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Abstract

When a coronal mass ejection departs, it leaves behind a temporary void. That void is known as coronal dimming,
and it contains information about the mass ejection that caused it. Other physical processes can cause parts of the
corona to have transient dimmings, but mass ejections are particularly interesting because of their influence in
space weather. Prior work has established that dimmings are detectable even in disk-integrated irradiance
observations, i.e., Sun-as-a-star measurements. The present work evaluates four years of continuous Solar
Dynamics Observatory Extreme Ultraviolet Experiment (EVE) observations to greatly expand the number of
dimmings we may detect and characterize, and collects that information into James’s EVE Dimming Index catalog.
This paper details the algorithms used to produce the catalog, provides statistics on it, and compares it with prior
work. The catalog contains 5051 potential events (rows), which correspond to all robustly detected solar eruptive
events in this time period as defined by >C1 flares. Each row has a corresponding 27,349 elements of metadata and
parameterizations (columns). In total, this catalog is the result of analyzing 7.6 million solar ultraviolet light curves.

Unified Astronomy Thesaurus concepts: Active sun (18); Solar coronal mass ejections (310); Stellar coronal
dimming (306); Solar extreme ultraviolet emission (1493); Solar electromagnetic emission (1490); Light curve
classification (1954); Support vector machine (1936)

1. Introduction

Coronal dimming is a phenomenon that has been observed for
decades, starting at least as far back as Skylab X-ray observations
(Rust & Hildner 1976). Originally referred to in the literature as
“transient coronal holes,” subsequent observations were made
both in soft X-ray (e.g., Hudson et al. 1996) and extreme
ultraviolet (EUV) image data (e.g., Thompson et al. 2000; Reinard
& Biesecker 2008). In recent years, work has been done to
establish a connection between coronal mass ejection (CME)
kinematics and dimming observed in these EUV images
(Aschwanden 2009; Dissauer et al. 2018a, 2018b). A surprising
result from the Solar Dynamics Observatory (SDO; Pesnell et al.
2012) EUV Variability Experiment (EVE; Woods et al. 2010) is
that dimming is so pronounced that it impacts the total solar
energy output in some EUV spectral emission lines (Woods et al.
2011), i.e., dimming is measurable in irradiance, which by
definition has no spatial resolution. Mason et al. (2014) studied
these Sun-as-a-star measurements in conjunction with EUV
images of dimming and white-light coronagraph images of an
associated CME. They found that while the dimming could be
spatially isolated in EUV images to produce a light curve
representing only the dimming region, it was also possible to
produce very similar light curves using only the spatially
integrated SDO/EVE data. Mason et al. (2016) then applied this
dimming-isolation method to 37 events to establish a statistical
relationship between irradiance coronal dimming depth and CME
mass and between dimming slope and CME speed. Dissauer et al.
(2018a) performed a similar study of 62 events using the SDO
Atmospheric Imaging Assembly (AIA; Lemen et al. 2012) EUV

imager to identify dimming and found similar dimming-CME
empirical relationships as those in Mason et al. (2016). This paper
represents the first step in the natural extension of the case study in
Mason et al. (2014) and semi-statistical study in Mason et al.
(2016): the automation of dimming detection and characterization
in the entire history of SDO/EVE Multiple EUV Grating
Spectrographs A (MEGS-A) data. That automation required that
key times be input as triggers to search for dimming. The most
long-standing and robust identifier of solar eruptive events is
the Geostationary Operational Environmental Satellite system
(GOES) X-ray Sensor (XRS) flare event list. Flares, CMEs, SEPs,
and dimmings are all separate processes, but all are manifestations
of the rapid magnetic energy release that produces solar eruptive
events. Some CMEs may occur with no measurable dimming, and
some dimmings may have no observed and/or measurable CMEs.
Some CMEs occur without an associated flare, though these tend
to be small and slow (Yashiro et al. 2005; Ma et al. 2010), which
would presumably also result in dimmings that are correspond-
ingly difficult to measure. Thus, we chose to generate this first
iteration of the catalog using flares as the key times triggering
searches for dimming. Given the catalog that results from this
work, it will be possible to compare to large CME catalogs—e.g.,
CDAW (Gopalswamy et al. 2009) and CACTus (Berghmans
et al. 2002)—in order to derive statistically robust relationships
and to identify and study outliers.
This work will be broken up into at least two papers. The

present one describes the methods and algorithms used to produce
James’s EVE Dimming Index (JEDI) catalog (Mason 2019).
Subsequent papers will describe comparisons with other dimming
catalogs—e.g., Solar DEMON (Kraaikamp & Verbeeck 2015)
and CoDiT (Krista & Reinard 2017)—and the previously
mentioned CME catalogs. Specifically, this paper describes
the input and output of the JEDI pipeline in Section 2 and the
methods and algorithms applied to the input to produce the output
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in Section 3. Section 3.1.1 describes a sensitivity study done on a
crucial component of the overall algorithm: pre-flare irradiance
determination, i.e., establishing the baseline from which dimming
is measured. Section 4 lists the throughput percentages of each
component of the algorithm and then provides some basic
statistics of the catalog itself. Section 5 pulls out some specific
examples from the catalog and compares those results to prior
work. Finally, a summary and discussion of future work are
provided in Section 6.

