Characterization of Radiotolerance Mechanisms in the Tardigrade Species Hypsibius dujardini

SUMMARY

Tardigrades are microscopic invertebrates that are uniquely radiotolerant among animals, and while the mechanisms of radiotolerance in some species is becoming understood, such mechanisms in *Hypsibius dujardini*, the most radiotolerant fully aquatic tardigrade, are unknown. We asked 1) Is *H. dujardini* resistant to direct or indirect DNA damage due to ionizing radiation? and 2) Is this resistance through initial DNA protection or efficient repair once damage has occurred? We confirmed *H. dujardini's* extraordinary radiotolerance but encountered challenges in performing molecular techniques, thus identifying a need for standardization of tardigrade experimental protocols.

INTRODUCTION

• Protection from radiation is paramount during Internation deepAPOLLO 14 (9 DAYS)1,140SHUTTLE 41-C (18 DAYS)5,600SKYLAB 4 (84 DAYS)17,800MARS MISSION TOTAL130,000 space exploration

8 to 50 VG. YEARLY RADON DOSE 200 .S. AVG. YEARLY DOSE 350 PET SCAN YEAR IN KERALA, INDIA 1.300 5,000 Source: Brookhaven National Laboratory, U.S. Department of Energy

2½ Years, 2,600 X-Rays
Americans on average absorb the radiation equivalent of at least 7 chest X-rays each year.
Space missions, outside of Earth's protective atmosphere and magnetic field, expose astronauts to many times more.

TRIP TO AND FROM MARS (1 YEAR): 80,000-

- In transit to and from Mars, astronauts are projected to incur a dose of 13x OSHA's prospective annual limit¹
- Tardigrades experts in extremotolerance
 - Many species; 100-500 μm in length
 - Have survived vacuum of space²
 - Unique among eukaryotes in their radiotolerance while in a metabolically active state³
- Hypsibius dujardini
- Most radiotolerant fully aquatic tardigrade yet tested³
- LD_{50/48hr} of ~4200 Gy with gamma-rays⁴
- Humans have LD_{50/60d} of ~4 Gy ionizing⁵ radiation
- How do they do it?

-ON MARS (1.5 YEARS): -

Hypsibius dujardini

- Radiation damage occurs through two main pathways⁵: • "Indirect" generation of reactive oxygen species (ROS) in the aqueous environment \rightarrow most common, primarily causes single stranded breaks
 - and modified nucleotides⁶
 - "**Direct**" contact with a DNA molecule
 - \rightarrow less common, primary causes single stranded breaks and double stranded breaks⁷

Double stranded breaks (DSBs)

Single stranded breaks (SSBs)

Damaged nucleotides

- The tardigrade species *R. varieornatus* recently identified to express a unique protein termed damage suppressor (Dsup)
 - When transfected into human cells, conferred 40% increase in radiotolerance⁸
 - Recently determined that Dsup acts as a "shield" from reactive oxygen
- species around DNA⁹
 Hypsibius dujardini, however, doesn't express Dsup or a homologous protein¹⁰

Ben Cooper^{1,2}, Sigrid Reinsch³

¹Space Life Sciences Training Program, KBRWyle, NASA Ames Research Center, Moffett Field, CA ²Department of Biology, Tufts University, Medford, MA ³National Aeronautics and Space Administration, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA

HYPOTHESIS

Like *R. varieornatus, H. dujardini* is resistant to DNA damage from ionizing radiation through initial protection of damage, either direct, indirect, or both.

