen) the upward motion regime of the 241 

tropics, so much so that the simulated Hadley cell is essentially indistinguishable from that in 242 

MERRA-2 (not shown). 243 

Figure 3 shows the results for the 250mb u-wind (left column), two-meter temperature over 244 

land (T2m, middle column) and precipitation (right column) for JJA.  Here again, we present in 245 

the top panels, the climatological biases (CNTRL-A – MERRA-2), in the middle panels the 246 

improvement with TBC (TBC-A - MERRA-2), while in the bottom panels we show (TBC-A - 247 

CNTRL-A) to more clearly illustrate the impact of the TBC.  The impact of TBC-A is to 248 

eliminate almost completely the prevailing zonal wind climatological biases throughout the NH, 249 

especially the weak jet in the North Pacific.  In the SH, where the biases are much weaker to start 250 

with, TBC-A is less effective, and in fact (as we saw in Fig. 1) generates a positive zonal wind 251 

bias at high latitudes.  In the NH, the impact of TBC-A on JJA T2m is remarkable, as it 252 

eliminates most of the large positive biases, especially those over Asia and North America.  The 253 

climatological precipitation biases (top right panel of Fig. 3) also show substantial improvement 254 

in many regions, with a reduction of large biases over Tibet, the maritime continent, the ITCZ, 255 

the NH storm tracks, and North America (middle right panel of Fig.3): impacts which are 256 

perhaps more clearly seen from the TBC-A – CNTRL-A fields in the bottom right panel of Fig. 257 

3.   Particularly noteworthy is the substantial reduction in the dry bias over the US Great Plains, a 258 

long-standing problem in the GEOS model and many other climate models (e.g, Lin et al. 2017). 259 
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The TBC-A impact, however, is not positive everywhere, with the increased wet bias over India 260 

being perhaps the most glaring deficiency.  261 

We next turn our attention to the transients during JJA (Figure 4).   These are based on 6 262 

hourly data (with the monthly means removed) and include the time mean vertically-integrated 263 

zonal momentum transport (𝑢𝑢′𝑣𝑣′������, left panels), the 250mb meridional wind variability (𝑣𝑣′2����, 264 

middle panels – a measure of storm track activity [e.g., Chang and Fu 2002]), and the 850mb 265 

moisture transport (𝑣𝑣′𝑞𝑞′�����, right panels).  The climatological biases in all three quantities are 266 

apparent, and there are substantial corrections in the NH with TBC-A.  In particular, substantial 267 

improvements are seen in the NH momentum transport, especially in the North Pacific and North 268 

Atlantic jet exit regions, where the high frequency eddies are expected to maintain the mean jet 269 

through barotropic decay (e.g., Chang et al. 2002).  Also, the negative biases in 𝑣𝑣′2����  (indicating 270 

weak storm tracks) seen in CNTRL-A, especially in the eastern North Pacific and the North 271 

Atlantic, are reduced in TBC-A by more than a factor of two in many places, an improvement 272 

that occurs in conjunction with the improved (strengthened) jet in these regions.  Similar 273 

improvements are seen for moisture transport, with substantial increases in northward transport 274 

in the NH storm tracks in TBC-A.  Also of note for TBC-A is the increased northward moisture 275 

transport over the central US, an improvement that very likely contributes to the aforementioned 276 

increased precipitation in this region.  The TBC appears to be less effective in improving the JJA 277 

transients in the SH, especially over the high latitude oceans.  278 

 279 

b. TBC in the coupled Model 280 

We now examine the impact of applying the atmospheric TBCs obtained from REPLAY-C 281 

to the fully coupled GEOS-5 AOGCM. In assessing the impact of TBC, we compare the TBC-C 282 
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results to those from both the CNTRL-C and the REPLAY-C runs.  As described in Section 2, 283 

the replay approach allows us to force any model to remain close to the reanalysis during the 284 

course of an integration, providing as a byproduct the information needed to compute the TBC 285 

terms.  If the model used in the replay is identical to that used to produce the original reanalysis, 286 

then one simply reproduces that reanalysis exactly.  If, on the other hand, the modeling system 287 

differs from that of the reanalysis (as it does here, for three reasons: we use an updated AGCM 288 

[see above], we couple this AGCM to an ocean model, and we run at a lower resolution), 289 

identical results are not guaranteed, especially for quantities (e.g., precipitation) that are not 290 

directly constrained by the analysis increments.  Given these considerations, the “replayed” 291 

results (REPLAY-C) can be considered an upper bound to what can be achieved from the TBC.  292 

Further details of the replay approach and some caveats concerning the stability of the procedure 293 

can be found in Takacs et al (2018). 294 

Figure 5 (left panels) shows the biases for the annual mean SST.  The top left panel shows 295 

that the replay approach (REPLAY-C) is able, for the most part, to reproduce the annual mean 296 

observed (Reynolds) SST.  In contrast, the free-running CNTRL-C (middle left panel) shows 297 

large positive SST biases over much of the tropics and SH.  These biases are essentially 298 

eliminated when TBC is applied (bottom left).  In fact the performance of the TBC-C simulation 299 

is quite similar to that of REPLAY-C over much of the world’s oceans.  TBC-C also reduces the 300 

cold biases in the North Pacific, though not to the extent seen in REPLAY-C.  While TBC-C 301 

provides little improvement in the tropical SST annual cycle (not shown), this cycle is already 302 

fairly realistic in CNTRL-C.  In fact, TBC-C seems to have introduced a slightly exaggerated 303 

annual cycle in the central Pacific. 304 
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The impact of TBC-C on tropical SST variability is shown in the right three panels of Figure 305 

5.  CNTRL-C clearly has excessive variability (tied to ENSO) compared with the observations.  306 

In contrast, the variability in the TBC-C run has more reasonable amplitude, though TBC does 307 

miss very strong events of the type that occurred in nature during this time period (e.g., 1982/83, 308 