2. Input/Output

The main inputs are the SDO/EVE data and the GOES/XRS
flare event list. The main output is the JEDI catalog itself, a
large table in the Hierarchical Data Format (HDF) 5 file.

2.1. Inputs

For this work, we use the SDO/EVE level 2 extracted emission
lines product. There are 39 emission lines extracted from the
spectra. Table 1 lists these extracted lines, and Figure 1 shows all
of the data used to produce this catalog. Note that Figure 1 uses a
linear color intensity scale, so very large dynamics (e.g., flares) are
saturated. Additionally, the natural data cadence of 10 s cannot
easily be represented in a single figure spanning 4 yr, and as a
result, data gaps can be obscured. In particular, the data that are
measured by the MEGS-B component of EVE (35–105 nm) were
reduced from continuous coverage to a few hours of exposure per
day after 2010 May 19. The data began on 2010 May 1 but were
truncated to 2014 May 26 because EVE/MEGS-A had a CCD
camera power anomaly that could not be resolved. MEGS-B
observations continue to the present date but at the reduced
cadence not trivially amenable to coronal dimming analysis. The
upshot is that JEDI’s primary input is a static data set (barring
version updates to the data set), which makes comparisons
between future versions of JEDI simpler. Table 1 and Figure 1
show that the SDO/EVE extracted lines span three orders of
magnitude in temperature, with Fe ions sensitive to much of
that range. Some ions appear at multiple wavelengths, but these
have the same peak formation temperature. We expect similar
temperature light curves to have similar trends, though photons at
very different wavelengths will be subject to different absorption
cross sections in line-of-sight plasma.

The other input to JEDI is the GOES flare event list, which
was obtained using the IDL SolarSoft routine, rd_gev. These
events are used as key times to trigger a search for dimming in
the SDO/EVE data and also to identify the end time for pre-flare
irradiance determination windows (described in Sections 3.1 and
3.1.1). For the initial version of JEDI, we have limited the flare
events to those above a C1 classification because “big flare
syndrome” (Kahler 1982) suggests that the smaller flares are also
likely to be subtler in all indicators of energetic release,
including dimming. Each event includes the flare class, start and
peak times, measured flux, solar latitude and longitude, and an
identifier for the associated active region responsible for the
flare. We convert the latitude and longitude to the position angle
commonly used for CMEs (Equation (1), see Equations (19)
and (1) in Thompson 20063). This is done to make future
comparisons with CME catalogs easier:

( ( ) ( ) ( )) ( )y = -arg sin lat , cos lat sin lon . 1

2.2. Output

The JEDI catalog is a large HDF5 file. In version 2, there are
5051 rows by 27,349 columns. Each row represents a different
potential dimming event and corresponds to a particular GOES
flare event key time. The columns include several element
types. The primary elements are the parameterizations of
dimming: depth, slope, and duration (see Sections 3.4–3.6) for
each of the 39 EVE extracted emission lines and every
permutation of those lines combined by subtraction via the
method described in Section 3.2. This is the main reason that
there are so many columns: the permutation n=39, r=2
with no repetition is 1482. Adding that to the unaltered 39
emission lines, we end up with 1521 light curves for every
potential event. In each of those light curves, we attempt to
detect and characterize dimming. The remaining columns in
JEDI are essentially metadata. These include timestamps
associated with the dimming parameterizations, the relevant
GOES event information, a flag indicating whether another
flare interrupted the dimming characterization, and fitting

Table 1
SDO/EVE Extracted Emission Lines

Ion λ (nm) log10T (K) Blends

He I 53.70 3.84 L
H I 94.97 3.84 L
H I 97.25 3.84 L
H I 102.57 3.84 L
He I 58.43 4.16 L
O II 71.85 4.48 O II

O II 83.55 4.52 L
He II 30.38 4.70 L
He II 25.63 4.75 L
C III 97.70 4.84 L
O III 52.58 4.92 O II

O III 59.96 4.92 L
O IV 55.44 5.19 O IV

O IV 79.02 5.19 O III, O IV

O V 62.97 5.37 L
O VI 103.19 5.47 L
Fe VIII 13.12 5.57 Fe VIII

Ne VII 46.52 5.71 L
Fe IX 17.11 5.81 L
Ne VIII 77.04 5.81 L
Fe X 17.72 5.99 Fe VII

Mg IX 36.81 5.99 Fe VIII–Fe XIV

Mg X 62.49 6.05 L
Fe XI 18.04 6.07 Fe X, Fe VII

Mg X 60.98 6.10 L
Fe XII 19.51 6.13 L
Fe XIII 20.20 6.19 Fe XI, Fe XII

Fe XV 21.13 6.27 Fe XII

Si XII 52.10 6.28 L
Si XII 49.94 6.29 L
Fe XV 28.42 6.30 L
Fe XVI 33.54 6.43 L
Fe XVI 36.08 6.43 L
S XIV 44.57 6.44 L
Fe XVIII 9.39 6.81 Fe IX, Fe X

Fe XIX 59.22 6.89 L
Fe XX 56.79 6.96 L
Fe XX 72.16 6.96 L
Fe XX 13.29 6.97 Fe XXIII

Note. Line blends occur where multiple emission lines are very close in
wavelength.

