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ABSTRACT

High precision attitude measurement systems obviate the need for a beacon from the receiver making it possible for
the spacecraft to beam a laser communications signal to a ground station without the ground station advertising its
location. The research presented targets new detection and estimation methods to improve the accuracy in locating
stars on a focal plane detector (FPD), and an understanding of the effects of changes in the optics design parameters
and aberration, including defocus, on the navigation solution itself. This understanding can lead to an optimization
of the attitude solution with respect to those optics realm parameter changes. The methodology discussed includes
the development of a model of a current star tracker system. Using this model, multiple algorithms are implemented,
including a multi-hypothesis method (MHT), to detect and estimate the position of the stars on the FPD. It will be
shown that using the MHT for detection and estimation, a greater accuracy can be found for each star estimation from
more traditional detection and estimation algorithms. The approach then uses the model to develop statistics of the star
tracker and the attitude estimation outputs to understand the accuracy, or variance, of the system’s attitude solution.
This solution is repeated for a range of defocus aberration, and a lower limit to the variance of the attitude solution
is shown. A Cramer Rao lower bound solution is derived for the star tracker system and the results are compared to
the Monte Carlo analysis from the model and shown to correlate very well. The approach uses a star image not as a
Gaussian spot on the focal plane as done in previous work, and use of an image that includes the effects of aberrations
of the optic system, and the effects of under-sampling and noise from the FPD as well. Analysis includes exploring
a star tracker’s accuracy improvement through the combination of focus error and under-sampling effects, possibly
contradicting conventional wisdom and approaches.

1. INTRODUCTION

Missions into space generate an ever increasing amount of information. These missions continue to develop more
sophisticated scientific instrumentation which usually means they generate more data, through high definition images,
spectrometers, etc. The imaging and remote sensing capabilities have far outpaced the ability to transmit the resulting
data back to Earth, and this is especially true in deep space. To accommodate this need, NASA has been migrating to
higher bandwidth radio frequencies (RF) spectrum utilization, along with increasing the size of its antennas and power
of it radio transmitters, pushing the limits of what they can achieve. Even with the higher bandwidths, missions are
leaving data in space and unable to deliver it to Earth where it can be used. As an example, a high resolution image
taken by the Mars Reconnaissance Orbiter (MRO) transmitted at its maximum data rate of 6 Mbit/s takes nearly 1.5
hours to transfer to Earth. In contrast, a 100 Mbit/s optical communications solution could transfer that same image in
less than 5 minutes.

Current laser communication systems require an active beacon from the receiver so that the transmitter can find and
point at the receiver and maintain the link. This technique does not translate well to missions which are in deep
space. The further the distance into space, the higher the power needed for a beacon from the ground. At some
point the distance causes a beacon system to become impractical and unwieldy; this due to the power needed, and the
coordination and safety aspects of the overall system operation. This aspect of the system design is pushing optical
communications to beaconless systems.

There are challenges that come with using an optical beam. The shorter wavelength means a narrower beam, so
pointing of that beam becomes more of a challenge compared to RF. A demonstration of a laser communication
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system was achieved by the Lunar Laser Communication Demonstration [1] [2], which operated in Lunar orbit in
2013-14. It successfully communicated with an Earth ground station in New Mexico using a laser. The laser covered
a 6 km diameter area inside the state of NM, compared to an RF signal which would cover the entire Western United
States. Therefore the precise pointing of the beam is the paramount challenge of optical communications.

The combination of the need for a beaconless system and the smaller divergent optical beam has created a need to
know, with great accuracy, both the orientation of the spacecraft and the laser beam pointing direction. A system has
been proposed to do this and is called the Integrated Radio and Optical Communications (iROC) system [3] [4]. An
illustration of a beaconless deep space satellite is shown in Figure 1. This system uses a star tracker to measure very
accurately the attitude of the spacecraft and uses that information to precisely point the laser beam back to Earth to
the ground station, without the use of a beacon. However, the attitude measurement system required for this type of
system must be capable of realizing very accurate attitudes, on the order of a few µrads [4]. Note in the figure, a
comparison is made of an optical beam with that of an example RF beam that might be used for the same system [5].
This illustrates the challenge of locating and pointing the transmission beam for the much smaller diameter optical
beam compared to that of the RF beam.

Fig. 1: Deep Space Beaconless Laser Communications Example, with comparison of RF and optical beams [5]

Improvements to spacecraft attitude estimation using star trackers might make this possible. High precision attitude
measurement systems obviate the need for the beacon from the receiver making it possible for the spacecraft to beam
a laser signal to a ground station without the ground station sending a high power beacon signal to deep space.

Most spacecraft today rely on star tracker sensors for three axis absolute measurement for their closed loop control
systems for pointing control. These sensors are considered to be the most accurate sensors available [6].

2. STAR TRACKER MODEL

The typical star tracker system illustration under consideration is shown in Figure 2.

