

Impact-melt Populations In Apollo Drive-Tubes

N. M. Curran^{*} and B. A. Cohen

NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771 *corresponding author: natalie.m.curran@nasa.gov

Introduction

- Apollo Drive-tubes offer the potential to study distinct populations of impact melts at various depth in the regolith.
- Apollo 16 double-drive tube 68001/68002 (Fig 1a and 1b) provides impact and volcanic materials along a depth of ~60 cm in five compositional distinct units (Fig. 1c) [1].
- We will use major-, minor- and trace element chemistry, mineralogy, and Ar-Ar ages to understand the impact history of the Apollo 16 landing site.

Impact-melt Populations

- Trace element chemistry was used to sub-divide these impact-melts into 5 compositionally similar groups (Fig 3):
- **Group 1** are similar to the Apollo 16 mafic impact-melts (Fig 3) and are thought to have formed from the younger KREEPbearing material of the Cayley Plains (e.g., [9]).
- The study demonstrates the techniques that landed missions require to identify lithologies of interest (e.g., impact melts).

Fig 1: a) LROC NAC image (M106777343RE, M106777343LE) of the Apollo 16 landing site. 68001/2 was collect at station 8. b) Surface photo for double drive tube 68001/2 (NASA: AS16-108-17684). c) Variation of I_s/FeO (maturity indices) with depth in the drive tube 68001/2.

- Group 2 show low Sm/Sc ratios, low incompatible traceelements (ITEs) (Fig 3) and low Th content (Fig 4), compositionally similar to the majority of Apollo 16 impactmelts.
- Group 3 are characterized by their intermediate FeO and Th content (Fig 4). Group 3 is compositionally similar to the Apollo 16 regolith.
- **Group 4** impact-melts have concentration of Sm exceeding 15 ppm (similar to Group 1 of [9], Fig 2). Group 4 shows the highest Sm/Sc ratios of the particles analyzed in this study and have the highest ITEs.
- Group 5 impact-melts have high FeO contents and are compositionally similar to mare basalts (Fig 4).

Fig 3: Sm verses Sc concentrations for impact-melts in Apollo 16 double drive-tube 68001/2. Fields represent impact-melt groups (1, 2, 3, and 4) from [9].

Fig 4: FeO verses Th content for impact-melts particles in 68001/2. Fields for different lithologies are taken from [10].

Sample and Technique

- We received, six 0.5 g bulk soil samples from each of the five intervals in 68001/2, plus one near surface sample.
- We have hand-polished >300 individual particles (~1 mm) from the five distinct units (Fig 1c) and grouped them based on petrology, mineral chemistry and trace-elements.
- 68001/2 contains a wide variation of texturally diverse impact- \bullet melt particles including both clast-rich and clast-poor, crystalline and devitrified glass (Fig 2).
- Major and minor element chemistry of these impact-melts are compositionally very similar.
- The next step will be to determine the Ar-Ar ages of representative samples from each group and depth at NASA GSFC MNGRL.

Apollo Next Generation Sample Analysis

The same techniques will be applied to unopened and unstudied Apollo double drive tube 73001/2 as part of the ANGSA consortium.

Fig 5: a) Apollo 73002 X-Ray Computed Microtomography scan taken in 2019 (Credit: DaveEdey and Romy Hanna (UT Austin). b) X-Ray scan of 73002 taken in 1974 (Credit: NASA)

Fig 2: Representative textures from the compositionally distinct groups in 68001/2. Fourteen different textural types were found across the groups.

Apollo 16: North Ray Crater - AS16-116-18594 - AS16-116-18613