3 Edge cases must be handled separately. See lat_lon_to_position_angle.py in
Mason (2018).
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scores. Finally, the processing algorithm also generates
numerous plots at each step, including a summary of the final
result, an example of which is shown in Figure 2.

It is important to note that the JEDI catalog in its present
state does not actually determine whether or not there is
dimming for any particular event. Instead, it provides numerous
quantitative measurements of light curves. Whether or not
those measurements are indicative of dimming depends on the
thresholds applied to those measurements, e.g., a user might
decide that any event with a 17.1 nm dimming depth >1% is a
detected dimming. Future papers will identify good metrics for
flagging dimming in JEDI that are internally consistent and
compatible with other catalogs.

The catalog is not intended to be perused by eye to search for
patterns. It is much too large. Instead, the structure of the JEDI
catalog was directly influenced by common formats used in
machine learning, which is specifically designed to handle
large tables such as this. The file can be easily loaded as a
(events x features) Pandas DataFrame, which is the preferred
format of the scikit-learn machine-learning package. Addition-
ally, despite the input being small compared to most statistical
image-based analyses, the processing time to produce the
catalog is much greater than the time to discard unwanted
columns by slicing or machine-learning techniques that discard
redundant or low-value information, such as principal comp-
onent analysis.

3. Algorithm

The algorithm to convert SDO/EVE emission line data and
GOES flare events into the JEDI catalog consists of several
steps, each of which are described in a separate subsection
below. They are pre-flare irradiance determination to establish
a baseline from which the depth of dimming can be measured
(Section 3.1), light-curve flare removal (Section 3.2), light-
curve fitting to minimize the influence of noise (Section 3.3),
and determination of dimming depth (Section 3.4), slope
(Section 3.5), and duration (Section 3.6).

3.1. Baseline Determination

In order to measure dimming depth in light curves
(Section 3.4), a background level must be established from
which we can measure that relative decrease. Determining that

background baseline level is the objective of this first step in
the algorithm.
The baseline should not be increased due to the presence of

flares. As described by Ryan et al. (2012), a flare light curve
consists of a background flux plus a quiescent flux (a.k.a., the
pre-flare flux) and a flare flux that they define as the flux above
background. The baseline established here corresponds to their
pre-flare flux definition. In other words, if the flare did not
occur, what would the flux be? Because every flare is different
and their impact on different wavelengths can vary, the
simplest way to answer this question is to look at pre-flare
times and assume that the flux level would have continued for
the subsequent few hours.
The first step in this algorithm is to define a pre-flare time

window in which to attempt calculating an irradiance. There are
no obvious values for the length of this window. The clearest
constraints are that it has to be far enough back in time to
include at least one point of data from the instrument (SDO/
EVE in this case) but not so far back in time that it
encompasses prior flares. With only a single point, the baseline
could be unduly influenced by a random fluctuation. Spanning
too far back in time may be influenced by active region
evolution. Clearly, the definition of this window length is not

Figure 1. All SDO/EVE data used to produce the JEDI catalog. Each horizontal strip corresponds to an emission line as listed in Table 1. The vertical white stripe in
many lines in 2010 is the result of a thermal bakeout of MEGS-B CCD, resulting in a gap in solar observations. The horizontal white stripe is from the Fe XVI 36.08
line, which is extracted but always set to the invalid flag. The vertical bright stripes are due to solar rotation variability, such as the coming and going of active regions.

Figure 2. Example summary plot from the JEDI catalog. Green indicates the
dimming depth, red the period for slope calculations, and blue the duration.
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trivial; thus, it is the subject of a sensitivity study detailed in
Section 3.1.1. The result of that study is that the optimal
window duration is 300 minutes.

The second step is to divide the pre-flare time window into
three equal sub-windows. Within each, the median and
standard deviation are calculated. In the ideal case, the light
curve would be perfectly flat across the whole window,
resulting in identical median and standard deviation (σ) values
in each sub-window. Instead, if the light curve shows some
trending, we can only assume that the trend would have
continued if not for the flare and potential dimming. Indeed,
that trend may still be present despite these transient events, but
the effects will all be superimposed. If the trend was due to the
same active region responsible for the flare and dimming, then
we could reasonably expect that the trend should be altered in
some manner that is nontrivial to predict. Thus, if we detect
such a substantial trend, we simply throw out the whole event.
This is a common occurrence: the throughput of this part of the
algorithm is only 30.49%. See Section 3.1.1 for the method to
determine that value and Section 4 for a listing of the
throughput of each subsequent step in the algorithm.

What comprises a “substantial” pre-flare trend? This is where
we apply conditions on the median and σ values in the sub-
windows. Figure 3 panels (a) and (b) show some examples of
basic trends that we want to throw out, and panel (c) shows a
limiting case that we would want to accept. In all cases, the
programmatic condition applied to determine whether a light
curve will be accepted is

( ) ( ) ( )m m s- < ´mTmax mean 2n m n

( )s < sT 3n m,

where max(μn−μm) computes the difference between each
sub-window’s median and selects the largest one, Tμ is a
specified threshold for that max median difference that is
then scaled by the average “noisiness” of the sub-windows
represented by mean(σn), and σn,m<Tσ means at least two of
the three windows must have standard deviations smaller than a
specified threshold.