2.1 Star Source

To model the star source, the measure of apparent magnitude will be used and compared to that of a known star. This
measure uses the apparent brightness which is the flux of the star within a spectral band as seen by a sensor on earth.
This is represented by the number of photons received at the receiver. Given that the star has an intrinsic luminosity at
its source, L, measured in Joules per second (or Watts), and the star is some distance away, ds, the apparent brightness,
Br, follows the inverse square law of light

The apparent magnitude scale was originally defined by Hipparchus over 2100 years ago when he defined relatively
bright stars to have a magnitude of 1, and the faintest stars to be of magnitude of 6. Note the inverse relationship



Fig. 2: The Star Tracker System illustration with Inputs and Outputs.

between the scale and the brightness. This same scale has remained to this day and through measurements it is found
that the apparent brightness between a magnitude 1 and a magnitude 6 star has a factor of 100 difference. This results in
a single unit of the apparent magnitude being the fifth root of 100, 5

√
100≈ 2.512 (an irrational number). It is desirable

to compare the brightness from a known star with magnitude zero, to an unknown star to determine its magnitude,
due to the simplification in the math it creates. The blackbody modeling of Vega will be used as a reference, which is
essentially a zero magnitude star [7]. The process of determining the apparent magnitude of the star is to measure the
photons received from it and the photons received from Vega and inserting it into the following equation

mx =−2.5log10
Bx

Bxo
(1)

where Bx is the number of photons (apparent brightness) received from the star we are measuring, and has a specific
spectral bandwidth x, Bxo is the number of photons received from a known star with magnitude of 0, in this case Vega,
again with the same spectral bandwidth, mx is the apparent magnitude of the measured star.

2.2 Optical Propagation

The optical propagation of a light wave generated from a star that arrives at the star tracker sensor, through its optics,
will now be discussed.

Figure 3 shows the coordinate system convention used in the following analysis of an imaging system.

The imaging geometry discussed will be aided by Figure 4 to show the notation to be used.

To determine an impulse response for an optical system, one can model a point source at (ξ ,η) by a spherical wave
emanating from that point with a paraxial approximation of that wave written as [8, p. 110]

Ul(x,y) =
1

jλ z1
exp
[
− j

π

λ z1
((x−ξ )2 +(y−η)2)

]
(2)

A spherical lens can be modeled using the lens transformation defined in [8, p. 101], which approximates the spherical
surfaces of the lens by parabolic surfaces; this is represented by the phase transformation

ULT (x,y) = exp[− j
π

2λ f
(x2 + y2)], (3)

where f is the focal length of the lens.



Fig. 3: Imaging System Coordinates used in Imaging Analysis.

Fig. 4: Notation for Geometry of Image Formation.

Therefore, using this transformation, the wave coming out of the lens at U ′l (from Figure 4) is given by

U ′l (x,y) =UlULT (4)

Using this wave out of the lens and inserting that into a Fresnel diffraction equation for the propagation over the
distance of z2, an analytical solution is found. However, it is found that if the lens law is satisfied by the optical
system (the system is focused), and certain conditions are met as outlined in [8, pp. 111-113], the impulse response
is simplified to be a Fraunhofer diffraction pattern of the lens aperture, centered on image coordinates (u,v) as shown
here [8, p. 113]



ha(u,v;ξ ,η) =
1

λ 2z1z2

∫∫ +∞

−∞

P(x,y)exp
[
− j

2π

λ z2
[(u−Mξ )x+(v−Mη)y]

]
dxdy (5)

where there is an additional scaling factor of 1/λ 2z1z2.

Note that the star location on the image plane, u1,v1 is represented by the geometrical optics relationship of Mξ ,Mη

, respectively, where M is the transverse magnification of the system.

To model an imperfect circular lens to represent the phase distortions of light passing through it, a set of orthonormal
Zernike polynomials will be used. Each polynomial represents a type of phase distortion, and these distortions can be
added up, each weighted by a coefficient to give the total phase distortion of the lens, θo, as follows [9]

θo(g,h) = ∑
j

a jZ j(g,h) (6)

where the a j is the weighting coefficient of the jth Zernike polynomial Z j(g,h). To model the distortions of the lens,
one would add the phase found in Equation (6) to the ULT term in Equation (3) to represent the field just after the lens
transformation. Therefore, as an example, and to be used in later sections, if one wanted to add a focus aberration,
which is the j = 4 term, the following term would be multiplied to Equation (4) as follows

Ua(x,y) =U ′l exp
(

j
2π

λ
θo4(x,y)

)
(7)

where Ua is the aberrated wavefront coming out of the lens, θo4 is Equation (6) evaluated at j = 4.

Goodman [8, p. 133] addresses the linearity of optical systems for when the illumination is coherent and incoherent.
A coherent imaging system is linear in complex amplitude and its impulse response is called the amplitude impulse
response. An incoherent imaging system is linear in intensity and its impulse response of such a system is the squared
magnitude of the amplitude impulse response, and is called the Optical Transfer Function (OTF). This can be un-
derstood heuristically by considering that illumination that is spatially coherent has various impulse responses in the
image plane that are varying in unison, and thus they must be added on a complex amplitude basis; making this situa-
tion linear in complex amplitude. For the spatially incoherent case, the various impulse responses in the image plane
vary in uncorrelated ways, and thus they must be added on an intensity basis.

Since the star creates an optical wave that is spatially incoherent, from [8, p. 135], and the previous discussion, the
imaging system is linear in intensity. Because of this, the convolution can be used as follows

Ir(u,v) =
∫∫ +∞

−∞

Is(ξ ,η)|ha(u−ξ ,v−η)|2dξ dη (8)

which is a convolution of input intensity with the intensity impulse response, where ha(u−ξ ,v−η) is the amplitude
impulse response of the system, Is is the input or source intensity signal, and Ir is the output or received intensity
signal. The intensity or power value is what is received at the focal plane detector (FPD) in practice. The intensity
impulse response is found by the squared modulus of the amplitude impulse response.

The discrete form of the calculated power at the detector with a properly sampled or Nyquist sampled detector, refer-
encing the continuous form of Equation (8), is shown in the following convolution of the input power waveform with
the point spread funcntion (PSF) waveform to get the resulting power waveform with the diffraction effects

Ir(m1,n1) = ∆
2
s

N

∑
m=1

N

∑
n=1

Is(m,n)h(m1∆r−m∆s,n1∆r−n∆s) (9)

where h is the intensity PSF of the system, and the Is is the Intensity of the source. The values of m and n are the
coordinate indices of the input source points and m1 and n1 are detector plane pixel indices, and as mentioned earlier
they are multiplied by the usually implied ∆r (assumed that the u and v directions are sampled spatially with the same
size) to create the actual coordinate.



In the frequency domain, Equation (8) this simplifies to:

F{Ir}= F{Is}F{|ha(u,v)|2}= F{Is}H ( fu, fv) (10)

where the F{|ha(u,v)|2} is the OTF, H ( fu, fv).

One can now find the intensity PSF by taking the magnitude squared of the field (or amplitude) PSF and normalize it.
Looking at Equation (10), the H ( fu, fv), using this PSF is found as follows:

H ( fu, fv) =
F{|ha(u,v)|2}∫∫ +∞

−∞
|ha(u,v)|2

(11)

Therefore, to complete the goal of finding the overall ha(x,y) to use in determining the OTF of the system for frequency
analysis, one can use the unaberrated amplitude PSF from Equation (5), and apply the aberration using Equation (7).
The use of the Riemann sum representation of Equation (5) will be used to prepare for its use in computational analysis.
The result is found to be

ha(m−a,n−a) =
∆2

a

λ 2z1z2

N

∑
g=1

N

∑
h=1

P(g∆a,h∆a)exp
(

j
2π

λ
θo(g,h)

)
exp
[
− j

2π

λ z2
[(m∆r−Mk1∆s)g∆a +(n∆r−Ml1∆s)h∆a]

]
(12)

Rewriting this equation so that the ∆’s are implied, setting a = Mk1 and b = Ml1, doing a change of coordinates to to
an ideal image (which removes the effect of magnification and inversion from the equations) [8, p. 131], assuming the
system is otherwise shift invariant, and defining an output star location at α,β , which is at pixel coordinates a,b, the
final form is found to be:

ha(m−a,n−b) =
∆2

a

λ 2z1z2|M|

N

∑
g=1

N

∑
h=1

[
P(g,h)exp

(
j
2π

λ
θo(g,h)

)
exp
[
− j

2π

λ z2
[(m−a)g+(n−b)h]

]]
(13)

where as a reminder the M is the system transverse magnification.

A model is now available to represent the optical transfer function for a linear system that generated light by a single
star and propagated it through the optical system of the star tracker, and imaged on the FPD with optical aberrations.

Equation (14) below gives the required pixel pitch of the detector,

∆det <
λ fl

2D
(14)

The factor that is used in this discussion will be called blur, and is equal to the ratio of the pixel size to the Nyquist
size. It is calculated as follows

blur =
d

λ fl
2D

(15)

where d is again the pixel pitch of the sensor, and the denominator is the Nyquist sampling of Equation (14).

The calculated power at the detector with under-sampling is computed using the convolution of the input power
waveform with the undersampled PSF waveform, as discussed and shown in Equation (9), to get the power waveform
with the diffraction effects as follows:

Idet(m1∆x,n1∆y) = ∆
2
s

N

∑
m=1

N

∑
n=1

Iin(m∆x,n∆y)h(Pm1∆x−m∆s,Pn1∆y−n∆s) (16)



where in this case P = blur and is the image under-sampling factor and represents how many samples are being
skipped.

If the Nyquist sampling is not met by the detector (undersampled, or not satisfying Equation (14) ), one has to include
a new factor in the PSF, which is the effect of the detector integration. The overall PSF will change; the change is the
PSF of the optics, h convolved with a rectangle that is the size of the detector pixel. Therefore if under-sampled, the
detector is blurring and adding to the convolution.

If one is sampling with the pixel size blur = P times the size of the Nyquist size as given in Equation (14), the
undersampled PSF is found by looking at the PSF for the system without sampling, and then convolving it with a
rectangle function the size of P. Therefore, if h is the optical PSF without sampling, the total PSF, hus, is found by the
following

hus(m1∆x,n1∆y) = ∆x∆y

N

∑
p=1

N

∑
q=1

h(p∆x,q∆y)rect
(
(m1− p)∆x

P

)
rect
(
(n1−q)∆y

P

)
(17)

where m1 and n1 are the coordinates of the new PSF and p and q are the coordinates of the points of the input PSF.

3. DETECTION AND ESTIMATION

Detection algorithms are needed to analyze the star tracker image and determine whether a star is present or not in a
particular pixel. This determination is affected by the noise present on the detector.

The receiver operating curve (ROC) is a plot used to compare the performance of a detector or detection scheme
versus another [10]. It will be used to evaluate which detection scheme is the best in this analysis. The probability of
detection and false alarm in general can be found by the following equations [10]

Pd =
∫ TΛ

−∞

P(Λ|H1)δΛ (18)

and

Pf a =
∫ TΛ

−∞

P(Λ|H0)δΛ (19)

which show each as an integration of the probabiliy density function (PDF) of the likelihood ratio test (LRT), Λ. The
range of integration goes to TΛ, which is the threshold value for the LRT. To create the ROC, these will be plotted
against each other.

3.1 Binary Hypothesis Testing (BHT)

The Binary Hypothesis Testing (BHT) is a simple threshold operation for a given point on the image plane. It is the
formulation of a test, the LRT, of which the output is compared to a threshold value. This LRT, denoted as Λ, is defined
to be [11, p. 65]

Λ =
P(d(x,y)|H1)

P(d(x,y)|H0)
> γ (20)

where γ is the threshold, d(x,y) is the image data at pixel coordinates (x,y), H0 and H1 are the binary hypothesis
referred to as the null hypothesis and the alternative hypothesis, respectively. The P(d(x,y)|Hi) is the joint conditional
probability of the data given hypothesis Hi where i is either 0 or 1.

The value of γ is found by choosing a probability of false alarm, Pf a, which is discussed further in the next chapter,
and finding the γ in the following equation

Pf a(γ) =
∫

∞

γ

P(x|H0)dx (21)



Where the range of integration is denoted by the values that make the LRT greater than γ . See Appendix 3A in [11]
for the development of Equation (21).

3.2 Matched Filter

The idea of a matched filter is to correlate the expected received signal with the actual received signal. This is
represented by the following equation:

C = ∑
y

∑
x

d(x,y)hopt(x,y) (22)

where C is the resulting correlation output, the y and x values are the pixel ranges in each dimension, the d(x,y) is the
received intensity at location (x,y), and the hopt(x,y) is the intensity PSF determined for the optical system.

The value C is then compared to a threshold to determine if there is a signal present or not.

3.3 Multi Hypothesis Testing (MHT)

The MHT uses an intensity PSF model to do correlations of multiple-shifted PSF models with the star signal. The
research plans to leverage previous work done in the area of Multi-hypothesis testing [12]. This approach is used to
improve on the probability of detection in the case the image of a space object that does not fall in the center of the
pixel. The approach is used on an undersampled imaging system, to take advantage of the aliasing effects of the PSF
[12, p. 2]. The test is to select one hypothesis, Hk over all other hypotheses by finding the one that has the highest
overall probability.

kmax = max
k

P(x|Hk) (23)

Where kmax is the hypothesis with the highest conditional probability, and k spans over the number of hypothesis.
Deriving a Signal to Noise Ratio (SNR) assuming the noise on the image is Gaussian, the cited paper above from
Zingarelli, et al., shows that the maximum likelihood (ML) decision rule used for a pixel divided into nine regions,
giving 10 possible hypothesis is:

SNRa =

Md
∑
w

Md
∑
z
(d(w,z)−B)hsamp(w+ cx−αa,z+ cy−βa)

ζ

√
Md
∑
w

Md
∑
z

h2
samp(w,z)

Ha
≷
Ho

γM−ary (24)

where d(w,z) is the background suppressed image data, hsamp is the undersampled intensity PSF found previously, cx
and cy are the coordinates of the pixel being tested, and the values of αa and βa are the horizontal and vertical sub-pixel
shifts of the PSF, to dither it to one of nine locations in a pixel, and B is the background light.

The Ho is the hypothesis that no object is present, and H1 to H9 or the hypothesis that an object is present in the
dithered mapped sub-pixel locations. It is shown in [12] that the MHT technique can provide an increase in detec-
tion performance, and can be used to provide sub-pixel position information and more accurate estimates of object
irradiance.

The technique used in these results will be evaluated for use in determining star positions with star trackers. There is
an opportunity to evaluate a trade-off in using a certain number of hypotheses M, with the computation required, along
with the additional positional information that can obtained from centroiding.

Once the thresholding has been done, one can decide if there is starlight in each pixel, and in the case of the MHT,
where in that pixel to M divisions (9 was used in [12]). The problem now turns to using this data to calculate the most
accurate location estimation possible.

3.4 Centroiding

The stars are considered a spatial impulse response, and in many cases a star, when focused correctly onto the FPD,
will fit inside of a pixel. In order for centroiding to result in a star location with sub-pixel accuracy, the optics are
designed to generate a slightly out-of-focus star that occupies several pixels. It is shown that the centroiding accuracy



is a function of the size of the PSF, the photoelectrons the star generates, and the noise level added to the star signal
[13, p. 592]. However, the centroiding does not improve the accuracy until the PSF radius gets larger than 0.5 pixels,
since the entire PSF could be contained in one pixel. Therefore, given that the star light encompasses several pixels,
the following describes the centroiding technique.

Using the threshold detection results discussed previously, star clusters are generated, which means that the pixels that
are grouped together are algorithmically assigned to a particular star [14]. When that is complete, a region of interest
(ROI) is defined which is a window of pixels surrounding the cluster. The next step is to subtract off the noise floor
from all of the pixels in the ROI, giving just pixels with values of star photon signal only. The centroid, or sometimes
called the weighted sum technique, of the star is then calculated by the following equations [13]

BROI =
Re−1

∑
x=Rs+1

Re−1

∑
y=Rs+1

(
d(x,y)−Nb

)
(25)

cx =
Re−1

∑
x=Rs+1

Re−1

∑
y=Rs+1

x ·d(x,y)
BROI

(26)

cy =
Re−1

∑
x=Rs+1

Re−1

∑
y=Rs+1

y ·d(x,y)
BROI

(27)

Where the BROI is the total number of photons in the entire ROI, Rs and Re are the ROI start and end respectively, the
cx and cy are the centroid values of the x and y locations on the array, the d(x,y) is the number of photons at the pixel
located at the coordinates x and y, and Nb is the background intensity without a star present.