1997/98, 2015/16)4.  As a result, the overall SST variability in TBC-C is somewhat weaker than 309 

the observed variability.  310 

Turning next to the results for the zonal mean atmosphere, TBC-C produces substantial 311 

reductions in the biases of the zonal mean zonal wind almost everywhere (and especially in the 312 

subtropics) for both seasons (top panels of Figs. 6 and 7).  The improvement in the zonal mean 313 

specific humidity (bottom panels of Fig. 6 and 7) is also substantial, highlighted by the 314 

elimination of the wet biases in CNTRL-C in the tropics and SH during both seasons (it is 315 

noteworthy that this occurs despite not correcting the moisture).  We note that the TBC-C 316 

produces little improvement in the zonal mean vertical motion during DJF (not shown) in 317 

contrast to the improvement seen in the AGCM simulations.  However, there is a rather 318 

substantial improvement during JJA including a reduction in the anomalous upward motion in 319 

the upper troposphere just north of the equator.   320 

Figure 8 shows the biases in the DJF (left panels) and JJA (right panels) precipitation for 321 

REPLAY-C (top panels), CNTRL-C (middle panels), and TBC-C (bottom panels). We see that 322 

much of the excessive precipitation that occurs just north of the equator in the Pacific during 323 

both seasons in CNTRL-C is reduced in the REPLAY-C run, as is the excessive precipitation in 324 

the tropical Atlantic and the Indian Ocean.  The large dry bias over India and wet bias over 325 

                                                            
4 We note that there is no reason for the simulations to have ENSO events synchronized with those in nature, 
though the models are run with observed CO2 and other greenhouse gases, explaining the positive trend seen in 
the SST in both the observed and simulated SSTs. 
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Southeast Asia during JJA in CNTRL-C are also reduced in REPLAY-C.  REPLAY-C does 326 

introduce a substantial dry bias over South America during DJF that is not evident in CNTRL-C.  327 

REPLAY-C also does little to reduce the dry bias over the US Great Plains; in fact it appears to 328 

exacerbate it compared to the control.  Since winds and temperature in the replay are essentially 329 

the same as those in MERRA-2, the lack of improvement in the precipitation over the US Great 330 

Plains and the other regions mentioned above almost certainly reflects the fact that we do not 331 

replay the moisture in the AOGCM.   332 

The TBC-C run produces some of the same improvements indicated above for the REPLAY-333 

C run.  The TBC-C is, however, less effective in reducing the excessive Pacific precipitation that 334 

occurs north of the equator, especially during DJF; in fact, TBC-C appears to be slightly worse 335 

than CNTRL-C in the eastern tropical Pacific, with a dry bias just south of the equator and a 336 

somewhat larger wet bias south of that.  During JJA, TBC-C successfully reduces the dry bias 337 

over India, reduces the wet bias over Southeast Asia, and is somewhat more successful 338 

(compared with DJF) in reducing the excessive precipitation over the tropical Pacific.   339 

We note that while TBC-C does produce overall more realistic atmospheric (e.g., OLR) 340 

variability in the tropics, primarily by reducing the excessive variance found in the CNTRL-C 341 

run (not shown), it does little to improve the MJO, though the CNTRL-C model already 342 

produces a fairly realistic but weaker-than-observed MJO (D. Achuthavarier, personal 343 

communication). 344 

We next focus on DJF, with an eye towards assessing how TBC-C affects ENSO-related 345 

teleconnections over North America during that season.  Since ENSO has large impacts on the 346 

North Pacific/North American jet and stationary waves, improvements in the climatologies of 347 

those aspects of the flow should have positive impacts on ENSO-related teleconnections.  Figure 348 
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9 (left panels) shows that TBC-C corrects the excessive subtropical westerly winds that extend 349 

across the North Pacific, the southern United States, and the North Atlantic.  It also eliminates 350 

the easterly bias in the eastern tropical Pacific.  It does little to correct the relatively small biases 351 

seen for CNTRL-C in the SH.  The TBC-C run also substantially improves the boreal winter 352 

stationary waves (right 3 panels of Fig. 9), particularly the position, structure and amplitude of 353 

both the ridge over the west coast of North America and the upstream trough. 354 

Turning next to the DJF transients (Fig. 10), we see that CNTRL-C has anomalously large 355 

transient wave activity (as reflected in the 250mb kinetic energy, left panel) centered at about 356 

30°N and generally over the continents.  This bias, which is presumably linked to the excessive 357 

subtropical westerlies noted earlier, is corrected in the TBC-C run.  In fact, TBC features 358 

transients that, compared to MERRA-2, are slightly too weak in the NH and, while somewhat 359 

improved, remain too weak in the SH.  TBC-C shows large improvements in the NH 200mb 360 

zonal momentum flux (middle panels) and also shows improvements in the 850mb transient 361 

moisture transport (right panels), particularly just south of the storm track regions.  362 

On interannual time scales, TBC-C primarily acts to reduce some of the excessive DJF 363 

stationary wave variance that occurs in CNTRL-C over the northeast Pacific, northern Eurasia 364 

and eastern North America (left 3 panels of Fig. 11).  While these impacts are positive overall, 365 

the reduction over the eastern North Pacific results in a variability that is now somewhat too 366 

weak.  The reductions are likely due to TBC-C-induced changes in the (now reduced) variability 367 

of the tropical Pacific SST linked to ENSO, which is known to contribute to the height 368 

variability over the North Pacific/North American region (e.g., Diaz et al. 2001).  The 369 

interannual link between the tropical Pacific SST and the 250mb eddy height field for DJF is 370 

quantified in Figure 11 (right panels) in terms of the correlation between eddy height and the 371 
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Nino3.4 index. TBC-C shows a weakening of certain biases seen in CNTRL-C, particularly the 372 

unrealistically strong negative correlations over much of the United States and southern Canada 373 

and the strong positive correlations to the north.  The overall spatial pattern of the correlations 374 

over the North Pacific/North American region is also improved.   375 

 376 

3c.  Forecast Skill 377 

In this section we assess the degree to which TBC increases forecast skill over North 378 

