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Abstract 

A precise estimate of evapotranspiration (ET) at the landscape scale remains a priority to 

understand land-atmosphere-interactions, especially over semi-arid lands. Regarding data 

availability over large areas and at multiple scales, remote sensing observations provide very 

relevant information to feed ET models. Commonly, there are three main variables, derived 

from remote sensing, that can be used to determine the spatial distribution of ET: the surface 

(0-5 cm) soil moisture (SM) derived from microwave data, the land surface temperature 

(LST) derived from thermal infrared radiances and vegetation indices (or fractional vegetation 

cover fc) derived from visible/near infrared reflectances. However, very few studies have 

attempted to combine all three variables within a single ET model. In this context, the main 

objective of this thesis is to improve the estimation of ET by combining multi-resolution 

optical / microwave remote sensing and surface-atmosphere exchange modelling.  

In the first part, the thermal-based two-source energy balance (TSEB) model based on LST, fc 

and the Priestley Taylor (PT) coefficient (αPT) relating ET to the net radiation  is tested over 

an heterogeneous watershed in Niamey, Niger (Wankama catchment). The model predictions 

of area-averaged latent (LE) and sensible (H) heat fluxes are compared to data acquired by a 

Large Aperture Scintillometer (LAS) set up over a transect about 3.2 km-long and spanning 

three vegetation types (millet, fallow and degraded shrubs). The results obtained for H and LE 

are relevant. However, an overestimation of simulated fluxes is recorded at the end of the 

season. This is mainly due to the fixed maximum value for αPT (generally set to 1.26). 

In the second part, a new model named TSEB-SM derived from the TSEB formalism is 

developed by using, in addition to LST and fc data, the near-surface SM as an extra constraint 

on soil evaporation. An innovative calibration procedure is proposed to retrieve three key 

parameters: the Priestley Taylor coefficient (αPT) and the parameters (arss and, brss) of a soil 

resistance formulation. In practice, arss and brss are retrieved at the seasonal time scale from 

SM and LST data with fc lower than a given threshold fc,thres(fc,thres is set to 0.5), while αPT 

is retrieved at the daily time scale from SM and LST data for fc> fc,thres. TSEB-SM model is 

tested over 1 flood- and 2 drip-irrigated wheat fields using in situ data collected during two 

field experiments in 2002–2003 and 2016–2017 in the Tensift watershed, central Morocco. 

The coupling of the soil resistance formulation with the TSEB formalism improves the 

estimation of soil evaporation, and consequently, improves the partitioning of ET. Analysis of 

the retrieved time series indicates that the daily αPT mainly follows the phenology of winter 

wheat crop with a maximum value coincident with the full development of green biomass and 

a minimum value reached at harvest.  

Finally, TSEB-SM is applied in real-life using 1 km resolution MODIS LST and fc data and 

the 1 km resolution SM data disaggregated from SMOS (Soil Moisture and Ocean Salinity) 

observations by using a disaggregation algorithm (DisPATCh). The approach is validated 

during a four-year period (2014-2018) over a rainfed wheat field in the Tensift basin, central 

Morocco. The field was seeded for the 2014-2015 (S1), 2016-2017 (S2) and 2017-2018 (S3) 

agricultural season, while it remained under bare soil conditions during the 2015-2016 (B1) 

wheat seasons. The constraint applied on the soil evaporation by using the SM derived from 

SMOS data is one of the main controlling factors of the evaporative fraction, which helps 

determine with more accuracy the LE/H partitioning. Moreover, the retrieved αPT increases 

after rainfall events, suggesting a relationship with the soil water availability in the root zone. 

 

Keywords: TSEB, TSEB-SM, DisPATCh, Evapotranspiration, Priestley Taylor coefficient, 

soil resistance 
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Résumé 

Une estimation précise de l'évapotranspiration (ET) à grand échelle est une priorité pour 

comprendre les interactions sol-atmosphère, particulièrement dans les zones semi-arides. La 

télédétection fournit des informations très pertinentes à grande échelle pour alimenter les 

modèles d’ET. Généralement, trois variables dérivées de la télédétection sont utilisées pour 

déterminer la distribution spatiale de l’ET : l'humidité du sol en surface (SM) dérivée des 

données micro-ondes, la température de surface (LST) dérivée des données infrarouges 

thermiques et les indices de végétation (ou fraction de couvert fc,) issus des réflectances 

visible/proche infrarouge . Cependant, très peu d'études ont tenté de combiner les trois 

variables dans un même modèle ET. Dans ce contexte, l'objectif principal de cette thèse est 

d'améliorer l'estimation de l'ET en combinant la modélisation par télédétection optique 

/micro-ondes à multiples résolutions et la modélisation des échanges surface-atmosphère. 

Dans la première partie, le modèle de bilan d’énergie à double source (TSEB) basé sur les 

données de LST, fc et le coefficient de Priestley Taylor (αPT) qui relie l’ET au le rayonnement 

net est testé sur une zone hétérogène à Niamey, Niger (Wankama). Les prédictions du modèle 

en terme de flux de chaleur latente (LE) et sensible (H) sont comparées aux données acquises 

par un scintillomètre à grande ouverture (LAS) installé sur un transect d'environ 3,2 km 

couvrant trois types de végétation (mil, savane et jachère). Les résultats obtenus pour H et LE 

sont pertinents. Cependant, une surestimation des flux simulés à la fin de la saison est 

remarquée. Ce qui est principalement due à la valeur de αPT (fixé généralement à 1,26). 

Dans la 2ème partie, un nouveau modèle appelé TSEB-SM dérivé du formalisme TSEB a été 

développé en utilisant, en plus des données LST et fc, les données de SM comme une 

contrainte supplémentaire sur l'évaporation du sol. Une calibration innovante est proposée 

pour extraire trois paramètres clés : le coefficient de Priestley Taylor (αPT) et les paramètres 

(arss and, brss) de la résistance du sol. En pratique, arss et brss sont extraits à l'échelle 

saisonnière à partir des données SM et LST avec fc  inférieur à un seuil donné fc,thres(fc,thres 

= 0.5), tandis que αPT est inversé à la échelle journalière à partir des données SM et LST pour 

fc> fc,thres. Le modèle TSEB-SM est testé sur  une parcelle de blé inondée et 2 parcelles de 

blé irriguées en goutte-à-goutte en utilisant les données in-situ collectées lors de deux 

expériences expérimentales en 2002-2003 et en 2016-2017 dans le bassin versant du Tensift. 

L’insertion de la résistance du sol dans le modèle TSEB améliore l'estimation de l'évaporation 

du sol et, par conséquent, améliore la partition de l'ET. L'analyse de la série temporelle 

indique que αPT suit principalement la phénologie de la culture de blé, avec une valeur 

maximale correspondant au développement complet de la biomasse verte et une valeur 

minimale atteinte à la récolte. 

Finalement, TSEB-SM est appliqué à l’état réel en utilisant les données MODIS LST et fc à 1 

km de résolution et les données SM issu de satellite SMOS (Soil Moisture and Ocean 

Salinity) désagrégées à l'aide d'un algorithme de désagrégation (DisPATCh) à 1 km de 

résolution. L’approche est validée sur une période de quatre ans (2014-2018) sur une parcelle 

de blé pluvial dans le bassin du Tensift, au Maroc. La parcelle a été semée pour la saison 

agricole 2014-2015 (S1), 2016-2017 (S2) et 2017-2018 (S3), alors qu’elle n’était pas labouré 

(sol nu) pendant la saison 2015-2016 (B1). La contrainte appliquée sur l'évaporation du sol en 

utilisant le SM dérivé des données SMOS est l'un des principaux facteurs de contrôle de la 

fraction évaporative, ce qui permet de déterminer avec plus de précision la partition LE / H. 
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De plus, αPT inversé augmente après les événements pluvieux, suggérant un lien avec la 

disponibilité en eau du sol dans la zone racinaire. 

 

Mots clés : TSEB, TSEB-SM, DisPATCh, Evapotranspiration, coefficient de Priestley 

Taylor, résistance du so
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Résumé étendu 

 

1. Introduction  

Le Maroc est l’un des 45 pays du monde les plus affectés par la pénurie d’eau ((Figure I.2, 

chapitre I). Cette situation est le résultat de la double pressions climatique (augmentation de la 

température, diminution et irrégularité spatio-temporelle de la précipitation …) et anthropique 

(extension des zones irriguées, intensification de la consommation d'eau par les secteurs 

touristique et domestique ….). Selon le rapport du World Ressources Institute, le niveau de 

stress hydrique au Maroc sera extrêmement élevé d'ici 2040. En effet, le Maroc atteindra une 

situation de stress hydrique extrême dans moins de 25 ans (Word Bank, 2017). L’agriculture, 

qui contribue à l'économie nationale entre 14 et 20% du PNB (Produit National Brut) en 

fonction des précipitations de l'année (Balaghi et al., 2012) et  consomme  environ 85% des 

ressources en eau mobilisées du pays (Jarlan et al., 2015), sera sans doute le secteur le plus 

touché par ce stress. Donc, la gestion des ressources hydriques deviendra ainsi un facteur 

limitant le développement du pays.  

Dans ce contexte, une bonne gestion des ressources en eau est liée à la modélisation des flux 

hydrologiques, tels que l'infiltration des sols, le ruissellement et l'évapotranspiration (ET). ET 

est une composante cruciale du cycle de l'eau, particulièrement dans les zones semi-arides. À 

l'échelle du bassin versant, les pertes en eau par ET constituent généralement la partie la plus 

importante du bilan hydrique et peuvent être responsables de la dissipation de 60% de l’apport 

pluviométrique (Oudin, 2004). De plus, une estimation précise de l'ET détermine les besoins 

en eau des cultures, ce qui permet par la suite d'améliorer la gestion de l'eau d'irrigation (Allen 

et al., 1998). Une grande variété de modèles et de mesures de l'ET ont été rapportés dans la 

littérature (Allen et al., 2011; Olivera-Guerra et al., 2014; Subedi et Chávez, 2015). 

Cependant, l'estimation de l'ET sur des zones étendues comprenant différents biomes et 

climats est encore sujette à des incertitudes importantes (Ershadi et al., 2014; Pereira, 2004), 

bien que les principaux moteurs de l'ET, tels que la demande d'évaporation atmosphérique, le 

type de végétation, les stades de développement, les caractéristiques biophysiques de surface 

et la disponibilité en eau du sol (Federer et al., 2003) sont maintenant bien identifiés. Une 

difficulté majeure dans la modélisation de ce processus réside dans le manque de données 

d'entrée pertinentes disponibles aux échelles d'espace et de temps souhaitées (Allen et al., 

2011; Pereira et al., 2015). La précision des estimations de l’ET à une échelle donnée 
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représente donc un compromis entre complexité et réalisme du modèle, qui est généralement 

liée au: i) nombre de paramètres de modèle et de variables de forçage et ii) la disponibilité des 

données qui diminue généralement avec l’étendue spatiale (Allen et al., 2011; Gharsallah et 

al., 2013). Quant à la disponibilité des données, les observations satellitaires sont en mesure 

de fournir des mesures intégrées à différentes échelles temporelles et spatiales et dans 

différentes bandes spectrales. La télédétection multi-spectrale fournit des outils puissants pour 

observer les surfaces continentales et les composants hydrologiques tels que l'humidité du sol 

(SM) à l'aide de satellites SMOS (Soil Moisture and Ocean Salinity, Kerr et al (2001)) et 

SMAP (Soil Active Passive Moisture, Entekhabi et al (2010)). La température de surface 

(LST) dérivée de satellite MODIS (Moderate-Resolution Imaging Spectroradiometer) fournit 

également des informations sur l’état thermique des surfaces et sur les variations temporelles 

des flux hydrologiques (Anderson, 1997) à l’interface surface-atmosphère à travers les bilans 

énergétique et hydrique (Anderson et al., 2008; Brunsell et al., 2011; Kustas et Anderson, 

2009). En outre, l'indice de végétation normalisé (NDVI) et la fraction de végétation, qui sont 

des paramètres essentiels pour la modélisation de ET sur les couverts végétaux, peuvent être 

estimés à partir de données visibles proche-infrarouge fournies par MODIS. Généralement, 

ces observations (LST, SM, NDVI et fc) de télédétection fournissent des informations très 

pertinentes pour l’alimentation des modèles ET. En effet, SM contrôle l’évaporation du sol, la 

transpiration des plantes et la partition des eaux de pluie en infiltration et ruissellement  

(Chanzy et Bruckler, 1993), fc constitue une contrainte structurelle essentielle pour la 

partition de l’évaporation / transpiration (Allen et al., 2000) et LST représente une signature 

de l'énergie disponible et de l'ET (Norman et al., 1995). Pour cette raison, des efforts ont été 

faits pour intégrer ces données en tant qu'informations supplémentaires et complémentaires 

pour l’estimation de  l'ET (Price, 1990). 

Cependant, l'utilisation efficace des observations satellitaires pour des applications agricoles 

et hydrologiques présente plusieurs limites. En particulier, la représentativité spatiale de la 

mesure, qui joue un rôle majeur dans la précision de cette mesure. Dans ce contexte, plusieurs 

algorithmes ont été développés afin désagréger les données satellites. On cite par exemple 

l’outil DisPATCh (DISaggregation based on Physical and Theoretical Scale Change, Merlin et 

al. 2013, Malbeteau et al. 2016, Molero et al. 2016) qui permet de fournir des produits 

d’humidité avec une résolution d’1km comparable avec celle du MODIS.  

2. Objectifs et  méthodologie de la thèse 
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L’objectif essentiel de cette thèse est d'améliorer l'estimation de l'ET en combinant les 

observations satellitaires d’humidité du sol en surface (issue des données micro-ondes, 

SMOS) et de température de surface (issue des données optiques dont thermiques, MODIS). 

La stratégie proposée consiste à estimer un indice de stress hydrique de la végétation dérivée 

de la transpiration. Cette dernière  sera estimée à haute résolution spatiale en développant les 

trois axes suivants: la désagrégation des données d’humidité du SMOS  (axe 1); l’estimation 

de l’évaporation du sol (axe 2) et la partition de l’évapotranspiration entre l’évaporation du 

sol et la transpiration des plantes (axe 3). 

a. Désagrégation de données spatiales : 

Un algorithme de désagrégation des données d’humidité DisPATCh (Merlin et al. 2013, 

Malbeteau et al. 2016, Molero et al. 2016) a été utilisé. Ce modèle permet d’améliorer la 

résolution spatiale des données SMOS de plusieurs ordres de grandeur. La méthode se base 

sur le lien spatial entre l’humidité du sol en surface inversée des données micro-ondes et 

l’efficacité évaporative du sol déduit des données optiques  à plus haute résolution spatiale. 