3.5 Using MHT along with Centroiding

One could use the MHT technique along with the centroiding approach to potentially gain more sub-pixel accuracy. If
one includes not only the pixel data values in the ROI, but further divide those into the sub-pixel regions defined in the
MHT algorithm, the total accuracy may be increased. This is accomplished by using the SNR found in Equation (24),
where each hypothesis returns a SNR value. When one uses these SNR values with the centroiding technique along
with their subpixel locations as defined in the MHT approach, it is found in [15, p. 65] that this method provides a
total error of over 3 times less than the traditional centroid method. The total number of subpixel values used in the
MHT method will need to be optimized and this could be the topic of future research.

4. ACCURACY BOUND ON THE ESTIMATION

To understand how well one can determine where that star is located, a bound on the position estimate for a given star
at α,β is desired. Specifically, a lower bound on the estimate is of interest, and the model can be reduced to one star
with just one type of noise on the signal. Since other stars produce noise, and if the signal has other types of noise on
it, that will only increase the error in the actual measurement, and won’t effect the goal of obtaining a lower bound
solution.

The ability to estimate the star image on the focal plane has limits to its accuracy. For an unbiased estimate it can be
shown that the lower bound on the variance of an estimator of one parameter is given by the Cramer Rao bound as
follows [16]:

var(α̂)≥
[
−E

[
∂ 2(lnP(D;α))

∂α2

]]−1
(28)

Where var is the variance operation, E is the expectation operator, P(D;α) is the probability of the data received by
the sensor, D, with a parameter value of α .

For the star location estimation problem, there are two parameters that need to be estimated, (α,β ), the coordinates of
the location on the focal plane; in this case one can find the Information Matrix



I(Θ) =


−E
[

∂ 2(lnP(D;Θ))
∂α2

]
−E
[

∂ 2(lnP(D;Θ))
∂α∂β

]

−E
[

∂ 2(lnP(D;Θ))
∂α∂β

]
−E
[

∂ 2(lnP(D;Θ))
∂β 2

]
 (29)

where Θ is the vector
[
α β

]T .

The CRLB is then found for each parameter being estimated as

var(Θ)≥ [I−1(Θ)]ii (30)

where i has values of 1 and 2, and ii are the [11] and [22] elements in the inverse 2x2 matrix, I−1.

4.1 Likelihood Function

Understanding and defining the probability of the data given that the star is projected on a particular pixel location,
P(D;Θ), for the optical system under consideration is the first step in developing an analytical solution to the accuracy
bound in Equation (30). The data, d(u,v), received from a star can be considered to have a Poisson distribution,
representing the number of photons at the pixel during a given interval of time. The data received can be written as

d(u,v) = i(u,v)+n(u,v) (31)

where i(u,v) is the image equation, and is the mean of the data, and therefore not a random variable, and n is zero
mean additive noise; however, one should note that n(u,v) does not have a Gaussian distribution.

d(u,v), when sampled by a FPD, is the photon measurement at each of the sensor pixels m,n and is therefore an integer
and has a single value over the entire pixel. The image created by one star and written in terms of pixels is as follows

i(m,n) = γ1h(m∆r−a∆r,n∆r−b∆r)+B (32)

where α = a∆r, β = b∆r. This will be written with the ∆′s implicit as follows

i(m,n) = γ1h(m−a,n−b)+B (33)

Using the equation for a Poisson probability mass function (PMF), the distribution of one pixel of the data, m1,n1, is
the following

P(D = d(m1,n1;a,b)) =
i(m1,n1)

d(m1,n1)e−i(m1,n1)

d(m1,n1)!
(34)

where D is a random variable representing the data received, d(m1,n1) is the data received at the pixel m1,n1, and
(a,b) is inserted for the vector Θ as the parameters representing the center of the image i(m,n).

If one considers all of the pixel locations m,n within the array encompassing the total image, the probability is given
by

P(D;a,b) = ∏m ∏n
i(m,n)d(m,n)e−i(m,n)

d(m,n)!
(35)

where the first product sign is over all the pixel array in the u direction, and the second is over all the pixel array in
the v direction. This operation assumes that the probabilities of each pixel location are independent of each other. It is
from this equation, which is called the Likelihood Function, that we proceed to evaluate the Cramer Rao limit given in
Equation (30) and Equation(29) above. If the partial of the distribution function with respect to one of the parameters



doesn’t result in a function of the other, then the reciprocal of the diagonal elements of the Information Matrix will be
the lower bound of the variance of the parameters m,n respectively. In other words, if the probabilities of the x and y
directions are independent of each other, in which one direction does not effect the other, the reciprocal of the diagonal
elements can be used. Therefore if this is the case, Equation (30) can be written as

var(â)≥ 1
I11

(36)

and

var(b̂)≥ 1
I22

(37)

where the indices equations can be found in the I of Equation (29).

The first step, therefore, will be to find the bound for parameter a using Equation (29) and Equation (36).

Taking the natural log of each of the sides in Equation (35), the Log Likelihood, L, is obtained

L = lnP(D;a,b) = ∑m ∑n[d(m,n) ln i(m,n)− i(m,n)− ln(d(m,n)!)] (38)

where the terms are now summed due to the property of the log function.

