OSIRIS－REx Precision Orbit Determination

Jason M．Leonard，Jeroen L．Geeraert，Brian R． Page，Andrew S．French，Peter G．Antreasian，
Coralie D．Adam，Daniel R．Wibben，Michael C．Moreau，and Dante S．Lauretta

OSIRIS-REx Overview

The (101955) Bennu Environment

- Orbit Determination (OD) prediction performance and covariance realism vital for science observation planning and Touch-and-Go (TAG) deliverability.
- Science: targeted pointing during imaging.
- TAG: Orbit Departure Maneuver (ODM) and Check Point (CP).
- Surface environment has significant hazards within original TAG requirement of 50 m diameter.
- Largest hazard-free sites are no larger than 15 meters diameter.
- Teams driven to improve performance to be able to make TAG successful.

Navigation Challenges

- Bennu is the smallest object ever orbited.
- Orbital velocities are on the order of $\mathrm{cm} / \mathrm{sec}$.
- Small perturbations and force mismodeling greatly impact prediction performance.
- Strong correlations exist when performing OD around Bennu.
- Solar Radiation Pressure (SRP) and S/C Thermal Re-Radiation Pressure (TRP) mismodeling induces a radial acceleration error that can be masked by Bennu's gravitational parameter (GM).
- Antenna pressure/thrust as well as Bennu Albedo and IR have similar radial acceleration component greater than the estimated uncertainty in GM throughout all orbital phases.
- Shape model scale directly impacts GM and trajectory reconstruction consistency.
- Landmarks only on sunlit side can bias trajectory reconstruction, GM, SRP and shape model scale estimates.

Navigation Strategy

- OD team set the acceleration modeling threshold to be $1.0 \times 10^{-13} \mathrm{~km} / \mathrm{sec}^{2}$.
- Pre-approach covariance analysis showed ability to estimate accelerations at this level.
- Need to understand all forces at this level to believe Bennu physical parameter estimates.
- Use of long exposure stellar images combined with short exposure images of the Asteroid provided accurate camera attitude information.
- Gave confidence in the pointing used for landmark navigation.
- Helps to de-correlate the camera pointing from other estimated parameters.
- Shape Model Evaluation
- Pole orientation and PM, Center-of-Figure to Center-of-Mass Offset, Landmark Scaling and Locations, Shape model frame to spin-axis offset.
- Bennu has a known YORP acceleration of the rotation rate derived from lightcurve data over the last few decades.
- Estimated NPA rotation, but none has been detected to date.

Accelerations during Orbital-A

- Bennu GM
- $-1.5 \mathrm{E}-9 \mathrm{~km} / \mathrm{s}^{2}$
- SRP
- ~6E-11 km/s²
- TRP
- $-8 \mathrm{E}-12 \mathrm{~km} / \mathrm{s}^{2}$
- OBL
- $\sim 4 \mathrm{E}-12 \mathrm{~km} / \mathrm{s}^{2}$
- Rad. Press
- $-2 \mathrm{E}-13 \mathrm{~km} / \mathrm{s}^{2}$
- IR
- $-2 \mathrm{E}-13 \mathrm{~km} / \mathrm{s}^{2}$
- Sun
- ~1E-13 km/s ${ }^{2}$
- ALB
- $-1 \mathrm{E}-14 \mathrm{~km} / \mathrm{s}^{2}$

OSIRIS-REx SRP Modeling

목IRIS-REx
AERロSPACE

- Sun-point attitude was well characterized throughout Cruise with 10-Plate Model.
- Mismodeling evident in late Approach
- S/C state uncertainties reduced from 100's of meters during Cruise to <10 meters.
- Revealed Earth-point attitude error.
- Ray-traced model using a high fidelity shape model was investigated

- Improved understanding of potential SRP errors at various attitudes.
- Indicated 10-Plate model had an error $>1.0 \times 10^{-12} \mathrm{~km} / \mathrm{sec}^{2}$ at Sun-Point, Nadir-Point and Earth-Point.
- Updated modeling for improved prediction performance 2-fold.