L’humidité désagrégée à haute résolution spatiale s’exprime comme un développement de 

Taylor d’un modèle d’efficacité évaporative du sol autour de l’humidité du sol observée à 

basse résolution (Section II.5 Chapitre II). La résolution en sortie de désagrégation est de 1 

km avec les données MODIS (MODerate resolution Imaging Spectroradiometer). Le 

processeur C4DIS (Molero et al. 2016) est la version opérationnelle du prototype DisPATCh 

(Merlin et al. 2012 ; Merlin et al. 2013) appliqué aux données SMOS de niveau 3 (humidité 

CLF31A/D) et aux produits MODIS (température MOD11A1, MYD11A1 et NDVI 

MOD13Q2). Le processeur a été validé dans différentes régions en Espagne (Merlin et al. 

2013), en Australie (Malbeteau et al. 2016, Molero et al. 2016) et aux Etats Unis (Molero et 

al. 2016). Dans le cadre de cette thèse, le processeur C4DIS a été appliqué à la tuile MODIS 

au Maroc afin de générer le produit d'humidité sur la période 2014-2018. Les SM désagrégées 

sont ensuite évaluées par les mesures in-situ des sites intensifs de l’observatoire Tensift 

(http://trema.ucam.ac.ma). 

b. Estimation de l’évaporation du sol:  

Les données d’humidité DisPATCh sont ensuite utilisées en entrée d’un modèle de 

l’évaporation du sol (section 3, chapitre II). Une revue complète et détaillée des méthodes 

pour estimer l’évaporation à partir des observations d’humidité du sol en surface est proposée 

par Mahfouf et al. (1991), Lee and Pielke (1992), Ye et al. (1993), Mihailovic et al. (1995), 

http://trema.ucam.ac.ma/
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Dekic et al. (1995) et Cahill et al. (1999). Bien que de nombreuses formulations ont été 

proposées depuis les années 1960, il n'existe toujours pas de consensus sur une meilleure 

façon de modéliser l'évaporation sur de grandes étendues (Desborough et al. 1996, Sakaguchi 

et al. 2009). Néanmoins, la revue bibliographique de ces modèles nous permet de tirer les 

enseignements suivants: 1) les formulations existantes diffèrent selon quatre aspects: les 

valeurs limites basse et haute de l’humidité, la non-linéarité de la relation entre évaporation et 

humidité, les données d'entrée nécessaires autres que l’humidité et la profondeur des mesures 

d’humidité (Merlin et al. 2011), 2) des expressions empiriques simples peuvent être plus 

précises et robustes que d'autres modèles à base physique (Dekic et al. 1995, Mihailovic et al. 

1995), et 3) aucune de ces formulations n'a été évaluée dans ces conditions de sol et 

atmosphériques variées. Sur la base de ces résultats, un nouveau modèle développé par Merlin 

et al. (2016) a été utilisé pour estimer l'évaporation du sol (équation II.17, chapitre II). 

c. La partition de l’évapotranspiration entre l’évaporation du sol et la transpiration des 

plantes:  

Un nouveau modèle de bilan énergétique pour la partition d'évaporation / transpiration est 

développé pour intégrer simultanément les données de télédétection LST et SM. Pour 

construire ce modèle à partir d’une modélisation état de l’art de l’ET, en tenant en compte les 

caractéristiques suivantes: i) modélisation à partir de données LST, ii) utilisation d'une 

représentation à deux sources permettant une séparation explicite de l'évaporation du sol et de 

la transpiration des plantes, et iii) paramétrer les flux de surface avec un réseau de résistances, 

plus directement liés au SM que les modèles à efficacité d'évaporation. 

Nous choisissons donc le modèle TSEB (Norman et al. 1995) car il satisfait ces trois critères. 

La transpiration dans le modèle TSEB est basée sur l'approche Priestley Taylor (PT). Le 

coefficient PT noté αPT relie directement le flux de chaleur latente à l'énergie disponible en 

surface. En négligeant le terme de résistance aérodynamique inclus dans l'équation de 

Penman-Monteith (Monteith, 1965), la formulation du PT est relativement simple, nécessite 

moins de données d'entrée et s'est révélée remarquablement précise et robuste pour estimer 

l’ET potentielle  dans un large éventail de conditions (Fisher et al., 2008). Il est donc bien 

adapté aux applications opérationnelles (McAneney et Itier, 1996) et à grande échelle 

(Anderson et al., 2008). Néanmoins, plusieurs études (Ait Hssaine et al., 2018a; Fisher et al., 

2008; Jin et al., 2011; Yang et al., 2015) ont souligné que αPT varie selon les types de surface 

et les conditions atmosphériques entre 0.5 et 2.0 avec une valeur moyenne estimée autour de 
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1,3 (Fisher et al., 2008; Jin et al., 2011; Yang et al., 2015). D'autres études (Gonzalez-dugo et 

al., 2009; Long et Singh, 2012 et Morillas et al., 2014) ont montré que l'approche PT peut 

surestimer l'ET du couvert, en particulier en cas de faible humidité du sol et / ou de faible 

couvert végétal, car elle n'inclut pas une réduction raisonnable de l’ET initiale dans des 

conditions de stress. Dans ce but, la modification du formalisme TSEB basé sur le PT (Kustas 

et al., 1999; Norman et al., 1995) a été étudiée en intégrant simultanément les données LST et 

SM (la version modifiée s'appelle TSEB-SM). Une procédure de calibration innovante a 

également été mise en œuvre pour inverser les principaux paramètres d'évaporation du sol 

(résistance du sol) et de transpiration des plantes (αPT).  

3. Modèles utilisés 

a. Le modèle TSEB : 

Le modèle TSEB calcule deux bilans d’énergie distincts pour le sol et la végétation, puis 

estime l’évaporation comme terme résiduel du bilan d’énergie. Deux variables dérivées 

d'instruments de télédétection sont des éléments clés de modèle TSEB: LST, qui est utilisée 

dans l'estimation des flux de chaleur sensible, et fc, qui contrôle le partitionnement de 

l'énergie entre la végétation et le sol (Figure II.1, chapitre II). αPT est l'un des paramètres les 

plus sensibles de TSEB, car il pilote le flux de chaleur latent de la végétation. La plupart des 

études menées avec TSEB ont utilisé sa valeur générique autour de 1.3. 

b. Le modèle TSEB-SM : 

Le modèle TSEB-SM est basé sur le formalisme original de TSEB, ce qui signifie que le bilan 

énergétique de la végétation est identique à celui de TSEB utilisant la formule PT, bien que 

l'évaporation du sol est estimée en fonction de SM en utilisant une résistance du sol 

développée par Sellers et al. (1992) (Figure II.2, chapitre II). L'utilisation de la formulation de 

résistance du sol est justifiée par le fait que ses paramètres principaux (arss, brss) peuvent être 

ajustés en fonction des caractéristiques de texture du sol (Merlin et al., 2016) ou en combinant 

les données de SM et de LST dans les conditions du sol nu ou partiellement couvert (Figure 

V.1, chapitre V et figure VI.4, chapitre VI). Les paramètres arss et brss sont déterminés en 

considérant que, lorsque fc est inférieure à un seuil donné (fc,thres), la dynamique de ET total 

est principalement contrôlée par la variation temporelle de l'évaporation du sol. Cela signifie 

que les deux paramètres de sol sont estimés lorsque le coefficient PT est réglé sur une valeur 

constante. Une fois que la résistance du sol a été calibrée, le coefficient PT est récupéré à 
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l’échelle journalière pour fc supérieure à fc,thres. En fait, une boucle itérative est exécutée sur 

les paramètres de sol et de végétation pour atteindre la convergence de tous les paramètres 

(Figure II.3, chapitre II). Les principales équations du modèle et de la procédure de calibration 

sont détaillées dans le chapitre II (pages 31-34). 

4. Sites et dispositifs expérimentaux associés 

Nos approches ont été testées sur deux bassins versants (Tensift (Maroc), Wankama (Niger)) 

situées dans des régions caractérisées par un climat semi-aride, et  une variabilité spatiale et 

temporelle marquée de précipitations. Différentes données ont été utilisées en entrée pour 

alimenter les deux modèles (Chapitre II). En particulier, les deux entrées clés, LST et fc, sont 

utilisées pour forcer le modèle TSEB. Alors que SM est utilisée comme contrainte 

supplémentaire de l'évaporation du sol dans le modèle TSEB-SM. Ces trois produits sont soit 

mesurés à l’échelle de la parcelle à l’aide des mesures in-situ, soit extraits d’images 

satellitaires thermique /optique et  micro-ondes (Chapitre III). En plus de ces produits, les 

données météorologiques comprenant la température de l'air, le rayonnement solaire, 

l'humidité relative et la vitesse du vent sont également utilisées pour forcer TSEB et TSEB-

SM. Le modèle TSEB classique  a été testé entre 23 Juillet et 23 Octobre 2006 sur trois 

parcelles pluviales (mil, savane et  jachère) dans le bassin de Wankama (Niger) (Chapitre IV). 

Des flux de chaleur sensible (H) et latente (LE) provenant des systèmes d’Eddy covariance 

(EC) et de scintillomètre ont été utilisés pour valider l'estimation du TSEB à l'échelle du patch 

et de la grille. Alors que le modèle TSEB-SM a été testé durant deux saisons agricoles 2002-

2003 et 2016-2017 sur deux parcelles de blé irrigué en goutte à goutte (Chichaoua et R3) 

(Chapitre V) et durant quatre saisons 2014-2015, 2015-2016, 2016-2017 et 2017-2018 sur une 

parcelle de blé pluvial (Bour) (Chapitre VI) dans la plaine de Haouz du bassin versant du 

Tensift (centre du Maroc).  

5. Résultats 

a. Validation du TSEB classique :  

Dans un premier temps, le chapitre « Les résultats de la validation du modèle TSEB sur une 

végétation éparse et hétérogène dans la région du Sahel (Niger) » vise à tester le modèle 

TSEB piloté par des observations MODIS (Moderate resolution Imaging Spectroradiometer) 

en conjonction avec un schéma d’agrégation spatiale. Le but est d’estimer les flux de chaleur 

sensible à la surface (H) et latente (LE) sur un trajet de 3 km couvrant trois cultures 

dominantes dans le bassin de Wankama (Mil, Jachère et la savane). Les données qui ont servi 
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à la validation de cette approche ont été collectées dans le cadre du projet AMMA. Chaque 

site a été équipé par des stations météorologiques et des systèmes d’Eddy Covariance ainsi 

qu’un scintillomètre à grande ouverture installé sur un trajet de 3 km afin de dériver les 

valeurs de H et LE moyens sur les trois champs. Premièrement, le modèle TSEB a été évalué 

à l'échelle du patch (Mil, Jachère et la Savane), et ensuite à  l’échelle du grid qui est composé 

des trois champs, en utilisant les données in-situ (chaque 30 minutes), Météosat seconde 

génération (MSG) (3 km de résolution et à l'heure de passage MSG-SEVIRI) et MODIS (1 

km de résolution et à l'heure de passage Terra et Aqua). En tenant compte de la complexité de 

chaque champ liée à la dispersion du couvert végétal, les résultats obtenus à l'échelle de la 

station pour H et LE sont pertinents, en particulier lors de l'utilisation de données in-situ. 

Quelques dispersions constatées sont principalement liées à la différence entre les footprints 

des systèmes de mesure, ainsi qu'à la valeur de αPT fixée à 1,26 durant toute la saison. TSEB a 

été ensuite évalué à l'échelle de grid. En général, les flux prédits par TSEB en utilisant les 

données in-situ concordent bien avec les observations par scintillomètre avec un RMSE de 

l’ordre de 37 et 75 W / m2 pour H et LE, respectivement. L'accord entre H et LE simulés par 

TSEB forcé par les données MSG et les observations du scintillomètre est très médiocre, (R = 

0,39 et 0,2 pour H et LE, respectivement). Cette dispersion peut être attribuée au fort biais sur 

les LST de MSG SEVIRI lié à l'hétérogénéité du site. Ce qui souligne la nécessité de 

représenter l'hétérogénéité des sous-pixels. Ceci a été testé en dernière étape en utilisant les 

produits MODIS à 1 km comme entrée du modèle TSEB en conjonction avec trois schémas 

d'agrégation de complexité croissante (une moyenne simple des entrées à l'échelle de 

résolution MODIS, une moyenne simple sans tenant en compte l'étendue du footprint du 

scintillomètre, et une moyenne pondérée des entrées en tenant en compte la fonction du 

footprint du scintillomètre). Les valeurs de H et LE simulées par la 3ème méthode d’agrégation 

étaient plus précises que par les deux autres méthodes. Les valeurs des métriques statistiques 

obtenues sont R = 0,71, RMSE= 63 W/m2 et MBE= -23 W / m2 pour H et R = 0,82, RMSE = 

88 W/m2 et MBE = 45 W/m2 pour LE. 

b. Intégration des données in-situ de SM au modèle TSEB : 

La deuxième partie de la thèse est dédiée à l’amélioration du modèle TSEB en intégrant les 

données SM (TSEB-SM) avec une étude de faisabilité utilisant des données in-situ (LST, fc  

et SM) ». Pour ce but, un nouveau modèle de calcul de ET appelé TSEB-SM est dérivé du 

formalisme TSEB en représentant explicitement l'évaporation du sol par une équation basée 

sur la résistance du sol. Pour contraindre la partition évaporation / transpiration de TSEB-SM, 
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une approche de calibration innovante est également développée pour inverser les principaux 

paramètres d'évaporation du sol (résistance du sol, rss) et de transpiration des plantes (αPT). 

En pratique, les paramètres de résistance du sol sont extraits à l'échelle saisonnière à partir des 

données SM et LST avec fc ≤fc,thres  (un seuil empirique permettant la séparation itérative des 

paramètres sol / végétation dans les estimations de ET), tandis que αPT est récupéré à l'échelle 

journalière à partir des données SM et LST pour fc > fc,thres. Le modèle TSEB-SM a été  testé 

sur une parcelle de blé irrigué en gravitaire  (R3) et 2 parcelles de blé irrigué en goutte-à-

goutte (Une parcelle (Référence) qui a été irriguée en fonction des besoins en eau des cultures 

estimés selon la méthode FAO tous les 3-4 jours, et une autre parcelle (contrôlée) qui a été 

subie plusieurs périodes de stress lorsque l'irrigation est délibérément coupée, Chichaoua) en 

utilisant des données in-situ recueillies lors de deux expériences réalisées en 2002-2003 (R3) 

et en 2016-2017 (Chichaoua). La convergence des trois paramètres (arss, brss et αPT) est 

atteinte en 2 ou 3 itérations. Ce résultat confirme bien la robustesse d’appliquer la calibration 

selon un seuil de fc. La paire (arss, brss) calibrée est respectivement (5.67, 1.40), (6.51, 3.82) 

et (9.47, 6.87) pour la parcelle de R3, et les deux de Chichaoua (contrôlée et référence). Les 

valeurs moyennes récupérées (7.2, 4.0) sont relativement proches de celles estimées par 

Sellers et al. (1992) (8.2, 4.3). La variabilité de arsset brss peut être expliquée par de 

nombreux facteurs tels que la texture du sol (Merlin et al., 2016) et les conditions 

météorologiques (Merlin et al., 2011). Néanmoins, les paramètres récupérés sont 

significativement différents pour les deux sites de Chichaoua (référence et contrôlé), alors 

qu'ils sont situés à environ 200 m l'un de l'autre et ont une texture du sol et des conditions 

météorologiques similaires. Cela peut être expliqué par la  compensation entre arss et brss ce 

qui révèle la nature empirique de la formulation rss de Sellers et al. (1992). La valeur 

moyenne de αPT est respectivement 0,81, 0,88 et 1,24 pour la parcelle R3, contrôlée et 

référence. Cette valeur est très proche de la valeur théorique αPT pour la parcelle référence. 