Potential interpretation

Damage levels immediately after irradiation	Damage levels after time for DNA repair	Radiotolerance mechanism
High direct	Low direct	Direct damage repair
High indirect	Low indirect	Indirect damage repair
Low direct	Low direct	Direct damage protection
Low indirect	Low indirect	Indirect damage protection

PRELIMINARY RESULTS

Dot blotting for 8-OHdG

Figure 5. Dot blots for 8-OHdG H. dujardini DNA was dot blotted for 8-OHdG. No notable chemiluminescence Potential issues with nitrocellulose membrane and/or antibody used

DISCUSSION

• Corroborated extraordinary *H. dujardini* radiotolerance • Tardigrades present challenges to techniques like immunofluorescence or cell/nucleus extraction due to their tough exterior cuticle

 Protocols using cuticle and ECM enzymatic degradation should be explored

• Methods like nucleic acid or protein isolation show promise and appear much easier

• We were time restricted, but only minor troubleshooting is needed

• It is clear that tardigrades hold biological innovations that can aid in human space exploration, but protocol standardization is necessary for rapid expansion of this model organism

ACKNOWLEDGEMENTS

This research was supported by the Space Life Sciences Training Program (SLSTP) at NASA Ames Research Center and by Wyle Laboratories.

Thank you to my mentor Sigrid Reinsch for teaching me all I know about tardigrades, SLSTP management including Jon Rask and Desi Bridges for general support and care of the program, David Smith and Samantha Waters for help using their X-rad, Jon Galazka and John Hogan for sharing resources, and the GeneLab sample processing team for sharing their lab space with me.

Last but not least, thank you to all of the SLSTP interns and staffer Jordan McKaig and Liz Talburt for creating a great experience!

REFERENCES

1. Zeitlin, C., Hassler, D. M., Cucinotta, F. A., Ehresmann, B., Wimmer-Schweingruber, R. F., Brinza, D. E., ... Reitz, G. (2013). Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory. Science, 340(6136), 1080–1084.

2. Jönsson, K. I., Rabbow, E., Schill, R. O., Harms-Ringdahl, M., & Rettberg, P. (2008). Tardigrades survive exposure to space in low Earth orbit. *Current Biology*, 18(17), R729–R731.

3. Hashimoto, T., & Kunieda, T. (2017). DNA Protection Protein, a Novel Mechanism of Radiation Tolerance: Lessons from Tardigrades. *Life*, 7(2).

4. Beltrán-Pardo, E., Jönsson, K. I., Harms-Ringdahl, M., Haghdoost, S., & Wojcik, A. (2015). Tolerance to Gamma Radiation in the Tardigrade Hypsibius dujardini from Embryo to Adult Correlate Inversely with Cellular Proliferation. *PLoS ONE*, *10*(7).

5. Hall, E.J.; Giaccia, A.J. *Radiobiology for the Radiologist*, 7th ed.; Lippincott Williams & Wilins: Philadelpha, PA, USA, 2012; pp. 120–121.6. Biaglow, J. E. (1981). The effects of ionizing radiation on mammalian cells. Journal of Chemical Education, 58(2), 144.

7. Povirk, L. F. (2006). Biochemical mechanisms of chromosomal translocations resulting from DNA doublestrand breaks. DNA Repair, 5(9–10), 1199–1212.

8. Hashimoto, T., Horikawa, D. D., Saito, Y., Kuwahara, H., Kozuka-Hata, H., Shin-I, T., ... Kunieda, T. (2016). Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigradeunique protein. Nature Communications, 7, 12808

9. Chavez, C., Cruz-Becerra, G., Fei, J., Kassavetis, G. A., & Kadonaga, J. T. (2019). The tardigrade damage suppressor protein binds to nucleosomes and protects DNA from hydroxyl radicals. ELife, 8, e47682. 10. Yoshida, Y., Koutsovoulos, G., Laetsch, D. R., Stevens, L., Kumar, S., Horikawa, D. D., ... Arakawa, K. (2017) Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. *PLOS Biology*, *15*(7), e2002266

11. Kinner, A., Wu, W., Staudt, C., & Iliakis, G. (2008). γ-H2AX in recognition and signaling of DNA doublestrand breaks in the context of chromatin. Nucleic Acids Research, 36(17), 5678–5694. 12. Valavanidis, A., Vlachogianni, T., & Fiotakis, C. (2009). 8-hydroxy-2' -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. *Journal of Environmental Science and Health. Part* C, Environmental Carcinogenesis & Ecotoxicology Reviews, 27(2), 120–139