
ABSTRACT

Computational Bayesian Methods Applied to Complex Problems in Bio and Astro
Statistics

Chris Elrod, Ph.D.

Co-Chairpersons:
James D. Stamey, Ph.D
Matthew Hejduk, Ph.D.

In this dissertation we apply computational Bayesian methods to three distinct

problems. In the first chapter, we address the issue of unrealistic covariance matri-

ces used to estimate collision probabilities. We model covariance matrices with a

Bayesian Normal-Inverse-Wishart model, which we fit with Gibbs sampling. In the

second chapter, we are interested in determining the sample sizes necessary to achieve

a particular interval width and establish non-inferiority in the analysis of prevalences

using two fallible tests. To this end, we use a third order asymptotic approxima-

tion. In the third chapter, we wish to synthesize evidence across multiple domains

in measurements taken longitudinally across time, featuring a substantial amount

of structurally missing data, and fit the model with Hamiltonian Monte Carlo in a

simulation to analyze how estimates of a parameter of interest change across sample

sizes.
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CHAPTER ONE

Satellite Collision Probability Given Non-Realistic Covariance

1.1 Problem Introduction

About 22,000 objects presently exist in Earth orbit, but only about 1,000 of

these objects are active satellites—the remaining objects are a combination of “dead”

satellites that are no longer functional, spent rocket bodies left over from launch

activities, and debris objects, most of the latter resulting either from tests of anti-

satellite weapons (such as a well-known Chinese test in 2007 that produced 3,500

pieces of trackable debris) or from collisions between satellites (such as the 2009

collision between a commercial and a Russian satellite, which produced over 2,000

trackable pieces). Defunct spacecraft and debris pieces often stay in orbit for decades,

if not centuries, posing navigation and collision risks for active satellites. While

in the earlier days of space operations it was correctly maintained that the “big

sky” of space rendered concerns of collisions between spacecraft so unlikely that they

could be safely neglected, the much more crowded conditions of the current orbital

environment, in addition to the presence of actual confirmed on-orbit collisions, have

changed the posture substantially: it is now commonplace for satellite operators to

perform conjunction assessment activities to determine when their spacecraft will be

in close proximity to other on-orbit objects and to take mitigation actions should

one of these conjunctions pose an unacceptably high risk of collision (Newman et al.,

2014).

The US Air Force (USAF) maintains a space “catalogue,” which is an enumer-

ation of all of the tracked objects in orbit. By operating a number of worldwide radar

and optical sensor sites that track space objects, they are able both to discover new

space objects and to take tracking data on existing objects; these data are then fed
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into an orbital dynamics model that produces for each object both a state estimate

(position and velocity of the object at a given moment in time) and a statement

of estimation uncertainty, which is usually rendered as a covariance matrix of the

estimated state variables. Using this same dynamical model, satellite positions and

velocities, and the accompanying uncertainty, can be propagated forward temporally

to time points of interest. As a routine task, the USAF propagates forward the po-

sitions of the protected US government active satellites (called “primary objects”)

and those of all of the remaining objects in the space catalogue (called “secondary

objects”) to determine which pairs of primaries and secondaries will come into close

proximity of one other in the near future; objects that will pass closely to each other

are identified as “conjunctors,” and certain orbital products are generated for them,

namely the states − position and velocity vectors − and associated covariances of the

two objects at their time of closest approach (TCA). These products allow the princi-

pal collision risk assessment metric, the probability of collision (Pc), to be calculated

and thus the likelihood of collision to be assessed.

While the process described above is robust in design, like most engineering

processes it is only as reliable as the quality of its input data; and the input datum

drawing the most scrutiny is the covariance matrix. In generating the covariance ma-

trix, the orbit determination process presumes that all systematic errors have been

fully solved for, leaving only Gaussian noise; thus, the assembled covariance merely

provides variances and cross-correlation terms for the solved-for parameters, implic-

itly assuming that their errors follow a multivariate Gaussian distribution. While

this assumption is probably a tolerable one for summarizing the errors in the orbit

determination fit (although there are also several ways in which assumption can fall

short even here), it is more questionable in propagation. Covariance matrices are

typically propagated forward in time through the pre- and post-multiplication by

a state-transition matrix, which is a linearized form of the partial derivatives that
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project each state variable forward in time. While this approach has the advantage

of simplicity, it does introduce certain problems. First, since the orbital dynamics

are actually non-linear, the linearizations used to construct the state-transition ma-

trix will have finite lifetimes; so linear propagation past a certain point in time will

produce divergence between the true uncertainty volume and that represented by the

linearized dynamics. Second, there is a mismatch between the secular state error

growth, which follows the actual curvilinear orbital trajectory, and the covariance

error rendered in Cartesian coordinates, which is a rectilinear system; this creates a

disjunction between the Cartesian position covariance ellipsoid, which at any instant

is oriented as a tangent to the orbit trajectory, and the actual error volume, which

follows the trajectory and is thus “banana” shaped. A rendering of the orbital param-

eters in a curvilinear space, such as classical orbital elements, is one way to improve

the situation; but the main collision risk assessment computation, the probability of

collision, requires satellite state representation in a manner that separates the position

and velocity components and therefore cannot be calculated in element space. While

there do exist certain remediation techniques (e.g., Sabol et al. (2010)), these require

Monte Carlo approaches, which are often computationally intensive (Hall et al., 2018).

So it is important to determine the level of “realism” of covariances at propagation

time points in the coordinate systems that are used for certain calculations and, if

possible, to incorporate the results of such evaluations into the computation of the

key collision risk assessment parameters. The thrust of the present work is to perform

these realism evaluations and develop methodologies that allow an informed use of

any “irrealism” data to inform Pc calculations.

Our first activity is to discuss the Pc calculation itself. There are a number of

different ways to proceed in performing this calculation; we thus give an explanation

of the theory behind the calculation, a brief survey of different approaches that have
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been used, and the development of a highly-efficient calculation for the purposes of

the present study.

Next we will explain the “covariance realism” dataset that will be used as the

basis for the study’s algorithm development and testing. Precision data on satellite

positions are compared to predicted data and their associated covariances in order

to assess the adequacy of the covariances to model actual position prediction errors.

Examining these data identifies two difficulties: there is substantial autocorrelation

among the evaluated position adequacy data, and the actual position error data

do not conform to the expected trivariate normal distribution and thus cannot be

represented by simple, unaltered covariances.

The first developed algorithm focuses on characterizing and remediating the

autocorrelation in the position error dataset. Four different techniques to address

this problem are explored, with an eye not only to the remediation but, perhaps

even more strongly, to computational efficiency; for the dataset used in the study is

extremely large, and the datasets used in the operational application of the algorithm

will be even larger. One particular algorithm is selected and results presented.

The second developed algorithm considers how to address the non-Gaussian

behavior of the position errors. We consider three algorithms, each of which may be

interpreted as representing the error distributions as mixtures of zero-mean trivari-

ate normal distributions. These afford us with the computational ease of working

with normal distributions, while providing flexibility in fitting error distributions.

We assess their performance by performing five-fold cross validation and assessing

the one-sample Cramér-von Mises statistic of the test data compared to the fitted

distributions.

Finally, we analyze a data set of conjunction events, both to demonstrate how

corrected datasets would be used operationally to calculate improved Pc values and

to assess the degree to which these methods change nominal Pc estimates.

4



Figure 1.1. Satellite Hard-Body Radii. Primary (larger) and secondary (smaller)
satellites each with circumscribing spheres, both encased by a singe circumscribing
“supersphere.” Figure from Hejduk and Johnson (2016).

1.2 Calculating Probability of Collision

There are different ways of calculating the Pc, and they divide most strongly

into two strains: Monte Carlo approaches, which perform draws on position error

statements, perturb satellite positions accordingly, and determine based on these

perturbations the likelihood of the two satellites’ passing within a specified close

distance; and analytical approaches, which attempt a direct integration of uncertainty

volume overlap with satellite combined exposed areas. Each of these approaches will

be described in greater detail below.

1.2.1 Pc Calculation Methods

There are a number of analytic methods to calculate the Pc (Alfano, 2005;

Chan, 2008; Foster and Estes, 1992; Patera, 2001), and all of them rely on the fol-

lowing simplifying assumptions (Hall et al., 2017) that allow the dimensionality to

be reduced and a straightforward calculation to be performed: 1) the collision du-

ration is short enough that satellite motion can be considered rectilinear during the

encounter; 2) the collision duration is short enough that the two satellite covariance

matrices can be presumed to be invariant during the encounter; and 3) the state er-

rors for the two satellites can be considered independent, so the joint covariance can
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Figure 1.2. Conjunction situation in conjunction plane. Figure taken from Hejduk
(2019).

be produced by a simple summation of the two covariance matrices. These three situ-

ations abide for most satellite conjunctions, so any analytical approach that requires

them will in fact be relevant for most encounters. For two objects in conjunction,

the uncertainty in each object’s position is represented by a position covariance el-

lipsoid placed at the position given by the object’s estimated mean state. Because it

is the relative position and uncertainty that will determine whether a collision will

occur, one proceeds by generating these relative quantities: the estimated positions

are differenced and the relative uncertainty created by summing the position covari-

ances. This is because if x ∼ N (µ1,Σ1) and y ∼ N (µ2,Σ2), then their difference

xy = w ∼ N (µ1µ2,Σ1 +Σ2). That is, the covariance matrix of the difference equals

the sum of the individual covariance matrices.

A similar approach can be followed for space object size. One way of defining a

satellite’s size is to circumscribe it with a sphere and use the radius of that sphere as a

size indicator; if this is done for the primary and secondary object, two circumscribing

spheres are produced. A collision—or if one prefers, a close-proximity event—can be

said to occur if these two spheres were to overlap at all at the time of closest approach.
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A more efficient test for such a condition is to create a “supersphere” that encompasses

the two touching primary and secondary object spheres, as shown in Figure 1.1.

The next step is to recognize that, given the assumptions stated previously,

any collision that may occur will take place in the “conjunction plane,” which is

the plane normal to the relative velocity vector; the marginal probability associated

with the component of the uncertainty volume normal to this plane, because the

path of passage of the primary is presumed to be rectilinear in motion and thus

infinitely straight, will approach unity and thus can be removed from consideration

(Alfano, 2005; Chan, 2008). Furthermore, since the combined covariance, according

to assumption, is static, one can place the entire conjunction situation into this plane

(called the “conjunction plane”) and thus pursue a two-dimensional evaluation of

the conjunction situation. A plot showing this rendering (called, unsurprisingly, a

“conjunction plane plot”) is given in Figure 1.2; one observes the combined covariance

centered at the origin (becoming an ellipse in projection), the miss vector at TCA

placed upon the x-axis, and the satellites’ combined size, given as the projected circle

of the supersphere, placed at the right end of the miss vector. The probability of

collision is thus calculated analytically as the portion of the combined uncertainty’s

probability density that falls within the HBR projected circle; it is these situations

that will result in a miss vector that will penetrate this circle.

1.2.2 Chebyshev Integrator for Analytic Pc Calculation

We will develop here a particular optimized methodology for computing Pc,

which follows the general approach of Alfano (2005) but avails itself of certain impor-

tant efficiency improvements. To begin and establish consistent notation, assuming

the uncertainties in the satellites position are trivariate normal, let p and s be the
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positions of the primary and secondary, respectively, with distributions:

p ∼ N (µp,Cp)

s ∼ N (µs,Cs) .

Then the distribution of distance between the centers of both satellites is

δ ∼ N (µp − µs,Cp + Cs) .

We refer to the propagated covariance by the alpha numerical character C

rather than a Greek letter to emphasize its treatment as provided data, rather than a

parameter. Following the approach outlined in the previous section, the probability

of collision integral, with the HBR sphere centered at x0, the probability of collision

is:

Pc =

∫ HBR

−HBR

∫ x0+
√
HBR2−y2

x0−
√
HBR2−y2

1

2π
√

|C|
exp

−1

2

[
x y

]
C−1

x
y


 dx dy.

Our strategy for performing this integration is to reduce it to a one dimensional

integral. To do this, we first perform a change of variables from x, y to w, z, where

w, z each have independent standard normal distributions. Let U be the inverse

of the Cholesky factor of C-1, so that U is an upper triangular matrix such that

U =

U11 U12

0 U22

 and UU⊤ = C. Now, let U-1

x
y

 =

w
z

, so that

x = U11w + U12z

y = U22z

z =
y

U22

w =
x− U12z

U11

=
x

U11

− U12y

U11U22

.
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Performing the change of variables, the quadratic form in the exponential of the

bivariate normal reduces as follows:

[
x y

]
C−1

x
y

 =

U

w
z




⊤ (
UU⊤)-1 U

w
z


=

[
w z

]
U⊤U-⊤U-1U

w
z


=

[
w z

]w
z


= w2 + z2.

Additionally, the determinant of the Jacobian of the transformation is simply |U| =√
|C|, so that our new multivariate normal to integrate over is:

f (w, z) =
1

2π
exp

{
−w

2 + z2

2

}
That is, w and z have independent standard normal distributions.

Now, we must derive our new limits of integration. We must integrate over

the circle of radius HBR, centered at x0. That is, it is over all values such that√
(x− x0)2 + y2 < HBR. Putting these bounds in terms of w and z, we have that

the boundaries are

HBR2 = (x− x0)
2 + y2

HBR2 = (U11w + U12z − x0)
2 + (U22z)

2 ,

with the integration region being all values of w and z such that the right hand side

is less than or equal to HBR2, the left hand side.
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Because the extreme bounds on y are ±HBR, the bounds on z will be ±HBR
U22

.

The bounds on w conditioned on z can be found using the quadratic formula:

0 = U2
11w

2 + U2
12z

2 + x20 + U2
22z

2 + 2U11U12wz − 2U11wx0 − 2U12zx0 −HBR2

=
(
U2
11

)
w2 + (2U11U12z − 2U11x0)w +

(
U2
12z

2 + x20 + U2
22z

2 − 2U12zx0 −HBR2
)
,

solving for w, we find

r = (2U11U12z − 2U11x0)
2 − 4U2

11

(
U2
12z

2 + x20 + U2
22z

2 − 2U12zx0 −HBR2
)

w =
2U11x0 − 2U11U12z ±

√
r

2U2
11

=
x0 − U12z ±

√
(U12z − x0)

2 − (U2
12z

2 + x20 + U2
22z

2 − 2U12zx0 −HBR2)

U11

=
x0 − U12z ±

√
(U12z − x0)

2 − (U2
12z

2 + x20 + U2
22z

2 − 2U12zx0 −HBR2)

U11

=
x0 − U12z ±

√
U2
12z

2 − 2U12zx0 + x20 − U2
12z

2 − x20 − U2
22z

2 + 2U12zx0 +HBR2

U11

=
x0 − U12z ±

√
HBR2 − U2

22z
2

U11

.

The standard normal cdf Φ(x) = 1
2

[
2− erfc

(
x√
2

)]
. We use the complemen-

tary error function, erfc(x) = 1 − erf(x) in place of the error function, because

erfc is numerically accurate for values far from the mean, while erf is numerically

accurate for values close to the mean. For example, using standard IEEE double

precision arithmetic, erf(6) = 1.0, while erfc (6) = 2.1519736712498916 × 10−17.