Néanmoins, elle est nettement inférieure à la valeur par défaut pour la parcelle R3 et 

contrôlée. Cela peut être associé à des conditions de stress pouvant survenir pendant la phase 

de développement du blé. Une analyse de la variation journalière de αPT indique que les 

valeurs inversées sur les deux parcelles de Chichaoua sont supérieures à celles inversées sur 

R3. Cela pourrait s'expliquer par la différence entre les pratiques agricoles de chaque parcelle 

(date de semis, épisodes d'irrigation, précipitations et fertilisation) ainsi que par les 

incertitudes concernant l’inversion de αPT. Une fonction de lissage est utilisée pour supprimer 

toutes les valeurs aberrantes tout en gardant des tendances significatives à l’échelle 
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journalière. Les αPT lissés varient de 0.03 à 1.22, 0,17 à 1.26 et 0.61 à 1,38 respectivement, 

pour la parcelle R3, contrôlée et référence. Les αPT lissés sont ensuite normalisées entre une 

valeur minimale supposée (0) et une valeur maximale lissée. Les αPT calibrés varient alors de 

0 à 1.22, de 0 à 1.26 et de 0 à 1.38 respectivement pour la parcelle R3, contrôlée et référence. 

En conclusion, l’intégration de la résistance du sol dans le modèle TSEB améliore l'estimation 

de l'évaporation du sol et, par conséquent, améliore la partition de l'ET. La série temporelle 

récupérée indique que αPT journalier suit la phénologie de la culture de blé d'hiver, avec une 

valeur maximale correspondant au développement maximal de la biomasse verte et une valeur 

minimale atteinte au moment de la récolte. Une analyse qualitative des variabilités de αPT en 

relation avec l'humidité du sol à 5 cm et à une profondeur de 30 cm indique que αPT ne peut 

pas être considéré comme une constante (Figure V.4, chapitre V). Des écarts importants par 

rapport à la valeur de 1,26 risquent de se produire pendant la saison agricole, en particulier en 

période sèche et de déficit en eau. En termes  des flux turbulents H et LE, TSEB fournit des 

résultats satisfaisants pour le site R3, mais pas pour les deux autres sites de Chichaoua. La 

surestimation de LE par TSEB pendant la sénescence est associée à la valeur maximale fixée 

pour αPT (égale à 1,26). Cette limitation identifiée dans le formalisme TSEB semble être en 

partie résolue par l’approche TSEB-SM avec une pente de la régression linéaire est beaucoup 

plus proche de 1 dans tous les cas.  Le RMSE (pour les trois sites) entre l’ET simulée par 

TSEB-SM et les mesures d’EC est de 67 W/m2 (erreur relative de 24%), contre 108 W/m2 

(erreur relative de 38%) pour la version originale de TSEB utilisant le paramétrage par défaut 

(αPT = 1.26). 

c. Intégration des données SM-DisPATCh et des données MODIS (LST, 𝑓𝑐) pour 

l’estimation de l'ET à une résolution de 1 km : 

Le  3ème axe de la thèse « Combinaison de l'humidité du sol DisPATCh et des données 

MODIS (LST, fc) pour cartographier l'ET à une résolution de 1 km » vise à évaluer la 

performance de TSEB-SM en conditions réelles en utilisant les LST et fc MODIS à 1 km  de 

résolution et les données SM SMOS désagrégées à 1 km de résolution à l'aide de DisPATCh. 

L'approche est appliquée sur un champ de blé pluvial dans le bassin du Tensift, pendant une 

période de quatre ans (2014-2018). La parcelle a été semée pour la saison agricole 2014-2015 

(S1), 2016-2017 (S2) et 2017-2018 (S3), alors qu'elle n’était pas labourée pendant la saison de 

blé 2015-2016 (B1) (sol nu) à cause du retard de la pluie. Malgré la différence d'échelle entre 

les données MODIS / DisPATCh et les mesures in-situ, les paramètres (arss, brss) calculés 

tout au long de la période d'étude à l'aide des données satellitaires sont relativement proches 
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de ceux dérivés des mesures in situ. La deuxième étape de calibration consiste à inverser αPT 

pour fc > fc,thres  à l’aide des données LST et SM. Les maximum αPT journaliers calibrés sont 

respectivement 1,38, 1,25 et 0,87 pour S1, S2 et S3. Ces valeurs correspondent aux quantités 

totales de précipitations, qui étaient respectivement de 608, 214 et 421 mm / saison de blé 

pour S1, S2 et S3. En effet, S1 et S2 ont la même tendance de αPT calibré à l’échelle 

journalière en comparaison avec le αPT récupéré à l'aide des données in-situ, tandis que αPT 

reste à une valeur constante (0.7) pendant toute la période d'étude S3 en raison de non 

disponibilité des produits MODIS pendant les jours nuageux. Comparé aux mesures d’EC, le 

modèle TSEB basé uniquement sur les données LST et fc  surestime de manière significative 

les flux de chaleur latente pour les quatre saisons. Les MBE globaux sont d'environ 119, 181, 

94 et 128 W / m2 pour respectivement S1, B1, S2 et S3. La surestimation de LE peut 

s'expliquer par le fait que PT est fixé à 1,26 pendant toute la saison agricole, même en 

conditions  de stresse. Cela provoque des erreurs plus importantes sur l'estimation du LE, en 

particulier pendant la phase de croissance. Les erreurs sont réduites lors de l'utilisation de 

TSEB-SM. En fait, la contrainte sur la transpiration de la plante, lors de l’inversion de la série 

temporelle de αPT, améliore les estimations de l'ET surtout en stade de croissance et en phase 

de sénescence, le biais important de LE est considérablement réduit. De plus, la contrainte sur 

l'évaporation du sol via les SM DisPATCh réduit clairement les valeurs de MBE pendant la 

période d'émergence (fc ≤ fc,thres). Enfin, la contrainte appliquée aux flux de sortie TSEB-SM 

en utilisant l'énergie disponible dérivée de LST et la fraction évaporative dérivée de TSEB-

SM (équation VI.1, chapitre VI) améliore les estimations de LE pour toute la période d'étude. 

Les MBE sont d'environ 39, 4, 7 et 62 W / m2 pour respectivement S1, S2, S3 et B1. TSEB 

présente des erreurs systématiquement importantes sur l'estimation de H (Figure VI.10, 

chapitre VI), avec des valeurs de RMSE allant jusqu'à 98, 73, 56 et 66 W / m2 pour 

respectivement S1, S2, S3 et B1. Le RMSE est amélioré avec l’utilisation de TSEB-SM, avec 

des valeurs d’environ 55, 41, 24 et 27 W / m2 pour respectivement S1, S2, S3 et B1. 

En perspectives de ce travail, on propose d’estimer l’humidité en zone racinaire à une haute 

résolution spatiale car elle représente un enjeu important pour le suivi des ressources. Elle permet à 

la fois de détecter les périodes de stress hydrique et d’anticiper le besoin en eau des cultures. Ceci 

nécessite une répartition appropriée de l’ET en transpiration et évaporation du sol.  Des 

efforts supplémentaires doivent être déployés pour étudier la variabilité de αPT à des échelles 

de temps journalières et plus fines et pour relier ses variations à des variables autres que la 

biomasse et la disponibilité de l'eau du sol. 
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I.1. General context 

Water makes up about 71% of the Earth’s surface, 97% of all the Earth’s water is contained 

within the oceans as salt water, while the remaining 3% is freshwater (Figure I.1). Glaciers 

and ice caps cover about 70% of the world’s freshwater. Unfortunately, most of these 

resources are located far from human habitation and are not readily accessible for human use. 

According to the United States Geological Survey (USGS), Groundwater is by far the most 

abundant and readily available source of freshwater, followed by lakes, reservoirs, rivers and 

wetlands. The groundwater represents over 90% of the world’s readily available freshwater 

resource (Boswinkel, 2000). About 1.5 billion people depend upon groundwater for their 

drinking water supply (WRI, UNEP, UNDP, World Bank, 1998). 

 

Figure I. 1. Global world distribution of the water resource under different aspects “Source: 

www.consoglobe.com.” 

According to the United Nations Environmental Program (UNEP, 2012), the human survival 

depends on clean water. “The achievement of all the Millennium Development Goals... hinges 

on the quality and quantity of available water as water plays a disproportionately powerful 

role through its impact on, among other things, food production and security, hygiene, 

sanitation and health and maintenance of ecosystem services.”The water issue becomes a 

major concern for the majority of countries; especially because it covers a real complexity 

related to geopolitical, security, ecological, social and economical issues. As a result, the 

pressure on water resources is growing under the combined effects of anthropogenic pressure 

(population growth, urban development and the increase of water consumingby agriculture, 
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industry and tourism) and climate changes (temperature increases, precipitation decreases 

especially in southern mediterranean, increase of drought frequency …). 

In most regions of the world, over 70 percent of freshwater is used for agriculture (FAO, 

2011). By 2050, the global water demand of agriculture is estimated to increase by a further 

19% due to irrigational needs. Countries in the southern Mediterranean have only 1% of the 

world's freshwater resources and gather more than half of the water-poor population (namely 

an average less than 1000 m3 per year per capita). This area is characterized by a strong 

spatio-temporal variability in precipitation associated with a marked seasonality of 

evaporative demand, resulting in a period of high water deficit in summer (Bolle, 2003). In 

this region, crop irrigation consumes up to 80-90% of the mobilized water (FAO, 2015), 

which makes the relationship between water availability and agricultural production for a 

continuously growing population more critical (Vorosmarty et al., 2000). Mediterranean 

countries are already facing major problems of water stress, desertification, loss of 

biodiversity and extreme weather events such as floods and droughts. In particular, the 

Mediterranean area has been identified as a hot spot of climate change (Giorgi, 2006). 

According to the International Panel on Climate Change (IPCC, 2014) a rise of temperatures 

of 2 to 3° C is expected in the Mediterranean region by 2050, and 3 to 5 ° C by 2100. The 

increase of the length of dry spell (days) is expected (Schleussner et al., 2016) and the 

decrease in precipitation, especially in summer and with important regional differences 

(IPCC, 2013). The general increase in water scarcity as a consequence of climate change is 

enhanced by the increasing demand for irrigated agriculture to stabilize production and to 

maintain food security (Schwabe et al., 2013). The irrigation demands in the region are 

projected to increase between 4 and 18% by the end of the century (Cramer et al., 2018). 

Morocco is one of the 45 countries, in the world, most affected by water shortage, according 

to World Resources Institute water scarcity map (Figure I.2), which reveals Morocco’s critical 

situation (Plan Bleu, 2009). A difficult situation for the population and, among others, 

agriculture. The latter is by far the largest water user of all human activities; accounting for 

85% of the country's mobilized water resources (Jarlan et al., 2015). Agriculture contributes 

to the national economy in the range 14-20 % of GNP depending on the rainfall of the year 

(Balaghi et al., 2012). According to the World Resources Institute report, Morocco will reach 

an extremely high level of water stress by 2040. Indeed, Morocco is expected to enter a 

situation of extreme water stress in less than 25 years (Word Bank, 2017). A shortage that 
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could be mainly explained by the fast expansion the irrigated areas and the intensification of 

water consumption by the touristic and domestic sectors.  

 

Figure I. 2. Global water map. Source: World Resouces Institute 

Aware of the situation severity, significant efforts have been made since 1961 in term of 

water resources mobilization. Currently, Morocco has 135 dams with an overall storage 

capacity of about 17.5 billion m3. To reinforce this infrastructure, Moroccan government 

plans to build about 59 large dams by 2030 (Loudyi et al., 2018). Several departments and 

agencies are also involved in the management of water resources, including: Basin Hydraulic 

Agencies (development and management of water resources between different uses ...), 

Regional Offices for Agricultural Development (development of irrigated perimeters, 

agricultural development, management of irrigation networks, and management of water 

resources for agriculture), ONEE-Water (production and management of drinking water). At 

the beginning of the 21st century, the Moroccan government launched the Green Moroccan 

program, to promote the economy and the development of water resources in agriculture, 

including: 

• The National Irrigation Water Economics Program (PNEEI) with the objective of converting 

550 000 ha to localized irrigation (2008-2020), increasing productivity and water valuation, 

and sustainable management of water resources; 
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• The Irrigation Extension Program (PEI), aimed at making public investment in water 

resource mobilization (dams), creating nearly 60 000 permanent jobs, increasing farmers' 

incomes. 

Monitoring water resources is therefore strongly linked to the modeling of hydrological 

fluxes, such as soil infiltration, runoff and evapotranspiration. Evapotranspiration (ET) is a 

crucial component of the water cycle, especially in semi-arid areas where it strongly impacts 

the water resource management, drought monitoring, and climate (Littell et al., 2016; Molden 

et al., 2010). At the watershed scale, water losses by ET are generally the most important part 

of the water balance, and can be responsible for the dissipation of 60% of the rainfall 

contribution (Oudin, 2004). Furthermore, a precise estimate of ET determines the crop water 

requirements, which subsequently allow for optimizing water management practices and 

irrigation regimes (Allen et al., 1998). A large variety of ET models and measurements have 

been reported in the literature (Allen et al., 2011; Olivera-Guerra et al., 2014; Subedi and 

Chávez, 2015). However, ET estimation over extended areas including different biomes and 

climates is still subject to significant uncertainties (Ershadi et al., 2014; Pereira, 2004). 

Although the main drivers of ET, such as atmospheric evaporative demand, vegetation type, 

development stages and health, surface biophysical characteristics and soil water availability 

(Federer et al., 2003), are now well identified. One major difficulty in modeling this process 

lies in a lack of relevant inputs data available at the desired space and time scales (Allen et al., 

2011; Pereira et al., 2015). The accuracy of ET estimates at a given scale thus currently 

represents a trade-off between model complexity and realism, which is usually related to: i) 

the number of model parameters and forcing variables and ii) the data availability that 

generally decreases with the spatial extent (Allen et al., 2011; Gharsallah et al., 2013). 

