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• Vision for Commercial Supersonic Flight is a future 

where fast air travel is available to a broad spectrum 

of the traveling public 

• Biggest challenge is sonic boom 

- Civil supersonic flight operations are prohibited over 

many parts of the world 

- Currently, U.S. law prohibits flight in excess of Mach 1 overland 

• Supersonic En-Route Noise standard is required  

- Must be accepted internationally (ICAO, FAA, EASA, TCCA) 

• Additional barriers include airport noise, high-altitude emissions, efficiency, and many more

Motivation
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Overcoming the Barrier to Overland Supersonic Flight

Credit: Lockheed Martin

www.nasa.gov



Sonic Boom Physics
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Acoustic Frame of Reference

Simulation-based analysis must reliably predict ground noise

Acoustic Propagation

Aerodynamic Frame of Reference

Simulation-based design must reliably determine aircraft shape to minimize ground noise
Goals
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Mach = 1 → 767 mph or 1,235 km/h (at sea level)
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Sonic Boom Noise
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Boom sound characteristics are a function of the ground 
pressure signature 

•Classical signatures are N-waves

•Low-boom designs exploit shaped signatures

-Strategy is to increase rise time, decrease amplitude, 
increase duration and smooth recovery


-Requires designing aircraft with nearfield signatures 
that do not coalesce into N-waves
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Schlieren photograph 
of a supersonic aircraft 
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Boom sound characteristics are a function of the ground 
pressure signature 

•Classical signatures are N-waves

•Low-boom designs exploit shaped signatures

-Strategy is to increase rise time, decrease amplitude, 
increase duration and smooth recovery


-Requires designing aircraft with nearfield signatures 
that do not coalesce into N-waves

Schlieren photograph 
of a supersonic aircraft 

∆p

Time

∆p = 2 lb/ft2


Duration = 0.25 s



Sonic Boom Footprint
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BOOM CARPET

Sonic boom characterization requires prediction of the primary boom carpet
• Influenced by several factors, some with significant  uncertainties

Aircraft shape and

operating conditions

Atmospheric conditions

(wind, temperature, humidity)

Local terrain

Additional factors

• Aircraft acceleration and maneuvers, focus booms

• Secondary boom carpets 



Low-Boom Flight Demonstration
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•NASA mission to support development of an En-Route noise standard 
- Aircraft is a supersonic-acoustic-signature-generator with characteristics representative 
of a commercial supersonic transport 

•Design Mach number is 1.4 
•Design sonic boom sound level is 75 PLdB (Perceived Level) 

- Roughly a factor of eight quieter than the boom 
generated by Concorde 

- Near ambient noise level of a city 
- Similar to a rumble from a distant thunderstorm 

•Goal is to perform multiple overflights of 
representative communities and climate across the 
US to collect noise response data 

•Deliver community response data to ICAO



X-59 Aircraft
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www.nasa.gov/aero/x-59-quesst-overview



Role of High-Fidelity Simulations and HPC
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•High-fidelity CFD simulations are a major contributor to X-59 
- All aspects of aerodynamic design and acoustic analysis 
- Wind-tunnel hardware verification and test support 
- Uncertainty quantification 

•Ongoing pre-test analysis to support acoustic validation flights 
•Near-real-time prediction capability for community test planning 
•Suite of new prediction tools for certification of supersonic aircraft

Acoustic Validation 
Flights

Community Response Overflights



Sonic Boom Analysis

SC19, 17-22/11/2019 10

Ground Signal

CFD Domain

Near-field
Signal

Altitude Atmospheric
Propagation

Nearfield 
3D effects (aircraft shape and plume)

Use CFD

Propagation 
Atmospheric variability

Absorption
Use Ray Tracing and 

quasi-1D PDE

(~10 miles)
Flight path

Ray Tracing



Core Solver: Cart3D
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• Multilevel embedded-boundary Cartesian mesh

‣ Cut-cells at boundary

‣ Handles arbitrarily complex vehicle shapes

Meshing

• Inviscid flow assumption (Euler equations)


• Second-order spatial and temporal discretization

‣ Fully conservative finite-volume method

‣ Dual time-stepping for unsteady flows


• Calorically perfect and equilibrium gas models


• Runge-Kutta time marching with multigrid acceleration


Flow Solver



Pressure  
Signature 

Error

Core Solver: Cart3D
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• Mesh automatically refined in locations with most impact on user selected outputs (pressure 
signatures, lift, drag, moments, …)

‣ Method of adjoint weighted residuals

‣ Used for every simulation

Error Estimation and Goal-Oriented Mesh Adaptation

Pressure  
Signature Location

Near-body region of adapted mesh around LBFD aircraft 
for pressure sensor output (Cp contours) Adaptation Convergence History



Parallel Performance
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Excellent scalability through use of domain decomposition based on space-filling curves

Cascade Lake Engineering Workstation
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• Intel(R) Xeon(R) Gold 6252 CPU

• 2 sockets, 24 physical cores per socket

• Hyper-Threading and TurboBoost ON

• icc, version 19.0.4.243

KMP Affinity

OpenMP Performance

OpenMP and MPI fully supported 

HECC Supercomputing Systems



Example Results
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Acoustic Validation Flights