4.2 Finding the Cramer Rao Lower Bound

The steps to find the Cramer Rao bound are as follows:

1. Taking the partial with respect to parameter a, of Equation (38).

2. Taking the partial again of that result with respect to a.

3. Following Equation (29) of the first row and first column of the Fishers Information 2 X 2 matrix, one needs to
find the expectation of that previous result.

4. The negative of the result of the last step can be used to find the first row and first column of the Fishers
Information 2 X 2 matrix of Equation (29) [16], and then to find the bound from Equation (36).

The result of these steps is found to be:

var(â)≥
[
∑m ∑n

1
i(m,n)

[
∂ i(m,n)

∂a

]2
]−1

(39)

where again the summation is done over the range of m and n, which are the pixel indices of the FPD.

4.3 Finding the PSF

A star can be modeled in an optical system as a spatial impulse function. The image on the detector of the star tracker
can be represented by Equation (33) where i(m,n) is the image created on the detector array, γ1 is the brightness of the
star, and h(m−a,n−b) is the PSF centered at the coordinate indices of a,b, and B is the background noise.

Equation (13) can be used to find the h(m−a,n−b), which is the PSF for an incoherent star source, which can be put
directly into the image equation.

Note this equation is described in terms of the indices of the samples for each of the planes of interest – the source,
aperture, and the receive (or image) planes as described in Figure 3. The star image, which is an incoherent source,
is linear in intensity, so the impulse response of such a system is the squared magnitude of the amplitude impulse
response [8, p. 133]. This squared term is used in Equation (11) to calculate the OTF. Since the amplitude PSF is
given by Equation (13), one can find its squared magnitude to give the desired impulse response of the system under
consideration.



This is evaluated below.

h(m−a,n−b) = PSF = |ha(m−a,n−b)|2 =
(

∆2
a

λ 2z1z2|M|

)2

[
N

∑
g=1

N

∑
h=1

[
P(g,h)exp

(
j
2π

λ
θo(g,h)

)
exp
[
− j

2π

λ z2
[(m−a)g+(n−b)h]

]]]
[

N

∑
g=1

N

∑
h=1

[
P(g,h)exp

(
− j

2π

λ
θo(g,h)

)
exp
[
+ j

2π

λ z2
[(m−a)g+(n−b)h]

]]]
(40)

where θo(g,h) is the aberration distortion phase.

4.4 Under-sampling Effect on the PSF

Equation (40) gives the intensity of the PSF when sampled at Nyquist, and without any under-sampling considerations.
The following will take into account the pixel size on the FPD and how that effects the received PSF. This is represented
by a convolution of a two dimensional rectangle function the size of a pixel with the PSF calculated in Equation (40),
as found in Equation (17). Simplifying by setting

k2 =

(
∆2

a

λ 2z1z2|M|

)2
(41)

the convolution becomes

PSFs = hs(m−a,n−b) = k2 ∑mN ∑nN

{
rect

( (m−mN)

P

)
rect

( (n−nN)

P

)
[

N

∑
g=1

N

∑
h=1

[
P(g,h)exp

(
j
2π

λ
θo(g,h)

)
exp
[
− j

2π

λ z2
[(mN−a)g+(nN−b)h]

]]]
[

N

∑
g=1

N

∑
h=1

[
P(g,h)exp

(
− j

2π

λ
θo(g,h)

)
exp
[
+ j

2π

λ z2
[(mN−a)g+(nN−b)h]

]]]}
(42)

where the image indices mN ,nN , are the Nyquist samples in the convolution for the two dimensional rectangle function
and replace the PSF expression sampling, and the P is the undersampling factor of the mN ,nN indices.

4.5 Completing the Undersampled Defocused CRLB Analytical Equation

One can make a substitution using the following assignments:

S1(mN ,nN ,a,b) =
N

∑
g=1

N

∑
h=1

P(g,h)exp
(

j
2π

λ
θo(g,h)

)
exp
[
− j

2π

λ z2
[(mN−a)g+(nN−b)h]

]
(43)

S2(mN ,nN ,a,b) =
N

∑
g=1

N

∑
h=1

P(g,h)exp
(
− j

2π

λ
θo(g,h)

)
exp
[
+ j

2π

λ z2
[(mN−a)g+(nN−b)h]

]
(44)

Using Equation (33), and inserting Equations (42), (43), and (44), and then applying Equation (39), and using the
additional substitutions:

S3(mN ,nN ,a,b) =
N

∑
g=1

N

∑
h=1

[
P(g,h)exp

(
− j

2π

λ
θo(g,h)

)
exp
[
+ j

2π

λ z2
[(mN−a)g+(nN−b)h]

](
− j

2π

λ z2
x
)]

(45)



S4(mN ,nN ,a,b) =
N

∑
g=1

N

∑
h=1

[
P(g,h)exp

(
j
2π

λ
θo(g,h)

)
exp
[
− j

2π

λ z2
[(mN−a)g+(nN−b)h]

](
j

2π

λ z2
x
)]

(46)

R1 = rect
( (m−mN)

P

)
rect

( (n−nN)

P

)
(47)

results in, setting k3 = γ1k2,

var(â)≥

{
∑m ∑n

{[
1

k3

{
∑mN ∑nN

(
rect

(
(m−mN)

P

)
rect

(
(n−nN)

P

)
S1S2

)
+B

}]

[
k3 ∑mN ∑nN

{
rect

( (m−mN)

P

)
rect

( (n−nN)

P

)[
S1S3 +S2S4

]}]2
}}−1

(48)

Note the Si expressions are summations over the pupil indices g,h of variables x,y which are a function of the indices
m,n of variables u,v and shifted by indices a,b of location variables α,β (the variables being estimated).

