

Application of Synthetic TEMPO Products at NASA SPoRT to Accelerate Use in Air Quality and Public Health Decision Support

aaron.naeger@nasa.gov **GH21B-1197**

Aaron R. Naeger¹, Mike Newchurch², Emily Berndt³, Christopher Hain³, Susan Alexander⁴, Erika Duran¹, Kevin Fuell¹, Christopher Chan Miller⁵ ¹University of Alabama in Huntsville, Earth System Science Center, Huntsville, AL, ²University of Alabama in Huntsville, AL, ³NASA Marshall Space Flight Center, Huntsville, AL, ²University of Alabama in Huntsville, AL, ³NASA Marshall Space Flight Center, AL,⁴ University of Alabama in Huntsville, College of Nursing, Huntsville, AL, ⁵Harvard-Smithsonian Center for Astrophysics, Cambridge, MA

and will be hosted on a commercial allowing hourly daytime monitoring (Fig. 1)

Species/Products	Required Precision	Temporal Revisit
0-2 km O ₃ (Selected Scenes) Baseline only	10 ppbv	2 hour
Tropospheric O ₃	10 ppbv	1 hour
Total O₃	3%	1 hour
Tropospheric NO ₂	1.0×10^{15} molecules cm ⁻²	1 hour
Tropospheric H ₂ CO	1.0×10^{16} molecules cm ⁻²	3 hour
Tropospheric SO ₂	1.0×10^{16} molecules cm ⁻²	3 hour
Tropospheric C ₂ H ₂ O ₂	4.0×10^{14} molecules cm ⁻²	3 hour
Aerosol Optical Depth	0.10	1 hour

• Multi-spectral capabilities from UV to VIS will help distinguish

March 2020) and Sentinel-4 (2023) will provide robust coverage across populated areas over Northern Hemisphere (Fig. 4).

Figure 4. Coverage of future geostationary spectrometers.

Users can retrieve geophysical values at pixel level for on-the-fly analysis

mission phase, as the synthetic products will promote day 1 readiness for TEMPO data and help realize regional and local applications of the mission. Ultimately, these activities will advance the Applications Readiness Level (ARL) of TEMPO data prior to launch. We aim to extend the synthetic dataset to more recent periods (post-2017) to conduct assessments with TROPOMI data. Our upcoming analysis of GEMS data will also provide a sneak peek into future TEMPO applications.

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE