National Aeronautics and Space Administration

Minimizing Sonic Boom Through Simulation-Based Design: The X-59 Airplane

rian Nemec Michael Aftosmis NASA Ames

> **Computational Aerosciences Branch** NASA Advanced Supercomputing Division **Ames Research Center**

www.nasa.gov

Wade Spurlock Science & Technology Corp

> SC19, Denver, CO Nov 17-22, 2019

Motivation Overcoming the Barrier to Overland Supersonic Flight

- Vision for Commercial Supersonic Flight is a future where fast air travel is available to a broad spectrum of the traveling public
- Biggest challenge is sonic boom
 - Civil supersonic flight operations are prohibited over many parts of the world
 - Currently, U.S. law prohibits flight in excess of Mach 1 overland
- Supersonic En-Route Noise standard is required
 - Must be accepted internationally (ICAO, FAA, EASA, TCCA)
- Additional barriers include airport noise, high-altitude emissions, efficiency, and many more

Sonic Boom Physics

Simulation-based analysis must reliably predict ground noise Goals Simulation-based design must reliably determine aircraft shape to minimize ground noise

Sonic Boom Noise

pressure signature

Sonic Boom Noise

pressure signature

Sonic Boom Footprint

• Influenced by several factors, some with significant uncertainties

Aircraft shape and operating conditions

Sonic boom characterization requires prediction of the primary boom carpet

Atmospheric conditions (wind, temperature, humidity)

Local terrain

Additional factors

- Aircraft acceleration and maneuvers, focus booms
- Secondary boom carpets

Low-Boom Flight Demonstration

- NASA mission to support development of an En-Route noise standard
 - of a commercial supersonic transport
 - Aircraft is a supersonic-acoustic-signature-generator with characteristics representative
- Design Mach number is 1.4
- Design sonic boom sound level is 75 PLdB (Perceived Level) - Roughly a factor of eight quieter than the boom
 - generated by Concorde
 - -Near ambient noise level of a city
 - Similar to a rumble from a distant thunderstorm
- Goal is to perform multiple overflights of representative communities and climate across the
- US to collect noise response data
- Deliver community response data to ICAO

U.S. National Air Space Community **Response Surveys**

Configuration C612		
MDGW	24,300 lbs	
Fuel (Std Day)	7,500 lbs	
Payload	600 lbs	
Design Mach	1.4	
Loudness	<75 PLdB	
Engine	1xF414-GE-100	
Landing Gear	F-16 Blk25 NLG F-16 Blk25 MLG	

Control Surfaces		
Aileron	12.9 sq ft/+35/-25	
Flap	12.4 sq ft/+30/-3	
Stabilator	39.9 sq ft/+20/-15	
Rudder	8.5 sq ft/+25/-25	
T-tail	6.8 sq ft/+10/-0	

X-59 Aircraft

Role of High-Fidelity Simulations and HPC

- High-fidelity CFD simulations are a major contributor to X-59
 - All aspects of aerodynamic design and acoustic analysis
 - -Wind-tunnel hardware verification and test support
 - Uncertainty quantification
- Ongoing pre-test analysis to support acoustic validation flights Near-real-time prediction capability for community test planning. Suite of new prediction tools for certification of supersonic aircraft

Flights

Sonic Boom Analysis

Nearfield

3D effects (aircraft shape and plume) Use CFD

Propagation

Atmospheric variability Absorption Use Ray Tracing and quasi-ID PDE

Ray Tracing

Meshing

- Multilevel embedded-boundary Cartesian mesh
 - Cut-cells at boundary
 - Handles arbitrarily complex vehicle shapes

Flow Solver

- Inviscid flow assumption (Euler equations)
- Second-order spatial and temporal discretization •
 - Fully conservative finite-volume method
 - Dual time-stepping for unsteady flows
- Calorically perfect and equilibrium gas models
- Runge-Kutta time marching with multigrid acceleration

Core Solver: Cart3D

Error Estimation and Goal-Oriented Mesh Adaptation

- signatures, lift, drag, moments, ...)

Adaptation Convergence History

Mesh automatically refined in locations with most impact on user selected outputs (pressure

Near-body region of adapted mesh around LBFD aircraft for pressure sensor output (C_p contours)

Parallel Performance

Excellent scalability through use of domain decomposition based on space-filling curves

HECC Supercomputing Systems

OpenMP and MPI fully supported

Cascade Lake Engineering Workstation

- 2 sockets, 24 physical cores per socket
- Hyper-Threading and TurboBoost ON
- icc, version 19.0.4.243

1. Nearfield Flow Solutions 2. Nearfield Signatures 3. Ground Signatures 4. Ground Noise Level

Example Results

Nearfield Schlieren Flow Visualization

- Schlieren photographs are a well-established experimental technique -Visualization of density gradients, excellent for shocks New capability in Air-to-Air Background Oriented Schlieren (AirBOS) imaging
- -Allows schlieren imagery of aircraft in flight

-Emerging technique for validating simulations through comparison with computational schlierens

|--|

Flight-Matching Computation

Flight Test

Mach number = 1.05 Angle of Attack = 1.15° T-38 Aircraft

AirBOS image Photographed 2,000 feet from the aircraft

Shock-Shock Interactions Supersonic Formation Flight

Mach number = 1.05Angle of Attack = 1.15° T-38 Aircraft

10

Computational schlieren

Preliminary work toward flight-matching simulations and future acoustic validation flights

SC19, 17-22/11/2019

AirBOS image Photographed 2,000 feet from the aircraft

Computational schlieren

- Dark lines are shockwaves
- White regions are expansions
- Perspective projection

SC19, 17-22/11/2019

Mach number = 1.05 Angle of Attack = 1.15° T-38 Aircraft (wingtip separation ~13')

Computational schlieren

- Dark lines are shockwaves
- White regions are expansions
- Perspective projection

SC19, 17-22/11/2019

Mach number = 1.05 Angle of Attack = 1.15° T-38 Aircraft (wingtip separation ~13')

1

X-59 Nearfield Predictions

Shockwaves at Cruise

Computational schlieren

- Dark lines are shockwaves
- White regions are expansions
- Perspective projection

• Significant influence of nozzle exhaust

Shaped pressure signature below aircraft

Angle of Attack = 2.05°

Nearfield Pressure Signature

Nearbody refinement in streamwise and crossflow directions:

- Typical mesh size 50 million cells
- Fine mesh size 100-500 million cells

- - non-linear propagation

Sonic Boom Carpet

Importance of High-End Computing

Challenges of simulating low-boom aircraft

- Propagation of weak shocks over several aircraft lengths
 - Difficult to reap benefits of advanced higher-order schemes
 - Highly susceptible to attenuation by discretization error
- -Wide range of scales: complex flow & aircraft geometry
 - Large grids even with adaptive mesh refinement
- Many engineering cases
 - Operating conditions, flaps, ailerons, stabilator, T-tail, engine settings
 - ► Fast turn-around critical (4 8 hours per case)
 - Each case fits on 1-4 nodes, but may need several 100 nodes to fill databases efficiently

Endeavour	Pleiades
-Sandy Bridge	-Broadwell

Aitken -Cascade Lake

- NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division
- SciCon in-house performance monitoring and debug tools
- NASA's ARMD Commercial Supersonic Technology and LBFD/X-59 Projects

Acknowledgements

