
Research Article Vol. 2, No. 12 / 15 December 2019 / OSA Continuum 3415

Plasmon resonances of metal nanoparticles in
an absorbing medium

MICHAEL I. MISHCHENKO1,* AND JANNA M. DLUGACH2

1NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, 27 Zabolotny Str.,
03143, Kyiv, Ukraine
*michael.i.mishchenko@nasa.gov

Abstract: We study the behavior of plasmon resonances of metal nanospheres embedded in
an absorbing medium. First-principles far-field computations based on the general Lorenz–Mie
theory show that increasing absorption in the host medium broadens and suppresses plasmon
resonances in the extinction and effective scattering efficiency factors and suppresses resonance
features in the phase function. These effects of absorption are analogous to those on the
morphology-dependent resonances of dielectric particles with large size parameters.
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1. Introduction

The subject of electromagnetic scattering by particles embedded in an absorbing host medium
has attracted much attention (see, e.g., [1–23] and numerous references therein). In [22,23], the
effect of absorption on morphology-dependent resonances of monodisperse spherical particles
was studied. It was concluded that increasing absorption in the host medium suppresses (and
eventually eradicates) the morphology-dependent resonances and makes them broader. This effect
is similar to that of increasing absorption in a spherical particle embedded in a nonabsorbing
medium.
Another prominent type of scattering resonances are plasmon resonances exhibited by

nanoparticles made of Drude and noble metals [24–26]. So far these resonances have mostly
been analyzed by assuming that the host medium is nonabsorbing. However, this assumption can
be invalid in many cases. Therefore, the purpose of this short communication is to apply a first-
principles computer program developed recently for far-field computations of electromagnetic
scattering based on the general Lorenz–Mie theory and study how plasmon resonances of
monodisperse metal nanospheres behave with increasing absorption in the host medium.

2. Computations

We study the scattering of a homogeneous plane wave by a spherical particle embedded in an
infinite homogeneous host medium. The materials of the medium and the particle are assumed
to be linear, isotropic, and nonmagnetic. Consistent with [27–29], we imply the exp(−iωt)
time-harmonic dependence of all electromagnetic fields, where i = (−1)1/ 2, ω is the angular
frequency, and t is time. We define the scattering problem in terms of the particle radius R, the
wavelength in a vacuum λ, and the complex refractive indices of the host, m1, and the particle,
m2, given by

m1 = m′1 + im
′′
1 (1)

and
m2 = m′2 + im

′′
2 , (2)

where m′1>0, m′′1 ≥ 0, m′2>0, and m′′2 ≥ 0.
As discussed in [27], the only far-field optical observables inherent to the particle (i.e., those

depending only on R, λ, and the relative refractive index m = m2/m1) are the extinction cross
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section Cext entering Eq. (31) of [27] and the 4×4 Stokes scattering matrix F(Θ) entering Eq. (30)
of [27], where Θ ∈ [0, π] is the scattering angle. In particular, these quantities are independent of
the distance from the particle as well as of the size and shape of a volume of space for which the
radiation energy budget is evaluated (cf. Section 7.5.1 of [26]). We will therefore focus on the
computation and analysis of these intrinsic optical observables. For convenience of displaying
numerical results, we will represent the scattering matrix as follows:

F(Θ) =
Ceff
sca
4π

F̃(Θ), (3)

where
Ceff
sca = 2π

∫ π

0
dΘ sinΘ F11(Θ) (4)

is the so-called effective scattering cross section and F̃(Θ) is the dimensionless so-called
normalized scattering matrix. The latter satisfies the normalization condition

1
2

∫ π

0
dΘ sinΘ F̃11(Θ) = 1, (5)

where F̃11(Θ) describes the angular distribution of the scattered intensity in the case of unpolarized
incident light and is traditionally called the phase function.
The extinction and effective scattering cross sections and the normalized scattering matrix

are computed using the FORTRAN program described in [27,28]. This program is based on
the first-principles theory of far-field scattering by particles in an absorbing medium [17] and
the general Lorenz–Mie theory applicable to any m′′1 [29], has been thoroughly tested, and is
available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html.
All computations have been performed for Au, Ag, Al, and Na particles assuming that their

radius is fixed at R= 10 nm. The spectral refractive indices of these metals are taken from [30–32]
and are depicted in Fig. 1. The refractive index of the host medium has been assumed to be
spectrally independent.

Fig. 1. The real (left-hand panel) and imaginary (right-hand panel) parts of the spectral
refractive indices of the four metals used in this study.

Figures 2 and 3 show the extinction efficiency factor

https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html
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Fig. 2. Spectral extinction efficiency factors of 10-nm spherical particles made of noble
and Drude metals.

Qext =
Cext

πR2 (6)

and the effective scattering efficiency factor

Qeff
sca =

Ceff
sca

πR2 (7)

as functions of the vacuum wavelength for m′1 fixed at 1.33 and m′′1 ranging from 0 (nonabsorbing
host) to 0.3 (strongly absorbing host). Both efficiency factors are dimensionless. To analyze the
effect of the real part of the refractive index of the host medium, Fig. 4 shows both efficiency
factors for the Na particle computed by assuming that m′1 is fixed at 1.5. Finally, Fig. 5 depicts the
phase functions for the Al particle computed by assuming that m1 = 1.33 and m1 = 1.33 + i0.3.
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Fig. 3. Spectral scattering efficiency factors of 10-nm spherical particles made of noble and
Drude metals.

 

Fig. 4. Spectral extinction and effective scattering efficiency factors of the 10-nm spherical
Na particle.
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Fig. 5. Spectral dependence of the phase function of the 10-nm spherical Al particle. The
refractive indices of the host medium are m1 = 1.33 (left-hand panel) and m1 = 1.33 + i0.3
(right-hand panel).

3. Discussion and conclusions

For simplicity, we have restricted our study to host media with spectrally independent refractive
indices. This implies that the spectral variability of the relative refractive index m = m2/m1
entering the far-field Lorenz–Mie computation is fully defined by that of the refractive index of
the particle.

Figures 2–4 strongly suggest that irrespective of m′1, the general effect of increasing absorption
in the host medium is to broaden and suppress the plasmon resonances in the extinction and
scattering efficiency factors of noble and Drude nanoparticles and sometimes eradicate them
completely. Interestingly, in the case of the Au nanosphere the broadening effect of absorption on
the extinction efficiency factor is much more pronounced than that for the other metal particles.
The phase functions of the 10-nm Au, Ag, and Na particles turn out to be Rayleigh-like

irrespective ofm1 and λ and hence are not shown. The size parameter x = 2πR/λ of the aluminum
particle at ultraviolet wavelengths is large enough to cause non-Rayleigh phase-function features
in the left-hand panel of Fig. 5. This includes the transition from the Rayleigh regime to
that typical of wavelength-sized scatterers (a pronounced forward-scattering enhancement and
reduced backscattering) as well as noticeable resonance behavior at wavelengths around 0.18
µm. However, the suppressing effect of absorption in the host medium is also obvious in the
right-hand panel of Fig. 5.
These suppressing/broadening effects of absorption in the host medium on the plasmon

resonances appear to be similar to those on the morphology-dependent resonances of dielectric
particles [22].
Our results based on the far-field Lorenz–Mie theory may seem to be inconsistent with the

conclusions reached in [33], according to which increasing absorption can substantially enhance
plasmon resonances and make them narrower. The specific origin of this apparent disagreement
remains uncertain to us. On one hand, it is not quite obvious what definitions of the optical cross
sections were used in [33] and how they were computed. On the other hand, unlike in our study,
the absorption in the host medium was assumed in [33] to be spectrally dependent. This, of
course, added to the spectral variability of the relative refractive index m = m2/m1 entering the
electromagnetic-scattering computation and may have affected the outcome of the computations
and the resulting conclusion. This issue warrants further clarification and analysis.
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One of the reviewers of this paper offered the following qualitative explanation. In the
quasi-static model, a plasmon resonance occurs when the relative permittivity of the nanosphere
is minus twice that of the surrounding medium: ε1(λ) = −2ε2(λ). This is a pole in the complex
plane. The faster ε1(λ) and ε2(λ) approach and recede from this pole in the complex plane as the
wavelength varies, the narrower the resonance. Then dispersion in both the real and imaginary
parts of the permittivities contributes to narrowing the resonance. So, if we had an absorbing
material that had a large drop in absorption at the resonance wavelength, this should cause a
narrow plasmonic resonance. This is what might be happening to cause a narrow resonance
in the gold and P3HT system. The absorption of P3HT very rapidly drops near the plasmon
resonance peak.

Another reviewer suggested that perhaps the source of the discrepancy between our results and
those in [33] may come from the fact that Eq. (3) in [33] is actually incorrect since the quasi-static
approximation formula for the extinction is used and mistaken as absorption. Given the formula
in Eq. (2) in [33] for the scattering cross section, there appears to be a violation of the optical
theorem.
Finally, it is worth pointing out that in the case of m′′1 = 0.3, the extinction efficiency factor

of the Al particle becomes negative at the shortest wavelengths (Fig. 2). The effect of negative
extinction for dielectric particles with large size parameters was reported in [22,23] and has
a rather transparent physical explanation. Indeed, the extinction cross section quantifies the
difference in the readings of a forward-scattering detector taken with and without the particle. As
was anticipated in [34], if the surrounding medium is absorbing, the presence of the particle can
in fact make the detector signal stronger, thereby implying a negative extinction cross section. Of
course, there is no violation of the energy conservation law since in this case the extinction cross
section is not used to quantify the energy budget of a finite volume encompassing the particle
[35]. The physical origin of possible negative extinction in the case of nanometer-sized metal
particles requires further study. However, it appears to be consistent with the analysis of the
small particle limit in [34].
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