In fact, arguments as high as 27, corresponding to distances 27
√
2 ≈ 38 standard

deviations from the mean, are still evaluated without rounding to zero. Because we

are interested in accurately estimating what are often very small probabilities of col-

lision where parts of the integration region may be more than 6
√
2 ≈ 8.5 standard

deviations from the mean, erfc is preferred.
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Proceeding with the integration, we have

Pc =
1

2π

∫ HBR
U22

−HBR
U22

∫ x0−U12z+
√

HBR2−U2
22z

2

U11

x0−U12z−
√

HBR2−U2
22z

2

U11

exp

{
−w

2 + z2

2

}
dw dz

=
1√
2π

∫ HBR
U22

−HBR
U22

exp

{
−z

2

2

}∫ x0−U12z+
√

HBR2−U2
22z

2

U11

x0−U12z−
√

HBR2−U2
22z

2

U11

1√
2π

exp

{
−w

2

2

}
dw dz

=
1√
2π

∫ HBR
U22

−HBR
U22

exp

{
−z

2

2

}[
Φ

(
x0 − U12z +

√
HBR2 − U2

22z
2

U11

)

−Φ

(
x0 − U12z −

√
HBR2 − U2

22z
2

U11

)]
dz

=
1√
8π

∫ HBR
U22

−HBR
U22

exp

{
−z

2

2

}[
erf
(
x0 − U12z +

√
HBR2 − U2

22z
2

√
2U11

)

−erf
(
x0 − U12z −

√
HBR2 − U2

22z
2

√
2U11

)]
dz

=
1√
8π

∫ HBR
U22

−HBR
U22

exp

{
−z

2

2

}[
erfc

(
x0 − U12z −

√
HBR2 − U2

22z
2

√
2U11

)

−erfc
(
x0 − U12z +

√
HBR2 − U2

22z
2

√
2U11

)]
dz.

We can use scaled and weight-adjusted Gaussian-Chebyshev Quadrature of the

second kind to numerically integrate this function, approximating the integral as

Pc ≈
N∑
i=1

wi exp

−

(
HBRni
U22

)2
2


erfc

x0 − U12
HBRni
U22

−
√
HBR2 − U2

22

(
HBRni
U22

)2
√
2U11



−erfc

x0 − U12

(
HBRni
U22

)
+

√
HBR2 − U2

22

(
HBRni
U22

)2
√
2U11
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=

N∑
i=1+N/2

wi exp

−

(
HBRni
U22

)2
2


erfc

x0 − U12

(
HBRni
U22

)
−HBR

√
1− n2i

√
2U11


+erfc

x0 + U12

(
HBRni
U22

)
−HBR

√
1− n2i

√
2U11


−erfc

x0 − U12

(
HBRni
U22

)
+HBR

√
1− n2i

√
2U11


−erfc

x0 + U12

(
HBRni
U22

)
+HBR

√
1− n2i

√
2U11




where

wi =
ωi√

8π
(
1− n2i

) ,
and ni are the zeros of the Nth order Chebyshev polynomial, and ωi the associated quadra-

ture weights. The equality follows given N is even because of the symmetry of the quadra-

ture nodes. This achieves high accuracy with few weights given reasonably smooth functions,

such as this. As few as N = 16 allow for small relative errors on the order of 10−10 over a

broad range of arguments. In comparing results from this calculation method to the more

“standard” approach that evaluates the 2-D integral using tiled adaptive quadrature, repro-

cessing nearly one million actual conjunction events yielded a largest difference of 1/100th

of an order of magnitude—levels that are far from operational significance.

Our approach differs from Alfano (2005) in two chief chief ways: we use the Cholesky

decomposition in place of spectral decomposition to factor the covariance matrix, and use

Chebyshev quadrature following Mason and Handscomb (2002) in place of the midpoint rule

for the numerical integration. Chebyshev-Gauss quadrature converges more rapdily than

the midpoint rule for smooth functions, allowing us to achieve small errors with minimal

computational costs. Additionally, our use of erfc ensures accurate Pc estimates even when

they are vanishingly small.
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1.3 Covariance Reaslism Test Data

To assess the ability of satellite orbit determination covariances to represent predicted

state estimate errors, there are two data types that must be secured: actual state estimate

errors at the propagation point(s) of interest, and associated covariances propagated to

those same time points. When both of these datasets are present, it is straightforward to

apply analytical procedures to determine the degree to which these covariances properly

represent the actual distributions of state errors. The production of each of these datasets

will be discussed in turn.

In order to generate state estimate errors for a particular satellite, one must first

produce what is called a reference ephemeris for that satellite, which is an extremely precise

time-history of satellite actual positions (and velocities, although the velocity portions of

the states will not be examined here); it is this set of precise positions that will be compared

to the positions predicted from individual vectors for the satellite in order to assess these

predictions’ errors. Ideally, such a reference ephemeris would be formed from external,

precise data sources that have errors notably smaller than the sensor observational data

that are used to form satellite state estimates generally. Such data sources do exist and

form the basis for precision ephemerides for a set of satellites used to calibrate the overall

orbit determination enterprise; but the number of such satellites is small (less than fifty),

and we are interested in evaluating state estimates for the entire satellite catalogue, which

comprises over 22,000 objects. It is therefore necessary to employ some other stratagem

than using calibration reference orbits.

When satellite state estimates are updated with sensor observational data, a batch

update process is employed, in which a group of past sensor position observations is collected

(data falling into the update’s “fit-span,” which is a span of some number of days back in

time from the current time) and used in an ensemble adjustment to the previous estimate’s

trajectory, modifying this trajectory in a manner that minimizes the variance of the residuals

of the fit-span observational data to the modified orbit. Once this process is complete, the

modified orbit can be propagated back in time to produce an ephemeris for the fit-span

period of time, and this ephemeris will be extremely accurate because the fit-span is the
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period of time for which the orbit adjustment fitting took place. If this is done for each

subsequent orbit update, then a series of short ephemerides pieces can be produced, and

they can be stitched together to create a continuous ephemeris for the object. One must

exercise care to ensure that the different pieces of ephemeris share little to no observational

data so that there is no correlation between ephemeris segments. Each segment’s error

can be reasonably estimated by the formation covariance that was produced from the orbit

update that generated it (Hejduk, 2008).

With a reference ephemeris available, it is straightforward to calculate prediction

errors for a set of vectors that was produced for a given satellite. If one is interested in,

say, the accuracy of a particular vector propagated two days into the future, one finds the

ephemeris point in the reference ephemeris closest to the vector epoch time plus two days

and propagates the vector to that point; the propagated state can then be differenced with

the ephemeris state at that point, and position errors in the three Cartesian components can

be calculated. Of course, this analysis can be conducted only in the past, as the constructed

reference orbit can exist for only past data; but past vectors can be propagated forward

in the same manner in which they would be predicted forward from the present time into

the future (one must be sure to use the space weather and other dynamical model indices

that would have actually been relevant at that past time). While the position comparison is

conducted in an inertial reference frame to ensure compatibility between reference ephemeris

and propagated vector, it is common to transform the position differences into a relative

frame, typically centered on the employed ephemeris point. This relative framework defines

the u direction as “radial” or containing the satellite position and the center of the earth,

the v direction as “in-track” or perpendicular to the radial component, but lying in the orbit

plane (and for a circular orbit also parallel to the velocity vector), and the w or “cross-

track” component in the direction perpendicular to the orbit plane. An entire set of vectors

can be evaluated this way, at a number of different propagation times, producing a set of

ordered triples of u, v, and w position errors (Hejduk et al., 2013).

Prediction residuals are useful in assessing the actual values of the errors encountered,

but what is desired here is to determine how well or poorly the covariances associated with
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the vectors represent the actual distributions of errors. For any given vector and propagation

state, there is only one set of uvw residuals and one propagated covariance; and it is not

possible to draw any durable conclusions from single-sample situations. However, what can

be done is essentially to normalize the residuals by calculating the Mahalanobis distance:

if e is the vector of errors so that e =

[
un vn wn

]⊤
and C is the covariance, m2 is

given by eC-1e⊤. For a diagonal covariance, the effect is to create a sum of the squares of

normalized z-variables; for situations with correlation, these effects are properly represented

in the multiplication by the correlation terms. A set of m2 values, as the squares of normal

z-variables, should produce a 3-degree of freedom chi-square distribution (Zaidi and Hejduk,

2016).

The USAF routinely executes software that produces position residuals and associ-

ated propagated covariances, using the methodology described above, at a set of standard

propagation states for all satellites in the satellite catalogue. These data were obtained for a

very large subset of the satellite catalogue for all of 2017 and processed in order to produce

m2 histories for propagation states of interest. It is this dataset that serves as the basis for

the present covariance realism examination.

To facilitate the assessment of these datasets, we standardize them using the prop-

agated covariance matrices in a manner similar to that described earlier, but with some

modifications. For a particular satellite, let N be the number of ordered triples u, b, w cor-

responding to this satellite (we drop the satellite subscript s to reduce notational clutter),

and en and Cn refer to the nth set of errors and covariance matrix. Now we define Ln as

the lower Cholesky factor of the propagated covariance matrix so that Cn = LnL⊤
n, and

zn = L-1
n en. Then we have that

z⊤nzn =
(
L-1
n en

)⊤ (L-1
n en

)
= e⊤nL-⊤L-1en

= e⊤n
(

LL⊤
)-1

en

= e⊤nC-1en

= m2.
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If en ∼ N (03,Cn), then zn ∼ N (03, I3). The statistical likelihoods of the observa-

tions are invariant to this one to one transformation. By applying the transformation, we

now have N identically distributed observations, simplifying the analysis.

The Cholesky decomposition was chosen as the orthogonalizing transformation for

this preprocessing step due to its simplicity and computational efficiency.

1.4 Autocorrelation in Successive Observations

The previous section discussed the methodology for determining satellite state estima-

tion errors, including mention of an approach to eliminate correlation between subsequent

ephemeris pieces that are fused into a single satellite ephemeris. While this vigilance is

appropriate, one must also consider the possibility of correlation introduced by the state

vectors themselves that are to be analyzed. Typically, satellite state vectors are updated

three times per day (if new tracking data are received during the preceding eight-hour pe-

riod), but the number of updates can be much larger if the object merits special interest.

Since the typical fit-span for near-earth satellites (orbital periods less than 225 minutes) is

several days, it is clear that vectors updated every eight hours will share most of the ob-

servational data used in the update; and this will introduce substantial correlation between

successive updates. It is therefore necessary to test these datasets rigorously for autocorre-

lation and, if significant such correlation is discovered, to account for this in our modeling

efforts.

1.4.1 Identifying Autocorrelation

In testing for autocorrelation, we will assume normality in defining a distribution

for sample autocorrelations under the null hypothesis of no autocorrealation. While this

normality assumption is not valid, it allows us to define a reference distribution for the

sampling distribution of autocorrelation. Given a vector z of N independent and identically

distributed normal observations, let x and y be two vectors of length N − 1, such that

xn = zn, n = 1, . . . , N − 1 and yn = zn+1, n = 1, . . . , N − 1. Then the Pearson correlation

coefficient between x and y equals the lag-1 autocorrelation between elements of z.
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Lag by Dimension

𝐰𝐯𝐮

0 5 10 150 5 10 150 5 10 15

-1.0

-0.5

0.0

0.5

1.0

3

-1.0

-0.5

0.0

0.5

1.0

2

-1.0

-0.5

0.0

0.5

1.0

1

ρ 
by

 S
at

el
lit

e

Figure 1.3. Autocorrelations for the first 15 lags for three sample satellites.
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Given that the true autocorrelation is zero, this correlation coefficient has a sampling

distribution according to the density (Hotelling, 1953):

f(r) =

(
1− r2

)N−5
2

B
(
1
2 ,

N−3
2

)
F (r) =

r2F1

(
1
2 ,

5
2 − N

2 ;
3
2 |r

2
)

B
(
1
2 ,

N−3
2

)
where 2F1 is the hypergeometric function:

2F1 (a, b; c|z) =
∞∑
n=0

(∏n−1
i=0 (a+ i)

)(∏n−1
i=0 (b+ i)

)
(∏n−1

i=0 (c+ i)
) zn

n!

and B is the Beta function:

B(a, b) =
Γ (a) Γ (b)

Γ (a+ b)
,

and a product with zero terms is taken to equal zero, that is
∏
i = 00 (x+ i) = 1. We used

the software library Nemo (Fieker et al., 2017) to evaluate the hypergeometric function.

We use the Newton-Raphson method for calculating the 2.5% and 97.5% quantiles

of the sampling distribution. We plot these alongside the first 15 autocorrelations of three

example satellites (Fig. 1.3) with sample sizes of 684, 2827, and 1260, respectively. The

first few autocorrelations are strongly positive, as high as 0.9 for v in the second satellite.

Beyond a lag of 10, some of the autocorrelations become negative.

1.4.2 Candidate Autocorrelation Modeling Approaches

Our goal here is to present a family of models that will have the following properties:

• To model autocorrelation across time,

• To model the marginal variance of z, and

• To allow for the autocorrelation and variance to be fit in separate steps.
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We will discuss models addressing autocorrelation and marginal variance indepen-

dently, and then combine and derive the implied model for the joint distribution of the

observed data, Z. To take advantage of the Chebyshev integrator for calculating Pc values

and computational convenience, we will confine ourselves to the realm of normal mixture

models.

We will model autocorrelation across time with correlation matrices, i.e. positive

definite matrices with unit diagonals. Due to both the large number of satellites we must

fit and the potentially large size of these matrices, computational efficiency is a concern.

For this reason, we restrict ourselves to approaches with algorithmic complexity better than

O(N2). That is, we restrict ourselves to approaches where the asymptotic runtime of the

algorithm increases at a rate lower than N2 as a function of sample size: we wish for each

doubling in sample size to less than quadruple the time it takes to evaluate the correlation

matrix. Note that a dense matrix has O(N2) elements, and that common matrix operations

such as multiplication and factorization as implemented in optimized BLAS libraries have

time complexities of O(N3) (Al-Mouhamed et al., 2016). For this reason we cannot use

dense matrices if we are to achieve our desired performance.

Instead, we will use structured matrices defined by a limited number of parameters

and the observed time points. In particular, we will consider the following approaches:

• Order one autoregressive (AR(1)) matrix: the AR(1) approach models the corre-

lation between observations at time t2 and t1 as ρ|t2−t1|, 0 ≤ ρ ≤ 1. This model

can be interpreted as one of errors randomly drifting over time, with a tendency

to regress towards zero. Given two observations, the closer they are in time, the

less time the errors have had to drift apart, and the closer they will be on average.

If we have three observations, the distribution of the third is independent of the

first when we condition on the second.

• Hiearchical off-diagonal low-rank (HODLR) matrices (Geoga et al., 2018): these

allow modeling the correlation structure as a Gaussian process. The matrix is

partitioned hierarchically into blocks. Diagonal blocks are dense, while off-diagonal
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blocks are limited to a rank of k. Blocks further from the diagonal are larger. A

kernel function indicating correlation between observations at times ti and tj is

used to define the matrix.

• Banded correlation matrix: we can use a correlation but with a limited number

B of non-zero offdiagonal bands; all other values are zero. This approach can

only model correlations at up to B lags, but complexity and processing burden are

reduced to O(N) by limiting the populated portion of the correlation matrix.

• Banded precision matrix: we can define the inverse of the correlation matrix to

have some number B of non-zero off-diagonal bands; all other values are zero. The

advantage of the banded precision matrix is that its inverse will generally be dense,

allowing B bands to model correlations at any number of lags.

For each satellite, we fit the correlation matrix to each of yi, i = 1, 2, 3 where

Yn,i =
Zn,i

st.dev.(zi)
, where we are using ai to refer to the ith column of a matrix A. We

normalized by the standard deviation because our intention in this step is to fit the corre-

lation between successive observations, while leaving the marginal variance to the following

step as a mixture of normals; for fitting the marginal variances, we restore the original scale.

Scaling is necessary because the fitted correlation matrix is dependent on the scale of the

observations. Recall the P -variate multivariate normal log density function:

ℓP (x,µ,Σ) = −P
2
log (2π)− 1

2
log |Σ| − 1

2
δ⊤Σ-1δ

δ = x − µ.

If Σ is restricted to being a correlation matrix, the correlation structure of Σ̂, the MLE

estimate, is dependent on the scale of δ.

For example, let ξ ∼ N (0,Ξ), where Ξ is a correlation matrix. Additionally, let L be

the lower triangular Cholesky factor of Ξ, Σ also be a correlation matrix and Σ = LΛL⊤,

and we define δ = ξξ, where ξ is an arbitrary scale. Additionally, let QΓQ⊤ = Λ, where Γ

is a diagonal matrix of eigenvalues, and Q is an orthonormal matrix of eigenvectors so that
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QQ⊤ = Q⊤Q = I.

α = QL-1ξ

α ∼ N (0, I)

ℓP (δ,0,Σ) = −P
2
log (2π)− 1

2
log
∣∣∣LΛL⊤

∣∣∣− 1

2
δ⊤
(

LΛL⊤
)-1

δ

= −P
2
log (2π)− 1

2
log |Ξ| − 1

2
log |Λ| − ξ2

2
(Lα)⊤Λ-1Lα

= −P
2
log (2π)− 1

2
log |Ξ| − 1

2

P∑
p=1

log (Γp,p)−
ξ2

2
α⊤Γ-1α

Noting that E
[
α⊤Γ-1α

]
= tr

(
Γ-1) =∑P

p
1

Γp,p
(Bates, 2011),

EρℓP (fP (δ,0,Σ)) = −P
2
log (2π)− 1

2
log |Ξ| − 1

2

P∑
p=1

log (Γp,p)−
ξ2

2

P∑
p=1

1

Γp,p
.

If we let ξ → ∞, this function will be maximized by letting
∑P

p=1
1

Γp,p
→ 0. That is, Γp,p →

∞ for p = 1, . . . , P . If we let ξ → 0, then the density is maximized as
∑P

p=1 log (Γp,p) → −∞.

That is, when at least one of Γp,p → 0.

Therefore changing the scale of our inputs, ξ, alters Λ, and therefore Σ. Because we

are fitting the marginal variance in a subsequent data processing step, we want the results

of this step to be independent of variance; that we restrict Σ to be a correlation matrix,

implying marginal variances of 1, means that scaling the data to a marginal variance of 1

is the natural choice.

The MLEs are found through numerical optimization techniques. Details differ for

each method we consider.

1.4.3 Autoregressive Matrix

The autoregressive correlation matrix is defined by a single parameter, ρ. Recall that

t is the set of N sorted observation times. Then, dropping the subscript is, we have under
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the AR(1) model:

Λ (ρ) =



1 ρt2−t1 ρt3−t1 ρt4−t1 . . . ρtN−t1

ρt2−t1 1 ρt3−t2 ρt4−t2 . . . ρtN−t2

ρt3−t1 ρt3−t2 1 ρt4−t3 . . . ρtN−t3

ρt4−t1 ρt4−t2 ρt4−t3 1 . . . ρtN−t4

...
...

...
... . . . ...

ρtN−t1 ρtN−t2 ρtN−t3 ρtN−t4 . . . 1


which, if factored into Λ = LL⊤, will produce L-1 of the form:

L-1 =



1 0 0 0 . . . 0

−ρt2−t1√
1−ρ2(t2−t1)

1√
1−ρ2(t2−t1)

0 0 . . . 0

0 −ρt3−t2√
1−ρ2(t3−t2)

1√
1−ρ2(t3−t2)

0 . . . 0

0 0 −ρt4−t3√
1−ρ2(t4−t3)

1√
1−ρ2(t4−t3)

. . . 0

...
...

...
... . . . ...

0 0 0 0 . . . 1√
1−ρ2(tN−tN−1)


.

To solve for our estimator, we find the maximum of the log density of the approxi-

mating model yi ∼ N (0,Λi) , i = 1, 2, 3. Again dropping the sub-scripted is, because they

may be inferred from context, we have

N (yi|0,Λ) = −N
2
log (2π)− 1

2
log |Λ| − 1

2
y⊤Λy

= −N
2
log (2π)− 1

2
log |LL⊤| − 1

2
i⊤
(

LL⊤
)-1

y

= −N
2
log (2π)− log |L| − 1

2
y⊤L-⊤L-1y

= −N
2
log (2π) + log |L-1| − 1

2

(
L-1y

)⊤ L-1y.

Therefore, the only computations with respect to Λ we must calculate are the determinant

|L-1| and the quadratic form,
(
L-1i

)⊤ L-1i. Because the determinant of a triangular matrix
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Figure 1.4. HODLR matrices with 2, 3, and 4 dyadic splits. Figure originally published
in Kressner (2015).

is the product of the diagonals, these may be calculated as

|L-1| =
N∏
n=2

1√
1− ρ2(tn−tn−1)

(
L-1yi

)⊤ L-1yi = Y 2
1,i +

N∑
n=2

(
Yn,i − Yn−1,iρ

tn−tn−1
)2

1− ρ2(tn−tn−1)
.

Therefore, evaluating the log density requires only O(N) operations. We use the

Newton-Raphson method to find the MLE, using analytical first derivatives and applying

forward-mode automatic differentiation to find second derivatives (Revels et al., 2016).

1.4.4 HODLR Model

This approach allows us to define a Gaussian process by providing an efficient rep-

resentation of matrices with low effective rank in off-diagonal blocks. See Fig. 1.4 for a

visualization of the hierarchical partionioning of the matrix. We used 8 dyadic splits and

allow a maximum off-diagonal rank of 24.

We use the software provided by Geoga et al. (2018) to both evaluate the HODLR

matrix and approximate the off diagonal matrices using the Nyström method (Nyström,

1930). To find the MLE, we used Johnson (2019) through the interface provided by Geoga

et al. (2018)’s library, which has runtime performance on the order of O
(
N log2 (N)

)
.
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We used the following five parameter kernel to define the degree of autocorrelation

as a function of the time between two observations, tm and tn.

λ =

[
α λ σ π ϕ

]⊤
K(λ, tm, tn) = π

(
1 + (tm − tn)

2
)−α

+ (1− π)
(
ϕe−0.5λ(tm−tn)2 + (1− ϕ) e−σ|tm−tn|

)
,

where

π, ϕ ∈ (0, 1)

α, λ, σ > 0.

This kernel is a composite kernel, with rational quadratic, squared exponential, and Ornstein-

Uhleneck (Uhlenbeck and Ornstein, 1930) components. The parameters π and ϕ determine

the relative contribution of each of these three kernels to correlation between times. The

advantage of the composite kernel is that each of the constituent kernels are a special case:

if π = 1, the kernel is rational, if π = 0 and ϕ = 1 the kernel is a squared exponential, and if

π = 0, ϕ = 0 then it is an Ornstein-Uhleneck kernel. This gives the model greater flexibility

in specifying the degree of correlation as a function of time.

1.4.5 Banded Correlation Matrix

Here we consider simply a correlation matrix with only a limited number, B, of

non-zero off-diagonal bands below and above the diagonal, so that the time complexity of

operations increases simply as a function of N , i.e. runtime will be O(N). All correlations

more than B lags apart are assumed to be zero.

We require that the correlation matrix be positive definite. To guarantee this, we

define the correlation matrix implicitly through defining elements of its Cholesky decompo-

sition. If a positive definite matrix has precisely B non-zero bands both below and above

the diagonal, then its Cholesky decomposition will have B off-diagonal non-zero bands.

We follow a modified version of the approach used by Team (2018) for transform-

ing unconstrained parameters into a correlation matrix. The principal modifications are
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that we use kernel functions to produce our set of unconstrained parameters, and set each

corresponding to a lag greater than B to 0.

We summarize our modified approach as follows: Letting L be the lower triangular

Cholesky factor, the norm of each of its rows must be 1. This is because the elements

of LL⊤ equal the dot products of the corresponding rows, and the diagonal elements of a

correlation matrix must be 1. We can therefore take a stick breaking approach to allocating

this unit norm among the B bands. That is, given a series of B values xb, b = 1, . . . , B, we

translate these into values yb = 2
1+exp(−xb) − 1 so that yb ∈ (−1, 1). For b = 1, . . . , B, |yb|

equals the fraction of the remain “stick” we break off and allocate to the bth diagonal.

zb = yb

√√√√1−
b−1∑
c=1

z2c , for all b = 1, . . . , B

and the (B+1)st element, zB+1, equals the remainder:

zB+1 =

√√√√1−
B∑
b=1

z2b .

Then the dot product of of each row with itself equals

B+1∑
b=1

z2b =

(
B∑
b=1

z2b

)
+ 1−

B∑
b=1

z2b

= 1,

so that the diagonal elements of LL⊤ are all 1 and each diagonal element of L, zB+1, are

positive. Therefore LL⊤ is a valid correlation matrix. The stick-breaking interpretation is

that each y2b equals the proportion of the remaining stick broken off and allocated to the

bth band. The radical tracks how much has already been allocated to previous bands.

We use quadratic polynomials to define the initial values xb, where xb corresponds to

a row of L. That is,

xb = ab (tB+1 − tb)
2 + bb (tB+1 − tb) + cb.

Given B bands, this model has 3B parameters.
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To find the MLE, we used the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno

(BFGS) algorithm with a third order back-tracking line search (Mogensen and Riseth,

2018), using automatic differentation (Revels et al., 2016) for the derivatives.

1.4.6 Banded Precision Matrix

The banded correlation matrix assumes that all correlations beyond B lags equal

zero, which we do not assume in general. If we instead define B non-zero bands on the

precision matrix, P, its inverse − the correlation matrix Λ− will be dense. This alligns

closer with our expectation that correlations will decay slowly to zero as the number of lags

increase.

Here, we must again ensure that the matrix be positive definite and that all the

diagonal elements of the inverse equal 1. If we use the Cholesky decomposition to fac-

tor the correlation matrix Λ into lower triangular matrices L such that LL⊤ = Λ, L-1

will have B subdiagonal non-zero bands. We will have B functions defining these bands,

gb (λ, tn, tn−b) , b = 1, . . . , B = λbe
−λB+b(tn−tn−b)

2 , λb ∈ (−∞,∞), λb > 0, b = 1+B, . . . , 2B.

Now we must find the value of the diagonal elements that will result in the inverse being a

correlation matrix.

L-1 =



1 0 0 0 0 . . . 0

g1 (λ, t2, t1)
(
L-1)

2,2
0 0 0 . . . 0

g2 (λ, t3, t1) g1 (λ, t3, t2)
(
L-1)

3,3
0 0 . . . 0

g3 (λ, t4, t1) g2 (λ, t4, t2) g1 (λ, t4, t3)
(
L-1)

4,4
0 . . . 0

g4 (λ, t5, t1) g3 (λ, t5, t2) g2 (λ, t5, 53) g1 (λ, t5, t4)
(
L-1)

5,5
. . . 0

...
...

...
...

... . . . ...

0 0 0 0 0 . . .
(
L-1)

T,T


That is, we must choose values of

(
L-1)

t,t
such that the diagonal elements of Λ equal

1. In refering to contiguous submatrices, we introduce the following notation: Ai:j,k:l, i ≤

j, k ≤ l refers to the block of A with corners Ai,k, Aj,k, Ai,l, Aj,l. For convenience, the set

i, . . . , 0 is treated as empty for i > 0, and i . . . , j = 1 . . . , j for i ≤ 1. Recall that given
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a multivariate normal distribution with covariance matrix Σ, the marginal distribution of

some set of elements j, . . . , k is a multivariate normal with covariance matrix Σj:k,j:k.

Our approach to solving this problem in O(N) time hinges on the observation that

if we have a block Λ1:i,1:i, we can define it in terms of the precision matrix P as follows:

Λ1:i,1:i =

Λ1:i−B−1,1:i−B−1 Λ⊤
i−B:i,1:i−B−1

Λi−B:i,1:i−B−1 Λi−B:i,i−B:i


=

P1:i−B−1,1:i−B−1 P⊤
i−B:i,1:i−B−1

Pi−B:i,1:i−B−1 Pi−B:i,i−B:i


-1

=

X Y⊤

Y
(
Pi−B:i,i−B:i − Pi−B:i,1:i−B−1P-1

1:i−B−1,1:i−B−1P⊤
i−B:i,1:i−B−1

)-1

 .
The last row of Pi−B:i,1:i−B−1 is a zero (row) vector of length i−B − 1:

Pi−B:i,1:i−B−1 =



0 . . . Pi−B,i−2B Pi−B,i−2B+1 . . . Pi−B,i−B−2 Pi−B,i−B−1

0 . . . 0 Pi−B+1,i−2B+1 . . . Pi−B+1,i−B−2 Pi−B+1,i−B−1

... . . . ...
... . . . ...

...

0 . . . 0 0 . . . 0 Pi−1,i−B−1

0 . . . 0 0 . . . 0 0


=

Pi−B:i−1,1:i−B−1

0i−B−1


For the matrix quadratic form, we have

Pi−B:i,1:i−B−1P-1
1:i−B−1,1:i−B−1P⊤

i−B:i,1:i−B−1

=

Pi−B:i−1,1:i−B−1

0⊤i−B−1

P-1
1:i−B−1,1:i−B−1

Pi−B:i−1,1:i−B−1

0⊤i−B−1


⊤

=

Pi−B:i−1,1:i−B−1P-1
1:i−B−1,1:i−B−1P⊤

i−B:i−1,1:i−B−1 0i−B−1

0⊤i−B−1 0

 .
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Now we have that

(Λi−B:i,i−B:i)
-1 = Pi−B:i,i−B:i − Pi−B:i,1:i−B−1P-1

1:i−B−1,1:i−B−1P⊤
i−B:i,1:i−B−1(

(Λi−B:i,i−B:i)
-1
)
1:B+1,B+1

=
(

Pi−B:i,i−B:i − Pi−B:i,1:i−B−1P-1
1:i−B−1,1:i−B−1P⊤

i−B:i,1:i−B−1

)
1:B+1,B+1

= Pi−B:i,i

= P⊤
i,i−B:i.

Therefore, if we can determine Λi−B:i,i−B:i for i = 1, . . . , T , we can determine all the non-

zero elements of the matrix P. Recall that our functions gb define the elements of the inverse

of the Cholesky decomposition of Λ; we can use these to define the elements of Pi−B:i−1,i

as a function of the unknown
(
L-1)

i,i
:

gi =



(
L-1)

i:i−B(
L-1)

i:i−B−1

...(
L-1)

i:i−1



=



gB (bL, ti, ti−B)

gB (bL, ti, ti−B−1)

...

gB (bL, ti, ti−1)


Qi = cholesky (Λi−B:i,i−B:i)
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(Λi−B:i,i−B:i)
-1 = Q-⊤

i Q-1
i

=



(
Q-1
i

)
1,1

(
Q-1
i

)
2,1

. . .
(
Q-1
i

)
B,1

(
Q-1
i

)
B+1,1

0
(
Q-1
i

)
2,2

. . .
(
Q-1
i

)
B,2

(
Q-1
i

)
B+1,2

...
... . . . ...

...

0 0 . . .
(
Q-1
i

)
B,B

(
Q-1
i

)
B+1,B

0 0 . . . 0
(
Q-1
i

)
B+1,B+1



×



(
Q-1
i

)
1,1

0 . . . 0 0(
Q-1
i

)
2,1

(
Q-1
i

)
2,2

. . . 0 0

...
... . . . ...

...(
Q-1
i

)
B,1

(
Q-1
i

)
B,2

. . .
(
Q-1
i

)
B,B

0(
Q-1
i

)
B+1,1

(
Q-1
i

)
B+1,2

. . .
(
Q-1
i

)
B+1,B

(
Q-1
i

)
B+1,B+1



=





(
Q-1
i

)
1,1

(
Q-1
i

)
2,1

. . .
(
Q-1
i

)
B,1

0
(
Q-1
i

)
2,2

. . .
(
Q-1
i

)
B,2

...
... . . . ...

0 0 . . .
(
Q-1
i

)
B,B


gi

0⊤B -1
i,i



×





(
Q-1
i

)
1,1

0 . . . 0(
Q-1
i

)
2,1

(
Q-1
i

)
2,2

. . . 0

...
... . . . ...(

Q-1
i

)
B,1

(
Q-1
i

)
B,2

. . .
(
Q-1
i

)
B,B


0B

g⊤i L-1
i,i


=

(Q-1
i

)⊤
1:B,1:B

(
Q-1
i

)
1:B,1:B

+ gig⊤i giL-1
i,i

g⊤i L-1
i,i L−2

i,i
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Now, let us assume that we have already determined Λi−B:i−1,i−B:i−1. Then we can

calculate Li,i as follows, recalling again that the diagonal elements of Λ equal 1:

1 =

(
L−2
i,i − L−2

i,i

(
g⊤i
((

Q-1
i

)⊤
1:B,1:B

(
Q-1
i

)
1:B,1:B

+ gig⊤i
)-1

gi
))-1

= L2
i,i

(
1−

(
g⊤i
((

Q-1
i

)⊤
1:B,1:B

(
Q-1
i

)
1:B,1:B

+ gig⊤i
)-1

gi
))-1

Li,i =

√
1−

(
g⊤i
((

Q-1
i

)⊤
1:B,1:B

(
Q-1
i

)
1:B,1:B

+ gig⊤i
)-1

gi
)

Additionally, we can calculate Λi−B:i−1,i as follows:

Λi−B:i−1,i = −
((

Q-1
i

)⊤
1:B,1:B

(
Q-1
i

)
1:B,1:B

+ gig⊤i
)-1

gi.

This means we now have Λi−B:i,i−B:i. Critically, we also have Λ(i+1)−B:(i+1)−1,(i+1)−B:(i+1)−1,

and can proceed to calculate Li+1,i+1. All that remains is to prove we can calculate Li,i

for i = 1, . . . , T is realizing that the cases of i = 1 and i = 2 are trivial: when i = 1,

Λ1−B:0,1−B:0 is empty, and when i = 2, Λ2−B:1,2−B:1 = 1. Thus we can determine each of

the diagonal Λ lambda blocks needed to calcualte each Li,i and produce a banded precision

matrix whose inverse is a valid correlation matrix.

We fit four bands, determining the MLE following again using the BFGS algorithm

with a third-order back-tracking linesearch. However, rather than using the implementation

provided by Mogensen and Riseth (2018), the algorithm was reimplemented with a focus on

attaining better runtime performance. Derivatives were still calculated using forward-mode

automatic differentiation (Revels et al., 2016).

1.5 Results

We now assess the effectiveness of the four techniques. We do this by calculating the

autocorrelations of xi = L-1
i yi, where Λ = LL⊤. If Λ accurately models the correlation

between elements of yi, the elements xi will be uncorrelated. We examined the results for

the test satellites previously mentioned.
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Figure 1.5. Autocorrelations of vectors x1,x2, and x3 when Λ was an AR(1) matrix.
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Figure 1.6. Autocorrelations of vectors x1,x2, and x3 when Λ was a HODLR matrix.
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Figure 1.7. Autocorrelations of vectors x1,x2, and x3 when the the Cholesky factor of
Λ had 4 nonzero subdiagonal bands.
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Figure 1.8. Autocorrelations of vectors x1,x2, and x3 when the inverse of the Cholesky
factor of Λ had 4 nonzero subdiagonal bands.
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1.5.1 Autoregressive Matrix

The variables x1,x2, and x3 had substantially less autocorrelation than y1,y2, and

y3 (Fig. 1.5). However, autocorrelations of 0.2−0.25 were still common for lags two through

five.

1.5.2 HODLR Model

The first autocorrelations are all strongly negative, ranging from about −0.5 to −0.75,

while the second autocorrelation is often positive (Fig. 1.6). In the three example satellites,

it was as high as 0.24 and 0.34.

Additionally, the implementation of this method was more than two hundred times

slower than the AR(1) and banded inverse Cholesky methods.

1.5.3 Banded Correlation

We fit four bands, therefore autocorrelation in the fitted results spiked at lag 5 (Fig-

ure 1.7). This approach would require at least as many bands as the number of lags that

feature non-zero autocorrelation. Because of this, a large number of bands − and therefore

parameters − will be needed in practice. Additionally, the number of bands needed is also

likely to increase as a function of sample size; given more frequent observations, there will

be more observations close enough in time to be correlated. For this reason this model was

not deemed to be an appropriate solution.

1.5.4 Banded Inverse Precision

We again fit four subdiagonal bands using the same approach as for the banded

Cholesky. The implementation was not manually optimized, and gradients were provided

by forward mode automatic differentiation rather than analytically. The linear algebra op-

erations were unrolled to allow the compiler to optimize when the number of bands is small.

Despite the lack of manual-optimization and the loop-carried dependencies preventing vec-

torization, this implementation was faster than the AR(1) and HODLR implementations

tested.
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This method also performed the best of the three tested at reducing autocorrelation

in y1,y2, and y3 (Fig. 1.8). However, these autocorrelations still regularly exceeded the null

sapling distributions 2.5% and 97.5% percentiles. We nonetheless deemed the performance

adequate for proceeding to fit the vectors x1,x2, and x3 with a mixture.
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Figure 1.9. Distribution of the Mahalanobis distances of three selected satellites, and
the theoretical X3 distribution.

36



Lag

Initial
Whitened

PreOrPost

1 2 3 4 5 6 7 8 9 10

-1.0

-0.5

0.0

0.5

1.0

W
hi

te
ne

d

-1.0

-0.5

0.0

0.5

1.0
In

iti
al

Au
to

co
rr

el
at

io
n 
by

 P
re

O
rP

os
t

Figure 1.10. Violin plots showing the distribution of autocorrelations at lags 1-10 of
the initial and whitened datasets for the second dimension.
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1.5.5 Applying the Banded Inverse Cholesky to All the Datasets

Having favored the banded inverse Cholesky, we applied it to data sets on 17,183

satellites and five propagation points. We focus on the second dimension (analogue of v),

which manifested the highest autocorrelations. Fig. 1.10 shows the distributions of initial

and whitened autocorrelations. While the bulk remained biased above 0, the mean is much

closer to zero and the variability in autocorrelation between satellites was substantially

reduced.

1.6 Covariance Realism: Mixture Distributions

Recall that if the multivariate normal assumption was correct and the propogated

covariance matrices accurate, then Σg = I3, so that

m2
n =

(
q2n + r2n + s2n

)
∼ X 2

3

mn =
√
q2n + r2n + s2b ∼ X3,

where m denotes the Mahalanobis distance. Using the banded inverse-Cholesky model

for autocorrelation, the observed distributions do not fit the theoretical X3 distribution,

regularly featuring heavier tails and different means. The apparent behavior of each satellite

is unique (Fig. 1.9). Comparing x1,x2, and x3, the results of the whitening process, of the

three satellites with a X3 distribution with a one-sample Cramér-von Mises test yielded p

values of< 10−30 for all three satellites.

For this reason, we seek to improve the accuracy of the covariance matrices by fitting

mixture distributions:

H (Σ,θ) =

G∑
g=1

θgN (0,Σg) ,

where
∑G

g=1 θg = 1 and θg ≥ 0 for g = 1, . . . , G. We will remain general in this section,

discussing the specific possibilities we evaluated in the following subsections.

Let the error distributions for the primary and secondary be fp and fs, respectively.

In the calculation of Pc, these are typically both assumed to be multivariate normal, as in

section 2.2. We can still utilize this scheme for evaluating Pc when substituting fs for a
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mixture of multivariate normals, fs =
∑G

g=1 θgfs,g (s).

Pc =

∫ ∫
|p−s|<HBR

fp (p) fs (s) dpds

=

∫ ∫
|p−s|<HBR

fp (p)

 G∑
g=1

θgfs,g (s)

 dpds

=

G∑
g=1

θg

∫ ∫
|p−s|<HBR

fp (p) fs,g (s) dpds.

We can calculate the probability of collision using our mixture distributions by performing

a weighted sum of the Pc calculations using each mixture component.

To evaluate the accuracy of our mixtures distributions, we performed five-fold cross-

validation on five different propagation points for each satellite. To assess the fits, we then

generate a large number of samples m from the mixture distributions, weighing each sample

by the probability of the corresponding component. We then smooth the samples with a

weighted kernel density estimate, and use them to calculate one-sample Cramér-von Mises

test statistics.

1.6.1 Percentile Matching

Hejduk and Johnson (2016) discussed the problem and provided a history of ap-

proaches. Unfortunately, earlier authors and practitioners did not have information on

residuals available, and thus these solutions were ad hoc and not data driven. The authors

proposed a new method, percentile matching, taking advantage of this data.

Formulating this method as a mixture, given a data set of N observations so that

q, r, and s are vectors of length N , we have

H (Σ,θ) =

N∑
n=1

1

N
N

0,
FX 2

3

(
n

N+1

)
m2

(n)

I3

 , (1.1)

where FX 2
3

(
n

N+1

)
is the cdf of the X 2

3 distribution, and m2
(n) denotes the nth-largest squared

Mahalanobis distance.
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1.6.2 Finite Scalar Mixture

Laurens et al. (2017) proposed a small finite mixture of scale factors. Precise details

on the method and implementation were sparse. Therefore, we cite them as the progenitor

of the method discussed here and develop an implementation of their model that we believe

to be in the same vein as their proposal.

Here, the model is simply:

H (Σ,θ) =

G∑
g=1

θgN
(
0,σ2

gI3
)
.

Laurens et al. (2017) considered a variety of values of G, using undisclosed criteria

not only to fit the model but to choose an appropriate scale value for each particular data

set. We instead used G = 4 and the maximum likelihood estimate of θ̂ and σ̂, employing

the quasi-Newton BFGS algorithm with a second-order backtracking line search as usual

for multivariate optimization problems. We chose a four component mixture because this

was the largest number of components Laurens et al. (2017) reported to fit, and mixtures

with more components are more flexible. Maximum likelihood is a standard non-Bayesian

means of finding point estimates, and the BFGS algorithm is a reliable means of solving for

local extrema numerically.

1.6.3 Interior Matrix Mixture.

We propose a mixture model using matrices rather than scalar scale factors. The

provided covariance matrices may be biased not only in magnitude, but in orientation and

shape. That is, we propose the mixture model with G groups:

H (Σ,θ) =

G∑
g=1

θgN (0,Σg) , (1.2)
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Figure 1.11. Histogram of the 3,951,260 log Cramér-von Mises test statistics.
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Table 1.1. Mean effects and standard deviations on the logarithm of Cramér-von
Mises test statistics; lower values indicate better fits.

Parameter Mean St. Dev Mean
St. Dev

Prop Point 5 0 0
Prop Point 7 0.01671 0.00159 1.052
Prop Point 8 0.00097 0.00159 0.613
Prop Point 9 0.00091 0.00159 0.575
Prop Point 10 0.00472 0.00159 2.972

X 2
3 0 0

Gibbs: 2 -1.617 0.00213 -758
Gibbs: 4 -1.818 0.00213 -853
Gibbs: 6 -1.863 0.00213 -874
Gibbs: 8 -1.870 0.00213 -877
Gibbs: 12 -1.848 0.00213 -867
Gibbs: 16 -1.800 0.00213 -844

Percentile Matching -1.443 0.00213 -677
Finite Scalar Mixture -1.349 0.00213 -633

We have three sets of unknowns in this model:

• θ, the vector of probabilities of group membership.

• g, vector of group memberships.

• Σg, the covariance matrix corresponding to each mixture component.

To enable efficient Gibbs sampling, we assign an Inverse-Wishart(Ψ0, ν0) prior to each

Σk and a Dirichlet(α) to θ. In particular, we used Ψ0 = bI3, ν0 = 5, and αg =
1.5G−g

G . We

chose the Inverse-Wishart priors so that the prior expected value of each covariance matrix

is I3, while the prior variance is undefined, making the prior relatively non-informative.

The choice for αg was to place a decreasing relative prior likelihood on each subsequent

group. That is, the prior probability of membership in group g is 1.5 times greater than

the likelihood of membership in the following group, g + 1. Let X =

[
x1 x2 x3

]
,
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Then we can implement a Gibbs sampler using the following full conditionals (Smith

and Roberts, 1993):

Σg|g,X ∼ Inverse-Wishart
(
Γg, ν0 +

T∑
t=1

1g (gt)

)

Γg = Ψ+

T∑
t=1

1g (gt)


Xt,1Xt,1 Xt,1Xt,2 Xt,1Xt,3

Xt,2Xt,1 Xt,2Xt,2 Xt,2Xt,3

Xt,3Xt,1 Xt,3Xt,2 Xt,3Xt,3


θ|g,X ∼ Dirichlet

(
α1 +

T∑
t=1

11 (gt) , α2 +
T∑
t=1

12 (gt) , . . . , αG +
T∑
t=1

1G (gt) ,

)

gt|Σ1,Σ2, . . . ,ΣG,θ ∼ Categorical (ρ1, ρ2, . . . , ρG)

ρg =

θgf

([
Xt,1, Xt,2, Xt,3

]
,0,Σg

)
∑G

j=1 θjf

([
Xt,1, Xt,2, Xt,3

]
,0,Σj

) ,
where f is a trivariate normal pdf, and 1x (() y) is the indicator function, equal to 1 if

y ∈ x or y = x, and 0 otherwise. The implementation of this sampler was optimized

for run-time performance, sampling approximately two thousand times faster than a JAGS

implementation on x86_64 CPUs supporting the AVX512F instruction set. Julia, C++,

and C++/Fortran implementations are available on GitHub under the open source MIT

license.

1.6.4 Assessing Results

We assessed the model fit for 17,865 satellites, calculating a total of 3,961,260 Cramér-

von Mises test statistics. The logarithm of the distribution was only slightly skewed

(Fig. 1.11) and reasonably bell shaped, so that a normal model was deemed appropriate.

We fit a standard ANOVA-style model on the Cramér-von Mises statistics recorded

during the cross-validation assessment:

log (cvms,p,m,i) = µs + τp + αm + ϵi,

where µs, τp, and αm refer to the satellite, propogation point, and method mean effects.

For identifiability, we set τ5 = 0 and αnominal = 0. That is, the 5th propogation point
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and nominal, X 2
3 models were treated as baseline effects. Posterior means and standard

deviations are shown in Table 1.1. Note that lower values correspond to higher p-values

and better fits.

Propogation point 10 tended to be fit less well by the nominal covariance matrices

than the others, P (τ10 > τi, i = 5, 7, 8, 9) = 0.96. The differences between methods were

more drastic, with negligible overlap in the posterior distributions. For example, using

Monte Carlo to sample from the posterior normal distribution, we calculated that the

posterior probability that the Gibbs mixture with 8 components is the most effective method

as greater than 0.999.

1.7 Assessing Conjunctions With Nominal Pc > 10−10

We assessed a set of 7,564 conjunction events to evaluate how the methods impacted

the nominal Pc calculations. Given a mixture model, we can calculate Pc as

Pc =

∫ HBR

−HBR

∫ x0+
√
HBR2−y2

x0−
√
HBR2−y2

f(x, y)dxdy

=

∫ HBR

−HBR

∫ x0+
√
HBR2−y2

x0−
√
HBR2−y2

G∑
g=1

θgfg(x, y)dxdy

=

G∑
g=1

θg

∫ HBR

−HBR

∫ x0+
√
HBR2−y2

x0−
√
HBR2−y2

fg(x, y)dxdy.

That is, the resulting Pc is a weighted average of the Pc of each mixture component. If each

distribution fg is a multivariate normal, we can efficiently calculate each constituent Pc as

in section 2.2.3.
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Figure 1.12. Emperical CDF of the log-ratio of mixture Pc values to nominal Pc values.
0 indicates equality.
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Figure 1.13. Emperical CDF of the expected logarithm of the cube root of the ratio
of the determinants of the adjusted to the nominal covariance matrices.
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Method by Nominal Level
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Figure 1.14. Plot showing reclassification rate of Pc threat levels of each method versus
the nominal Pc value. Red threads correspond to Pc ≥ 10−4, yellow 10−4 > Pc ≥ 10−7,
and green are those such that 10−7 > Pc.

Fig. 1.12 displays an emperical cdf of the log-ratio of Pc values of the mixture models

versus the nominal value. While we restricted our analysis to events with nominal Pc >

10−10, we did not censor our estimated Pc values, explaining some of the extremity on

the left side of the plot. The Bayesian Inverse-Wishart models and percentile matching

CDFs were broadly comparable, with the Bayesian Inverse-Wishart model with 16 mixture

components broadly assigning the highest Pc values. All of these assigned roughly half of

conjunctions a lower than nominal Pc, and the remaining half a higher Pc. The FSM model

on the other hand assigned the lowest probabilities of collision, with roughly two thirds

assigning lower than nominal Pc values. Figure 1.13 shows the distribution of the mean

logarithm of the cube root of the ratio of mixture covariance matrix determinant to nominal
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Table 1.2. Percentage agreement on color classification between methods.