With the relationship of Equation (48) to determine the Cramer Rao bound for the star image location estimate on the
FPD, one can use it to evaluate it on the computer.

5. SIMULATION RESULTS

5.1 Cramer Rao Bound Analysis

The plot of the CRLB analytical solution of Equation (48) with respect to changing defocus with the system blur = 40
is shown in Figure 5. The star tracker used has a focal length of 90mm and is defocused by increments of 10µm for
a total of 1000µm. The simulation runs from an in-focus point of z2 = 90mm to the out-of-focus point at z2 = 91mm
(see Figure 4 to remind oneself of the notation). The y axis gives plots for the statistical lower bound on the variance
for an estimator of the star image location on the focal plane on the left, and the log of that variance on the right. Note
that this variance amplitude is normalized (an arbitrary value of the constant k3 in Equation 48 was used) and is used
to examine the relative and minimum values.

One can see that a minimum variance bound is achieved at a defocus of 50 µ m for this particular system. The
parameters used for the simulation in this chapter are summarized for convenience in Table 1.

Table 1: Summary of Parameters Used for Model Simulation

PARAMETER VALUE

aperture 0.05m
f-number 1.8
focal length 0.09m
CCD pixels 1024X1024
pixel size 18 µm
CCD sensor size 18.4 mm square
wavelength 0.5 µm
FOV 11.67 deg
Right Ascension 06 hrs 45 min 20 seconds
Declination -16 degrees 42 mins 47 seconds
PPM Star Catalog various



Fig. 5: Linear and Log Plots for the CLRB Analytical Solution versus Defocus for the Star Tracker with blur = 40
value.

5.2 Monte Carlo Analysis

A Monte Carlo program was used to generate a mean squared error of the estimator for the location of the star image
on the CCD as follows

MSE(x̂) = Ex̂[(x̂− xt)
2] (49)

where x̂ is the x coordinate estimate of the star image on the focal plane, Ex̂ is the expectation operator, and xt is the
actual value, or the truth value, in the simulation. This truth value is calculated by the geometry of the optics and the
star location on the celestial sphere found with the help of the star catalog. Equation (49) can be put in terms of ŷ for
the y coordinate estimate, and the attitude estimate parameters of Right Ascension, R̂A, Declination, ˆDec, and Roll,

ˆRoll to find the MSE of those, respectively.

5.3 Monte Carlo Simulation Results

A simulation run for an example star with the range of defocus from 0 to 0.5 mm in increments of 10 µm is shown in
Figure 6, using different detection techniques.

Figure 7 shows the log of the MSE of the star location estimate on the focal plane as compared to the CRLB analytical
solution.

The Monte Carlo results and the minimum defocus value line up very closely to the CRLB bound in the plot, which
is again at 50 µ m. In addition, one can see that the MHT method is achieving a lower MSE than the Correlation, and
that in turn a lower MSE than the Point algorithm.

To evaluate the MSE with respect to different magnitude stars, and therefore different SNR values, the plot of Figure
7 was repeated for different stars with different magnitudes on the same plot. This can be seen in Figure 8.

The plot of Figures 8 shows that the star with a larger SNR obtains a lower minimum. This is consistent with previous
research results [13], [14], [17].

From the location of the stars on the focal plane, an attitude solution is found for each Monte Carlo Run. The attitude
estimates include R̂A, ˆDec, and ˆRoll, and an MSE is calculated for the estimates of each of these. A plot showing
these results with a Monte Carlo run for a defocus range of 0 to 0.5 mm in increments of 10 µm is shown in Figure 9,
Figure 10, and Figure 11.



Fig. 6: Monte Carlo Run for calculating the MSE of an example star location position estimate versus defocus.

Fig. 7: The Star Position Mean Squared Error (MSE) Compared to the CRLB. The Plots are Scaled for Relative
Comparison and on a Log Scale.

To compare the attitude solution parameters to the CRLB analytical solution, they are plotted together in Figure 12.

The plot of Figure 12 shows that the minimum for the attitude parameters line up very well with the minimum of the
CRLB plot.



Fig. 8: A comparison of the MSE results for different magnitude stars.

Fig. 9: Plot of the MSE for a Monte Carlo Run of the Right Ascension Estimates as a function of defocus.



Fig. 10: Plot of the MSE for a Monte Carlo Run of the Declination Estimates as a function of defocus.

Fig. 11: Plot of the MSE for a Monte Carlo Run of the Roll Estimates as a function of defocus.



Fig. 12: The Attitude Parameters Mean Squared Error (MSE) Compared to the CRLB. The Plots are Scaled for
Relative Comparison and on a Log Scale.



6. UNDERSAMPLING EFFECTS

The CRLB plot with no undersampling, or when blur = 1, is shown in Figure 13.

Fig. 13: Plot for the CLRB analytical solution versus defocus for thes tar tracker with no undersampling (blur = 1
value).

One can see that the variance for a properly sampled system at focus is very close to zero and increases with defocus.
The following sections display the CRLB changes when the parameters of undersampling and defocus are changed.