America in both the uncoupled (Section 3ci) and coupled model (section 3cii).  In the uncoupled 379 

case, we focus on boreal summer and subseasonal time scales, for which coupling to the ocean is 380 

likely of secondary importance.  In the coupled case, we focus on boreal winter and seasonal 381 

time scales, for which ENSO is known to have an important impact on forecast skill. 382 

i.  Boreal Summer and the uncoupled model 383 

Our focus here is on the extent to which the improvements in the subtropical/middle latitude 384 

jets and transients in the TBC-A model described in Section 3a lead to improvements in 385 

subseasonal boreal summer forecast skill over North America.  The skill assessment is based on 386 

a series of hindcasts initialized in late spring and running through August produced with both the 387 

CNTRL-A and TBC-A models (see section 2c).  Note that in the following we use the 388 

terminology hindcasts and forecasts interchangeably, keeping in mind that these simulations are 389 

not true forecasts; in these atmosphere-only runs, observed SSTs are prescribed throughout the 390 

forecast period. 391 

The connection between forecast skill and the quality of a model’s climate (including 392 

variability) is not straightforward, though it seems plausible that a model with a better long-term 393 
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climate should have better forecast skill.  Even if that is the case, correcting climate drift (which 394 

is a function of forecast lead time, see Section 2a) can presumably only lead to improved forecast 395 

skill if a substantial amount of the bias (and its correction) occurs before all predictability is lost.  396 

Therefore, these two time scales (associated with drift development and predictability) serve to 397 

define a window of forecast leads during which TBC can be expected to have an impact on skill.  398 

For example, if it turns out that it takes 3 months for the drift in the CNTRL to fully develop into 399 

the long-term climate bias, and if the underlying predictability limit is 20 days, it is unlikely that 400 

any small correction (made by TBC) to the still small bias in the CNTRL during the first 20 days 401 

would have much impact on forecast skill.  In order to help address this issue we decompose the 402 

total mean square error (MSE) into the following terms:  403 

 404 

〈(𝐹𝐹 − 𝑂𝑂)2〉��������������   =    ��〈𝐹𝐹〉 − 〈𝐹𝐹〉����� − (𝑂𝑂 − 𝑂𝑂�)�
2��������������������������������   +    〈(𝐹𝐹 − 〈𝐹𝐹〉)2〉 �����������������   +     �〈𝐹𝐹〉���� − 𝑂𝑂��

2
,  (1)  405 

 406 

where the angle brackets denote an ensemble mean and the over-bar a time mean; also F denotes 407 

a forecast and O denotes the observations (MERRA-2).  The first term on the right hand side 408 

(RHS) is the MSE after first removing the respective time means.  We will refer to this term as 409 

the unbiased MSE.   The second term on the RHS is the MSE of a perfect model (the ensemble 410 

mean predicting one ensemble member), and the third term is the MSE associated with the 411 

climate drift. This latter term quantifies the evolution of the bias or drift as discussed earlier, 412 

saturating at long leads (when the forecast has lost all memory of the initial conditions) to the 413 

square of the climatological bias. 414 
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The top left panel in Fig. 12 shows the decomposition for the 250mb u-wind (in terms of 415 

RMSE, averaged over the NH) 5, and the middle left panel shows the decomposition for the 416 

250mb v-wind (averaged over the middle latitude North Pacific).  These two quantities should 417 

give us a sense for how the drift in the wave-guide evolves (u250mb) and the extent to which the 418 

Rossby waves themselves are predicted more accurately (v250mb).  Both the u-wind and the v-419 

wind total errors (blue curves) saturate by about 15 days (slightly longer for the u-wind) 420 

regardless of whether the model is corrected or not.  This reflects the underlying predictability 421 

limits of the model (red curves), which is about 20 days.  The unbiased RMSE (black curves) 422 

indicate no improvement in the v-wind TBC-A skill compared to CNTRL-A by this metric.  The 423 

bottom left panel of Fig. 12 shows that there is, however, apparently some very modest 424 

improvement in the correlation beginning somewhat before day 10, though this occurs only after 425 

the skill for both CNTRL-A and TBC-A is rather small (about 0.3).  To assess whether these 426 

averaged results represent significant improvements we show in the right panels of Fig. 12 an 427 

example of the spatial distribution of the correlations at a lead of 12 days.  The differences show 428 

generally positive values with statistically significant improvements along the storm track – the 429 

region we would expect to see improvements in light of the improved North Pacific jet.  We note 430 

that in comparison, the perfect model correlations are substantially larger than the actual 431 

correlations, (above 0.4 at 10 days), suggesting that further improvements in skill may be 432 

possible.   433 

The fact that the improvement in the v-wind is modest and doesn’t occur until after the first 434 

week in the forecasts likely reflects the fact that the bias in the u-wind (the wave guide) develops 435 

                                                            
5 The values are obtained by first computing the MSE at each gridpoint. These values are then averaged over the 
indicated regions, after which the square root is taken to obtain the RMSE. Correlations are computed similarly 
with the covariances computed at each grid point and then averaged over the indicated regions. 
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slowly over the course of about 2 months (green curves in top left panel of Figure 12). As a 436 

result, any impacts on T2m and precipitation forecast skill over North America from the 437 

improvements in the wind forecasts are likely confined to week two (after that the v-wind skill is 438 

likely too low (< 0.1) to have an impact. Ultimately the longest lead times at which we can 439 

expect some improvement are constrained by the v-wind limit of predictability, which is about 440 