Gibbs: 2 Gibbs: 4 Gibbs: 6 Gibbs: 8 Gibbs: 12 Gibbs: 16 PM FSM Nominal
Gibbs: 2 1.0 0.9747 0.9642 0.9582 0.9484 0.9421 0.9126 0.7939 0.6909
Gibbs: 4 0.9747 1.0 0.9855 0.9771 0.9639 0.9541 0.9149 0.7992 0.695
Gibbs: 6 0.9642 0.9855 1.0 0.9906 0.9753 0.9644 0.9101 0.7977 0.6963
Gibbs: 8 0.9582 0.9771 0.9906 1.0 0.9841 0.9728 0.9086 0.7949 0.6953

Gibbs: 12 0.9484 0.9639 0.9753 0.9841 1.0 0.9873 0.9057 0.7955 0.6939
Gibbs: 16 0.9421 0.9541 0.9644 0.9728 0.9873 1.0 0.9004 0.7944 0.6934

PM 0.9126 0.9149 0.9101 0.9086 0.9057 0.9004 1.0 0.8061 0.7044
FSM 0.7939 0.7992 0.7977 0.7949 0.7955 0.7944 0.8061 1.0 0.7162

Nominal 0.6909 0.695 0.6963 0.6953 0.6939 0.6934 0.7044 0.7162 1.0

covariance matrix determinant. This proxy for relative covariance matrix magnitude reflects

the generally lower Pc values assigned by the FSM model, by showing it favors generally

smaller covariance matrices.

A discrete threat-level hierarchy is often used in practice to simplify decision making

and summarize conjunction risk. In particular, conjunctions may be classified as “red” if

they have Pc ≥ 10−4, “yellow” if they have 10−4 > Pc ≥ 10−7, and green if 10−7 > Pc.

Fig. 1.14 assesses the extent to which conjunctions given these classifications have been

reclassified. Percentile matching, as the most conservative method in Fig. 1.12, is the most

likely to reclassify a nominally “green” event as “yellow”, but least likely to reclassify a

nominally “red” event. The two component Gibbs sampler reversed these behaviors, being

least likelty to reclassify a “green” event, and most likely to reclassify a “red” event. These

differences are deemed operationally significant.

Table 1.2 shows percentage agreement in classification between each of the methods

and the nominal Pc values. The matrix-mixture models using a Gibbs sampler agreed in

classification more strongly than the other approaches.

1.8 Discussion on Operational Implementation

Conjunction assessment operations are typically conducted by calculating the nominal

probability of collision (Pc) and pursuing a mitigation action when that probability exceeds

a given threshold; there are of course some additional subtleties, but direct use of the

Pc in this way is the standard procedure. It has been known for some time that object

covariances are not entirely realistic, but the severity of the problem and the overall effect

on the assessed risk of conjunctions had not been established, a difficult undertaking anyway
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given that there are no single “truth” covariances that can be constructed ex post facto to

determine what the actual collision probability in fact was. The present study, by pursuing

a sophisticated technique that characterizes and compensates for data autocorrelation and

then models historical Mahalanobis distance distributions by as much as a 16-fold mixture

model with a different derivative covariance for each mixture, comes about as close as

possible to a definitive solution for the Pc, given the actual data for the event (represented by

the nominal states and covariances) and adjustments due to historically-observed covariance

errors for the particular secondary object. One could of course deploy this complex model for

operational use, accepting the computational and software maintenance costs as necessary

investments for higher-fidelity results. A second approach is to examine the present study’s

comparative results among all of the different models to determine whether any of the

simpler models may render acceptable performance and therefore present themselves as

candidates.

It is interesting that all of the models have the overall effect of downgrading serious

events (red to yellow and yellow to green) and moderately upgrading dispensable events

(green to yellow). As pointed out previously, however, different models do this with different

intensities: the finite scalar mixture model recategorized the most aggressively while the

percentile-matching and Gibbs models the most leniently.

One approach that can be taken is to begin an operational roll-out of the overall

functionality using the percentile-matching approach, arguably the simplest of all the models

to implement. Because this model recategorizes similarly to the Gibbs models, and does so

more leniently for red events than the alternatives, it is conservative and an approach with

which satellite conjunction assessment practitioners are likely to be the most comfortable,

and it still substantially outperforms the use of the nominal Pc only. As comfort with this

alternative calculation approach grows, operations personnel can decide whether moving to

one of the more sophisticated models makes sense and seems desirable as a way to focus

conjunction mitigation efforts on only those events that are the most likely actually to be

dangerous.
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CHAPTER TWO

Third Order Asymptotic Approximations for Sample Size Determination

2.1 Introduction

Diagnostic testing is commonly used in the areas of medicine, epidemiology, and

quality control. It is often the case that an infallible gold standard is either too expensive

or is not available, meaning most if not all subjects are classified with one or more fallible

tests. Considerable work has been done on combining the results of multiple fallible tests

in order to obtain more accurate estimates of population prevalences along with estimates

of the sensitivities and specificities of the tests. As more complicated models are proposed

for inference, simulation procedures that are used to study the properties of the estimation

methods and for determining sample sizes have become more computationaly expensive.

Bayesian approaches for estimation of a proportion in the presence of misclassification

with multiple diagnostic tests have been considered by Joseph et al. (1995) and Johnson et al.

(2001) for the conditionally independent case and extended to the conditionally dependent

case by Dendukuri and Joseph (2001), among others. Clarke and Jones (2015) consider

an interesting extension where multiple tests are used, but for some subjects not all the

tests are applied. Extension of these models to the logistic regression case has also been

considered by Cheng et al. (2009).

Because of the expense of administering the diagnostic tests, sample size determina-

tion has been an important part of these studies. Bayesian sample size determination is

often computational in nature. Wang et al. (2002) discuss a simulation based approach to

sample size determination based on a two priors approach. One prior distribution, some-

times referred to as the “design” or “sampling” prior, is used to simulate data sets from

the prior predictive distribution accounting for pre-experimental uncertainty. The second

prior distribution, called the “analysis” or “fitting” prior is used in the computation of the

posterior distribution and posterior quantities of interest. Thus when using these methods
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to determine a sample size, a large number of data sets must be generated and then simu-

lation based approaches are usually used to compute the posterior distribution, leading to

considerable computing time even for problems of modest complexity.

Bayesian approaches to sample size determination for models with misclassification

include Rahme et al. (2000), Stamey et al. (2005), Stamey and Gerlach (2007), Cheng et al.

(2009), and Wang et al. (2017), among others. Most previous research in this area has used

packages such as OpenBUGS, JAGS, or Stan to do the posterior computation via Markov

Chain Monte Carlo (MCMC). The MCMC approximations to the posteriors often require

significant computing time. Stamey et al. (2005) use a first order normal approximation

to the postrerior distribution, which is shown to be accurate for large sample sizes for

comparing two binomial proportions when counts are misclassified. Ventura and Reid (2014)

provide an approach to determine third-order approximations to posterior distributions,

allowing for highly accurate approximations without requiring as much computational time

as MCMC methods do.

Here, we extend the work of Stamey et al. (2005), who developed a procedure for

determining the sample size required for comparing two proportions with two conditionally

independent tests using a first order normal approximation, in two ways. First, the criterion

they considered was interval based and was primarily for the two response proportions. Here,

we consider a non-inferiority test for determining if the sensitivity and/or the specificity

of a cheaper test can be considered non-inferior to a more expensive test. Second, we use

a much more accurate, third order approximation to the posterior that can be used for

smaller sample sizes.

The rest of the paper is organized in the following way. In Section 3.2 we discuss

the models for two diagnostic tests assuming the tests are conditionally independent. In

Section 3.3 we review two Bayesian sample size determination criteria. In Section 3.4 we

discuss the third order approximation method and give details for our implementation. In

Section 3.5 we apply the method to two situations, an interval based method for estimating

a single population prevalence and a hypothesis testing method to show non-inferiority for
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Table 2.1. Observed data from diagnostic tests for each pathway, where each test is
either positive (+) or negative (0).

+ -
+ n1 n2
- n3 n4

N

the sensitivities of two diagnostic tests. Finally, we provide concluding comments in Section

3.6.

2.2 Models

Suppose interest is in estimating the parameters associated with a prevalence study

with multiple imperfect diagnostic tests. Let D = 1 denote the subject is truly diseased

and let D = 0 denote not diseased. Let Tj = 1 if the jth test is positive while Tj = 0 if

the test is negative. We denote the prevalence of the ith population as πi = Pr (D = 1),

the sensitivity of the jth test as Sj = Pr (T = 1|D = 1) and the specificity of the jth

test as Cj = Pr (T = 0|D = 0). For the sample size determination procedure, interest

may be in the population prevalences, the sensitivities, specificities or a function of the

parameters such as the difference in the sensitivities. Significant prior information is needed

if only a single population is considered. Adding more distinct populations with different

population prevalences adds degrees of freedom useful for estimating parameters as long

as the sensitivities and specificities remain constant across the populations (Johnson et al.,

2001).

The testing procedure works as follows. For a total sample of size Ni from the ith

population, subjects are assessed with both tests. The observed data for a single population

is as displayed in Table 2.1. The quantities n1−n4 form a 2×2 table as displayed in Table 2.1.

When using Gibbs sampling to approximate posterior distributions or the EM al-

gorithm to get maximum likelihood estimators (MLE) or posterior modes, the observed

data is often augmented with the unobserved true positives in each of the categories, which

simplifies computations because most full conditionals are known distributions. See Joseph
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et al. (1995) for a one population example and Johnson et al. (2001) for a multiple popula-

tion example. For the approximations we implement here, the likelihood based only on the

observed data is used. The model uses the following multinomial probabilities:

π1 = πS1S2 + (1− π) (1− C1) (1− C2)

π2 = πS1 (1− S2) + (1− π) (1− C1)C2

π3 = π (1− S1)S2 + (1− π)C1 (1− C2)

π4 = π (1− S1) (1− S2) + (1− π)C1C2.

For the one sample, two test case, π is the population prevalence, S1 and S2 are

the sensitivities of the two tests, and C1 and C2 are the specificities of the two tests. The

likelihood is then found by raising each of these probabilities to the corresponding ni in

Table 2.1.

We assume beta prior distributions for all prevalences, sensitivities and specificities.

For the conditional independence model with just two diagnostic tests, moderately infor-

mative priors are required for two parameters to achieve the partial identifiability discussed

in Gustafson et al. (2014).

As Hui and Walter (1980) point out, the one population model where both sensitiv-

ities and specificities are less than 1 is over-parameterized, regardless of whether the tests

are conditionally independent or correlated. However, adding a second, distinct, popula-

tion yields a model that is identifiable for the conditionally independent case. While the

likelihood technically has two maxima, one of these, without the aid of prior information,

is a mirror image of the other where all sensitivities and specificities equal one minus that

of their mirrored counterparts. That is, the labels have been swapped. Constraining these

parameters, done here with the trivial constraints that Sj > 0.5 and Cj > 0.5, yields an

identifiable model.

One motivation for adding multiple populations is to be able to estimate the sensi-

tivities and specificities without having to rely on strongly informative priors. Secondly,

interest can be in the simultaneous estimation of multiple population prevalences, possibly
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in a hierarchical model, such as Hanson et al. (2003). For these models, we assume the

sensitivity and specificity are all constant across the populations.

The full likelihood for the R population case is a simple extension of the one popu-

lation case where the likelihood is the product of R one-sample likelihoods with a different

prevalence for each population.

2.3 Sample Size Determination

Bayesian sample size determination often uses two sets of prior distributions in the

sample size algorithm. These have been referred to as ‘sampling’ and ‘fitting’ priors by

Wang et al. (2002) and ‘design’ and ‘analysis’ priors by Brutti et al. (2008). The idea is as

follows.

The design priors, denoted by pD(θ) are used at the design stage of the experiment

and represent information about the portion of the parameter space the experimenter is

most interested in investigating. If interest is in a single parameter, for instance one of the

population prevalences, this could include a point mass prior on a specific value of interest

or a beta distribution that allows for a range of values, weighted by the elicited parameters

of the beta distribution. The design prior is then used to compute a prior predictive density,

mpD =

∫
θ
f(yn, θ)pD(θ)dθ

where the data vector, yN , is indexed with N to indicate the particular sample size being

considered. This prior predictive density is then used as a weighting function, giving data

sets more consistent with the design prior more weight than those that are not. Sample

size determination can then be performed using interval width, hypothesis testing, or other

types of criteria.

The analysis priors, denoted pA(θ), are prior distributions that will be used in the

final analysis of the observed data in the actual experiment and are used in the sample size

determination scheme in the analysis of the data sets determined from the prior predictive

density. For instance, suppose interest is in testing the hypothesis that the sensitivity of

test 1 is greater than the sensitivity of test 2, thus interest is in the posterior probability

PrpA (S1 > S2|yn). Note that this probability is computed based on the analysis prior.
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For illustrative purposes, we consider two criteria applied to two different examples.

Modifying our examples to other criteria or other scenarios is straight forward.

2.3.1 Single Prevalence Using Average Length Criterion

For a first example, we assume data for two distinct groups are available and interest

is in estimating the prevalence of the first group, π1, with a 95% interval of length l using the

average length criterion (ALC) of Joseph et al. (1997). The average length criterion finds

the sample size required that guarantees a pre-specified probability content and achieves a

desired interval width on average. Mathematically, this is defined by

EmpD =

∫
Y
lA(yn)mD(yn)dyn

where lA(yn) is the length of the (1−α)100% interval computed using the analysis prior. The

integral averages over the sample space, yielding an average width for the chosen value of N .

We implement a numerical search to find the value of N where the desired width is obtained.

After eliciting design and analysis priors, we proceed using the following algorithm.

(1) All model parameters are generated from the associated design priors. If point

mass design priors are used, the same parameter values are used for all iterations

in the simulations.

(2) For sample size N , generate counts n1 through n4 using the appropriate likelihood,

accounting for the number of populations being sampled.

(3) Using the analysis priors, fit the Bayesian model and compute the (1 - α)100%

interval for π1.

(4) Repeat steps 1 - 3 B times in order to get a Monte Carlo estimate of the average

width for the sample size N .

(5) Compute the average width of the B intervals.

(6) Repeat steps 1 - 5 in a numerical search procedure to determine the required sample

size for the desired average interval width.
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We initiate the search by providing an initial sample size N1, and recording the

expected interval width at
⌊
N
2

⌋
, N , and 2N , where ⌊x⌋ rounds x down to the nearest

integer. Then, in order to propose additional sample sizes in our numerical search, we used

ordinary least squared regression to fit l = α + β log (N), recomputing estiamtes α̂ and β̂

after each newly evaluated N on the most recent 75% of evaluated sample sizes. The next

proposed size is then calcualted as
⌈
e

D−α̂

β̂

⌉
, where D is the desired interval width, and ⌈x⌉

rounds x up to the nearest integer. If we already evaluated the proposed N , we evaluated⌊
e

D−α̂

β̂

⌋
instead. If this too had been evaluated, we terminate the search.

2.3.2 Determining Sample Size for Test of Non-Inferiority

Next, we suppose interest is in showing the sensitivity of a new test is non-inferior to

the sensitivity of a standard test. That is, we want to show the sensitivity of the less expen-

sive test is within some non-inferiority margin, δ, that is specified by the study designer. We

extend the test and sample size criterion of Chen et al. (2011) to the misclassification model

we consider here. Define h(θ) = log
(
S2−0.5
1−S2

)
− log

(
S1−0.5
1−S1

)
where S1 is the sensitivity of

the cheaper test and S2 is the sensitivity of the more expensive test. Interest is in testing

H0 : h(θ) ≥ δ versus H1 : h(θ) < δ.