In the examples shown in Figure 3, it can be seen that the
light curve in panel (a) will be rejected because both conditions
will fail. This concurs with what would be expected when
judging this light curve by eye, because it clearly shows a
downward trend that may or may not continue during the flare
and any potential dimming. The light curve in panel (b) fails
the σ condition, and even though it passes the median
condition, this light curve would be rejected. Again, this is in
line with a subjective judgement because the light curve is
clearly oscillatory and that trend may or may not continue. The
light curve in panel (c) is an example of a nonideal light curve
that would be allowed to pass. One window, w2 in this case,
has a very large σ. The median values are all very similar to
each other, so that condition passes. The σ condition only
requires that two of the three sub-windows have small standard
deviations, so even though σw2>Tσ, a baseline will be
computed. The values of Tμ and Tσ were determined by
iterative tuning. The results for hundreds of light curves were
used and subjectively judged until the algorithmic conditions
conformed to subjective expectations; namely that a light curve
that would be subjectively hard to identify a clear pre-flare
baseline from would also be rejected by the algorithm. Those
values are Tμ=1.5% and Tσ=1%.

For light curves that have passed these conditions, the
computed baseline irradiance is simply the mean of the three
medians already calculated. Figure 4 shows two real examples:
one that passes the conditions and one that fails. The noisiness
of the real light curves is apparent here. In the light curve that
passes the conditions, the underlying trend barely extends
beyond the noise, while the trend clearly dominates the noise in
the light curve that failed the conditions. Indeed, while σ is
fairly small in each sub-window, the difference of the medians
is substantial.

3.1.1. Sensitivity Study of Pre-flare Irradiance Determination Method

The baseline threshold conditions, Tμ and Tσ, were manually
tuned by looking at their impact on hundreds of light curves
until the desired result was obtained, i.e., light curves with a
clearly identifiable stable background were captured by the
algorithm. The remaining free parameter in this determination
is the total window size in which to search for a baseline. In
terms of limits, a window that encapsulates only a single data
point is likely to be unduly influenced by noise. The time
window also cannot be infinitely wide because the corona
changes significantly over periods of more than a few hours or

Figure 3. Cartoon examples of pre-flare light curves and sub-windows. μ in
this context refers to median rather than mean.
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days. Furthermore, if the events are closely spaced together,
long windows can result in overlap. In these situations, we
propagate forward the first “original” baseline irradiance. With
an exceptionally long window, this overlap occurs more often,
and it becomes more likely that the baseline level for later
events is “stale.” This motivated a sensitivity study to
determine what window duration resulted in the highest
throughput of the baseline determination algorithm.

The throughput is computed as the number of successful pre-
flare irradiance determinations divided by the total number of
attempts. The latter value is not strictly a fixed value because
of the overlap forward propagation of “original” baseline
irradiance as discussed above. Table 2 shows the results of this
analysis.

The best performing window duration is 300 minutes with a
throughput of 30.49%. Even in this best case, 70% of the light
curves failed to pass the baseline threshold conditions. This is
consistent with “by eye” baseline determinations; it is often
hard to identify a baseline with confidence, and spot checks of

the results (e.g., Figure 4) showed that the algorithm was
accepting/rejecting light curves appropriately. Additionally,
the algorithm does not appear to be especially sensitive to the
window duration, with throughput spanning only 7 percentage

Figure 4. Real examples of pre-flare light curves that fail (top) and pass (bottom) the sub-window conditions. Percentages on the right axis are computed from the
median irradiance in the window.

Table 2
Baseline Determination Throughput as a Function of Time Window Size

Window # # Total Throughput
(minutes) Successful Failed (%)

60 40536 119832 160368 25.28
120 26764 88598 115362 23.20
180 25519 59657 85176 29.96
240 20194 47354 67548 29.90
300 16804 38303 55107 30.49
360 13710 31686 45396 30.20
420 11204 26626 37830 29.62
480 9708 23910 33618 28.88
720 5808 15447 21255 27.33
1440 1913 6784 8697 22.00
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points across windows ranging from a single hour to an entire
day. Nevertheless, we chose 300 minutes as the default value to
maximize throughput. A minor but pragmatic concern is
processing time. A smaller window results in more events to
process. The time to process scales linearly with the number to
process, so we have a small preference for longer windows.
Balancing this preference against the concern with stale
forward propagation, we would naturally gravitate toward a
moderate window duration. Fortunately, this also aligned with
the maximum throughput.