10-Plate Model Acceleration Error

Solar Longitude (deg)

n during Orbital-A from 19.6 m to 7.2 m in transverse

Trajectory Prediction Performance

- Predicted trajectory errors during every phase outperformed pre-encounter expectations.
- Predicted stochastic acceleration uncertainties updated during operations based on "Inflight" performance to improve science planning
- Navigation OD performance requirements for TAG (prelaunch):
"OSIRIS-REx shall predict spacecraft position in Orbital B such that predictions 24 hours after OD cutoff agree to the current (definitive) position estimates to within 20, 85, and 7 meters (goal-6, 24, and 5 meters), all 3σ values, in radial, along-track, and cross track (orbit-normal) directions, respectively."
- MAXIMUM predicted position errors at 28-32.5 hours after DCO:

Phase	Radial (m)	Along-track (m)	Cross-track (m)
Orbital-A	± 4	± 15	± 1.5
Orbital-B	± 2	± 10	± 0.5
Orbital-C	± 3	± 9	± 5.0
Orbital-R	± 2	± 9	± 0.4

Orbital-B 28-32.5 hour Prediction

Landmark Estimation

- Utilizing the shape model landmark locations as provided were within the defined requirements for navigation.
- Regional errors in the landmark maplet locations bias trajectory solutions.
- Estimation of the landmark locations improved the performance and produced more consistent results of Bennu estimated parameters.
- Reduced Landmark OpNav residual noise from 0.4 px to 0.2 px in Orbital-A.
- Estimated landmark locations accurate to $10-15 \mathrm{~cm}$.

Alternate Measurement Evaluation

- Radiometric, Centerfinding, and Landmark based OpNavs primary measurement source.
- Alternate measurements investigated for comparisons
(a) Direct Altimetry
(b) Altimetric Crossovers
(c) Image Constraints
- Reconstructed trajectory solutions consistent to 10's of cm throughout mission phases.

Direct Altimetry

- Requires high fidelity shape model.
- Instrument pointing error evaluation and bias estimates.
- 30 cm std residual

Altimetric Crossovers

- Utilizes two overlapping LIDAR pointclouds.
- Removes shape dependence.
- 15 cm std residual

Image Constraints

- Location of same landmark in two images.
- Removes dependence on landmark location.
- 10 cm std residual

Conclusions

- OSIRIS-REx OD Team has spent significant effort to improve spacecraft modeling over the last year.
- Improvements have been realized in Science Planning for site selection and TAG.
- Orbital phase trajectory prediction performance throughout operations beats all pre-arrival expectations.
- Transverse Error: Requirement 85 m (3-sigma), Goal 24 m (3-sigma), Achieved 10 m (MAX).
- Improved OD prediction performance directly impacts TAG performance
- Reduces expected NAV errors at ODM and CP by 50\%.
- Reduces TAG deliverability errors by 10-20\%.
- Utilizing alternative measurements allows for more confidence in delivered trajectories accuracy.
- Trajectory consistency throughout orbital phases is on the order of 10's of cm.

Acknowledgements

 AERロSPACE- The authors wish to acknowledge other members of the OSIRIS-REx team who have contributed to accomplishments described in this presentation:
- The Optical Navigation Team at KinetX: Coralie Adam (OpNav Lead), Leilah McCarthy, Eric Sahr, Erik Lessac-Chenen, John Pelgrift, and Derek Nelson;
- The GSFC IV\&V Team: Specifically Kenny Getzandanner, Erwan Mazarico, and Dave Rowlands;
- CU Boulder PhD student Patrick Kenneally for working with us on the ray-traced SRP modeling;
- The Lockheed Martin flight operations team with special emphasis on thermal analysis data provided by Chris May and support from Javier Cerna and the telecom team;
- Altimetry Working Group for early shape model deliveries used in OpNav processing;
- Science Planning and Science Operations teams at the University of Arizona who have supported OpNav observation planning.
- This work is supported by NASA under Contracts NNM10AA11C, NNG12FD66C, and NNG13FC02C. OSIRISREx is the third mission in NASA's New Frontiers Program.
- Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the science observation planning and data processing.
- Lockheed Martin Space Systems in Denver built the spacecraft and is providing flight operations.
- Goddard Space Flight Center and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft.

Join the Mission on the Web!