Regarding data availability, satellite observations are able to provide integrated measurements 

at different temporal and spatial scales and in different spectral bands. Multi-spectral remote 

sensing provides powerful tools for observing continental surfaces and hydrologic 

components such as soil moisture using SMOS satellites (Soil Moisture and Ocean Salinity, 

Kerr et al (2001)) and SMAP ( Soil Active Passive Moisture Entekhabi et al (2010)). Surface 

temperature from the thermal infrared also provides information on the state of the surfaces 

and on the temporal variations of the hydrological fluxes (Anderson, 1997) at the surface-

atmosphere interface through the energy balance and water balance (Anderson et al., 2008; 

Brunsell et al., 2011; Kustas and Anderson, 2009). Meteorological satellites, either 

geostationary (Geostationary Operational Environmental Satellites (GOES), Meteosat 
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satellites) or polar (Global Precipitation Measurement (GPM), Tropical Rainfall Measuring 

Mission (TRMM)) can detect precipitation and estimate their intensity (Hou et al., 2014; 

Huffman et al., 2007). In addition, a number of space programs aim to create a multi-spectral 

synergy. A recent example of this motivation is the Sentinel satellite constellation. Visible 

and near infrared (VIS-NIR, Sentinel 2), thermal infrared (TIR, Sentinel 3) and C-band 

microwave (Sentinel 1) data are available with unprecedented spatio-temporal resolution. 

These strategies are based on the development of a system of complementary observations in 

order to better characterize the continental surfaces. However, there are several limitations in 

the efficient use of remote sensing observations for agricultural and hydrological applications.  

Especially, the spatial representativeness of the measurement, which plays a major role in the 

accuracy of this measurement. Yu et al. (2017) validated MODIS LSTs using station 

observations from the River Basin in China. For all the observations, the bias of the MODIS 

LST range from -0.27 K to 2.39 K and the RMSE range from 3.32 K to 4.93 K. Serbin et al. 

(2013) found the MODIS LAI displayed larger seasonal variation compared to field 

measurement, with an RMSE of about 0.63 m2/m2  for a boreal forest landscape in northern 

Manitoba, Canada. Fensholt et al. (2004) reported that MODIS LAI is overestimated by 

approximately 2–15%. However, several factors plays crucial role in increasing or decreasing 

the errors between observations and MODIS products including the type of land cover, land 

topography, the reliability of the atmospheric correction method and the coarse resolution of 

the thermal band (1 km). 

Spatial and temporal resolutions are of paramount importance to realistically integrate spatial 

observations into hydrological models, or even to model hydrological processes from satellite 

observations.  The spatial resolution depends mainly on the sensitivity of the sensor to receive 

energy emitted by the surface. This sensitivity is strongly dependent on the wavelength 

domain and plays an important role since it determines the size of the region observed and the 

size of the objects that will be possible to characterize. For example, the radiometers have a 

coarse-scale resolution (about 40 km for SMOS and 50 km for AMSR-E) which is too wide to 

be directly integrated into agro-hydrological models, in contrary to measurements from the 

radar which have a finer resolution (about 10 m for Sentinel 1). The temporal resolution is the 

time required for the satellite to make a complete orbital cycle, ie to observe exactly the same 

scene again from the same point in space, it is related to the spatial resolution for a given 

wavelength domain because it depends on the orbit of the satellite. For example, in the 

thermal infrared, Landsat data have a spatial resolution of 100 m but a temporal resolution of 
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16 days whereas the MODIS data have a spatial resolution of 1 km but with a frequency of 1-

2 days. Generally, spatial and temporal resolution must be chosen according to the objects 

observed and / or modelled (Figure I.3). 

 

Figure I. 3. Multi-sensor / multi-resolution remote sensing data for crop monitoring and agro-

hydrological applications (from Malbéteau, (2016)) 

Overall, remote sensing observations provide very relevant information to feed ET models 

such as vegetation indices (Normalized Difference Vegetation Index NDVI and vegetation 

fraction cover fc, VIS-NIR), land surface temperature (LST, TIR) and near-surface soil 

moisture (SM, microwave). More specifically, SM is one of the main controlling factors of 

soil evaporation (Chanzy and Bruckler, 1993), vegetation cover fraction (fc) provides an 

essential structural constraint on evaporation/ transpiration partitioning (Allen et al., 2000) 

and LST is a signature of available energy and ET (Norman et al., 1995). For this reason, 

efforts have been made to integrate those data as additional and complementary information 

on ET (Price, 1990). 

Many measurement devices are used to develop, calibrate and test important ET process 

models. A bibliographic review of the main methods of ET measurement at the plot scale is 

describedin the following sub-section. 
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I.2. In-situ measurements of Evapotranspiration 

a. Eddy covariance method 

The Eddy correlation (EC) method is considered as a reference technic for several reasons 

(Allen et al., 2011): it allows a direct measurement of the latent and sensible heat flux 

densities within atmospheric boundary layers at field scale. It introduces no artefact on the 

system it is measuring, it is quasi-continuous and represents a relatively large upwind 

extent.Early examples of eddy instrumentation were described by Tanner. (1988) and Tanner 

et al. (1993). Since then, many advances in instrumentation have been made and this method 

is now widely used as described by Wilson et al. (2002), Baldocchi. (2003). 

The EC method is based on the turbulent transport theory in the surface layer of the 

atmosphere. Indeed, the average vertical flux density (Fx
̅̅ ̅) of a magnitude X (e.g. temperature, 

water vapor or carbon dioxide) is proportional to the covariance of fluctuations between the 

vertical wind velocity and the concentration of that magnitude, at a specific point above the 

area of interest.  

Turbulent fluxes (momentum, sensible heat, latent heat and gaseous concentration) can be 

expressed as the product of the fluctuations term of the vertical velocity and the fluctuations 

term of the magnitude considered. In particular, the sensible heat flux density H, is given by: 

H ≈ ρcpw′T′̅̅ ̅̅ ̅̅  (W. m−2)                (I.1) 

The vertical flux density of water vapor called latent heat or evapotranspiration is defined by: 

LE ≈ ρw′q′̅̅ ̅̅ ̅̅ (W. m−2)                                (I.2) 

In general, the eddy correlation method requires personnel who are well-trained in electronics, 

turbulent theory, and biophysics. Instrumentation is relatively fragile and expensive.The 

footprint of the EC system, depends on wind speed, but doesn’t exceed 100 m (Ezzahar et al., 

2007). It uses complex calculations, and utilizes many assumptions. It has proposing 

perspectives for the future use in various natural sciences (Allen et al., 2011). 

b. Lysimetry method 

The lysimeter is a device, generally a tank or container, to define the water movement across 

a soil boundary (Howell et al., 1991; Prueger et al., 1997; Young et al., 1997), and to quantify 

https://en.wikipedia.org/wiki/Planetary_boundary_layer
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actual evaporation from a bare soil or actual ET from a soil covered by vegetation (Kashyap 

and Panda, 2001; Parlange and Katul, 1992). 

Lysimeters of varying designs, sizes, shapes, and measurement systems have been built over 

the years (Allen et al., 2011; Howell et al., 1991). Thechnically, there are two main types of 

lysimeters: the drainage and the weighing types. In the first case, potential evaporation is 

obtained as the difference between added and drained water quantity. In the second case, 

changes in the total weight of the soil sample are measured, whereby the real ET during a 

short time period (10 min) can be estimated. Indeed, the actual ET measurements from 

weighing lysimeters have become one of the most accurate methodologies to study the return 

of water to the atmosphere by the combined processes of evaporation and transpiration 

(Malone et al., 2000), and are the standard method to directly measure the actual 

evapotranspiration (ETa) (Payero and Irmak, 2008; Reicosky et al., 1983). 

In connection with the additional measurement of deep percolation (DP) and precipitation (P), 

the actual ETacan easily be derived using the surface water balance: 

ETa = P − DP ± ∆W                    (I.3)

      

Where ΔW is the change of soil water storage measured by the lysimeter. 

c. The Energy Balance Bowen Ratio (EBBR) method  

The Energy Balance Bowen Ratio (EBBR) method is a relatively simple technique based on 

net radiation, soil heat flux, and the air temperature and vapour pressure gradients 

measurements (Allen et al., 2011). It is an indirect method, compared to the previous methods 

such as EC, which directly measures turbulent fluxes, or weighing lysimeters, which 

measures the mass change of an isolated volume of surface soil-vegetation. EBBR produces 

the 30 min estimates of the vertical fluxes of sensible and latent heat fluxes at the local 

surface. Many studies have investigated the use of the BR method to estimate the sensible and 

latent heat fluxes (Aston, 1985; Black and McNaughton, 1971; Euser et al., 2014; Jara et al., 

1998; Peacock and Hess, 2004). The Bowen ratio can be determined as the ratio of the 

gradients of temperature and vapor pressure across two fixed heights above the surface 

(Bowen, 1926) or as the ratio of the sensible and latent heat flux: 

β =
H

LE
=

∆T

∆e
                     (I.4) 



 Introduction and state of art  

10 
 

The Bowen ratio is combined with the energy balance to yield the following expressions for 

H and LE: 

LE =
Rn−G

1+β
                     (I.5) 

H =
β

1+β
(Rn − G)                    (I.6) 

d. Scintillometry 

A scintillometer is an optical instrument that consists of a light/radiation source (transmitter) 

and receiver; it is used to measure small fluctuations of the refractive index of air caused by 

variations in temperature, humidity, and pressure. The transmitter emits electromagnetic 

radiation over a separation distance (or path length), which, depends on aperture size, 

effective height above the surface, and atmospheric stability. The receiver detects and 

evaluates the intensity fluctuations of the transmitted signal, called scintillation. 

Scintillometer provides continuous measurements of sensible heat fluxes over path lengths 

from 100 m up to few kilometres. Several investigations have demonstrated the potential of 

using scintillometer to measure reliable averaged sensible heat fluxes over path lengths which 

are similar to satellite pixel scale (Artogensis, 1997; De Bruin et al., 1995; Ezzahar et al., 

2007; Kohsiek, 1985; Lagouarde et al., 1996). The scintillometer method is based on the 

measure of the structure parameter of refractive index (Cn
2), which characterises the turbulence 

intensity within the atmosphere (Ezzahar et al., 2007; Ochs and Wilson, 1993). By using the 

Monin-Obukhov Similarity Theory (MOST) and complementary parameters (meteorological 

conditions and site features such as vegetation height), Cn
2 can be directly related to sensible 

heat flux. For more details on this method, the readeris invited to refer to Ezzahar et al. 

(2007). 

I.3. Modeling approaches of Evapotranspiration 

In-situ measurements are able to give only localized estimates of ET over relatively 

homogeneous areas. In addition, they cannot be extended at large scales due to the 

heterogeneity of the landscape and the complexity of hydrologic processes. In fact, the factors 

that conditioning the soil-vegetation-atmosphere exchanges (land surface temperature, wind, 

soil characteristics, type of crop..) are highly variable in space and time and are specific for 

each field. Therefore, none of the approaches mentioned before can adequately account for 

these variabilities. The spatial modelling has become a dominant means to estimate ET fluxes 

https://en.wikipedia.org/wiki/Refractive_index
https://en.wikipedia.org/wiki/Air
https://en.wikipedia.org/wiki/Scintillation_(astronomy)
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over regional and continental areas (Anderson et al., 2007; Fisher et al., 2017). Different 

methods have been developed to use remote sensing data in surface flux estimation schemes. 

It is always difficult to classify these methods, since their complexity depends on the balance 

between the empirical and physically based modules used.  

An overview of existing ET modeling approaches is discussed below. 

I.3.1. Empirical models 

The empirical models are the most used approaches for spatializing ET through remote 

sensing. In this context, the empirical relationship between land surface temperature and air 

temperature observationswas used. This simplified method for estimating ET was firstly 

derived by Jackson et al. (1977) at two different times of day at field scale and later modified 

by Seguin and Itier, (1983) for mapping daily ET over large scales from LST measurements 

(Courault et al., 2005; Lagouarde and Brunet, 1991). This approach assumes that the daily ET 

is related to the instantaneous (LST − Ta) measurements obtained around mid-day: 

ETd = Rnd
− B(LST − Ta)n                   (I.7) 

Where B and n are the regression adjusted constants which depend respectively on surface 

roughness and atmospheric stability. LST can be obtained by observed in-situ or by thermal 

infrared remote sensing images. 

This method assumes that the ratio H/Rn is constant during the day, and that the daily 

variation of the heat flux in the soil is negligible (G = 0). 

The main advantage of this empirical regression method is its simplicity and relatively high 

accuracy (1 mm / day) when calibrated in-situ dataset. However, the adjusted constants are 

site-specific (climate, vegetation, soil…), which may limit the application of this approach to 

other sites and heterogeneous surfaces (Carlson et al., 1995). 

I.3.2. Mechanistic models 

Estimation of ET can be based on more detailed and complex models such as Soil-

Vegetation-Atmosphere transfer models (SVAT), which include a coupled energy balance 

and water balance model. Many SVAT models have been developed in the last 20 years for 

meteorological needs which explains their more detailed description of physical processes. 

This approach gives access to simulate continuously the temporal evolution of surface states 
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(LST, soil moisture, etc…) (Deardorff, 1978; Dickinson et al., 1986; Sellers et al., 1996), 

variables required in the partition of the surface into soil and vegetation energy balance. In 

addition, most of the transfer mechanisms at ground and/or vegetation coverlevelandsome 

physiological processesare based on the scale of the energy balance and the parameterization 

of different processesindependently of remote sensing data:  

- Radiative transfers are modeled in general following a simple Beer-Lambert law of by using 

radiative transfer schemes within the plant cover  (Olioso, 1992). 

 - Turbulent transfersaregenerally based on the resistive schemes (Choudhury, 1989; 

Deardorff, 1978). 

- Heat and water transfers in the soil; in most models, a system with two soil reservoirs is 

used, one representing the root zone and the other one representing the first centimeters of the 

soil which are directly concerned by soil evaporation (Carlson et al., 1990; Deardorff, 1978). 

- Water transfers from the soil to the atmosphere, through the plants, based on an adequate 

description of stomatal regulation and water extraction by the roots (Braud et al., 1995; 

Taconet et al., 1986). 

- Photosynthesis in relation with water transfers, through stomatal regulation or water status 

of leaves (Zur and Jones, 1981). 

SVAT models are typically complex and highly parameterized, which can make their 

spatialization tricky when surfaces are poorly characterized. On the other hand, this approach 

is not dependent on remote sensing data, and relies solely on knowledge of radiative forcing, 

weather forcing, crop canopy architecture and physiology, and water supplies (rainfall and 

irrigation). The LST is not used as a forcing data, but is simulated by the model, as the 

resultant of energy balance, and can therefore possibly be corrected by assimilation methods 

(Castelli et al., 1999; Coudert and Ottlé, 2007; Crow, 2003; Hain et al., 2011; Olioso et al., 

1999). 

Among SVAT models, it may be mentioned Suivi de l’Etat Hydrique des Surfaces (SEtHyS) 

(Coudert et al., 2006), Soil Biosphere-Atmosphere Interaction (ISBA) (Noilhan and Mahfouf, 

1996) and Interactive CAnopy Radiation Exchange (ICARE) (Gentine et al., 2007), Simple 

Biosphere Model (SiB) (Sellers et al., 1996) and Simple Soil-Plant-Atmosphere Transfer 

(SiSPAT) (Braud et al., 1995). 

SVAT models provide access to detailed plant cover and soil functioning, and not just to a 

limited number of variables such as ET, as it is the case for empirical or residual approaches. 
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However, a major disadvantage of these models is that they require the adjustment of many 

parameters related to the properties of the observed surfaces (soil textures, type of cover 

observed). They also rely on atmospheric (e.g. precipitation) and anthropogenic (e.g. 

irrigation) forcing. If such calibrations are possible at the plot scale, where the soils and 

varieties grown are known and can be considered homogeneous, they become particularly 

difficult to perform overareas with a certain spatial extent. 

I.3.3. Surface Energy Balance (SEB) models 

Surface Energy Balance (SEB) models are designed to be forced by the LST and focus on 

solving the SEB instantaneously. SEB can be represented, at any scale (Brutsaert, 1982; 

Mcnaughton and Spriggs, 1989) by: 

H + LE = Rn − G                    (I.8) 

whereH  HH is the sensible heat flux, LE __ is the latent heat flux,Rn _is the net radiation absorbed by 

the earth’s surface, and G_ is the heat flux into the soil. All components are usually in units 

W/m2
2_. Additional energy flux components that could also be included are photosynthesis  

(Stewart and Gay, 1989) and vegetation canopy storage (Shuttleworth and Wallace, 1985), 

but for short-term measurements, or for non-forested regions, these terms are negligible 

(Brutsaert, 1982; Stewart and Thom, 1973). The difference Rn − G is the surface available 

energy, generally consumed by H and LE. G is classically expressed as a fraction of net 

radiation, (as an exemple, 0.05*Rn for fully developed plant cover, and 0.5*Rn for bare soil)  

(Kustas and Norman, 1996) or as a variable fraction depending on different parameters such 

as canopy fraction and soil characteristics (Bastiaanssen et al., 1998; Kustas et al., 1993; Su, 

2002). 

The methods of resolution of SEB thus differ mainly on the partition of the available energy 

between the turbulent fluxes. In the review of ET estimation methods, several authors 

classified two categories of approach to describe the surface and its resistance network 

(Kalma et al., 2008; Overgaard et al., 2006):  

 The "single-pixel" methods for which the fluxes are calculated independently for each 

pixel. Among these models, we can distinguish three models (i) Methods considering 

the surface as a homogeneous mixture of soil and vegetation without distinction 

between soil evaporation and transpiration of vegetation (Monteith, 1965; Penman, 

1948): (ii) Models taking into account vegetation and bare soil as two separate sources 
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for energy transfers (Shuttleworth and Wallace, 1985); (iii) multi-source models, 

which are essentially extensions of the dual-source model. 

 Contextual models based on the contrasts between hot and cold pixelswithin a given 

image, these models link surface temperature and other satellite data (reflectance, 

vegetation indices) to evapotranspiration by semi-empirical laws. 

 

a. Single-source models 

Single source models treat the land surface as one homogeneous surface, so that they cannot 

distinguish between soil evaporation and planttranspiration. Their simplicity and yet 

physically sound basis has made the mono-source models widely used. Although, single-

source energy balance models may provide reliable estimates of turbulent heat fluxes. They 

often need field calibration and hence may be unable to be applied over a diverse range of 

surface conditions. Kustas et al. (1990) have shown that single source model is not suitable 

for ET estimation over partially vegetated surfaces. Single-source energy balance models 

include Surface Energy Balance Algorithm for Land (SEBAL; Bastiaanssen et al., 1998), 

Simplified Surface Energy Balance Index (S-SEBI; Roerink et al., 2000), Surface Energy 

Balance System (SEBS; Su, 2002), Mapping ET at High Resolution with Internalized 

Calibration (METRIC; Allen et al., 2007), and Operational Simplified Surface Energy 

Balance (SSEBop; Senay et al., 2013, 2001). 

b. Double-source models 

Over homogeneous areas, single source models can evaluate ET with relatively high 

accuracy. However, there is a strong need to develop a dual-source modeling to separate the 

heat and water exchange and interaction between soil and atmosphere and between vegetation 

and atmosphere, over partially vegetated areas. Considering contributions of energy fluxes 

from soil and vegetation components, dual source models have been proposed to more 

precisely depict water and heat transfers from sparse or heterogeneous canopies. Among the 

dual-source approaches, two typical configurations can be distinguished (Boulet, 1991; 

Lhomme and Chehbouni, 1999). One is the ‘layer’ (or coupled) approach in which each 

source of water and heat fluxes is superimposed and coupled. It has a more complicated 

model structure and performs better over homogeneous vegetated surfaces. The layer 

approach cannot distinguish the difference between evaporation from the soil under and 

between vegetation canopies, which may lead to significant errors when applied to surfaces 

with large heterogeneity in soil wetness. The other one is the patch (uncoupled) approach, 
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which represents the soil and the canopy as two springs side by side, where water and heat 

fluxes from each source interact independently with the above atmosphere. This latter 

approach may be more appropriate for more clumped vegetation, when vegetation is 

agglomerated and surrounded by large areas of bare soil (Blyth and Harding, 1995; William 

P. Kustas and Norman, 1997; Norman et al., 1995). It assumes that each component receives 

full radiation loading but neglects evaporation from under-canopy soil surfaces. Several 

models have been developed based on this approach, including the Two Source Energy 

Balance Model "TSEB" (Norman et al., 1995), Mapping Evapotranspiration with Internalized 

Calibration "METRIC" (Allen et al., 2007), and the Two-source Trapezoid Model for 

Evapotranspiration "TTME" (Long and Singh, 2012). 

c. Multi-source models 

For surfaces with multiple types of vegetation, neither the single nor the dual source model 

can capture energy fluxes from the surface due to the different canopy resistances and 

structures among different vegetation types. The energy transfers within these areas are often 

represented by multi-source models. The first models of this kind were designed for sparse 

canopies to take into accountseparately the vegetation and soil contributions (Shuttleworth 

and Wallace, 1985; Shuttleworth and Gurney, 1990). Afterward, more complex 

representations were proposed to take into account the heterogeneous canopies with diverse 

components (main vegetation, herbaceous substrate, bare soil) (Dolman, 1993; Huntingford et 

al., 1995). The multi-source models are generally represented by resistance networks, which 

combine surface and air resistances within the canopy. If vegetation or bare soil surfaces are 

large enough to allow different aerodynamic resistances to be defined for each patch, a patch 

(uncoupled) representation should be chosen. In the opposite case, if the different sources are 

close to each other and do not allow the definition of separate aerodynamic resistances, a 

layer approach should be preferred. To estimate ET, based on the layer model, Dolman. 

(1993) distinguished the vegetation layer into upper-canopy and understory layers and 

estimated energy fluxes from each layer respectively. In addition, (Williams and Flanagan, 

1996) separated the vegetation canopy into different horizontal, and the total flux from the 

entire canopy was calculated as the sum through the layers. More specifically, this model 

should also be considered as a multiple-source model, as vegetation layers at different heights 

receive different radiation laoding and have different canopy resistances. 

d. Contextual models 
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Unlike the models described above, where the energy balance equation is explicitly solved for 

each pixel independently of the others, other approaches are based on the use of the spatial 

variability captured by satellite imagery (reflectance, vegetation indices) to derive the ET at 

the local and regional scales (Gowda et al., 2008). These methods, known as contextual 

methods, are based on the simultaneous presence of hot and cold pixels due to the existence 

of wet and dry pixels on the same satellite image (Chirouze et al., 2014). Roughly, the 

intermediate water status of a given temperature pixel is scaled between the hottest points 

considered the driest and the coldest points considered the wettest. The physical borderlines 

of LST corresponding to fully dry and fully wet conditions for both soil and vegetation are 

determined in the space defined by LST and NDVI  (Jiang and Islam, 2001, 1999) and/or the 

space defined by LST and albedo (Merlin et al., 2013; Roerink et al., 2000). There are various 

models based on this method, such as SEBI (Surface Energy Balance Index, Menenti et al., 

1989), S-SEBI (Simpli_ed Surface Energy Balance Index, Roerink et al., 2000), SEB-1S 

(Monosource Surface Energy Balance model, Merlin et al., 2013). More details about the 

contextual approach can be found in Kalma et al. (2008) and Li et al. (2009), who offer a 

summary of various existing contextual models. 

I.4. Remote sensing of Evapotranspiration 

Regarding the data availability over extended areas, remote sensing is the only viable 

technique that can provide very relevant information to feed ET models. It has shown a great 

potential for characterizing land surfaces (land use, vegetation coverage, soil moisture, water 

stress, etc.). Amongst the variety of remotely sensed variables, there are three in particular 

that are pertinent to the estimation of ET: vegetation cover index, land surface temperature 

and surface soil moisture. The approaches based on each variable are described below. 

I.4.1. Models based on vegetation index 

Vegetation indices (VI) have been available since the launch of the first satellites used for 

vegetation monitoring in the early 1970s (Bannari et al., 1995; Bausch and Neale, 1990; 

Huete et al., 2011; Rouse et al., 1974). Nevertheless, the Normalized Difference Vegetation 

Index (NDVI) is the most common VI (Tucker, 1979). NDVI computed from red and near 

infrared bands of the satellite can be considered as a useful indicator to study vegetation 

characteristics and consequently ET rates (Nouri et al., 2012). Over the last two decades, 

several authors have confirmed the linear relationship between remote sensed vegetation 

indices and the vegetation photosynthesis by vegetation canopy (Glenn et al., 2008), between 
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ET and NDVI (Rossato et al., 2005) and between NDVI and basal crop coefficient for 

irrigated agricultural fields (Duchemin et al., 2006). Unlike complex and physically based 

models, FAO-56 is one of the simplest ET estimation approaches based on correlation of crop 

ET and NDVI (Allen et al., 2000; Er-Raki et al., 2010, 2007; Hunsaker et al., 2003). It 

requires fewer input data, and provides acceptable ET estimates (Allen et al., 2000; Er-Raki et 

al., 2007; Rafi et al., 2019). FAO-56 is based on the concepts of reference evapotranspiration 

ET0 and crop coefficientsKc, which is a direct representation of actual crop growth conditions 

in the field. It has been introduced to separate the climatic demand from the plant response 

(Allen et al., 1998). This approach is mostly used for annual crops where VI dynamic defines 

well the phenological stages (Glenn et al., 2011; Senay et al., 2011). However, in complex 

areas ( trees, herbaceous, degraded shrubs, etc…) the model must be adjusted with additional 

meteorological data (Maselli et al., 2014) as the Kc varies in space and time for a number of 

reasons including the land use pattern, irrigation management, natural variability of soil 

properties, vegetation amount and atmospheric boundary conditions (temperature, wind 

notably). No common relationship was found between ET and VI for different sites and 

climatic conditions. 

I.4.2. Models based on Land Surface Temperature 

The spatial modeling has become a dominant means to estimate ET fluxes over regional and 

continental areas (Anderson et al., 2007; Fisher et al., 2017). One of the most widely used ET 

spatial models is the temperature-based approach as the land surface temperature (LST) is 

potentially a signature of both ET and the soil water availability via the surface energy 

balance. In recent decade, many efforts have been devoted to extract the LST from remote 

sensing data. Thermal sensors, on board satellites and aircrafts in the spectral range of the 

thermal infrared (between 8 and 14 μm) offer the possibility of obtaining spatially distributed 

LST data. ASTER (Advanced Space borne Thermal Emission), Landsat-8 and MODIS 

(Moderate-Resolution Imaging Spectroradiometer) provide images ranging from 90 m to 100 

m and 1 km for applications in the Earth's surface processes (Zhou et al., 2014). Despite their 

low resolution, MODIS data are the most widely used because they cover the entire surface of 

the Earth every 1–2 days, whereas the revisit period for ASTER and Landsat is 16 days. 

A variety of temperature-driven models with empirical and stronger physical basis have been 

described above (Section I.3). Among well-known temperature-driven energy flux models, 

the TSEB model proposed by Norman et al. (1995) has been showing high robustness for a 
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wide range of landscapes (Colaizzi et al., 2012). This model has two key input variables, 

which can be derived from remote sensing data. The first one is the LST as it is used to 

estimate the sensible heat flux. The second is vegetation cover fraction (fc) as it controls the 

partitioning of the energy between soil and vegetation. The TSEB model adopts an iterative 

procedure, in which an initial estimate of the plant transpiration is given by the Priestly-

Taylor (PT) formulation (Priestley et al., 1972). This assumption is relatively simple, requires 

few input data and has proven to be remarkably accurate and robust for estimating potential 

ET in a wide range of conditions (Fisher et al., 2008). Recently, Boulet et al. (2015) have 

developed the Soil-Plant-Atmosphere and Remote Sensing Evapotranspiration (SPARSE) 

model similar to the basic assumption of TSEB model. Nevertheless, SPARSE is solved in 

two modes: the prescribed and the retrieval mode to constrain the output fluxes. The former 

first generates equilibrium LST from the evaporationand the transpiration efficiencies 

estimates by assuming that their values are equal to 1. Then, LST is implemented in the 

SPARSE retrieval mode to circumscribe the output fluxes by both limiting cases (namely the 

fully stressed and potential conditions). In spite of the good retrieval performances of ET by 

this model, significant uncertainties are observed during the quasi-senescent vegetation period 

(Boulet et al., 2015). 

I.4.3. Models based on Surface soil moisture 

Over the past 50 years, several studies have documented that soil moisture (SM) status may 

be derived indirectly from thermal infrared data. Nemani et al. (1993) found a strong negative 

relationship between LST and NDVI across biomes with a distinct change in the slope 

between dry and wet days. In studies dedicated to SM the estimation Carlson et al. (1995) and 

Gillies and Carlson, (1995) have proved the previous idea, they developed a universal 

triangular method to explore relationships between SM, LST and NDVI. However, the 

atmospheric effects, the cloud cover as well as the effect of the vegetation have limited the 

development of these approaches. 