3.2. Flare Removal

Any time there is a dimming, it is likely that there is also a
solar flare around the same time, especially as the dimmings
become more intense and thus more easily measurable. This
temporal coupling can be segregated spatially with EUV
imagers: the bright flare pixels can be isolated from surround-
ing and nearby dimming. Fortunately, the strong spatial
distinction is generally also a strong temperature distinction.
The volumes that get very bright also tend to be where plasma
is getting very hot. Even though irradiance instruments have no
spatial resolution, they can distinguish between temperatures if
they can spectrally resolve temperature-sensitive emission
lines. This is the case with SDO/EVE. Its 39 extracted
emission lines span three orders of magnitude in temperature
(Table 1 and Figure 1). The light curves of these various
emission lines trace the temperature evolution of the plasma,
which is most dramatic during solar flares. Emission lines from
ions with high peak formation temperatures (e.g., Fe XX at
nearly 10MK) are very weak most of the time but experience a
major enhancement from the localized plasma in a solar flare.
The flare contributions for the hotter coronal emissions are
usually a short-duration impulsive phase and a longer-duration
gradual phase afterwards (Woods et al. 2011). The resultant
light curves show a flat baseline, a rapid peak, and a quick
return to the flat baseline. At temperatures closer to those of the
ambient corona, ∼1MK, a larger volume of plasma partici-
pates in the emission. Light curves from emission lines near
these ambient temperatures (e.g., Fe IX at 0.6 MK) display a
corresponding sensitivity to more processes in the corona.
These light curves do still show an enhancement from solar
flares, though only at later times once the hot, localized plasma
has had time to cool. These light curves can also present
dimming. The net result is an irradiance light curve that
superimposes all of these processes. The dimming may
dominate at one point in time, then be overtaken by the solar
flare enhancement for a time, return to a dimming level, and
eventually return to a baseline level.

With some light curves sensitive to both dimming and flares
and other light curves sensitive only to flares, it is possible to
combine them to remove the effect of the flare in the former,
thus isolating the dimming. This procedure was first outlined
in Mason et al. (2016) and has been generalized here. The
algorithm is simple in concept: (1) find the solar flare peak in
both light curves, (2) time shift the second light curve so that its
peak is at the same time as the first, (3) scale the second light
curve so that its peak value matches that of the first, and
(4) subtract the second light curve from the first. Note that the
algorithm will reject light curves if it cannot find peaks or if the
required time shift is greater than 30 minutes—corresponding
to the longest time it typically takes for plasma to cool across
the SDO/EVE emission lines. Figure 5 shows an example of

this process and compares it to the corresponding spatially
isolated dimming light curve from SDO/AIA. Mason et al.
(2016) did this for a handful of emission line combinations and
found that the dimming light curve is often best in the cooler,
ambient corona lines (e.g., Fe IX 17.1 nm) and that the
reference flare light curve is often best in the hotter coronal
lines (e.g., Fe XV 28.4 nm) as is shown in Figure 5. The present
work does this for every possible permutation, which results in
14824 new combined light curves. While we do not expect all
of these to be valuable, we avoid introducing any a priori bias
in the “right” lines to combine. Subsequent steps of the overall
algorithm use these light curves in addition to the original 39,
bringing the total number of light curves to process for each
event to 1531.

3.3. Light-curve Fit

In order to reduce the influence of minor variations in the
light curves on the subsequent dimming measurements, each of
the 1531 light curves for each potential event are fit with a
smooth curve. The first step of the fitting algorithm is to define
the time window in which dimming will be characterized. We
start the window one minute prior to the time of the flare peak
and end it 24 hr after the flare peak time. This time window was
chosen in accordance with the findings from Zarro et al. (1999)
and Thompson et al. (2000) that dimming typically lasts several
hours and very rarely longer than 1 day. If another flare occurs
during this time, the window is truncated to the time of that
subsequent flare. If that makes the window less than 2 hr, we
reject the light curve. It is likely that some of these events could
be assessed for dimming manually, but automated dimming
characterization in these cases would be difficult.
With the window established, we can fit a curve to the data.

Mason et al. (2016) did this using polynomials and showed that
in addition to creating a smoother curve, the uncertainties were
reduced. In the present work, we use a machine-learning
technique to find the best-fit curve to achieve the same basic
result. For each light curve, a series of support vector machine
regressions (SVRs; Drucker et al. 1997) from scikit-learn
(Pedregosa et al. 2011) are applied and evaluated. The primary
tunable parameter in SVR is γ, analogous to order in

Figure 5. Irradiance flare removal algorithm compared to spatial isolation of
dimming, adapted from Mason et al. (2016).
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polynomial fits: the larger the value, the more complex the
model. We test γ values between 10−10 and 10−5 with 20 equal
logarithmic steps in that range.

A major paradigm in machine learning is splitting data into
training and validation sets. For time-series data such as this, it
would not be appropriate to select, say, the first half of the
points as the training set and the second half as the validation
set because this could easily fail to capture important variability
in the data, such as the dimming profile. Instead, we randomly
choose half of the points across the entire time range for
training and the other half for validation. Random errors could
be introduced in this process due to the short timescale
variability, which is considered noise for our purposes. To
mitigate the introduction of these errors, scikit-learnʼs Shuf-
fleSplit function has an optional input for the number of
equivalent splits to do, i.e., more than one random selection of
the testing and validation sets are produced. We performed a
simple sensitivity test to determine how many splits were
required to eliminate major differences in the best-fit results
and found that 20 splits were sufficient (see Table 3).