20 days.  Having said that, we find essentially no improvement in North American precipitation 441 

forecasts with TBC at those leads (not shown).  On the other hand, we do find some 442 

improvement in T2m forecasts (Fig. 13), especially when we condition the forecasts on the 443 

amplitude of the leading Rossby wave impacting North American climate in summer (lower left 444 

panel of Fig 13; see also Schubert et al, 2011).  The results shown for day 10 (top right panel of 445 

Fig. 13) indicate that some of the largest improvements occur over Canada, consistent with 446 

where we expect the leading Rossby wave to have the greatest impact on T2m (lower right panel 447 

of Fig 13).  This increased skill in predicting T2m apparently reflects the fact that the leading 448 

RCEOF is forecast with greater skill in the TBC-A hindcasts after the first week (not shown). 449 

 450 

ii.  Boreal Winter and the Coupled Model 451 

Our focus here is on whether the TBC approach applied to the coupled model leads to 452 

improved boreal winter seasonal forecasts, especially over North America, where we expect that 453 

any improvements in SST variability, stationary waves, and ENSO-related teleconnections might 454 

translate into improved forecast skill.  The forecasts were initialized on 1 November of 1985-455 

2015 and consist of 10 ensemble members for both the CNTRL-C and TBC-C models (see 456 

Section 2c).   457 
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Figure 14 (top two panels) again provides an integrated overview of the coupled hindcast 458 

results decomposed into the various terms of (1), focusing in this case on the eddy 250mb height 459 

field.  Averaged over the NH (top panel), the total error appears to saturate after about two 460 

months (in January), with CNTRL-C showing larger total error than TBC-C.  The larger total 461 

variance of the CNTRL-C appears to reflect an intrinsic property of the models (evident in the 462 

perfect model results – the red curves), but it is also in part due to the development of a larger 463 

bias in the control (green curves) both early in the forecast (November/early December) and 464 

again starting in January.   The perfect model RMSE approaches the unbiased RMSE (black 465 

curves) by mid-December, indicating that most of the predictability (based on RMSE) is lost by 466 

that time. In early February there is some hint that the TBC-C predictions have somewhat 467 

smaller unbiased RMSE than the control (black curves).  For comparison, the results for the SH 468 

indicate little difference between the TBC-C and CNTRL-C hindcasts in either the drift or 469 

RMSE, consistent with the less substantial TBC-derived improvement to the SH climate. 470 

The bottom panel of Figure 14 shows the correlations with MERRA-2 for the PNA region 471 

(150°E-300°E, 20°N-80°N).  The perfect model and TBC-C correlations with MERRA-2 both 472 

drop to 0.3 by the beginning of December, the time at which the NH RMSE approaches 473 

saturation.  The control correlations with MERRA-2 drop even faster, reaching 0.2 by this time.  474 

There is however, some indication of a return of skill during January and February in the perfect 475 

model results, presumably linked to the stronger impact of ENSO over some parts of North 476 

America during these months (e.g., Jong et al. 2016).  The return of skill is also evident in the 477 

TBC-C hindcasts, though less so in the control hindcasts.  The apparent increase in skill during 478 

February is consistent with Chen et al. (2017), who found that, for ENSO-related T2m and 479 
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precipitation predictions over North America, the skill for all of the NMME models tended to be 480 

higher in February than in other winter months. 481 

The evolution of the climate drift in the 250mb eddy height fields (and the correlations) 482 

shown in Figure 14 suggests that any improvement in wintertime seasonal forecast skill from 483 

TBC-C over North America is likely to occur early on (during the first month of the forecast) 484 

and late in the forecast at lead times beyond roughly 2 months.  485 

The left set of 9 plots in Figure 15 show the hindcast skill of the 250mb eddy height over the 486 

Pacific/North American region averaged over the early (16Nov-15Dec), middle (16Dec-15Jan), 487 

and later (21Jan-01Mar) segments of the predictions.  The correlations (with MERRA-2) are 488 

shown for the CNTRL-C (middle row) and TBC-C (top row) hindcasts; differences are shown in 489 

the bottom row.  The correlations in both sets of hindcasts are overall, as expected, high over the 490 

tropics/subtropics, with some relatively high correlations (>0.6) also occurring over the North 491 

Pacific, western North America and the southeast US.   Over North America, the difference maps 492 

show some improvement in skill for the TBC-C height hindcasts for the early segment and again 493 

some improvement for the late segment (though marginally significant), with no improvement 494 

for the middle segment – results that are consistent with the line plots of the correlations in Fig. 495 

14.  These apparent improvements in the skill of the eddy height predictions occur in the absence 496 

of any significant improvements in the tropical Pacific SST forecasts (not shown). 497 

The middle (right) set of 9 panels of Figure 15 show the correlations for T2m (precipitation) 498 

over North America.  As with the eddy heights, the largest improvements for T2m hindcasts 499 

occur early on and again late in the forecasts, with no skill, or even reduced skill, compared to 500 

CNTRL-C for the interval in between.  For precipitation, TBC shows overall little improvement 501 

in skill, with some scattered improvements along the west coast early in the forecast.  During the 502 
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middle period, TBC-C actually shows substantial areas of degraded skill relative to CNTRL-C 503 

especially over the southeastern US. 504 

 505 

4. Discussion and Conclusions 506 

This study examined the overall impact of correcting biases in short-term atmospheric 507 

tendencies in a general circulation model.  Results are presented for two different versions of the 508 