While many bands in the electromagnetic spectrum are sensitive to changes in SM, the 

microwave domain is recognized as the most promising tool due to its independence to 

atmospheric conditions and is strongly related to water content in the first centimeters of soil 

(Schmugge et al., 2002). Microwave sensors can be classified as either active (radars) or 

passive (radiometers). The radars have proved to be the most useful platforms for monitoring 

surface moisture at high spatial resolution (Balenzano et al., 2011). However, the impact of 

vegetation cover, its structure and soil roughness on the backscatter signal remains extremely 
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difficult to model at high spatial resolution over large areas (Satalino et al., 2014). Therefore, 

global SM products are generally derived from the radiometers such as the C-band Advanced 

Microwave Scanning Radiometer (AMSR-E) (Njoku et al., 2003) on the Earth Observing 

System (EOS) Aqua satellite launched on May 2002. The AMSR-E instrument provides the 

SM at approximately 60 km resolution (4-8 GHz). The first L-band mission dedicated to SM 

monitoring is the Soil Moisture and Ocean Salinity (SMOS) mission (Kerr et al., 2010) 

launched in November 2009 that provides global maps of SM every three days at 40 km 

resolution (1.4 GHz). One difficulty is that microwave radiometry requires a large antenna to 

detect the signals emitted by the surface with sufficient sensitivity, which limits the resolution 

of the data to a few tens of km. The use of such coarse spatial resolution data is generally 

unsuitable or even incompatible with many hydrological and agricultural applications. To 

overcome the limitations linked to radars (higher spatial resolution and lower accuracy) and 

radiometers (higher accuracy and lower spatial resolution), the Soil Moisture Active and 

Passive (SMAP) mission (Entekhabi et al., 2010) was expected to provide SM at a spatial 

resolution of 9 km at 3 days repeat intervals, by combining radar and radiometer 

measurements. However, the radar on broad SMAP stopped transmitting on July 2015 due to 

anomaly that involved the radar’s high power amplifier, and since then SMAP has continued 

to work with data from radiometer only. 

The brightness temperature from the radiometers and the backscattering coefficient from 

radars have a great potential for the SM estimation. Therefore, combining these two sensor 

observations can provide complementary information included in the land surface microwave 

signature. Several studies have attempted to combine passive and active microwave remote 

sensing observations for the SM estimation (Njoku et al., 2003; Zhong et al., 2012). 

Neverthless, satellite observations are provided at different overpass times which can be lead 

to some differences on land surface parameters especially SM (Li et al., 2011). Other studies 

seek to estimate SM without the complementary information provided by active observations. 

One such approach was to employ optical/thermal remote sensing data that provide finer 

resolution information to downscale passive microwave SM estimations (Chauhan et al., 

2003; Merlin et al., 2010; Piles et al., 2011). The relationship between SM, LST and 

vegetation coverhas been commonly represented as a triangle (Carlson et al., 1994) or 

trapezoidal pattern relationship (Moran et al., 1994). For instance, Piles et al. (2011) applied a 

new polynomial-fitting method based on the results of  Chauhan et al. (2003), by linking 

coarse resolution SM from SMOS and MODIS products to provide SM data at 10km and 1km 

resolution. Another potential approach to estimate SM through the semi-empirical 

https://www.sciencedirect.com/topics/computer-science/remote-sensing-data
https://www.sciencedirect.com/topics/computer-science/fine-resolution
https://www.sciencedirect.com/topics/computer-science/fine-resolution
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relationship between SM and soil evaporative efficiency (SEE, defined as a ratio of actual to 

potential soil evaporation) has been applied by several authors (Fang and Lakshmi, 2014; 

Merlin et al., 2012b, 2008). These authors used finer resolution MODIS VI, LST and 

surface albedo to compute SEE based on the triangle approach to generate a disaggregated 

SMOS SM product up to 1 km resolution. Merlin et al. (2012a) improved the evaporation-

based method developed in Merlin et al. (2008). DisPATCh (DISaggregation based on 

Physical And Theoretical scale CHange) includes the effect of vegetation water stress (Moran 

et al., 1994) within a trapezoid-based approach by using a 1st order Taylor series expansion of 

a SEE model. Merlin et al. (2013) implemented a simple correction for elevation effects. 

Multiple recent studies have used the SEE-based algorithm for validation of downscaled SM 

product from coarse-scale satellite ( AMSR-E, SMOS and SMAP) (Chan et al., 2016; 

Colliander et al., 2017; Djamai et al., 2015; Malbéteau et al., 2016; Molero et al., 2016). 

Alternatively to the use of LST as a proxy for ET, numerous studies have stressed that the SM 

plays a critical role in the partitioning of available energy into latent and sensible heat fluxes 

and is the prominent controlling factor of actual ET (Boulet et al., 2015; Gokmen et al., 2012; 

Kustas et al., 1999; Kustas et al., 1998; Li et al., 2006). Several authors have revised the well-

known LST-based TSEB model and replaced the LST with microwave-derived SM to 

estimate daily ET (Bindlish et al., 2001; Kustas et al., 1998; Kustas et al., 1999; Li et al., 

2006). Bindlish et al. (2001) found that the impact of SM on surface fluxes is strongly related 

to the vegetation cover. The impact is high for low fraction cover, and relatively weak for 

high cover fraction. Moreover, the soil evaporation is constrained by the SM through soil-

texture dependent coefficients reported in Sellers et al. (1992). In the sameway, Li et al. 

(2006) indicated that the model performance is sensitive to these two coefficients, and thus 

they proposed to average the output of LST-based TSEB and SM-based TSEB models, in 

order to provide more consistent results over a wide range of conditions. More recently, Yao 

et al. (2017) evaluated three satellite-based PT algorithms (ATI-PT, VPD-PT and SM-PT for 

apparent thermal inertia-, vapour pressure deficit- and SM-based formulations of the PT 

coefficients, respectively) to estimate terrestrial water flux in different biomes. Their finding 

showed that the SM-PT algorithm had relatively better results compared to those of ATI-PT 

and VPD-PT. However, all three models underestimated ET in irrigated crops, reflecting that 

these algorithms may not capture well the soil evaporation, notably through its (site-specific) 

parameterization with SM. In the same vein, Purdy et al. (2018)  updated the PT Jet 

Propulsion Laboratory (PT-JPL) and incorporated the SM data derived from SMAP (Soil 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/modis
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hubble-space-telescope
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/albedo
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/amsr-e
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Moisture Active and Passive, Entekhabi et al., 2010) to constrain both evaporation and 

transpiration, separately. The model showed high improvements compared to the original PT-

JPL, especially in dry conditions. However, the model relied on evaporation and transpiration 

reduction parameters, whose values were set a priori. 

I.5. Objectives 

Several studies agree with the view that combining both LST and SM information at a time 

would enhance the robustness and accuracy of ET estimates in various biomes and climates 

(Gokmen et al., 2012; Kustas et al., 2003, 1998; Li et al., 2006). Nevertheless, few studies 

have simultaneously combined both observations in a unique energy balance model. One 

difficulty lies in developing a consistent representation of the soil evaporation (as constrained 

by SM, Chanzy and Bruckler, 1993), the total ET (as constrained by LST, Norman et al., 

1995) and the plant transpiration (as indirectly constrained by both LST and SM, Ait Hssaine 

et al., 2018a). 

In this context, the objective of this thesis is to improve the estimation of ET by combining 

multi-resolution optical / microwave remote sensing and surface-atmosphere exchange 

modeling. The proposed strategy consists ini) disaggregating the microwave SM data ii) 

estimating soil evaporation, and iii) partitioning the ET between soil evaporation and plant 

transpiration. To realise these objectives: 

1-We rely on the DisPATCh remote sensing algorithm (Merlin et al., 2012a) that combines 

the coarse scale microwave-retrieved SM with high-resolution optical/ thermal data within a 

downscaling relationship to produce SM at 1km resolution. The method is based on the 

spatial relationship between microwave SM data and the soil evaporative efficiency (SEE) 

derived from optical data (including thermal) at higher spatial resolution. DisPATCh converts 

the high-resolution optical-derived SEE fields into high- resolution SM fields given a semi-

empirical SEE model and a first-order Taylor series expansion around the SMOS observation. 

As part of this thesis, the C4DIS processor has been applied to the MODIS tile in Morocco to 

generate the moisture product over the 2014-2018 period. The DisPATCh SM are then 

evaluated by the in-situ measurements of intensive sites of the Tensift Observatory 

(http://trema.ucam.ac.ma).  

2- DisPATCh SM data are used as input to a soil evaporation model. Several methods for 

estimating evaporation from SM observations at the surface have been proposed by Cahill et 

al. (1999), Dekić et al. (1995), Lee and Pielke, (1992), and Mahfouf (1991). Although many 

http://trema.ucam.ac.ma/
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formulations have been proposed since the 1960s, there is still no consensus on a better way 

of modeling soil evaporation over large areas (Desborough et al., 1996; Sakaguchi and Zeng, 

2009). Nevertheless, the bibliographic review of these models allows to draw the following 

conclusions: 1) the existing formulations differ in four aspects: the low and high limit values 

of SM, the non-linearity of the relation between evaporation and SM, need of input data other 

than SM and depth of SM measurements (Merlin et al., 2011), 2) Simple empirical 

expressions may be more accurate and robust than other physically based models (Dekić et 

al., 1995; Mihailović et al., 1995), and 3) none of these formulations are evaluated under 

different types of soil and variable atmospheric conditions. Based on these findings, a new 

model of evaporation developed by Merlin et al. (2016) have been used to estimate soil 

evaporation.  

3- A new energy balance model for evaporation /transpiration partitioning is developed to 

simultaneously integrate remote sensing LST and SM data. To build this model from a state-

of-the-art ET model, the following characteristics are taken into account: i) modeling based 

on LST data, ii) using dual source representation, allowing an explicit separation of soil 

evaporation and plant transpiration, and iii) parameterizing the surface fluxes with a network 

of resistances, more directly related to SM than models with evaporative efficiency. The 

TSEB model (Norman et al., 1995) is selected because it satisfices these three criteria. The 

transpiration in TSEB model is estimated based on Priestley Taylor (PT) approach. Indeed, 

the PT assumption that empirically relates ET to net radiation (Priestley and Taylor, 1972) has 

shown a growing interest (Anderson et al., 2007; Kustas and Norman, 1999; Norman et al., 

1995). PT coefficient noted αPT directly relates latent heat flux to the energy available at the 

surface. By neglecting the aerodynamic resistance term included in the full Penman-Monteith 

equation (Monteith, 1965), the PT formulation is relatively simple, requires less input data 

and has proven to be remarkably accurate and robust for estimating potential ET in a wide 

range of conditions  (Fisher et al., 2008). It is therefore well suited for operational (McAneney 

and Itier, 1996) and large scale (Anderson et al., 2008) applications. In addition, recent 

studies based on in-situ global data sets have reported a good robustness of the PT 

modelingapproach over a variety of biomes (Ershadi et al., 2014). Nevertheless, 

severalstudies (Ait Hssaine et al., 2018a; Fisher et al., 2008; Jin et al., 2011; Yang et al., 

2015) have stressed that the PT coefficient varies under different types of surface and 

according to various atmospheric conditions in the range 0.5-2.0 with an average value 

estimated around 1.3 (above references). Other studies (Gonzalez-dugo et al., 2009; Long and 
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Singh, 2012 and Morillas et al., 2014) reported that the PT approach may overestimate the 

canopy ET, especially for low soil wetness, and/or sparse vegetation cover, because it does 

not include a reasonable reduction of the initial canopy ET under stress conditions. For this 

purpose, the modification of the PT-based TSEB formalism (Kustas et al., 1999; Norman et 

al., 1995) was investigated by integrating LST and SM data simultaneously (the modified 

version is named TSEB-SM). An innovative calibration procedure was also implemented to 

retrieve the main parameters of soil evaporation (soil resistance) and plant transpiration (αPT). 

The following text of this manuscript is structured in seven chapters: 

 Chapter 2 presents a detailed description of the study sites, as well as the acquisition 

devices of field /remote sensing data necessary to extract the surface biophysical 

characteristics and climatic variables. 

 Chapter 3 describes the used modeling approaches. 

 Chapter 4 presents the validation results of TSEB model over sparse and 

heterogeneous vegetation in Sahel region (Niger). 

 Chapter 5 discusses the improviement made on TSEB model by integrating SM data 

(TSEB-SM): a feasibility study using in-situ data over 3 sites in Morocco was 

investigated. 

  Chapter 6: presents an application of TSEB-SM in real life using readily available 

satellite thermal and microwave data for estimationg ET at 1 km resolution. 

 Chapter 7 offers general conclusions and future perspectives
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II.1. Introduction 

This chapter describes the main equations of both the original version of TSEB model 

(Norman et al., 1995) and those of the new TSEB-SM model (Ait Hssaine et al., 2018b) are 

fully described. Note that the main difference between the two models concerns the treatment 

of soil evaporation, which is either estimated as a residual term in TSEB and explicitly 

represented through a soil resistance term in TSEB-SM. After that, the equations for 

calculating SM from DisPTACh algorithm and turbulent fluxes at large scale from flux 

aggregationmodelare briefly reproduced. 

II.2. TSEB Model Description and Implementation 

The TSEB model was presented and described by Norman et al., (Norman et al., 1995). It 

solves two separate energy balances for the soil and vegetation and estimates evaporation as 

residual terms of the energy balance. This model adopts the Priestley-Taylor (PT) 

parameterization and an iteration procedure estimate the energy partitioning. Two main input 

variables of TSEB model are: i) the first is land surface temperature (LST), used for 

estimating the sensible heat flux and ii) the vegetation cover fraction (fc), which controls 

partitioning of the surface energy between vegetation and underlying soil. These key variables 

(LST and fc) are usually derived from remote sensing sensors. 

In TSEB, the directional radiometric temperature (Trad(θ)) is divided into its soil and 

vegetation cover fractions as seen by the radiometer, and is expressed as follows: 

Trad(θ) = [f(θ) ∗ Tveg
4 + (1 − f(θ)) ∗ Tsoil

4 ]1/4               (II.1) 

Where Tveg and Tsoilare the vegetation and soil temperatures (K). The fraction of the field of 

view of the infrared radiometer occupied by canopy, f(θ), can be calculated by combining the 

view zenith angle θand the vegetation cover fraction fc considering vegetation with a 

spherical distribution of leaf angles (Kustas and Norman, 1997) : 

f(θ) = 1 − exp (
−0.5∗LAI

cos (θ)
)                  (II.2) 

And fc is simply f(θ = 0), namely: 

fc = 1 − exp (−0.5 ∗ LAI)                  (II.3) 

The LAI estimates were then used to derive the canopy height by the empirical equation: 
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hc = (
LAI−LAImin

LAImax−LAImin
)                              (II.4) 

Net radiation, Rn, is the sum of incoming and outgoing short and long wave radiation fluxes: 

Rn = (1 − α)SW + εsLW − (εvegfcσTveg
4 + εsoil(1 − fc)σTsol

4 ))             (II.5) 

Where α is the surface albedo, SW is the incoming solar radiation and LW is the incoming 

long wave radiation (atmospheric radiation), εs, εveg and εsoil are the surface, soil and leaf 

emissivity, respectively.In this study, the soil emissivity and leaf emissivity were taken as 

constant values from the literature (0.95 and 0.97, respectively).σ is the Stefan-Boltzman 

constant (=5.6698 10-8 W.m-2.K-4). 