To find the best γ, another machine-learning technique was
applied: validation curves (Figure 6). As the complexity of the
model increases (moving to the right in Figure 6), the explained
variance score of the fit always increases for the training set.
However, the score of the fit applied to the validation set has a
peak somewhere in the middle, which is the best fit. For very
low model complexities, the model does a poor job fitting
either set, which, in traditional nomenclature, is referred to as
under-fitting. At high model complexities, a large disparity
appears where the score for the training set is high but is low
for the validation set. In traditional terms, this is known as
over-fitting, and in machine-learning language, this behavior is
sometimes referred to as the model “memorizing” the training
set (as opposed to actually “learning” the trend behind the

data). It is important to input a range of γ values that fully
capture the validation curve so that a valid peak can be found.
This process was completed for thousands of light curves, and
their best-fit γ values were compared. We found that fits with
γ=5×10−8 always performed very well. Inspection of the
fit light curve itself overlaid on the data (e.g., Figure 7)
confirmed the desired behavior. Thus, to improve processing
time for further runs of the catalog, we simply fix the value of
γ. All subsequent steps in the algorithm use the light-curve fits
rather than the underlying data.

3.4. Dimming Depth Determination

For each light-curve fit, the local minima are extracted using
the scipy.signal.argrelmin function (Figure 8). Any minima
above an irradiance value of 0% are thrown out because by
definition, a dimming is a decrease from a baseline level. That
baseline determination step (Section 3.1) normalizes the light
curves so that 0% approximates the irradiance level that would
be if no eruptive event and corresponding dimming occurred. If
no minima remain after this filter is applied, then the dimming
depth value is set to NaN. Otherwise, the earliest minimum
defines the catalog’s “depth first” and the deepest minimum
defines the “depth max,” which can be the same value.

Table 3
Best-fit Sensitivity to Number of Shuffle Splits

# Splits Best γ Trial 1 Best γ Trial 2 Best γ Trial 3

7 2.51×10−5 3.98×10−6 2.51×10−5

10 2.51×10−5 2.51×10−5 2.51×10−5

15 3.98×10−6 2.51×10−5 3.98×10−6

20 3.98×10−6 3.98×10−6 3.98×10−6

150 3.98×10−6 3.98×10−6 3.98×10−6

Figure 6. Example validation curve for finding the best fit to the light curve.
Figure 7. Example light-curve fit for 9.4 nm line with γ=5×10−8 resulting
in a validation fit score of 0.92.

Figure 8. Example depth determination for a 63.0 nm light curve.
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3.5. Dimming Slope Determination

The determination of slope for a particular light curve
depends on the successful determination of dimming depth
(Section 3.4), which is used to constrain the end time of the
window used to calculate the slope. Having already found
the earliest local minimum slightly simplifies the algorithm
at the cost of introducing a dependency. The start time of
the slope window is initially defined to be the time of the
associated GOES/XRS flare peak but is then refined to be
the time of the maximum value in that window. This is because
the GOES/XRS flare peak is representative of plasma as hot or
hotter than the line emission in SDO/EVE and as such the flare
peaks tend to be at later times in EVE than in XRS as the emitting
plasma cools. The slope window should not include the flare peak
or slightly earlier times because this would bias the slope value
downward. Once this window is defined, the derivative is taken
across the time range. The minimum, maximum, and mean
derivatives are then recorded as slope values (Figure 9).

3.6. Dimming Duration Determination

The duration here is simply defined as the time between the
first drop below 0% irradiance and the first time the irradiance
rises back above 0% (Figure 10). Again, we assume that the
baseline determination step (Section 3.1) has already normal-
ized the light curve such that 0% is the baseline. The code first
finds all zero crossings. It then discards any that occur before
the slope start time for consistency of these two results. If no
zero crossings remain, the code sets the duration to NaN.
Otherwise, the code finds the first zero crossing that has a
negative slope and the first subsequent zero crossing with a
positive slope. In this way, we ensure that the duration we
calculate corresponds to a depression in the light curve rather
than an enhancement. The duration is then simply defined as
the time between these two identified zero crossings.

4. JEDI Catalog Statistics

The catalog itself is a sparse array despite its large size.
It is 5051 rows by 27,349 columns, where 90% of these
138,139,799 cells are NaN. Section 4.1 explains why. This still
leaves 14,227,655 dimming and metadata parameters to work
with. These are characterized in Section 4.2.

4.1. Algorithm Throughput

Each step of the algorithm can result in some light curves
being rejected. In these cases, the JEDI catalog contains an
NaN value. In the very first step, pre-flare irradiance
determination, only 30% of light curves make it through (see
Section 3.1.1).
The second step determines the size of the dimming time

window, which can be truncated by subsequent flare interruptions,
and has a throughput of 56%. The rejected light curves are those
that have a subsequent flare less than 2 hr later. Note that the
percentage of flares that have a subsequent flare less than 24 hr
later is 96%, but the algorithm will still attempt to characterize
those using a window truncated to the time of the subsequent flare.
The next step is the peak-match-subtract within the dimming

window, which has a throughput of 14%. There are several reasons
that the algorithm rejects the light curves. Fifty-one percent of the
failures are due to a mismatch in the length of the two light curves
(one to subtract with and one to subtract from). This is so common
because MEGS-A and MEGS-B often have dramatically different
effective cadences of observation due to the radiation issues that
impacted MEGS-B early in the mission (Section 2.1). Next, 34%
of the failures are due to excessive time shifts. If the peaks
identified in the two light curves are more than 30 minutes apart,
the algorithm rejects them. Finally, the algorithm also rejects the
light curves if a peak cannot be identified in either light curve,
which accounts for 15% of the failures.
For each potential event, we then fit all of the light curves:

those corresponding to the original 39 emission lines and every
one of their 1482 permutations from the previous step. The
throughput of this fitting is 24%. The failed cases are those
whose best-fit scores were less than our threshold value of 0.5.
Finally, the fitted light curves are parameterized in terms of

depth, slope, and duration, if possible. The depth throughput is
80%. It fails if either (1) no local minima are found or (2) none
of the minima are below the pre-flare irradiance baseline. Note
that the slope determination also depends on the depth being
identified, because it uses the time of the first minimum as the
end time for slope determination. In light curves where that
time could be provided, the slope algorithm throughput is
100%. The duration determination has a throughput of 74%.
Four conditions can cause it to reject the light curve: 40% of
the duration failures are because the light curve never crosses
the pre-flare irradiance baseline; 13% because no negative-
slope baseline crossing can be found (i.e., the light curve never
drops below the baseline); 47% because no positive-slope

Figure 9. Example slope determination for a 13.1 nm light curve. The gray
vertical dashed line indicates the GOES/XRS flare peak time, and the two
black dashed lines are the edges of the slope window. The minimum slope
value is 3.5×10 −6% s−1, maximum is 9.1×10−4% s−1, and mean is
5.3×10−4% s−1.

Figure 10. Example duration determination for a 25.6 nm light curve.
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baseline crossing can be found (i.e., the light curve never rises
back up to the baseline), and 0% because the positive-slope
crossing occurs before the negative-slope crossing.

Combining the above throughputs, we get 30%×56%×
14%×24%=0.56% before parameterization. Depth and

slope then are 0.45%. Duration, which is independent of the
other two parameters, is 0.42%. Despite these small percen-
tages, they are applied to several million light curves. The
catalog contains 16,642 depths, 16,577 slopes, and 12,333
durations.

Figure 11. Dimming depth histograms sorted by the log of temperature in
kelvin indicated in each plot title with its corresponding spectral line
wavelength. The x and y axes are the same for all plots.

Figure 12. Same as Figure 11 but normalized by instrument duty cycle. Note
that the y-range is doubled.
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4.2. Histograms and Heat Maps

Figure 11 shows histograms of the maximum depths for the
39 uncorrected emission lines; the 1482 combined permutations
of these lines are not shown here due to space limitations. The
log temperature 4.70 (30.4 nm) histogram is cut off in order to
allow visibility of all other plots. The height of the three cutoff
bars are 210, 211, and 137. The large number of events in 30.4
and 25.6 may be due to obscuration dimming as described in
Mason et al. (2014). Note that the plots corresponding to
wavelengths >35 nm are from MEGS-B, which has significantly
reduced operational cadence and therefore many fewer detec-
tions. The duty cycles are 96.3% and 16.8% observation up-time
for MEGS-A and MEGS-B, respectively. Normalizing the
histograms by these duty cycles results in Figure 12.

Figure 13 provides an alternative method of viewing all of the
dimming max depth data for the 39 emission lines. The major
population is at low dimming depths, with the greatest concentra-
tion of detections occurring in a range around a log temperature of
6. Note that there may be some systematic bias here because there
happens to be a higher density of emission lines with temperatures
just above a log temperature of 6 that physically should behave
similarly and thus result in similar dimming parameterizations.
Note that this is consistent with the conclusions of Mason et al.
(2014, 2016), that CME-induced mass-loss dimming should occur
around the ambient coronal temperature. The other hot spots are
below a log temperature of 4—the same peak identified from
30.4 nm in Figures 11 and 12—and at a log temperature of 6.8.
This latter hot spot is due to the 9.4 nm line, which may be
compromised by the much cooler line blends from Fe IX and Fe X
(Lepson et al. 2002; Schmelz et al. 2013).

Figure 14 is the same as Figure 13 but for the mean slope
dimming parameter. While the slopes are a little more tightly
clustered, as can be determined by looking at the vertical histogram
scale, the general trends are similar to those of Figure 13.

5. Comparison to Prior Work

It is possible to compare some of the results from JEDI with
prior irradiance coronal dimming work. Mason et al. (2014)
performed a case study of a dimming event that occurred on

2010 August 7. JEDI rejected many of the light curves for this
event due to significant oscillations in the pre-flare irradiance
level, precluding a baseline determination by the algorithm
described in Section 3.1. This oscillation, on the same
timescale as the 120 minute window, caused the median
comparison to exceed the threshold, as designed (Figure 15).
However, one light curve studied by Mason et al. (2014) did
get fully characterized by the JEDI algorithms: 19.5 nm
(Figure 16). Surprisingly, the depth from JEDI is most similar
to the corrected depths from Mason et al. (2014): 2.59% and
2.46%, respectively. The uncorrected depth from that paper,
most comparable to Figure 16, was 1.52%. The difference
likely stems from the pre-flare irradiance baseline because
the other component of the depth value—identification of
the minima—is simple. We believe the present work to be more
reliable because the method for pre-flare irradiance baseline
determination in Mason et al. (2014) was not established in as
rigorous a manner as the algorithm described here; it only used
a single irradiance measurement taken at 17:00 to define the
baseline level. Note that in the case of the 17.1 nm emission
line, this would correspond closely with the relatively high
median value in the rightmost sub-window of Figure 15 that
caused the present baseline determination algorithm to reject
the light curve. This underscores the dependence on baseline
determination techniques and the requirement that the same
method be applied whenever comparing dimming depths.
We can also compare with the 29 irradiance dimming events in