NASA/GMAO GEOS model (an AGCM forced with observed SST, and an updated AGCM 509 

coupled to an ocean model).  Our experiments show that state-independent TBC to the 510 

atmosphere can produce considerable improvements to the simulated mean climate as well as to 511 

its variability on subseasonal and, to some extent, seasonal and longer time scales.  The 512 

improvements are, however, not uniform and depend to some degree on the quantity, region, and 513 

season, as well as the model itself.   514 

In discussing the TBC impacts on the model’s climate, it is useful to consider them as being 515 

divided into those that are direct and those that are indirect, with the latter including any 516 

quantities (such as precipitation and, for the AOGCM, atmospheric moisture) that are not 517 

explicitly forced by the TBC, as well as the transients, since the TBC is a constant forcing term.  518 

It should be emphasized, however, that even for those quantities directly forced by the TBC (e.g., 519 

u, v, T), it is not a forgone conclusion that the tendency errors in these terms will be fully 520 

corrected by constant forcing terms.  There are several possible reasons for this including the 521 

possibility that the true errors cannot be represented by a simple constant forcing term and are in 522 

fact state dependent (e.g., Leith 1978, Danforth et al. 2007), as well as the possibility that, even if 523 

the errors can be represented in that way, the TBCs may be poor estimates of the true corrections 524 
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as a result of statistical sampling errors and/or as a result of deficiencies/biases in the reanalysis.  525 

Furthermore, it is not obvious that a model will respond to the increments in a physically realistic 526 

way.  It is quite possible that, for example, correcting the moisture and temperature profiles 527 

would lead to spurious feedbacks from the model’s convective scheme, which may have been 528 

tuned to produce realistic precipitation with somewhat different profiles.  In the following, we 529 

provide some examples from our results that serve to illustrate these issues. 530 

The improvements in the middle latitude transients in both the AGCM and AOGCM are a 531 

clear example of a positive indirect impact – an impact that is very likely strongly tied to the 532 

improvements in the jets.  The nature of the improvements in the jets (or lack of improvement in 533 

some cases) appears to vary with the seasons, the hemisphere, and the model in question. TBC-A 534 

corrects the poleward shift of both summer jets, consistent with increased drag on the jets (e.g., 535 

Robinson 1997).  Since the summer jets are largely eddy driven (e.g., Lachmy and Harnik, 536 

2016), it is likely that the improvement in the jets also drives (and interacts with) the improved 537 

transient eddy momentum transport. Additional work (not shown) indicates that jet biases 538 

throughout the Northern Hemisphere are particularly sensitive to temperature errors over and 539 

near Tibet, suggesting that corrections in this area may be especially important in correcting the 540 

NH summer jets (an example of a positive indirect impact).  The TBC-A does less well in 541 

correcting the high latitude zonal winds in the SH upper troposphere/lower stratosphere during 542 

winter, suggesting that uncorrected errors in stratospheric dynamics and reanalysis quality (poor 543 

estimates of the increments) may be issues. 544 

The primary zonal wind errors in the AOGCM appear to be fundamentally different in 545 

character compared with the AGCM errors, consisting of excessive subtropical westerlies in both 546 

hemispheres (though more so in the NH) and during both seasons.  These likely reflect 547 
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anomalous forcing/heating by the excessively strong and split ITCZ in the coupled model.  The 548 

fact that the TBC-C corrects these zonal wind errors (and associated transients), yet makes only 549 

modest corrections to the tropical precipitation (especially during DJF), indicates that the 550 

corrections to the zonal wind errors are forced more directly by the increments.  In fact, it 551 

appears that it is the tropical mid-tropospheric temperature increments that appear to play a key 552 

role during DJF, presumably in part by reducing the strong tropical warm bias in that run.  At 553 

longer time scales, the impacts on the variability of the SST (and the associated changes in 554 

tropospheric height variability) in the TBC-C run is likely tied to improvements in the equatorial 555 

surface stress (not shown), though exactly how that acts to reduce the ENSO variability is 556 

unclear.  We note that the dramatic reduction of the SST bias in TBC-C appears to be the result 557 

of a combination of direct impacts from the near surface temperature increments (especially over 558 

the Gulf Stream, the SH high latitudes, and equatorial and coastal upwelling regions) and indirect 559 

impacts due to the reductions in surface stress biases.6 560 

Perhaps the strongest test of the TBC for improving the climate characteristics of the model 561 

is the extent to which the components of the hydrological cycle are improved.  We have seen 562 

clear improvements in the precipitation in the AGCM results, both in the tropics and in the US 563 

Great Plains.  Also, improved (increased) cloudiness in TBC-A (not shown) appears to 564 

contribute to the dramatic reduction in the warm bias over the NH summer continents.  Here we 565 

have a clear case where the TBC impacts are indirect; the model’s parameterizations of moisture 566 

processes working with the states directly affected by TBC appear to produce more realistic 567 

output – a result likely helped by the fact that the AGCM is the same as that used to generate 568 

                                                            
6 The bias in cloud fraction has actually increased in TBC-C (less cloudiness), indicating this did not contribute to 
the reduction in the SST warm bias. 
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MERRA-2 (though run at lower resolution).  In contrast, TBC-C produced considerably less 569 

improvement to the precipitation, including little improvement to the ITCZ (especially during 570 

DJF), but also no improvement to the summer dry bias over the US Great Plains.  Here it is 571 

instructive to compare the TBC-C and REPLAY-C runs.  To a large extent the lack of 572 

improvement (or even degradation as seen over South America in DJF) in the TBC-C run is 573 

already reflected in REPLAY-C run.  As such, this does not appear to reflect a limitation of the 574 