Following Chen et al. (2011), the following quantity is crucial to the sample size

determination scheme:

βNd = Ed[IP (h(θ) < δ|yn) ≥ γ] (2.1)

This quantity takes the expectation across the prior predictive distribution from the

design prior of the probability of accepting H1, that is, non-inferiority. Two design priors are

required, one for under the null hypothesis and one for under the alternative. This is so both

Type I and Type II errors can be controlled. The posterior probability, P (h(θ) < δ|yN ), is

computed based on the analysis prior. The algorithm is as follows:

(1) All model parameters are generated from the associated design priors. If point

mass design priors are used, the same parameter values are used for all iterations

in the simulations.
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(2) For sample size N , generate counts n1 through n4 using the appropriate likelihood.

(3) Using the analysis priors, fit the Bayesian model and compute the Pr (h(θ) < δ|yn).

If this probability is greater than γ, record a 1, otherwise, a 0.

(4) Repeat steps 1 - 3 B times in order to get a Monte Carlo estimate of the expectation

(3.1) for sample size n.

(5) Compute the expectation.

(6) Repeat steps 1 - 5 in a numerical search procedure to determine the required sample

size both under the null and alternative hypotheses.

As in Chen et al. (2011), to determine the total required sample size we choose the maximum

of

nα0 = min
[
n : β(n)πd0

≤ α0

]
and

nα1 = min
[
n : β(n)πd1

≥ 1− α1

]
where β(n)πd0 is the probability of a Type I error using the design prior for the null hypothesis

and β
(n)
πd1 is the power computed using the design prior for the alternative hypothesis.

Our numerical search begins by evaluating an initially proposed sample size, and

determining if it is too large or too small by our criterion. We then iteratively halve or

double the sample size, until we have found two sample sizes, Nl and 2Nl, where the former

is too small and the latter too large. From here, we switch to a bisection algorith, iteratively

bisecting the interval until we have converged on a single sample size, the minimum meeting

our criteria.

2.4 Third Order Asymptotic Approximation

The approximation method we use here is an adaptation of the third order asymptotic

approximation for a marginal posterior distribution presented by Ventura and Reid (2014),
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specifically, the posterior can be approximated with:

πm(ψ|y) ≈
1√
2π

exp
(
ℓp (ψ)− ℓp

(
ψ̂
)) ∣∣∣j (ψ̂, λ̂)∣∣∣ 12∣∣∣jλλ (ψ, λ̂)∣∣∣ 12 . (2.2)

One difference from the notation of Ventura and Reid (2014) is that we let ℓ be the

product of the likelihood and prior, so that we no longer have additional terms for the prior.

The parameter of interest is ψ, λ are the parameters that are marginalized out, hats refer

to the modes, j (ψ,λ) to the observed information matrix and jλλ (ψ,λ) is the λλ block

of the information matrix. λ̂ values are always maximized conditioning on the concurrent

value of ψ. Note that ∣∣∣j (ψ̂, λ̂)∣∣∣ 12 =
∣∣∣jp (ψ̂)∣∣∣ ∣∣∣jλλ (ψ̂, λ̂)∣∣∣ 12 ,

where jp
(
ψ̂
)

is the second derivative of the profile likelihood.

Additionally, the approximation to the cdf is∫ ψ0

−∞
πm (ψ|y) dψ ≈ Φ

(
−r∗p (ψ0)

)
r∗p (ψ0) = rp (ψ) +

1

rp (ψ)
log

(
qB (ψ)

rp (ψ)

)
rp (ψ) = sign

(
ψ̂ − ψ

) [
2
(
ℓp(ψ̂)− ℓp(ψ)

)] 1
2

qB (ψ) = ℓ⊤p (ψ)

∣∣∣jλλ (ψ, λ̂)∣∣∣ 12∣∣∣j (ψ̂, λ̂)∣∣∣ 12 .

Here, ℓ⊤p (ψ) is the derivative of the profile log likelihood (profile score). Let s
(
ψ, λ̂

)
refer to the full score, and subscripts to corresponding blocks. To avoid requiring an explicit

form of the profile likelihood, we can calculate the profiled score as

ℓ⊤p (ψ) = sψψ, λ̂− sλ

(
ψ, λ̂

)
jλλ

(
ψ, λ̂

)-1
jλψ

(
ψ, λ̂

)
.

Our implementation of the asymptotic posterior requires only a function that takes

unconstrained parameter values as input and provides the logaritm of the product of the

likelihood and the prior. Automatic differentiation is used to obtain all required derivatives,

and we avoid requiring explicit derivatives of the profile likelihoods as above by expressing
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them as functions of the full likelihood. We then use BFGS for all maximizations. To find

roots to produce credible intervals, we first used Newton-Raphson iterations, and once the

root search traversed both sides of the interval, it transitions to Brent’s method (Brent,

2013).

Two limitations of our approach is that it only produces marginal distributions, and

requires unconstrained parameters. Combined, these limitations means that any quantity

of interest must be a one-to-one function of an unconstrained parameter in the model. This

is our reason for defining h(θ) = h(S1, S2) = log
(
S2−0.5
1−S2

)
− log

(
S1−0.5
1−S1

)
. We define η1 and

η2 as unconstrained parameters, defined on the entire real line. Then we let

h(θ) = η1

S1 =
exp (η1 + η2) + 0.5

exp η1 + η2 + 1

S2 =
exp (η2) + 0.5

exp η2 + 1
.

The log jacobian of these transformations is

2 log(0.5) + log (2S1 − 1) + log (2− 2S1) + log (2S2 − 1) + log (2− 2S2) .

The other jacobians are calculated similiarly.

2.4.1 Comparison of Asymptotic Intervals with Markov Chain Monte Carlo

Table 2.2. Sample data sets for two populations with same layout as 2.1.

+ - + -
+ 4 2 21 2
- 14 80 13 64

100 100

We generated two data sets with N = 100 using prevalences of 0.05 and 0.25, re-

spectively, and S1 = 0.9, S2 = 0.95, C1 = 0.85, C2 = 0.97 (2.2). We used uniform

analysis priors for all constrained parameters. We fit the model using the No U-Turn Sam-

pling (NUTS) Hamilitonian Monte Carlo (HMC) algoritm, drawing 100,000 samples from
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Table 2.3. Posterior Quantiles for Hamiltonian Monte Carlo and our 3rd order
asymptotic approximation.

Parameter Method ESS 2.5% 25& 75% 97.5%
π1 Asymptotics N/A 0.01738 0.04307 0.089 0.1613
π1 NUTS 1,138,000 0.01718 0.04413 0.09125 0.1646
π2 Asymptotics N/A 0.17 0.232 0.3128 0.3992
π2 NUTS 1,631,000 0.1718 0.2351 0.3159 0.4017

h(S1, S2) Asymptotics N/A −2.35 0.2208 2.47 5.091
h(S1, S2) NUTS 968,000 −2.222 0.2957 2.526 5.316
h(C1, C2) Asymptotics N/A −4.768 −2.731 −1.581 −0.6337
h(C1, C2) NUTS 667,000 −4.674 −2.712 −1.563 −0.592

S2 Asymptotics N/A 0.5414 0.6968 0.8896 0.9878
S2 NUTS 1,294,000 0.5382 0.6885 0.8835 0.9865
C2 Asymptotics N/A 0.9413 0.9678 0.9883 0.9885
C2 NUTS 1,685,000 0.9414 0.9681 0.9883 0.9884

18 chains. The minimum effective sample size (ESS) among the parameters was 667,000,

so that we can use the samples as a low-error approximation of the true posterior.

The resulting 50% and 97.5% equal tailed credible intervals are displayed in 2.3

alongside the corresponding intervals produced by the asymptotic approximation.

2.5 Examples

2.5.1 Estimating a Single Prevalence

We use the summaries of the real data analyses described in Clarke and Jones (2015)

to motivate our examples. They considered estimation of rates of Pucciniapsidii (P.psidii)

using two different labs for testing where the labs may differ in terms of sensitivity and

specificity. Many observations were tested in both labs, but some were only tested in one

lab or the other. In their work, they found that Lab 2 had higher sensitivity and specificity

than Lab 1.
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Table 2.4. Design and analysis priors for sample size determination with the average
width criteron.

Parameter Design Prior Analysis Prior
π1 0.05 Beta(1,1)
π2 0.15 Beta(1,1)
S1 Beta(87,13) Beta(1,1)
C1 Beta(83,17) Beta(1,1)
S2 Beta(95,5) Beta(1,1)
C2 Beta(94,6) Beta(1,1)

We first consider finding the sample size for estimating a prevalence with a specified

width. The design and analysis priors are provided in Table 2.4. The design and analysis

priors for the sensitivities and specificities have the same means, but are considerably more

informative at the design stage. Fixed values are used for the prevalences at the design stage

while diffuse priors are used at the analysis stage. We applied the algorithm to determine
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Figure 2.1. Distribution of interval widths as a function of sample size.
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Table 2.5. Average Length Criteria search.

Iteration N Averager Width
0 500 0.1615
0 1000 0.1209
0 2000 0.08649
1 1529 0.09846
2 1509 0.09925
4 1504 0.09932
5 1500 0.09925
6 1496 0.09991
7 1483 0.09991
8 1482 0.09972
9 1481 0.1003

the sample size required for a 95% interval with an average width of 0.1. Simulating 20,160

data sets per sample size, and beginning with an initial sample size of 1000, the search

proceeds as in Table 2.5 before terminating in about 4.25 seconds. Despite the large number

of simulated data sets per sample size, the Monte Carlo error still results in imprecission in

the search. Nonetheless, it quickly hones in on appropriate sample sizes. Figure 2.1 shows

how the distribution of interval widths at various sample sizes.

2.5.2 Power for Non-Inferiority

We next illustrate the procedure in a test for non-inferiority. Here we seek to find

the sample size required to determine the sensitivity of the less expensive test/lab is not

inferior to the more expensive one. This procedure could be expanded to simultaneously

test non-inferiority for the sensitivity and specificity. The design and analysis priors are

Table 2.6. Design and analysis priors for sample size determination for testing
non-inferiority.

Parameter Null Design Prior Alternative Design Prior Analysis Prior
π1 Beta(5,95) Beta(5,95) Beta(1,1)
π2 Beta(25,75) Beta(25,75) Beta(1,1)
S1 0.9 0.95 Beta(1,1)
C1 Beta(83,17) Beta(83,17) Beta(1,1)
S2 Beta(95,5) Beta(95,5) Beta(1,1)
C2 Beta(94,6) Beta(94,6) Beta(1,1)
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provided in Table 2.6. As described in Section 3.3.2, the algorithm needs to be run twice.

Once under the null and then under the alternative. Here, we set γ = 0.99 and δ = 0.81.

This choice of δ was so that if S2 = 0.95, S1 ≈ 0.9. For H0, we set S2 = 0.95 and S1 =

0.9 to determine the Type I error probability. For H1, we set both S2 and S1 = 0.95 to

determine the power.

N

0 5.0×10⁴ 1.0×10⁵ 1.5×10⁵ 2.0×10⁵

0.9
0.95

S₁

0.0

0.5

1.0

p

Figure 2.2. Distribution of interval widths as a function of sample size.

The algorithm found 80% power under H1 at a sample size of about 113, 190, and

that α ≈ 0.0437 < 0.05 at this sample size. Figure 2.2 shows how the power (yellow line)

and type 1 error rate (blue line) change as a function of sample size. The green and red

lines mark 80% and 5% rejection probabilities. While we have α < 0.05 with a sample size

sufficient for 80% power, α actually increases as a function of sample size over this range,

exceeding 0.05 by N = 200, 000.
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CHAPTER THREE

Totality of Evidence

3.1 What is Totality of Evidence?

DiMasi et al. (2016) reported that in 2013, the out-of-pocket and capitalized costs

for drug development were 1.861 and 2.87 billion US dollars respectively, with an annual

cost increase of 8.5% greater than inflation since the year 2000. Over this period, clinical

development times have increased for diabetes drugs from an average of 4.7 to 6.7 years,

while the drug approval success rate declined by 10 percentage

Figure 3.1. Estimated phase transition probability and overall clinical approval suc-
cess rates for self-originated new molecular entity (NME) and new therapeutically
significant biological entity (NBE) investigational compounds first tested in humans
anywhere between 1995 to 2007. Figure and caption reproduced from DiMasi et al.
(2016).
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points, or nearly half, from 21.5% to 11.83% over this period. This 11.83% figure is the

product of four individual transition probabilities for a new compound: the probabilities

of transitioning from Phase I to Phase II, from Phase II to Phase III, from Phase III to

submitting an application liscense, and finally from liscense submission to approval. See

Figure 3.1. Accurate internal modeling of the ultimate success probability can enable a

pharmaceutical company to reduce patient exposure to ineffective treatments and cut costs

by dropping drugs unlikely to be approved earlier, thus allowing a shift in focus to more

promising entities.

To this end, judicious modeling will take all available evidence accumulated in the

trials into acount. References to ‘totality of evidence’ in the literature frequently refer to

either meta-analysis (Krumholz, 2012; Lewis et al., 2005; Thorning et al., 2016) or a simple

aggregation of evidence, as in the step-wise approval process for biosimilars (Holzmann

et al., 2016; Strand et al., 2017). However, in this work, references to ‘totality of evidence’

refers narrowly to the case of incorporating different domains of data gathered in a clinical

trial into a single model to enhance understanding of a compound’s efficacy, safety, and

impact on quality of life. This has the potential to facilitate internal decision making.

Our methods aggregate measurements accross several health outcome domains. Our

objectives are similiar to those of Quality of Life (QoL) assessments, such as the Dementia

Quality of Life assessment (Brod et al., 1999), Diabetes Quality of Life assessment (Yildirim

et al., 2007), or the Diabetes 39 instrument (Boyer and Earp, 1997). These aggregate

responses over many different domains. Guyatt et al. (1986) discuss a methodology for

developing such assessments. In addition to these, models are likely to incoporate biomedical

measurements taken from patients during the trial.

In order to make decisions on whether to proceed with a drug’s development, we can

specify a utility function. Decision theory is a rich and deep field, beyond the scope of

this work. Multi-attribute utility theory is especially relevant here. For an overview of this

field see, for example, Mühlbacher and Kaczynski (2016). Rather than explicitly define a

utility function and seek to maximize its posterior expectation, we will base a hypothetical
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go/no-go decision on relatively simple functions of effect parameters, such as the difference

between sums of effect parameters between treatment and standard of care groups.

3.2 Motivating Example: Diabetes

Table 3.1. Domains and end points for diabetes example.

Domain Endpoint Abbreviation

Blood Measurements Glycohemoglobin A1c
Glomerular filtration rate GFR

Vitals Weight WT
Systolic blood pressure BP

Quality of Life assessment Energy and mobility EM
Diabetes control DC
Anxiety and worry AW

Consider a trial assessing a new drug’s impact on diabetes. In this trial, outcomes are

obsserved across three domains: blood measurements, vitals, and a quality of life assessment.

These domains and their constituent endpoints are summarized in Table 3.1. We will assume

we have results from a randomized clinical trial for two treatments, and that measurements

are taken periodically over time.

A difficulty in modeling multiple endpoints is that they may have different domains.

For example, A1c, GFR, weight, and systolic blood pressure are continuous and have pos-

itive support. QoL assessments, which are based on questionnaires, may be ordinal and

discrete. Additionally, while high GFR values are healthy, lower A1c, blood pressure, and

weight are preferred. In order to compare across endpoints and domains, we assume they

are transformed to have unbounded domains, with higher values preferred.

Another difficulty is that similar domains will likely have dependent endpoints. For

example, a patient’s unusually poor affect on a given visit may induce correlation across

domains. It may be tempting to model endpoints such as those in Table 3.1 as if they are

mututally independent. This allows straight-forward estimation of summary measures such

as mean change from baseline in A1c. However, if the correlations between parameters
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are large enough to cause computational problems when parameters are modeled jointly,

failure to model them will likely result in biased posterior estimates. Computational issues

can sometimes be addressed with reparameterizations. For example, correlation between

parameters can often be reduced by switching between centered and non-centered parame-

terizations, although which parameterization leads to the most efficient sampling may differ

between Gibbs sampling and Hamiltonian Monte Carlo (Monnahan et al., 2017).

Since ignoring dependencies between endpoints and across domains can miss impor-

tant aspects of their relationship, we move to a joint model.