Mason et al. (2016). That study reported the dimming depth of
17.1 nm corrected by 28.4 nm, but despite the large size of this
catalog, only 15 cases exist where both of those emission lines
were simultaneously valid. However, an approximate comparison
can be made. The mean and standard deviation of the 29 dimming
depths in Mason et al. (2016) are 2.06% and 1.35%, respectively.
In JEDI, for the 17.1 nm line—of which there are 402 values—
they are 2.06% and 1.47%, respectively. This is an exceptional
agreement, with the caveat that it is not a direct comparison.

6. Discussion and Future Work

The JEDI catalog represents a first step to systematically
detect and characterize coronal dimmings in irradiance light
curves. Dimming profiles contain information about the process
that caused them, which is often due to a CME temporarily
depleting a region of the coronal plasma. Mason et al. (2014,
2016) suggested that the depth of the dimming is indicative of
CME mass and the slope of the dimming correlates with CME
speed. This connection is especially important for exoplanet
habitability studies because the most promising technique for
detecting and characterizing stellar CMEs is irradiance coronal
dimming parameterization (Harra et al. 2016). Furthermore,
these methods may be useful for the development of new, simple
instruments for solar space weather. Low-cost, low-mass, low-
power, low-data irradiance instruments can be tuned to a few of
the most important emission lines for determining CME speed
and mass, as determined with the JEDI catalog in combination
with the CME catalogs.
The natural next step for this work is to do precisely that:

combine JEDI with existing large CME catalogs such as
CDAW (Gopalswamy et al. 2009) and CACTus (Berghmans
et al. 2002). These catalogs can be supplemented with input
from CME experts and the STEREO coronagraphs, as was done
in Mason et al. (2016). By doing so, we will be able to build
upon that work to create a robust empirical relationship

Figure 13. 2D density plot of dimming depth and formation temperature for the
39 emission lines, normalized by instrument duty cycle. The raw data are
represented by the points and are overlaid by the contoured heat map, which
indicates the point density. The histograms on the top and right indicate the
density in their corresponding axis.
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between irradiance coronal dimming and CME kinematics.
Theoretical work is being done in parallel to bolster this
empirical relationship and further explore the physical connec-
tions (e.g., Jin et al. 2017). The results of these magnetohydro-
dynamic (MHD) simulations have so far confirmed that there is
indeed a strong relationship, and they agree with the empirical
relationship derived in Mason et al. (2016). Similarly,
comparisons with image-based dimming studies have so far
agreed with Mason et al. (2016; e.g., Dissauer et al.
2018a, 2018b). Meng Jin is presently running new MHD
simulations with M-dwarf star parameters—stronger magnetic
fields yielding significantly hotter coronae, and more powerful
eruptions—to determine how the relationship between dim-
ming and CMEs may differ from the solar case. No past or
current astrophysical observations are capable of detecting such

dimmings, but these simulations can guide instrument require-
ments for potential future missions.
An additional next step is to compare JEDI with other

dimming catalogs, for example, the Solar DEMON catalog
(Kraaikamp & Verbeeck 2015) and the catalog produced by
CoDiT (Krista & Reinard 2017). We can determine the
percentage of mutual dimming detections and potentially use
the other catalogs to guide thresholds to be applied to the
parameters in JEDI for declaring whether or not each event
should be considered a dimming.
Recall that this iteration of the JEDI catalog uses solar

flares as the trigger to search for dimming. This means that
non-flare-associated CMEs and dimmings are by definition
excluded. Such CMEs tend to be less energetic (e.g., Howard
& Harrison 2013; D’Huys et al. 2014), and as such, we expect

Figure 15. Baseline determination for the 17.1 nm line for the 2010 August 7 event that was also studied by Mason et al. (2014). While the σ condition passes, the
median condition fails due to the irradiance increase in the rightmost sub-window.

Figure 14. Same as 13 but for the mean slope dimming parameter.
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that the irradiance dimming signals would be correspondingly
degraded. In these CMEs, it may also be the case that space
and temperature are less strongly coupled: heating may be
insufficient to cause increased emission in the hotter lines
but still cause increases in the cooler emissions that could
partially or totally mask irradiance dimming. The present
work has started with the easier problem of flare-associated
CMEs and dimming. However, we are already beginning
development of an irradiance dimming catalog that uses the
Solar Demon dimming catalog to trigger searches, rather
than the GOES flare event list. This new catalog is tentatively
titled SITH.

Finally, the code to generate JEDI and the catalog itself are
entirely open source and version controlled. Future improve-
ments will continue to be documented, and we encourage both
community input directly on the code repository and commu-
nity usage of the results.

We would especially like to thank all of the developers of the
software modules used for this work. We cited them in the text
wherever possible and included them below. We also thank
Alysha Reinard for providing the python code to convert flare
latitude and longitude into position angle and the referee for
catching errors and making suggestions that improved the
quality of the paper.
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