TBC approach, but instead an inconsistent or lack of forcing by the increments (recall that we 575 

don’t correct the moisture in the AOGCM). 576 

A key goal of this study was to determine whether the improved climate characteristics of the 577 

model induced by TBC translate into improved forecast skill (perhaps the ultimate indirect 578 

impact).  We found, however, that TBC-related skill improvements were rather modest at best at 579 

both subseasonal and seasonal time scales.  For the uncoupled case, where our focus was on 580 

boreal summer and subseasonal forecasts, the improvements in the NPSJ and the transient eddy 581 

activity led to only modest improvements in the T2m forecasts over North America (and only 582 

when conditioned on the leading Rossby wave impacting North America), and to no 583 

improvement in the precipitation forecasts. In the coupled case, our focus was on improving 584 

boreal winter forecast skill over North America at seasonal time scales.  Here too, despite 585 

various improvements to the stationary waves and related transients, and despite what appear to 586 

be more realistic ENSO variability and associated teleconnections, the impact of TBC on skill 587 

was not uniform with forecast lead and was again overall quite modest.   588 

We interpret these hindcast results in terms of predictability limits and the time it takes the 589 

relevant aspects of climate drift to become large enough to begin having an impact on skill (and 590 

thus the time it would take for TBC-based reductions of the drift to affect the skill).  In the 591 
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uncoupled case, focusing on boreal summer and North America, the climate drift in the North 592 

Pacific waveguide (believed to be a key controlling factor for Rossby waves entering North 593 

America) appears to develop too slowly in CNTRL-A (reaching only about ½ the long term 594 

value at 10 days lead) to allow its correction in TBC-A to produce more than a modest impact 595 

(via more skillful Rossby wave predictions) on week-two T2m forecasts (when skill is already 596 

rather low).  In the coupled case, focusing on boreal winter over North America, our assessment 597 

of the drift in the stationary waves suggests two adjustment time scales: an early drift that 598 

develops during the first month (presumably dynamically driven) and a more slowly developing 599 

drift that occurs during months 3 and 4 (presumably linked to deficiencies in coupled processes).   600 

In contrast, the corrected model experienced an early drift that took longer to develop than in the 601 

control, and never experienced the slow drift of the control model during months 3 and 4.  There 602 

thus appear to be two windows (one early and one late) during which TBC could induce 603 

improved forecasts.  This indeed appears to be borne out in the forecasts of both eddy heights 604 

over the Pacific/North American region and T2m over North America.  605 

Additional improvements in forecast skill might be possible with a state-dependent 606 

correction if the associated statistical sampling issues can be overcome (e.g., Leith 1978; 607 

Danforth et al. 2007).  In fact, it is possible that the modest impacts on skill (or even reductions 608 

in skill) found here reflect the presence of state-dependent errors that may or may not be in phase 609 

with the state-independent errors.  Our TBC approach nevertheless provides a reasonable 610 

baseline of what can currently be achieved with state-independent corrections to a global climate 611 

model employing a state-of-the-art atmospheric reanalysis.  The approach is relatively easy-to-612 

implement and, since it is based on very short-term forecasts when the error growth is still linear, 613 
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appears to produce corrections that (to a large extent) reflect physically realistic adjustments to 614 

the model equations.   615 

It is however likely that substantial further improvements will require model system 616 

improvements not directly addressed by TBC, improvements involving, for example, 617 

land/atmosphere interaction, cloud/radiative processes, and initialization procedures for (and 618 

quality of) atmospheric, land and ocean states.  While potential improvements in forecast skill 619 

may not be the main impetus for carrying out the TBC, we believe that TBC-induced 620 

improvements in transients, stationary waves, and other climate characteristics can be a key 621 

motivating factor for employing the approach.  Such improvements can make the model better 622 

suited for addressing a host of climate problems, such as those that require addressing regional 623 

impacts of global climate variability and change. 624 

 625 
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Appendix A: Methodology 632 

As described in Takacs et al (2018), the replay approach takes advantage of the incremental 633 

analysis update (IAU) procedure employed in the GEOS data assimilation system to force a 634 

model to track a pre-existing analysis.  The basic approach is shown schematically in Figure A1.  635 

The blue arrows indicate that the replay is essentially a continuous model simulation that is 636 

driven by a sequence of IAU forcing terms (updated every 6 hours) computed as the difference 637 

between a short forecast and the corresponding analysis.  The general form of the equations 638 

governing a replay can be written (for a quantity q) as: 639 

    
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑓𝑓(𝑞𝑞) +  ∆𝑞𝑞     (A1), 640 

where ∆𝑞𝑞 = (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑓𝑓)/6ℎ𝑓𝑓𝑎𝑎, and f(q) is the tendency associated with all the 641 

dynamics and physics terms of the model – in other words, it corresponds to the uncorrected 642 

model.  For the coupled model replay performed as part of this study, the increments are 643 

computed for the winds, temperature and surface pressure.   644 

The governing equations for the TBC approach have the same form as (1), except that the 645 

forcing term associated with the increments is no longer an instantaneous value (specific to a 646 

particular 6 hour period), but is instead a long term mean.  In particular, 647 

    
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑓𝑓(𝑞𝑞) +  ∆𝑞𝑞����     (A2), 648 

where the ∆𝑞𝑞���� are 6-hourly values that are averaged over the years 1980-2015 separately for each 649 

6-hr time period of each day-of-year7, and as such retain the diurnal and annual cycles.  The 650 

                                                            
7 In the case of the coupled model we further apply a 7-day running mean to the increments, 
though this is done in a way that retains the mean diurnal cycle. 
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above indicates that the model with the TBC (A2) can be considered as an approximation of 651 

(A1), in which the correction term is simplified to retain only the first moment statistics (the 652 

mean) of the increments: the assumption being that such simple corrections nevertheless 653 

represent physically realistic systematic adjustments to the model’s physics and/or dynamics 654 

tendency terms. 655 

As noted in the text, in the case of the AGCM, instead of replaying to MERRA-2 to obtain the 656 