The double source energy balance corresponds to the simple source balance shared between 

the soil and vegetation components:  

Rn,soil = Hsoil + LEsoil + G                  (II.6) 

Rn,veg = Hveg + LEveg                  (II.7) 

With Rn,soil being the soil net radiation, Hsoil the soil sensible heat flux, LEsoil the soil latent 

heat flux,  Rn,veg  the vegetation net radiation, Hveg the vegetation sensible heat flux and 

LEveg the vegetation latent heat flux. 

The surface sensible heat flux (H) is partitioned between the vegetated canopy and soil using 

the following relations: 

Hsoil = ρcp
Tsoil−Ta

rs+rah
                   (II.8) 

Hveg = ρcp
Tveg−Ta

rah
                   (II.9) 

where ρ (kg.m-3) is the density of air, cp (W.s-1. kg-1K-1) the specific heat capacity of air,Ta 

the air temperature,Tveg and Tsoil respectively the canopy and soil temperatures, rah the 

aerodynamic resistance to heat transfer across the canopy–surface layer interface, and rs the 

resistance to heat flux in the boundary layer immediately above the soil surface. 

The rah is calculated from the adiabatically corrected log temperature profile equation 

(Brutsaert, 1982) expressed as: 

rah =
(

ln (zu−d)

zm
−Ψm)(

ln (zh−d)

zm
−Ψh)

vkar
2 ∗Ua

               (II.10) 
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wherezu and zTare the height of wind speed measurement Ua and air temperature 

measurement Ta, respectively.dis the displacement of reference plan (d = 2/3*hc), zm is the 

roughness length for momentum (zm = hc/8) , Vkar is the von Karman constant taken to be 

0.4, and Ѱm and ѰH are the adiabatic correction factors for momentum and heat, respectively 

(Brutsaert, 1982). 

Although rs is rather complex as it depends on many factors, Sauer et al.(1995) provided a 

reasonable approximation:  

rs =
1

a+b∗Us
                  (II.11) 

where a=0.004 m.s-1, b=0.012, and Us is the wind speed at a height above the ground where 

the effect of soil roughness is minimal (typically between 0.05 and 0.2 m). Using the 

empirical relations from Campbell and Norman(1998): 

Us = Uhexp [asc (
z

hc
− 1)]                (II.12) 

With asc being the leaf size expressed as:  

asc = 0.28LAI2/3hc
1/3

s−1/3                (II.13) 

And Uh the wind speed at the top of vegetation canopy given by: 

Uh = [
ln(

hc−d

zm
)

ln(
zu−d

zm
)−Ѱm

]                 (II.14) 

The surface soil heat flux is estimated as a fraction of Rn,soil: 

G = cGRn,soil                  (II.15) 

where cG~0.35 (Choudhury et al., 1987).  

The latent heat flux from the vegetated canopy is derived from the PT formula:  

LEveg = αPTfg
∆

∆+γ
Rn,veg                (II.16) 

where γ is the psychometric constant (≈67 Pa K−1), fg the fraction of leaf area index (LAI) that 

is green, Δ the slope of the saturation vapor pressure versus temperature curve, and αPT~1.26 

for TSEB model (Priestley and Taylor, 1972). 
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II.2.1. Algorithm for solving the energy balance and the equation system 

The algorithmfor solving the energy balance and the equation systemis presented in the 

schematic diagramin figure II.1. 

In order to solve the system that includes more unknowns than equations, an iterative process 

is used that closes on the Obukhov length (LMO). The algorithm starts by calculating the 

wind and turbulence variables (LMO,U∗,Us, and rahexpressed by the above equations). 

The available energy and heat fluxes are then determined by calculating the net radiation (Rn) 

and its partition between the vegetation (Rn,veg) and the soil (Rn,soil), as well as the 

conduction flux in the soil (G). The plant transpiration (LEveg) is estimated by the PT 

equation, which allows the residual calculation of the vegetation sensitive heat flux (Hveg) as 

well as the vegetation temperature (Tveg). The soil temperature (Tsoil) is estimated by 

radiometric temperature and canopy fraction, and is then used to estimate thesoil heat flux 

(Hsoil). An energy balance on the soil is used to calculate soil evaporation (LEsoil) 

The estimated components of latent heat flux (LEveg and LEsoil) are assumed to be positive, 

meaning that there is no condensation. If LEsoil is negative, then its value is set to zero and a 

new value of LEveg is calculated as a residual term of the vegetation energy balance. If LEveg 

is negative, then transpiration is reduced iteratively by decreasing the value of the PT 

coefficient until the LEveg value becomes positive or zero. 

The heat fluxes then allow the recalculation of LMO. The iterative process is repeated until 

stability of LMO between two iterations with a numerical error (approximately 10-3). 
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Figure II. 1. Schematic diagram of TSEB model 

II.2.2. Calibration procedure 

The PT coefficient (PT) is one of the most sensitive parameters of TSEB, because it drives 

the vegetation latent heat flux. Most studies conducted with TSEB have used its generic value 

around 1.3 (Anderson et al., 2007; Bindlish et al., 2001; Colaizzi et al., 2014; Kustas and 

Norman, 1999; Norman et al., 1995). Other studies have identified different values of αPT 

depending on the vegetation fraction cover and particular forcing conditions. Notably, the PT 

coefficient was found to be smaller for dry surfaces and higher for humid conditions 

(Eichinger et al., 1996). Nevertheless, the relative stability of αPT in many conditions has led 

to set αPT constant. Consistent with this assumption, αPTis set to 1.26 in TSEB (Priestley and 

Taylor, 1972). Moreover, as an auxiliary parameter in Equation (2.16), fg also needs to be 

calibrated. Kustas and Norman (1997) assumed that fg was generally equal to 1, by 

considering that vegetation keeps being fully green during the growing stage, which 

represents most of the agricultural season. Note that green vegetation indices such as NDVI 
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(Normalized Difference Vegetation Index) can provide a strong constraint on fg. However, it 

may be difficult to separate between senescent vegetation and soil from green vegetation 

indices only. In this context, Merlin et al. (2014) combined NDVI and surface albedo to 

estimate the fractions of both senescent and green vegetation. For the purpose of the 

comparison between TSEB and TSEB-SM using in-situ data sets, and consistent with most 

studies using TSEB, herein fg is set to 1 all along the agricultural season.  

II.3. TSEB-SM Model Description and Implementation 

The TSEB formalism is modified to integrate SM as an additional constraint on modeled ET. 

In practice, the energy balance for vegetation and soil in TSEB-SM is the same as in TSEB, 

but the soil evaporation is now explicitly represented as a function of SM via a soil resistance 

term. Note that Song et al. (2016) have recently introduced SM in TSEB using a formulation 

of soil evaporative efficiency. While there is partial equivalence between both formulations, 

the soil resistance formulation is preferred herein as its parameters can be calibrated either 

from soil texture information (Merlin et al., 2016) or from a combination of LST and SM data 

under bare soil conditions (Merlin et al., 2018).  

The soil latent heat flux is estimated as:  

LEsoil =
ρcp

γ

(es−ea)

rah+rs+rss
                 (II.17) 

Where es is the saturated vapor pressure at the soil surface, ea is the air vapor pressure, and 

rss is the resistance to vapor diffusion in the soil. rss is expressed as follows (Silans, 1986): 

rss = exp (arss − brss ∗
SM

SMsat
)               (II.18) 

with SM being the soil moisture in the 0-5 cm soil layer, arss and brss are two empirical 

parameters and SMsat the soil moisture at saturation expressed as: 

SMsat = 0.1 ∗ (−108 ∗ fsand + 49.305)              (II.19) 

withfsand is the percentage of sand in the soil.  

II.3.1. Algorithm for solving the energy balance and the equation system 

The flowchart of Figure II.2 summarizes the different steps followed to resolve the energy 

balance in TSEB-SM model. The algorithm is based on an iterative procedure that loops on 

the Monin-Obukhov length (LMO), which is a scale parameter that characterizes the degree 
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of instability or stability of the boundary layer. LMO is approximately the height at which 

aerodynamic shear, or mechanical energy, is equal to the buoyancy energy. In practice, LMO 

is used as correction factor to determine the aerodynamic resistance rah. First, the algorithm 

starts by initializing the soil and vegetation temperatures, as well as sensible and latent heat 

fluxes. Then it calculates the available energy for the soil-vegetation-atmosphere interface by 

estimating the surface net radiation (Rn) and its partition between the vegetation and the soil, 

as well as the soil heat flux. The way soil and vegetation temperatures are estimated is in fact 

a specificity of the new model, which is based on the explicit resolution of the energy balance 

for soil and vegetation respectively. Component temperatures are obtained by minimizing cost 

functions Fsoil and Fveg: 

Fsoil,k = (Rn,soil,k − Hsoil,k − LEsoil,k − Gk)
2
             (II.20) 

with k being a loop index. By using the Newton method formula: 

Fveg,k = (Rn,veg,k − Hveg,k − LEveg,k)
2
              (II.21) 

Tsoil,k+1 = Tsoil,k −
Fsoil,k

dFsoil,k
                (II.22) 

Tveg,k+1 = Tveg,k −
Fveg,k

dFveg,k
                (II.23) 

wheredFsoil and dFveg are the first derivative of the cost function for soil and vegetation, 

respectively.  

At the end of each iteration, the simulated LST (noted Tsurf,sim in Figure II.2) and heat fluxes 

are used to recalculate the LMO iteratively. The iterative procedure is repeated until LMO 

(and H) converges, meaning that the difference between two successive values is smaller than 

a given threshold (numerical uncertainty). 



Chapter II. Modeling approaches: Description and implimentation 

32 
 

 

Figure II. 2. Schematic diagram of TSEB-SM model 

II.3.2. Calibration procedure  

The calibration procedure of TSEB-SM is presented in the schematic diagram of Figure II.3. 

It is done in two steps: the first aims to provide first guess estimates of arss and brss (named 

arss,FG and brss,FG) as input to the second step that aims to provide the final values of (arss, 

brss) and αPT at the seasonal and daily time scales, respectively.  

Given that soil evaporation and plant transpiration may compensate each other to result in 

similar total ET values, it is important to ensure that the calibration procedure is well defined, 

meaning that a unique triplet (arss, brss, αPT) is systematically obtained at the desired time 

scale. In order to do so, the calibration data set is divided into two regions with specific 
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behaviors: i) data with fc ≤ fc,thres for which ET is mainly controlled by soil evaporation and 

ii) data with fc > fc,thres(fc,thres is taken =0.5) for which ET is dominated by plant 

transpiration. In both data sets, soil evaporation and plant transpiration may occur 

simultaneously but the LST over the mixed surface is expected to be more sensitive to soil 

evaporation and plant transpiration for fc ≤ 0.5 and fc > 0.5, respectively (Merlin et al., 

2012a; Moran et al., 1994).  

The first calibration step initializes αPT =1.26 and inverts rss at each time (30-min) step for 

data with fc ≤ 0.5. The rss is first adjusted to minimize the following cost function: 

Finst = (Tsurf,sim − Tsurf,mes)
2
               (II.24) 

using the Newton method:  

rss,k+1 = rss,k −
Finst,k

dFinst,k
                (II.25) 

Where Tsurf,sim and Tsurf,mes are the LST simulated by TSEB-SM model and observed over 

the crop field at the 30-min time step, respectively. The inverted rss is then correlated to the 

observed SM to estimate arss and brss. In practice, arss and –brss/SMsat are the intercept and 

the slope of the linear regression of the ln(rss) versus SM relationship (see Equation 2.18).  

As the retrieved pair (arss, brss) depends on the αPT value, an iterative loop is run on arss, brss 

and αPT until convergence of arss and brss is achieved.  At each iteration, the inverted  arss 

and brsss are used as input to invert αPT for data with fc > 0.5. The PT Taylor coefficient is 

adjusted, at the daily time scale, to minimize the following cost function: 

Fdaily = ∑ (Tsurf,sim,i − Tsurf,mes,i)
2N

i=1               (II.26) 

with N being the number of 30min LST measurements available for a given day. To keep a 

(time) scale consistency between all three retrieved parameters in calibration step 1, the daily 

inverted αPT is averaged at the seasonal time scale before being used as input to the following 

(next iteration) inversion of arss and brss. Note that a sensitivity study was undertaken (results 

not shown) to verify that initialization values for arss, brss and αPT do not impact on 

simulation results and retrieved parameters. The second calibration step refines the estimation 

of αPT at the daily scale. The first guess arss,FGand brss,FGobtained in step 1 are first used as 

input to the retrieval procedure of daily αPT for data with fc > 0.5 (minimization of Fdaily). 

Next, the daily retrieved αPTis smoothed to remove outliers as well as to reduce random 
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uncertainties in daily retrieved αPT. Then, the smoothed αPT is normalized between its 

minimum and maximum values reached during the agricultural season. Especially, the 

minimum value of smoothed αPT is forced to 0 at harvest so that transpiration is zero at the 

end of the agricultural season: 

αPT,cal,daily =
αPT,dailysmooth

−min(αPT,dailysmooth
)

max(αPT,dailysmooth
)−min(αPT,dailysmooth

)
∗ max(αPT,dailysmooth

)         (II.27) 

Note that the minimum value of smoothed αPT could be different from zero due to errors in 

the a priori parameterization of resistances (notably rss) in TSEB-SM model. Finally rss is 

calibrated a last time to ensure consistency between daily calibrated αPT,cal,dailyand final 

arss,caland brss,cal (see Figure II.3). 



Chapter II. Modeling approaches: Description and implimentation 

35 
 

 

Figure II. 3. Schematic diagram of the two-step calibration strategy of TSEB-SM model. 

II.4. Aggregation scheme  

The spatial aggregation is a method to bridge the model parameters 

controlling surface exchange at a patch scale with the areal average value of equivalent model 

parameters applicable at a larger scale in order to estimate grid scale surface fluxes using the 

same equations that govern the patch scale behaviour (Chehbouni et al., 2000). In general, 

aggregation can be applied either to the input forcing of the evapotranspiration models, or to 

the fluxes derived from fine resolution input fields (Ershadi et al., 2013). Here the first 

assumption is used to link between local and effective values of land surface parameters 

(Chehbouni et al., 2000, 1995; Ezzahar et al., 2009b; Lhomme et al., 1994). The chosen 

averaging approach is directly related to the considered variable. For albedo (α) and 
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displacement height𝑑, a simple arithmetic average is used: 

〈α〉 = ∑ fiαii                   (II.28) 

〈d〉 = ∑ fidii                   (II.29) 

From the Stefan-Boltzmann law, the aggregated value of the land surface temperature LST 

can be obtained from: 

〈LST〉 = [
∑ fiεiLSTi

4
i

〈ε〉
]

0.25

                (II.30) 

Where fi is the fraction of the surface covered by the patch i (with ∑ fi = 1i ). Finally, the 

aggregation of the roughness length is obtained from a logarithmic average as follows: 

ln〈z0〉 = ∑ filn(z0)i                  (II.31) 

Because of the absence of a soil occupation map for the Wankama study site, the aggregation 

schemeusing in-situ measurementsis done by weighted average of the estimated variables 

from the data of the threeEC stations. Following (Ezzahar et al., 2009b), the local values 

obtained by each EC system are assumed to be representative for the sites where those 

systems are installed along the basin. Sites millet, fallow, and degraded shrubs represented 

about 54%, 26%, and 20% of the Wankama catchment. 