3.3 Modeling Associations

In addition to correlation among endpoints in similar domains, there is a multilevel

aspect of such dependency. A drug that helps dementia patients by treating the under-

lying disease may be expected to improve both memory and mood. We can model this

relationship through a hierarchical prior structure. These hierarchical models also have a

natural interpretation: the drug treats the disease (modeled at a higher level in the herar-

chical structure), and we are measuring the symptoms (effects modeled at a lower level). A

hierarchical link models the extent to which the drug treats a disease, rather than affects

symptoms.

The ability to borrow information between parameters presupposes similarity in scale

between these parameters. For example, we may model the drug effect δ with an integrated

two-component prediction (ITP) model following Fu and Manner (2010):

δ = β

(
1− e−κt

1− e−κd

)
, (3.1)
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Figure 3.2. Months until 99% of the asymptotic value is reached as a function of κ.

where β controls the expected effect magnitude at the end of the trial, κ controls the

shape of drug response over time by controlling the rate at which the drug influence levels

off (Figure 3.2), and d is the duration of the trial. To borrow across endpoints and domains,

we would have to apply this model as the expected value for each endpoint.

3.4 Ideal Model

Let Yn = [yn,t,k] be a T ×K matrix of observations for the nth patient at time t and

endpoint k, n = 1, . . . , N, t = 1, . . . , T, and k = 1, . . . ,K. We assume that

Yn ∼ N (f (θ,Xn) , C (θ,Xn)) , (3.2)

where θ is a vector of parameters, f is the expected value function, and C is the covariance

function. Here, Xn is a T × P matrix of covariates, such that the tth row consists of the P

covariates measured at time t.

As our covariance function, we let
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C (θ,Xn) = Σ⊗ AR (ρ,Xn) ,

where Σ is a general covariance matrix, ‘⊗’ refers to the Kronecker product, and

AR (ρ,Xn) =


1 ρ

xn,2,1−xn,1,1 ρ
xn,3,1−xn,1,1 ρ

xn,4,1−xn,1,1 . . . ρ
xn,T,1−xn,1,1

ρ
xn,2,1−xn,1,1 1 ρ

xn,3,1−xn,2,1 ρ
xn,4,1−xn,2,1 . . . ρ

xn,T,1−xn,2,1

ρ
xn,3,1−xn,1,1 ρ

xn,3,1−xn,2,1 1 ρ
xn,4,1−xn,3,1 . . . ρ

xn,T,1−xn,3,1

ρ
xn,4,1−xn,1,1 ρ

xn,4,1−xn,2,1 ρ
xn,4,1−xn,3,1 1 . . . ρ

xn,T,1−xn,4,1

...
...

...
...

. . .
...

ρ
xn,T,1−xn,1,1 ρ

xn,T,1−xn,2,1 ρ
xn,T,1−xn,3,1 ρ

xn,T,1−xn,4,1 . . . 1

 .
(3.3)

This allows us to express our model concisely as

Yn = jTβ⊤ ◦

(
1− e−Xnκ⊤

1− e−(xn,T,1jT )κ⊤

)
+ jTµ⊤ + ϵn,

where jT is a column vector of ones with length T , ‘◦’ refers to the Hadamard product, the

exponentiation and division operations are element-wise, and

ϵn ∼ MN (0,AR (ρ,Xn) ,Σ) .

Here ϵn is a T × K matrix, MN denotes the matrix-normal distribution, and AR is the

autoregressive matrix defined in (1).

Matrix-variate regression generalizes multiple and multivariate regression, allowing

one to fit multiple endpoints across multiple time points (Viroli, 2012). The matrix-normal

distribution can be understood as indicating one covariance matrix specifying the correla-

tion structure across rows, and another specifying the relationship across columns. More

formally, let the T × 1 vector ϵn,:,k denote the kth column of ϵn. Similarly, let the 1 ×K

vector ϵn,t,: be the tth row of ϵn. Additionally, let σ2k,k be the kth diagonal element of Σ.

Then the matrix-normal distribution indicates that marginally,

ϵn,:,k ∼ N
(
0, σ2k,kAR (ρ,Xn)

)
, (3.4)

and

ϵn,t,: ∼ N (0,Σ)

Thus, Σ specifies the covariance across end points, while AR (ρ,Xn) indicates the correlation

across time.
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3.5 Structured Missingness

In ideal applications of this model we would have, for each patient, a T ×K matrix

of observations. That is, at each of T time points, all K endpoints would be measured. We

will refer to this as the ideal data structure. In practice, this will typically not be available.

For example, A1c is a measure of the average blood glucose level over the past three months,

and is unlikely to be measured more often than this. Measurements such as blood pressure,

on the other-hand, may be taken much more frequently. For this reason, it will often be

the case that the matrix of observations, Yn, will have a substantial amount of structured

missingness: endpoints that were deliberately unobserved at given time points.

When fitting a model with Markov chain Monte Carlo (MCMC), multiple imputation

is a common approach to handling missing data (Scheffer, 2002). Each missing data point

is treated as an unknown parameter and sampled as the algorithm runs. However, this can

cause sampling problems when a substantial fraction of the ideal data is missing. The result

is an unindentfied model: the total number of parameters can swamp the available data.

This is likely to cause problems for MCMC methods, such as Gibbs samplers or Hamiltonian

Monte Carlo (HMC) No-U-Turn Samplers (NUTS).

Gibbs samplers iteratively sample from the full conditionals of all parameters in the

distribution. If the variance of these conditional distributions is smaller than the variance

of the marginals, each new draw from the conditionals must be close to the last draws,

resulting in high autocorrelation in the chain. If our model parameters are identifiable,

then the conditional distribution of these parameters will depend strongly on the data, and

the data’s distribution will likewise depend on the parameters. For this reason, substantial

amounts of missinessness are likely to cause high autocorrelation and can threaten to devolve

the sampler into random-walk behavior over practical numbers of iterations.

Similarly, while the NUTS HMC algorithm can make use of a mass matrix to rotate

the parameter space, this can only address linear dependencies between parameters, and

becomes increasingly difficult to estimate reliably as the number of parameters increases.

Unaddressed correlations force NUTS to use a smaller step sizes and higher tree depths to

effectively navigate the posterior, and may force the sampler to slow to a crawl.

70



Furthermore, autocorrelation between draws is likely to be high: the conditional

distributions of identifiable parameters depend heavily on the data; if much of this data is

being resampled conditional on the parameters, this can result in a slow walk through the

parameter space. Therefore, we marginalize out all of the structurally missing data. As we

shall see, this is easier to do with a multivariate normal than a matrix normal data model.

To illustrate this method, suppose we have a multivariate normal random vector

y ∼ N (µ,Σ). This can be written in partioned form asy1

y2

 ∼ N


µ1

µ2

 ,
Σ1,1 Σ1,2

Σ2,1 Σ2,2


 .

Then the marginal distributation of y1 is N (µ1,Σ1,1). By multiplying y with arbitrary

permutation matrices, we can find the marginal distribution of any subset of y in this

fashion.

Returning to our example, with multivariate normal Yn as in (3.2), we must then

multiply Yn by a permutation matrix P that sorts the elements so all structurally missing

observations follow the available data. Now we have

Pvec (Yn) ∼ N
(

Pvec (µ) ,P (Σ2 ⊗Σ1)P⊤
)
.

If we have a total of A available data elements, then their marginal distribution is the

multivariate normal with mean of the first A elements of Pvec (µ), and covariance equal to

the upper left A×A block of P (Σ2 ⊗Σ1)P⊤.

Using a matrix normal forces the covariance matrix of the multivariate normal to

follow the highly structured pattern in Σ ⊗ AR (ρ,Xn), as in (3.4). In particular, each

column ϵn,:,k must follow the same N
(
0, σ2k,kAR (ρ,Xn)

)
distribution. That is, each end-

point has the same correlation structure across time. Using a multivariate normal when we

have structured missingness suggests a new model, where we instead allow each endpoint

a different degree of autocorrelation across time. Let the notation B:,i and Bi,: refer to

the ith column and ith row of the matrix B. Addtionally, let ρk be the autocorrelation

corresponding to the kth endpoint, A be the block diagonal matrix with diagonal blocks
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ARρ

A =



AR (ρ1,Xn)
-1 0 . . . 0

0 AR (ρ2,Xn)
-1 . . . 0

...
... . . . ...

0 0 . . . AR (ρK ,Xn)
-1


,

Υ be the inverse of the upper triangular Cholesky decomposition of Σ, and

U =



ITΥ1,1 ITΥ1,2 . . . ITΥ1,K

ITΥ2,1 ITΥ2,2 . . . ITΥ2,K

...
... . . . ...

ITΥK,1 ITΥK,2 . . . ITΥK,K


= Υ⊗ IT .

Then, for the quadratic form of our multivariate normal, we have

q (Y,ρ,Υ) ≡ −1

2

[
K∑
k=1

(
(YnΥ):,k

)⊤
AR (ρk,Xn)

-1
(
(YnΥ):,k

)]

= −1

2


K∑
k=1



∑k
i=1 yn,1,iΥi,k∑k
i=1 yn,2,iΥi,k

...∑k
i=1 yn,T,iΥi,k



⊤

AR (ρk,Xn)
-1



∑k
i=1 yn,1,iΥi,k∑k
i=1 yn,2,iΥi,k

...∑k
i=1 yn,T,iΥi,k




= −1

2

 K∑
k=1

(
k∑
i=1

Υi,kYn,:,i

)⊤

AR (ρk,Xn)
-1
(

k∑
i=1

Υi,kYn,:,i

)
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= −1

2


K∑
k=1





ITΥ1,k

ITΥ2,k

...

ITΥK,k



⊤

vec (Yn)



⊤

AR (ρk,Xn)
-1





ITΥ1,k

ITΥ2,k

...

ITΥK,k



⊤

vec (Yn)





= −1

2


vec (Yn)

⊤


K∑
k=1



ITΥ1,k

ITΥ2,k

...

ITΥK,k


AR (ρk,Xn)

-1



ITΥ1,k

ITΥ2,k

...

ITΥK,k



⊤
vec (Yn)


= −1

2

[
vec (Yn)

⊤
(

UAU⊤
)

vec (Yn)
]
.

The covariance matrix is
(

UAU⊤
)-1

= U-⊤A-1U-1, and the marginal covariance is

the subset corresponding to the available, non-missing data. Here, U-1 and A-1 are

A-1 =



AR (ρ1,Xn) 0 . . . 0

0 AR (ρ2,Xn) . . . 0
...

... . . . ...

0 0 . . . AR (ρK ,Xn)


,

and

U-1 = Υ-1 ⊗ IT ,

respectively.

3.5.1 Diabetes Example

Returning to the diabetes example, suppose we have a single covariate, time, so that

P = 1. Let f be the ITP model (3.1) plus a baseline effect, and let µ ∈ RK . Thus, we have

E [yn,t,k,g] = f (θ,Xn)

= f (βk,g, µk, κ, xn,t,1, xn,T,1)

= βk,g

(
1− e−κkxn,t,1

1− e−κkxn,T,1

)
+ µk,

73



βA1c,g βGFR,g βWT,g βBP,g

ζBD,g ζVT,g

ωg

σωψg

σζ σζ

N

N N

σβ σβ
N N

σβ σβ
N N

Figure 3.3. Structure of the parameter hierarchy on the β parameters for the first two
domains: blood and vitals.

where the subscript g = 1 indicates standard of care, and g = 2 indicates treatment. The

parameter βk,g determines the magnitude of the effect observed at the last time point, xn,T,1,

and κk determines the rate of convergence to the ultimate asymptotic value.

For βg, the vector with length K such that the kth element is βk,g, we use a three-

tiered hierarchical structure (Figure 3.3). That is, at the bottom, we have K parameters

βk,g, one for each endpoint. Those βk,g corresponding to endpoints within the same domain

share a common prior distribution. There is one such distribution per domain, and these

are again linked on the graph by a common domain prior. A domain’s prior parameters

are also treated as unknown, and given hyperpriors. This allows information to propagate

through the graph. We assign the βk,g’s normal priors, as in Figure 3.3.

For κk, we assign the time to reach 99% of the asymptotic value, τk, a generalized

gamma distribution. It is easier for domain-experts to reason about time to asymptote,

therefore this transformation is chosen to facilitate prior ellicitation. Expert opinion about

the time until clinical effect levels off can be used to obtain a model as well as upper and lower

bounds. Given these three elicited values, we can solve for the three parameteters of the
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generalized gamma to attain the same mode and bounds, yielding an induced distribution

on κk.

The parameters κk attain 99% of its asymptotic value when

0.99 = 1− exp (−κkt) ,

0.01 = exp (−κkt) ,

and

t = − log (0.01)

κk
.

Hence τk = − log(0.01)
κk

. Letting f be the generalized gamma pdf,

fτ (τk|α, β, δ) =
δβα

Γ (α/δ)
τα−1
k e−(βτk)

δ

,

we perform a change of variables to find the prior on κk. We have

τk = − log (0.01)

κk

or

τk =
log (100)

κk

so that

|∂γk| =
log (0.01)

κ2k
∂κk

and

fκ (κk|α, β, δ) = fτ

(
log (100)

κk

∣∣∣∣α, β, δ) log (0.01)

κ2k

=
log (0.01) δβα

Γ (α/δ)κ2k

(
log (100)

κk

)α−1

e
−
(

β log(100)
κk

)δ

.

The baseline effects, µk, are given normal priors. The autocorrelation parameters, ρk,

of the auto-regressive matrix are given a beta prior, over the support 0 ≤ ρk ≤ 1 for each

k. We restrict ourselves to positive autocorrelations under the assumption that negative
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autocorrelations are implausible, and to allow for non-integer time measurements. If all

observed times are integer values, the support could be scaled to −1 ≤ ρk ≤ 1, and a scaled

beta used.

Finally, we let Σ = σΓσ, where Γ is a correlation matrix, and σ = [σk,k] are diagonal

matrices. This partitioning eases interpretation, as it is easier to reason about the marginal

standard deviations, the diagonmal elements of σ, and the correlations than variances and

covariances. We assign the σk,k’s a common gamma prior, and the correlation matrix an LKJ

correlation matrix prior, following Lewandowski et al. (2009). Additionally, we can perform

a change of variables to the Cholesky factor of Γ, using the LKJ correlation Cholesky prior,

to sample the Cholesky factors directly, so that Υ-1 = σC, where C is the lower triangular

Cholesky factor of Γ.

We used the rate-parameterization for the gamma distribution, that is f(x|α, β) =

βα

Γαx
α−1e−βx, and indexed the univariate normal distribution with the standard deviation.

The priors we used are

ωg ∼ Normal (0, 10) for g = 1, 2,

ζd,g ∼ Normal (ωg, σζ) for d = 1, . . . , D,

βk,g ∼ Normal (ζdk,g, σβ) for k = 1, . . . ,K,

σζ ∼ Half-Normal (0, 10) ,

σβ ∼ Half-Normal (0, 10) ,

ρk ∼ Beta (3, 1) for k = 1, . . . ,K,

κ

log (0.01)
∼ Generalized-Gamma (8.5, exp (−1.5) , 3) ,

µk ∼ Normal (0, 10) for k = 1, . . . ,K,

σk,k ∼ Gamma (1.5, 0.25) for k = 1, . . . ,K,

and

Γ ∼ LKJ(2).
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We selected nalf-normal priors for the hierarchical standard deviations so that the

density plateaus close to zero, allowing for the possibility of pooling domains, or endpoints

within a domain. In contrast, for the standard deviation on errors, σk,k, we selected a

gamma prior with α > 1 so that the density approaches zero as σk,k → 0.

3.5.2 Model Assumptions

We assume exchangeability of patients. We additionally assume that the raw data

may be preprocessed so that the multivariate normal distribution can reasonably approx-

imate the distribution of the residuals. For example, log transforms may be appropriate

for nonnegative measurements such as weight where fluctuations are often regarded as per-

cent changes. Furthermore, in our hierarchical model, expected effects should be similar in

magnitude and of the same sign to enable borrowing. In raw values, a successful treatment

would lower A1c and raise GFR − or at least stop its decline. If these aren’t handled in

preprocessing, the associations must be more explicitly handled in the model, for example,

expressing each parameter as an optionally negative scale multiple of a baseline. Further-

more, to take advantage of hierarchical borrowing, they must all be on the same scale of

variation.