∆𝑞𝑞 terms, we take advantage of the fact that the AGCM used here is the same as that used to 657 

generate MERRA-2 (though run at lower resolution) and so we take the increments directly from 658 

the MERRA-2 archive (appropriately averaged to the reduced resolution of the AGCM).  This 659 

was not the case for the AOGCM.  We could not simply couple the corrected AGCM to the 660 

ocean, but found it necessary to replay to the MERRA-2 atmosphere running in coupled mode to 661 

obtain the increments appropriate for correcting the biases that develop in the coupled model. 662 

Finally, in assessing the quality of the climates of the TBC simulations, the above makes it clear 663 

that the most fair comparison to make is with the climate of the corresponding replay run, as we 664 

do for the coupled model.  In the case of the AGCM (which is a lower resolution version of the 665 

same model used to produce MERRA-2) such a comparison is, however, essentially equivalent 666 

to comparing with MERRA-2, since (A1) would to a large extent reproduce the reanalysis, 667 

though of course at lower resolution. 668 

  669 
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Table 1. A summary of the AGCM and AOGCM experiments. 809 

Exp. # Exp. Name Description Model SST 
1 CNTRL-A 

simulation 
36- year control simulation for 

the period 1980-2015 
AGCM 

without TBC observed 

2 TBC-A simulation 36- year TBC simulation for 
the period 1980-2015 

AGCM with 
TBC observed 

3 

CNTRL-A hindcasts 

hindcasts initiated every day 
from May 1-June 30 and run 
through the end of August for 

1988, 1998 and 2000-2015 

AGCM 
without TBC observed 

4 

TBC-A hindcasts 

hindcasts initiated every day 
from May 1-June 30 and run 
through the end of August for 

1988, 1998 and 2000-2015 

AGCM with 
TBC observed 

5 CNTRL-C 
simulation 

36- year control simulation for 
the period 1981-2016 

AOGCM 
without TBC predicted 

6 REPLAY-C 
simulation 

36- year replay to MERRA-2 
for the period 1981-2016 

AOGCM 
replayed to 
MERRA-2 

predicted 

7 TBC-C simulation 36- year simulation with TBC 
for the period 1981-2016 

AOGCM with 
TBC predicted 

8 

CNTRL-C hindcasts 

10-member ensemble hindcasts 
initialized every November 1 
and run through April 1 of the 
following year for 1985-2015 

AOGCM 
without TBC predicted 

9 

TBC-C hindcasts 

10-member ensemble hindcasts 
initialized every November 1 
and run through April 1 of the 
following year for 1985-2015 

AOGCM with 
TBC predicted 

 810 
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 812 

 813 

Figure 1:  The zonal mean u-wind (top panels, m/s) and specific humidity (bottom panels, g/kg).  814 

Left panels: the shading indicates CNTRL-A – MERRA-2 with the climatological MERRA-2 815 

wind fields contoured every 5 m/s in the top panels, and the MERRA-2 climatological specific 816 

humidity contoured every 1 g/kg in the bottom panels. Middle panels are the same as the left 817 

panels, except for TBC-A - MERRA-2.  Right panels are the same as the left two panels, except 818 

for TBC-A – CNTRL-A.  All fields are averaged for DJF over the years 1980-2015. 819 

  820 
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 821 

Figure 2:  Same as Fig. 1, except for JJA. 822 

  823 
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 824 

Figure 3: The 250mb zonal wind (m/s, left column of panels), two-meter temperature (°K, 825 

middle column of panels), and precipitation (mm/day, right column of panels). The shading 826 

indicates the CNTRL-A – MERRA-2 in the top row of panels, TBC-A - MERRA-2 in the middle 827 

row of panels, and TBC-A – CNTRL-A in the bottom row of panels.  In the left panels the 828 

contours indicate climatological mean 250mb zonal winds from MERRA-2 (contoured every 5 829 

m/s).  All fields are averaged for JJA over the years 1980-2015. The MERRA-2 precipitation is 830 

an observationally-corrected field (Gelaro et al. 2017). 831 
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 833 

Figure 4: The vertically-integrated momentum flux by the transients ((m/s)2, left panels), the 834 

250mb square of the transient component of the meridional wind ((m/s)2, middle panels),and the 835 

850mb moisture flux by the transients (g/kg m/s, right panels). The shading indicates CNTRL-A 836 

– MERRA-2 in the top panels, and TBC-A – MERRA-2  in the bottom panels.  In the left panels 837 

the contours are the 250mb climatological zonal wind from MERRA-2 (every 5 m/s).  In the 838 

middle panels the contours indicate the long-term mean of the 250mb square of the transient 839 

component of the meridional wind from MERRA-2 (every 50 (m/s)2).  In the right panel the 840 

contours indicate the long-term mean of the 850mb moisture flux by the transients from 841 

MERRA-2 (every 1 g/kg m/s).  842 



 44 

 843 

Figure 5: Left panels: the long term mean SST bias with respect to observations (ERSST.v4: 844 

Huang et al. 2015). Results are shown for REPLAY-C (top panel), CNTRL-C (middle panels), 845 

and TBC-C (bottom panel). Right panels:  evolution of the monthly mean equatorial SST 846 

anomalies (2°S-2°N) from 1980-2016, for CNTRL-C, TBC-C, and the observations. Units: °K.  847 

Units: °K.   All fields are averaged over the years 1981-2016. 848 
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 850 

Figure 6:  The zonal mean u-wind (top panels, m/s) and specific humidity (bottom panels, g/kg).  851 

Left panels: the shading indicates CNTRL-C – MERRA-2 with the climatological MERRA-2 852 

wind fields contoured every 5 m/s in the top panels, and the MERRA-2 climatological specific 853 

humidity contoured every 1 g/kg in the bottom panels. Middle panels are the same as the left two 854 

panels, except for TBC-C - MERRA-2.  Right panels the same as the left two panels, except for 855 

TBC-C – CNTRL-C.  All fields are averaged for DJF over the years 1980-2015. 856 
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 858 