6.1 CRLB as a function of defocus

The CRLB analytical solution of Equation 48 is shown in Figure 14 for a number of pixel pitch values versus a
changing defocus. The plot is shown using the log of the CRLB value to better display the large range and the small
values of variance.

6.2 CRLB as a function of pixel pitch

Conversely, the CRLB analytical solution of Equation 48 is shown in Figure 15, again a log plot, for a number of
defocus values versus a changing pixel pitch.

6.3 CRLB as a function of both defocus and pixel pitch

The CRLB analytical solution of Equation 48 is plotted versus both defocus and pixel pitch in surface plots of Figure
16 and Figure 17, linear and log plots respectively.



Fig. 14: Plot of the log CRLB versus defocus with different pixel pitch sampling on the focal plane.

Fig. 15: Plot of the log CRLB versus pixel pitch size with different defocus values.



Fig. 16: Surface Plot of the CRLB versus both the defocus and the pixel pitch size.

Fig. 17: Surface Plot of the Log CRLB versus both the defocus and the pixel pitch size.



7. SYSTEM ANALYSIS

7.1 Model Analysis

The previous results of the simulation show that the analytical CRLB result is validated by a working model of the star
tracker system. This working model helped generate an independent statistical model through a Monte Carlo analysis.
The results of the two were found to be similar and compatible with each other.

It is found that by looking at the surface plots of Figure 16 and Figure 17 one can see that in addition to an optimum
defocus parameter, one must also consider what size sampling is being used on the FPD.

The plots of the calculated attitude using the star estimated locations found in Figure 12 show there is a good match
between the lower bound variance location of the defocus with that of the star spot estimate on the FPD. This allows one
to use the CRLB expression found in Equation 48 to minimize the variance of the estimate for the attitude parameters.

7.2 Comparing Optical Systems

The ability to compare two different star tracker system results – that is, systems with different undersampling and
different f numbers, for example – is very important for understanding the general star tracker system design. Figure
18 shows a plot of the Monte Carlo variance of the star position versus the defocus for two different star tracker
systems.

The following parameters were used for the two different systems in the analysis:

System 1: blur = 40, f/# = 1.8, focus = 0.09m, D = 0.05m, pixel pitch = 18 µm
System 2: blur = 16, f/# = 2, focus = 0.10m, D = 0.05m, pixel pitch = 8 µm

Fig. 18: Plot of the Monte Carlo variance of the star position versus the defocus for two different star tracker systems.

It is difficult to compare these two plots since the two optical and sensor parameters are different. To aid in this
comparison, a relationship is derived for an estimate of the radius of the blur spot on the focal plane in units of pixels
that is a function of the defocus, the pixel pitch value, and the f/# of the system. This derivation uses the geometry of
the optical system as seen in Figure 19. The geometry assumes no aberrations.

The plot of each variance found is then plotted with respect to this new variable, which is the estimated pixel radius
of the blur spot. This plot can be seen in Figure 20. It shows that each system variance of the estimated star position
on the focal plane appear to have minimums at slightly different radius values. System 1 appears to have a minimum
at the estimated radius of just above 0.77 pixels. System 2 appears to have a minimum at the estimate radius of just
below 0.94 pixels.



Fig. 19: The geometry of an optical system used to derive an estimate of the radius of the blur spot on the focal plane.

Further analysis is needed in this area; however the results above suggest that an optimum blur spot is dependent on
what kind of undersampling is producing the acquired star image.
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Fig. 20: Plot of the Monte Carlo Variance of the star position versus the star image radius in pixels for two different
star tracker systems.



Another variable that is important for the accuracy of a system is the magnitude of the star. For completeness, the
same plot for slightly different magnitude stars for a system is shown in Figure 21.

Fig. 21: Plot of the Monte Carlo variance of the star position versus the star image radius in pixels for a system with
six different magnitude stars.



8. CONCLUSIONS AND FUTURE PLANS

The results validate the analytical CRLB result by a working statistical model of a star tracker system. The CRLB
and the Monte Carlo analysis were each developed through independent methods and have solutions that correlate
very well. Both the model and the CRLB analysis provide understanding of the parameters and their relationship to
producing optimum accuracy of the star spot location estimates on the FPD array. It is also shown that the attitude
minimum variance found with those star locations matches the corresponding CRLB minimum location of the star
location estimates.

The results show that the analytical solution to the CRLB and the Monte Carlo simulations provide an ability for
finding the optimum parameters for an optical system that produce the greatest accuracy in the attitude solution. The
plot of Figure 20 gives insight into the focus and undersampling parameters that produce an optimum star image
size giving the minimum variance or most accurate estimate. The model uses a PSF that is generated by using Fourier
Optics and not using a Gaussian approximation, as has been done in the past. In addition, the undersampling effects are
also applied by sampling that PSF per the actual pixel pitch. The model also takes into account the effects of different
detection and estimation techniques on the estimate, so they can be evaluated. This work shows that the MHT detection
and estimation technique appears to provide a more accurate solution to the estimate of the star positions on the FPD.

Forward work consist of the following areas:

• Further analysis of the relationship of the undersampling and defocus using the estimated blur spot size.

• Development of statistics involving the use of the MHT in a star tracker environment.

• Investigation of an optimum undersampling size using the MHT detection and estimation.

• Investigation of an optimum number of hypothesis using the MHT detection and estimation.

The results of this work hopefully have achieved the goal to provide insight into the parameters of an optical system
and techniques for detection and estimation that give rise to the most accurate star tracker attitude output.
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