3.6 Posterior Sampling

We fit the model using Hamiltonian Monte Carlo (Betancourt, 2017). Hamiltonian

Monte Carlo (HMC) requires a continuous log-density function, and its gradient, rather

than the full conditionals. Automatic differention is generally used to elliminate the need

to derive or implement gradients. This simplifies fitting complex models without conju-

gate priors, where finding full conditionals is difficult, as only the density is needed. We

fit the model using the Julia library ProbabilityModels.jl, a library in active develop-

ment by the author, which uses source transformations to derive the gradient and optimize

the run-time performance of evaluating the log density and gradient. These are then uti-

lized by DynamicHMC.jl which implements the NUTS with HMC, following descriptions in

Betancourt (2017).
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3.7 Simulating Data for the Diabetes Example

In order to validate the model and the behavior of estimators of interest, we simulate

datasets with a known truth and fit them. In particular, we will assume that a go/no-go

decision requires at least a 95% probability that
∑K

k=1 βk,2 >
∑K

k=1 βk,1. Equivalently, if

we define
∑K

k=1 βk,2 − βk,1 = δβ, our decision hinges on whether we find Pr(δβ > 0) > 0.95.

As the true values of β1 and β2 we set

β1 =

[
−0.625 −0.575 −0.525 −0.475 −0.425 −0.4 −0.375

]⊤
and

β2 =

[
0.625 0.575 0.525 0.475 0.425 0.4 0.375

]⊤
so that δβ = 6.8. We randomly generated the true values for the remaining parameters,

sampling them from the following distributions, where the normal is parameterized by

strandard deviation, and the gamma by rate. Furthermore, we take ρ1 ∼ Beta (4, 4) and

ρk = ρ1, k = 2, . . . ,K. Continuing, we set

σ ∼ Gamma(6, 6),

Σ ∼ Wishart10(σ2I, 10),
κ

log (0.01)
∼ Generalized-Gamma (8.5, exp (−1.5) , 3) ,

θd ∼ Normal (0, 5) for d = 1, . . . , D,

and

µk ∼ Normal (θdk , 5) for k = 1, . . . ,K,

where the subscript dk indicates the domain corresponding to endpoint k. We use T = 36

months. The endpoints GFR, WT, BP, and EM (see Table 3.1) are assumed to be sampled

each month, while A1c, DC, and AW are recorded every fifth month, including at the first

and last time point.
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Table 3.2. Posterior summaries of κ and the variance parameters.

Parameter Truth Mean St.Dev. 2.5% 97.5% ESS r̂ − 1
κA1c 0.8400 0.7912 0.1874 0.5381 1.254 968,856 1.607× 10−6

κGFR 0.8996 0.7869 0.1854 0.5356 1.244 1,108,000 6.918× 10−6

κWT 0.7017 0.8099 0.1998 0.5436 1.305 863,381 1.148× 10−5

κBP 0.5701 0.7981 0.1894 0.5417 1.265 772,239 3.342× 10−5

κEM 0.8279 0.7941 0.1894 0.5395 1.261 232,290 5.761× 10−5

κDC 0.6463 0.7958 0.1891 0.5404 1.262 1,101,881 8.455× 10−6

κAW 0.9897 0.7883 0.1873 0.5355 1.249 823,309 1.401× 10−5

ρA1c 0.2838 0.288 0.01541 0.2577 0.3181 1,108,000 6.751× 10−7

ρGFR 0.2838 0.306 0.01161 0.2833 0.3288 1,108,000 6.897× 10−6

ρWT 0.2838 0.2994 0.01211 0.2756 0.3231 1,108,000 7.573× 10−7

ρBP 0.2838 0.2948 0.01275 0.2698 0.3197 1,108,000 1.282× 10−5

ρEM 0.2838 0.2699 0.0184 0.2339 0.306 1,108,000 −6.851× 10−6

ρDC 0.2838 0.3649 0.1055 0.1363 0.5363 881,113 7.07× 10−6

ρAW 0.2838 0.3676 0.1055 0.138 0.5387 922,202 8.2× 10−6

σA1c 2.455 2.444 0.03433 2.377 2.512 1,108,000 5.259× 10−6

σGFR 3.435 3.473 0.03142 3.413 3.536 1,108,000 6.768× 10−6

σWT 3.368 3.356 0.03001 3.298 3.415 1,108,000 −4.323× 10−6

σBP 2.428 2.437 0.02151 2.395 2.479 1,108,000 3.714× 10−6

σEM 3.058 3.058 0.02682 3.006 3.111 1,108,000 4.118× 10−6

σDC 2.275 2.269 0.03881 2.194 2.347 1,108,000 7.285× 10−7

σAW 3.861 3.839 0.06103 3.722 3.961 1,108,000 8.562× 10−6

ΓGFR,A1c 0.2795 0.2837 0.01584 0.2524 0.3145 976,626 7.324× 10−6

ΓWT,A1c 0.4689 0.4572 0.01404 0.4294 0.4844 1,108,000 −4.745× 10−6

ΓBP,A1c −0.3393 −0.3156 0.01554 −0.3458 −0.2848 774,479 1.616× 10−5

ΓEM,A1c 0.6155 0.6256 0.01157 0.6024 0.6478 828,848 5.097× 10−6

ΓDC,A1c −0.02754 −0.04352 0.02273 −0.08803 0.00121 1,108,000 4.745× 10−7

ΓAW,A1c 0.2946 0.2856 0.01969 0.2466 0.3239 996,623 1.709× 10−6

ΓWT,GFR 0.1684 0.1794 0.01145 0.1569 0.2018 1,108,000 −6.448× 10−6

ΓBP,GFR 0.31 0.3192 0.01085 0.2977 0.3403 1,108,000 −8.858× 10−7

ΓEM,GFR 0.2866 0.3013 0.01084 0.2799 0.3224 1,108,000 6.075× 10−6

ΓDC,GFR 0.09241 0.1038 0.02186 0.06087 0.1465 1,108,000 −2.408× 10−6

ΓAW,GFR −0.3809 −0.3648 0.01745 −0.3986 −0.3302 1,108,000 1.443× 10−6

ΓBP,WT 0.01912 0.02982 0.01192 0.006443 0.05315 1,108,000 −1.05× 10−5

ΓEM,WT 0.3393 0.3504 0.01058 0.3296 0.371 1,108,000 −4.922× 10−6

ΓDC,WT −0.3316 −0.01978 0.02177 −0.06241 0.02297 1,108,000 −3.381× 10−7

ΓAW,WT 0.05112 0.06127 0.01916 0.02362 0.09885 1,108,000 3.579× 10−6

ΓEM,BP 0.1819 0.1955 0.01173 0.1724 0.2184 1,108,000 7.89× 10−6

ΓDC,BP 0.4903 0.4984 0.01767 0.4631 0.5323 1,108,000 −3.719× 10−7

ΓAW,BP −0.1635 −0.1619 0.01909 −0.1991 −0.1243 1,108,000 −7.963× 10−7

ΓDC,EM 0.1751 0.1751 0.02139 0.1328 0.2167 1,108,000 −4.048× 10−7

ΓAW,EM 0.4594 0.4516 0.01623 0.4193 0.4829 1,108,000 3.382× 10−6

ΓAW,DC 0.4832 0.4853 0.01679 0.452 0.5178 1,108,000 2.445× 10−6
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Table 3.3. Posterior summaries of µ and the hierarchical parameters.

Parameter Truth Mean St.Dev. 2.5% 97.5% ESS r̂ − 1
µA1c −4.655 −4.635 0.1017 −4.831 −4.431 325,522 3.683× 10−5

µGFR −15.13 −15.16 0.1133 −15.38 −14.93 334,437 2.724× 10−5

µWT −0.2571 −0.2814 0.1131 −0.5104 −0.06512 347,798 2.853× 10−5

µBP 0.08172 0.05801 0.1004 −0.1409 0.2537 367,781 2.182× 10−5

µEM −3.552 −3.591 0.1198 −3.819 −3.345 258,885 4.867× 10−5

µDC 11.04 11.1 0.1142 10.88 11.33 285,526 5.39× 10−5

µAW −3.553 −3.51 0.1309 −3.76 −3.244 299,935 4.345× 10−5

ω1 −0.05 −0.08448 0.1182 −0.3212 0.1417 125,597 1.548× 10−4

ω2 0.05 0.06936 0.118 −0.1688 0.2935 185,557 8.634× 10−5

ζBD,1 −0.06 −0.07751 0.1071 −0.2921 0.1302 340,041 2.842× 10−5

ζBD,2 0.06 0.05247 0.1107 −0.1729 0.2624 238,899 4.971× 10−5

ζV T,1 −0.05 −0.07849 0.1057 −0.2851 0.1309 336,639 2.641× 10−5

ζV T,2 0.05 0.1036 0.1074 −0.1041 0.3196 342,217 2.386× 10−5

ζQoL,1 −0.04 −0.0979 0.1175 −0.3401 0.1254 275,599 4.589× 10−5

ζQoL,2 0.04 0.05215 0.1195 −0.1983 0.2752 252,260 5.729× 10−5

βA1c,1 −0.0625 −0.06537 0.1062 −0.2754 0.1433 351,198 3.634× 10−5

βA1c,2 0.0625 0.04059 0.1097 −0.1844 0.248 321,135 3.004× 10−5

βGFR,1 −0.0575 −0.08428 0.1121 −0.3125 0.1301 350,092 2.412× 10−5

βGFR,2 0.0575 0.05709 0.1139 −0.1728 0.2772 312,271 2.891× 10−5

βWT,1 −0.0525 −0.06605 0.1127 −0.28 0.1645 353,322 3.393× 10−5

βWT,2 0.0525 0.1129 0.1126 −0.1013 0.343 357,755 2.736× 10−5

βBP,1 −0.0475 −0.09184 0.1042 −0.2985 0.1113 367,771 2.559× 10−5

βBP,2 0.0475 0.1146 0.1046 −0.08622 0.3252 368,881 2.24× 10−5

βEM,1 −0.0425 −0.1041 0.1227 −0.3564 0.1298 278,860 4.352× 10−5

βEM,2 0.0425 0.05202 0.1241 −0.2059 0.2858 268,833 4.732× 10−5

βDC,1 −0.04 −0.1085 0.1198 −0.3549 0.1183 287,734 5.071× 10−5

βDC,2 0.04 0.05705 0.1204 −0.1913 0.2848 277,710 5.756× 10−5

βAW,1 −0.0375 −0.08531 0.1243 −0.3376 0.1561 306,691 4.025× 10−5

βAW,2 0.0375 0.03425 0.1294 −0.2449 0.2687 244,493 5.323× 10−5

δβ 0.68 1.074 0.3962 0.2899 1.845 1,108,000 −4.244× 10−6

3.7.1 Analyzing a Simulated Data Set

We fit a dataset with 100 patients each in the standard of care and treatment groups

using the NUTS algorithm, defining the model using ProbabilityModels.jl and running

NUTS with DynamicHMC.jl. We sampled 1,750 warmup iterations and 60,000 posterior

samples from 18 chains, resulting in 1,080,000 total posterior samples. While more sam-

ples than necessary for accurate estimates, sampling finished in under an hour using an

i9 7980XE CPU, and large numbers of samples and chains improve our ability to detect

differences between chains that indicate convergence issues.
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Figure 3.4. Histogram of posterior samples of ω1, using 500 bins to highlight sampling
variability.

Posterior summary statistics for κ, ρ, σ, and Γ are shown in Table 3.2, while µ and

the parameters belonging to the βg hierarchy are shown in Table 3.3. The 95% equal tailed

credible intervals for each of the parameters encompass the true values, although many

intervals, particularly those of the βg hierarchy, are broad relative to the absolute value

of the parameters. All intervals within the βg hierarchy include 0, however the 95% equal

tailed interval of δβ does not. Additionally, the hierarchical parameters feature much lower

effective sample sizes (ESS), while the ESS of most other parameters matched the number

of posterior samples.
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Figure 3.5. Chain rank plots of posterior samples for ω1.

Of all parameters, ω1 had the lowest effective sample size and highest Gelman-Rubin

statistic r̂ (Gelman et al., 1992). Trace plots can be difficult to assess when the number of

samples and chains are large. It is likely that subtle biases in chains will go unnoticed. For

these reasons, Simpson (2019) recommend rank plots. While the histogram looks smooth

(Figure 3.4), the rank plots show a couple of abnormalities (Figure 3.5). We calculated

the rank of each sample, divided the ranks by the number of samples, and then plotted

histograms of the ranks corresponding to each chain. If each chain converged to the same

posterior, all histograms should show a Uniform(0,1) distribution. However, the chain in

position (1,6) shows a large spike at the highest rank, while the chain is position (2,2)

shows a smaller spike at the bottom of the distribution. The longest streaks of successive

rejections in these chains were 36 and 23. The remaining chains had a longest streak of 9.75

on average, with chain (2,1) featuring a streak of 24. This difference is not by itself able

to account for these spikes. Further investigation will be necessary to elucidate the correct
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Figure 3.6. Histogram of posterior samples of δβ, using 500 bins to highlight sampling
variability.

thickness of the upper and lower tails. While r̂ was close to 1, traditional r̂ is insensitive

to differences in the second moment (Simpson, 2019). Increasing the target acceptance

probability from 0.95 to 0.99 may help.

Focusing on the distribution of δβ, the posterior of δβ is smooth and bell shaped

(Figure 3.6). In Table 3.3 we see that there is a 97.5% probability that δβ exceeeds 0.2899.

In fact, Pr(δβ > 0.418) = 0.95 and Pr(δβ > 0) = 0.996. Therefore, although the effect

parameter intervals overlapped heavily, the evidence provides strong support for our decision

requring merely Pr(δβ > 0) > 0.95.
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Figure 3.7. Chain rank plots of posterior samples for δβ.

Additionally, δβ’s chain-rank plots do not appear to show any of the convergence

issues oberved in ω1 (Figure 3.7), and the effective sample size matched the number of

posterior samples.

Table 3.4. Summary statistics of the simulation. Qδβ(N) refers to the N th percentile
of the posterior of δβ when fit on virtual data sets. Columns indicate sample size,

percentage of simulated intervals greater than 0, percentage of simulated 90% equal
tailed credible intervals containing the true value, and mean interval width.

Sample Size Pr
(
Qδβ (5) > 0

)
Pr
(
Qδβ (5) < 0.7 < Qδβ (95)

)
mean

(
Qδβ (95)−Qδβ (5)

)
50 0.335 0.933 2.10
100 0.53 0.929 1.46
200 0.745 0.939 1.02
400 0.915 0.923 0.726
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Figure 3.8. Violin plots displaying the distributions of the 5th, 50th, and 95th quantiles
of the posterior of δβ from fits on simulated datasets.

3.8 Analyzing Simulated Data Sets

We generated 1,000 datasets for each of N = 50, 100, 200, 400 following the same

procedure as in Section 3.6. For each sample size, half of the patients were assigned to

standard of care, and half to treatment groups. For each dataset, we fit two chains with

900 warmup iterations followed by 2000 samples used for our analysis. Effective sample size

and r̂ were checked for δβ. If the effective sample size was smaller than 200, or r̂ > 1.05,

the dataset was reanalyzed.

Figure 3.8 contains violin plots of the distribution of posterior medians and equal

tailed 90% credible intervals in the posteriors for δβ, confirming that they are centered

on the true value, and that the bounds tighten as sample size increases. As over 90% of

these intervals contained the true values, the posterior intervals appear slighlty conservative

(Table 3.4). However, as expected, the interval widths are roughly C√
N

where C is a constant,
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so that quadrupling the sample size halves the interval width. As the posteriors concentrate

more closely around the true value, the proportion of virtual data sets that allow us to meet

our criteria Pr (δβ > 0) > 0.95 increased from 0.357 with N = 50 to 0.907 with N = 400.
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