1. Nearfield Flow Solutions 

2. Nearfield Signatures 

3. Ground Signatures 

4. Ground Noise Level 



Nearfield
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(Heineck et. al., NASA, 2016) (Heineck et. al., NASA, 2019) 

•Schlieren photographs are a well-established experimental technique

-Visualization of density gradients, excellent for shocks


•New capability in Air-to-Air Background Oriented Schlieren (AirBOS) imaging

-Allows schlieren imagery of aircraft in flight

-Emerging technique for validating simulations through comparison with computational schlierens

Schlieren Flow Visualization
Photographs from flight tests in the Supersonic Corridor 
near Armstrong Flight Research Center



Flight-Matching Computation
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Computational schlieren 
image from Cart3D simulation

Flight TestCart3D Simulation

Computational schlieren

Mach number = 1.05

Angle of Attack = 1.15°


T-38 Aircraft

AirBOS image 
Photographed 2,000 feet from the aircraft 



Shock-Shock Interactions
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Supersonic Formation Flight

Computational schlieren
AirBOS image 

Photographed 2,000 feet from the aircraft 

Mach number = 1.05

Angle of Attack = 1.15°

T-38 Aircraft

Preliminary work toward flight-matching simulations and future acoustic validation flights 
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Computational schlieren

• Dark lines are shockwaves

• White regions are expansions

• Perspective projection

Mach number = 1.05 
Angle of Attack = 1.15° 

T-38 Aircraft (wingtip separation ~13’)
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Mach number = 1.05 
Angle of Attack = 1.15° 

T-38 Aircraft (wingtip separation ~13’)

Computational schlieren

• Dark lines are shockwaves

• White regions are expansions

• Perspective projection



X-59 Nearfield Predictions
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Ground Signal

CFD Domain

Near-field
Signal

Altitude Atmospheric
Propagation

Challenging simulations:

•Fine geometric detail (probes, vortex generators, flaps, 
ailerons, stabilator, t-tail, …)

•Many secondary-air systems, in addition to the main engine

•Requires accurate prediction of a complex system of 
shockwaves far from the aircraft in addition to standard 
aerodynamic performance coefficients



Shockwaves at Cruise
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• Significant influence of nozzle exhaust

• Shaped pressure signature below aircraft

Computational schlieren

• Dark lines are shockwaves

• White regions are expansions

• Perspective projection

Mach number = 1.4 
Angle of Attack = 2.05°
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Nearfield Pressure Signature
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Mach number = 1.4 
Angle of Attack = 2.05°

On-track Nearfield 
Pressure Signature

Nearbody refinement in streamwise 
and crossflow directions: 
• Typical mesh size 50 million cells 
• Fine mesh size 100—500 million cells

Coefficient of pressure on mid-plane 
• White: freestream 
• Yellow-Red: above freestream 
• Blue: below freestream
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Nearfield Pressure Cylinders
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• Recall that goal is to compute the boom carpet on the ground 
- This requires computation of the nearfield pressure cylinder, not just the on-track signature

BOOM CARPET

Example nearfield pressure              
cylinders below the   

aircraft

• Adaptively refined mesh for many sensor locations

- In practice, we take full advantage of mesh alignment

- Separate into several cases with sensors at similar off-track angles

Pressure signatures at 
different off-track angles



Atmospheric Propagation and Ground Signatures
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• Propagate nearfield signature through atmosphere to ground 
• Numerical analysis via sBOOM: 

1.Ray tracing (path and arrival time) 
2.Quasi-1D propagation (signature morphology) 

• Includes relaxation loses, stratification, spreading and 
non-linear propagation



Sonic Boom Carpet
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Track Width (70+ miles!)

� = off-track angle

Altitude 
(~10 miles)

cutoff angle

Noise target is 75 PLdB

• Current design is quieter than target over the 

full carpet 

• Holds for most atmospheric conditions

Convert ground waveform to level of noise for each off-track angle 
up to cutoff

• Perceived level (PLdB) is the primary metric

• ASEL, BSEL & CSEL also used 

0 20 40 60 80 100 120 140
Time Miliseconds  (ms)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

O
ve

rp
re

ss
ur

e 
(p

sf
)

φ =   0°
φ = 10°
φ = 20°
φ = 30°
φ = 40°

Propagation altitude, 55076 ft

Ground noise



Importance of High-End Computing
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Pleiades

-Broadwell

Aitken

-Cascade Lake

Endeavour

-Sandy Bridge 

Electra

-Skylake 

Challenges of simulating low-boom aircraft

-Propagation of weak shocks over several aircraft lengths 
‣Difficult to reap benefits of advanced higher-order schemes 
‣Highly susceptible to attenuation by discretization error 

-Wide range of scales: complex flow & aircraft geometry 
‣Large grids even with adaptive mesh refinement 

- Many engineering cases 
‣Operating conditions, flaps, ailerons, stabilator, T-tail, engine settings 
‣Fast turn-around critical (4—8 hours per case) 
‣Each case fits on 1—4 nodes, but may need several 100 nodes to fill databases efficiently
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