Figure 7:  Same as Fig. 6, except for JJA. 859 
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 861 

Figure 8:  The precipitation biases (mm/day) with respect to MERRA-2 observationally 862 

corrected precipitation for DJF (left panels) and JJA (right panels). Results are shown for the 863 

replay run (top panel), the control (middle panels), and the TBC run (bottom panel).  All fields 864 

are averaged over the years 1981-2016. 865 
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 867 

Figure 9: Left panels: the DJF zonal wind biases with respect to MERRA-2 for CNTRL-C (top) 868 

and TBC-C (middle).  The bottom panels show TBC-C – CNTRL-C. Units are m/s.  Right 869 

panels:  the DJF stationary waves (250mb height with the zonal mean removed) for CNTRL-C 870 

(top), TBC-C (middle), and MERRA-2 (bottom). Units are meters. 871 
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 873 

Figure 10: Left panels: CNTRL-C – MERRA-2  (top) and TBC-C – MERRA-2 (bottom) of the 874 

250mb kinetic energy associated with the transient component of the winds (m/s)2.  Middle 875 

panels: same as left panels, but for the 250mb zonal momentum flux by the transients (m/s)2.  876 

Right panels: same as left panels but for the 850mb moisture flux by the transients (g/kg m/s).  877 

All fields are averaged for DJF over the years 1981-2016. 878 
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 880 

Figure 11:  Left panels:  the standard deviation  (1981-2016) of the DJF mean stationary waves 881 

(250mb height with the zonal mean removed) for CNTRL-C (top), TBC-C (middle), and 882 

MERRA-2 (bottom). Units: m. Right panels: the correlations between the DJF mean Nino3.4 883 

index and the 250mb eddy height field for the CNTRL-C (top), TBC-C (middle) and MERRA-2 884 

(bottom). 885 

886 
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  887 

Figure 12: left panels: The RMSE decomposed according to (1) in the text for the daily 250mb u-888 

wind for the NH (upper panel), and for the daily 250mb v-wind over the region (120E-120W, 889 

30N-60N)  in the middle panel. In the bottom panel, the black curves show the v250mb 890 

correlations with MERRA-2 (while the red curves are the correlations for a perfect model), for 891 

the same region (120E-120W, 30N-60N).  The dashed lines are for the control hindcasts, and the 892 

solid lines are for the TBC hindcasts.  Units for RMSE are m/s.  Abscissa indicates days.  Right 893 

panels: The v250mb correlations at 12 day lead for TBC-A, CNTRL-A and the differences. 894 

Shading of the differences indicates a significance level of 0.10 based on a Fisher’s z-transform.  895 

Results are based on predictions initialized every day from May 1 to June 30 in 1988, 1998, 896 

2000-2015. Five-member ensemble means are computed from lags -2,-1,0, 1, 2 days.  See text 897 

for details.  898 
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899 
Figure 13: Top left panel: Differences in skill (correlation between the hindcasts and MERRA-2) 900 

at day 10 day  between TBC-A and CNTRL-A  based on all the hindcasts. Shading indicates a 901 

significance level of 0.10 based on a Fisher’s z-transform.  Top right panel: same as top left, 902 

except for only those hindcasts when the leading Rossby wave has an amplitude greater than 1 903 

standard deviation in the initial conditions.  Bottom left panel: The leading rotated complex 904 

empirical orthogonal function (RCEOF) of the NH (10N-80N) daily (filtered with a 11-day 905 

running mean) 250mb meridional wind anomalies during MJJA computed from MERRA-2 for 906 

the period 1980-2017 (see Chang et al. 2001 for details of the RCEOF calculation).  The 907 

contours (15, 20 and 25 m/s) are the long-term mean MJJA 250mb zonal wind based on 908 

MERRA-2.  The phase of the RCEOF plotted here is chosen to highlight that phase during which 909 

the wave has the greatest impact on North America (bottom right).  The values of the RCEOF 910 

(m/s) and T2m (°C) correspond to composites based on those times when the associated rotated 911 

complex principle component (RCPC) exceeded 1 standard deviation.  912 
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 913 

Figure 14:  The RMSE decomposed according to (1) in the text for the 250mb eddy height for 914 

the NH (top) and SH (middle).  The dashed lines are for the CNTRl-C hindcasts, and the solid 915 

lines are for the TBC-C hindcasts.  Units are meters.  Bottom panels show the PNA region 916 

250mb eddy height correlations with MERRA-2 (black lines) and for a perfect model (red lines).  917 

The yellow lines, which are the bottom 5% of the correlations with MERRA-2 obtained from all 918 

combinations of removing 5 years from the 31 years of data (total of 169911), give an indication 919 

of the robustness of the 250mb eddy height correlations with MERRA-2. The daily fields have a 920 

31-day running mean applied to remove weather and other sub-monthly noise.  Results are based 921 

on 10 ensemble members initialized November 1 of 1985-2015.  922 
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 923 

Figure 15:  Maps of the correlations (only where values are greater than 0) between the hindcast 924 

ensemble mean and observations for 250mb eddy height (left 9 panels), T2m over North 925 

America  (middle 9 panels), and precipitation over North America (right 9 panels). Results are 926 

based on 10 ensemble members initialized November 1 of the years 1985-2015.  Top panels are 927 

for the TBC-C hindcasts, and middle panels are for the CNTRL-C hindcasts.  The bottom panels 928 

are the differences in the correlations between the TBC-C and CNTRL-C hindcasts.  Shading 929 

indicates a significance level of 0.10 based on a Fisher’s z-transform.  Results are shown for 930 

averages over the following time periods: 16Nov-15Dec, 16Dec-15Jan, and 21Jan – 01Mar. 931 
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 933 

Figure A1:  Schematic of the replay procedure used by the GMAO. 934 
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