Three different aggregation methods are implemented to calculate the inputs of TSEB model 

from the MODIS products. They differ in the way the pixel scale inputs are used to derive the 

grid scale ones. The first scheme consists in averaging the MODIS products at their 

nominative resolution scale on a geographic windows of 10*8pixels around the scintillometer 

transect (i.e. independently of the scintillometer footprint; cf. figure II.4). The second scheme 

averages the MODIS products over the scintillometertransect without taking into account the 

representativity of the corresponding pixels with regards to the footprint (i.e. each pixel 

belonging to the footprint have the same contribution to the aggregated value). Finally, a 

weighted average aggregation scheme is implemented. It consists in weighting the MODIS 

pixel according to their proportion occupied in the footprint. The aggregated values of 

MODIS products are then used as inputs of the TSEB model at Terra-MODIS and Aqua-

MODISoverpass time. 
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Figure II. 4. Footprint of the LAS, calculated using the footprint model of Horst and Weil, superposed 

with a LST/MODIS image on DOY 273. 

II.5. Disaggregation model of SM data 

The DisPATCh remote sensing algorithm combines the coarse scale microwave-retrieved SM 

with high-resolution optical/thermal data within a downscaling relationship to produce SM at 

higher spatial resolution. A detailed description of the algorithm can be found in Merlin et al. 

(2012) and Malbéteau et al. (2016). 

Briefly, the soil evaporation from the 0–5 cm soil layer and the vegetation transpiration from 

the root-zone soil layer are first decoupled by separating LST into its soil and vegetation 

components (Merlin et al., 2012). The optical-derived soil temperature is then used to 

estimate the soil evaporative efficiency (SEE, ratio of actual to potential soil evaporation), 

which is known to be relatively constant during the day on clear sky conditions. 

Finally, DisPATCh converts the high-resolution optical-derived SEE fields into high- 

resolution SM fields given a semi-empirical SEE model and a first-order Taylor series 

expansion around the SMOS observation.  

The downscaling relationship is expressed as: 
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SMHR = SMLR +
∂SMmod

∂SEE
SEELR(SEEHR − SEELR)             (II.32) 

WhereSMHR represents the 1 km disaggregated SM, SMLR the SMOS observation,
∂SMmod

∂SEE
 the 

partial derivative of SM relative to SEE at LR, SEEHR the MODIS-derived SEE, and SEEHRits 

average within the SMOS pixel. 

The HR SEE is estimated as: 

SEEHR =
Ts,max−Ts,HR

Ts,max−Ts,min
                 (II.33) 

 

Ts,max and Ts,min are end-members temperatures estimated from the polygons obtained by 

plotting MODIS surface temperature against MODIS NDVI  datasets as in Merlin et al. 

(2012a). 

Soil temperature is based on a linear decomposition of the surface temperature into its soil 

and vegetation components. Itis expressed as: 

 

Ts,HR =
TMODIS−fc,HRTv,HR

1−fc,HR
                (II.34) 

WithTMODISbeing the 1 km resolution MODIS land surface temperature, fc the MODIS-

derived vegetation cover fraction, and Tv,HR the vegetation temperature. In this study, 

vegetation temperature is estimated using the approach proposed by Carlson et al. (1994). The 

vegetation cover fractionis written as: 

 

fc,HR =
NDVIMODIS−NDVIs

NDVIv−NDVIs
                (II.35) 

 

withNDVIMODIS being the 1 km resolution MODIS NDVI, NDVIs the NDVI corresponding to 

bare soil, andNDVIv the NDVI corresponding to full-cover vegetation. Minimum and 

maximum NDVI values are set to 0.15 and 0.90, respectively. 

 

In our application, we applied DisPATCh to 40 km resolution SMOS level-3 SM and 1 km 

resolution MODIS optical/thermal data to produce SM at a 1 km resolution (Molero et al., 

2016). The input dataset is generated by taking into account different combinations of SMOS 

SM (ascending 6 am and descending 6 pm) and MODIS (Terra overpass 10:30 am and Aqua 

1:30 pm from one day before until one day after the SMOS overpass), as well as the GTOPO 
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Digital Elevation Model (DEM) used to correct LST for topographic effects (Malbéteau et al., 

2016; Merlin et al., 2013). The characteristics of these data are described in Table II.1.  

 

Table II. 1. Input data of DisPATCh chain 

Product Variable Resolution Projection Format 

SMOS CLF31A/CLF31D SM 25 km/ 3 days EASE grid NetCDF 

MODIS MOD11A1/MYD11A2 

LST_day_Q

C 1 km/ 1 day USGS Sinusoidal HDF 

MODIS MOD13A2 NDVI,QC 1 km/ 16 days USGS Sinusoidal HDF 

GTOP030 MNT 0.01° WGS84 GeoTIFF 

 

II.6. Conclusion 

TSEB and TSEB-SM models described above are used to estimate the ET within different 

cultures. For this purpose, different data have been used as input to feed these two models. In 

particular, the two key inputs, LST and fc are used to force the TSEB model. While SM is 

used as an additional constrain of soil evaporation in TSEB-SM model. The three products 

(LST, fc and SM) are either measured at the field scale using in-situ measurements or 

extracted from thermal/microwave remote sensing images. In addition, the meteorological 

data including air temperature, solar radiation, relative humidity, and wind speed are also used 

to force TSEB and TSEB-SM. To achieve these objectives, the experiments carried out and 

the data collected (field and spatial) are presented in the following chapter.
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III.1. Introduction 

The first part presents the study sites and the description of the in-situ experimental. Indeed, 

six sites; including 2 irrigated and 1 rainfed wheat in the Haouz plain of the Tensift watershed 

(centre of Morocco), and three rainfed fields (Millet, fallow, and degraded shrubs) in the 

Wankama basin (Niger), have been chosen to calibrate and test the modeling approaches 

developed in the previous chapter. While, the second section is devoted to the presentation of 

remote sensing data (Optic, thermal and microwave) used to feed the models. 

III.2. Sites  and in-situ data description 

III.2.1. Watershed of Tensift el Haouz 

The Tensift catchment, located around Marrakech city, is one of the most important 

Moroccan watersheds (Figure III.1). It is characterized by a very contrasting relief and 

altitudes; between 0 and 4167 m. The catchment is surrounded by the the High Atlas 

Mountains on its south side,  the small mountains called "Jbilet" on the north, by the 

watershed line on the east and the Atlantic Ocean on the west where the outlet is located. This 

Tensift watershed covers an area of about 20450 km². It consists of three main areas: 

 Jbilet form a massif located north of the Tensift on a width of 20 to 30 km from north 

to south. Natural vegetation represents only a small area because of an intensive 

exploitation by overgrazing and deforestation for firewood and significant expansion 

of cultivated areas. The predominant agricultural activity in Jbilet zone is the rainfed 

cereal crop (wheat and barley), called Bour 

 The High Atlas is a large mountain range that limiting the Haouz plain on the south 

(800 km long and 70 km wide). It is the "water tower" of the region. It is the main 

source of water for crop irrigation in the plain. The water is transported to the plain 

either directly by hydraulic systems (dams and both modern and traditional canals) or 

indirectly by contributing to the aquifers recharge (Abourida et al., 2005; Boudhar et 

al., 2007; Chaponnière et al., 2005). 

 The Haouz plain, which is the main area of our study, covers about 6000 km2 of 

almost surface. The plain is crossed from the South to the North by several wadis 

draining the reliefs of the High Atlas and join the Wadi Tensift (main collector of the 

superficial waters of the basin). The relief of the Haouz plain is very little, marked 

with slopes not exceeding 5%. The altitude is about 900 m at the foothills of the Atlas 
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mountain and gradually decreases towards the North, reaching about 300 m at the 

Wadi Tensift. The climate in the region is semiarid, with an average yearly 

precipitation of about 250 mm, of which approximately 75% falls during the winter 

and spring (November- April). The average air humidity is 50% and the reference 

evapotranspiration ET0 is estimated as 1600 mm/year (Allen et al., 1998; Jarlan et al., 

2015), which is greatly exceeding the annual rainfall. 

In the Haouz plain, three sites; including 2 irrigated and 1 rainfed wheat are selected to test 

our model. In the following, several inputs (including LST, SM and fc) are used to force the 

TSEB-SM. Turbulent fluxes from the EC system used to validate the model estimates are also 

described below. 

 

Figure III. 1. Geographical situation of the Tensift watershed, its hydrographic network as well as the 

limit of the Haouz plain. 

III.2.1.1. R3 zone 

The R3 area is an irrigated zone located 40 km eastern Marrakech city (Figure III.1). The 

study area covers 2800 ha and is mainly used for cereal production. The soil type is clay-

loam. Approximately 85 % of available water is used for agriculture, with flood irrigation 

being the most widely used method (Belaqziz et al., 2014, 2013). The irrigation is managing 

by regional agricultural office (Office Régional de Mise en Valeur Agricole du Haouz or 
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ORMVAH) through a network of concrete channels directly connected to a dam. The 

irrigation scheduling is defined before the beginning of the cropping season according to the 

dam water level and is negotiated with the farmer’s associations.  

In the frame work of this PhD Thesis, the experimentation in R3 zone was carried out in 

wheat crop field of about 4 ha (Figure III.2), to monitor the energy and water balance as well 

as the soil and vegetation characteristics and conditions during the entire wheat growing 

cycle. The data set was collected from December 2002 to May 2003.   

III.2.1.2. Chichaoua area 

The Chichaoua study site is located 70 km western Marrakech city. Data sets are collected 

during wheat season, from November 2016 to May 2017 over two wheat crops of about 1.5 ha 

each (Figure III.2). The plots are supplied by drip irrigation method. During the 2016–17 

experiment, one plot (called the reference field) was irrigated according to the crop water 

needs estimated by the FAO-56 method. For the other field, so called (controlled field), the 

wheat was stressed in some periods (Rafi et al., 2019). The seasonal water irrigation  was 374 

and 504 mm for the controlled, and reference fields, respectively. 

III.2.1.3. Sidi Rahal area (Bour field) 

This study site is located about 60 km eastern Marrakech city (see Figure III.2). The 

experiment was set up in a 1 ha rainfed wheat (“Bour”) field in 2013 (Ali Eweys et al., 2017; 

Amazirh et al., 2018; Merlin et al., 2018). The field was seeded during 3 wheat seasons 

(September 2014-Juin 2015 (S1), September 2016-Juin 2017 (S2), and October 2017-May 

2018 (S3)), while it was not ploughed (remained as bare soil) during the 2015-2016 (B1) 

agricultural season due to strange lack of precipitation in autumn-winter 2015 (Merlin et al., 

2018).  
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Figure III. 2. Location of the four study sites: (a) flood-irrigated wheat crop in the R3 zone (east of 

Marrakech), (b) rainfed wheat crop in Bour site (east of Marrakech)  and (c) two (controlled and 

reference) drip-irrigated wheat crops near Chichaoua city (west of Marrakech) in the Tensift basin, 

central Morocco. (Flat area). 

III.2.1.4. Experimental setup 

III.2.1.4.1. Climatic data 

For each experiment, an automatic weather station was set up, near the three studied wheat 

fields (R3, Chichaoua and Sidi Rahal). This station is equipped with instruments to measure 

solar radiation, wind speed and direction, air temperature and air humidity and rainfall. These 

climate forcing data, available at a half-hourly time step, are either sent in real time by remote 

transmission to the LMI-TREMA server (at the Faculty of Semlalia Sciences) or stored on a 

central data logger, before to be processed and analysed. 

III.2.1.4.2. Turbulent heat flux measurements  

To quantify the exchanges between the canopy and the atmosphere, the three studied field 

were equipped by an eddy covariance (EC) tower to measure the latent (LE) heat and sensible 

(H) heat fluxes. EC systems included a CSAT3 3D sonic anemometer (Campbell scientific 
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Ltd, Logan USA) which measures the fluctuations in the wind velocity components and 

temperature, a LICOR-7500 open-path infrared gas analyzer (Campbell scientific Ltd, Logan 

USA) installed over the R3 site and a Krypton hygrometer (KH20, Campbell Scientific Ltd, 

Logan USA) installed over both Chichaoua sites and Bour filed to measure the concentration 

of water vapour. The half-hourly fluxes were calculated off-line using the EC processing 

software ‘ECpack’, after performing all required corrections for planar fit correction, 

humidity and oxygen (KH20), frequency response for slow apparatus, and path length 

integration (Dijk et al., 2004). EC towers were also equipped with Kipp and Zonen CNR 

radiometers to measure net radiation (Rn) and heat flux plates (Campbell Scientific Ltd, 

Logan USA) to measure the soil heat flux (G). Analysis of the energy balance closure showed 

that the sum of latent and sensible heat flux measured independently by the EC systems was 

often lower than the available energy (Rn-G). The relative closure was satisfied by about 

88%, 64%, and 70% (of available energy) for the R3, controlled and reference sites, 

respectively and about 68%, 79%, 76%, and 79% for S1, B1, S2 and S3, respectively in the 

Bour field . This problem could not be explained neither by the mismatch in the spatial extent 

of flux measurements, nor by the uncertainties associated with the measurements of soil heat 

flux and net radiation (Ezzahar et al., 2009b; Hoedjes et al., 2007; Twine et al., 2000). 

Correction was hence performed using the approach suggested by Twine et al. (2000). Indeed, 

the daily (computed using 30-minute estimates between 9 am and 5 pm) Bowen ratio (called β 

=H/LE) and the 30-minute flux estimates are combined to derive the corrected 30-minute 

turbulent fluxes (LE =
(Rn−G)

(1+β)
 and H =

β

(1+β)
(Rn − G) ) 

III.2.1.4.3. Land surface temperature 

Land surface temperature is measured at the EC station by using two Apogee IRTS-P infrared 

radiometers, oriented downward and measuring the surface leaving radiance between 8 to 14 

µm, set up at a 2-m height above ground. An estimate of LST is obtained by averaging both 

measurements. 

III.2.1.4.4. Vegetation data 

a. Leaf area index (LAI) 

LAI is a dimensionless quantity that characterizes plant canopies. It is defined as the one-

sided green leaf area per unit ground surface area; it is an important structural property of 

vegetation. Because leaf surfaces are the primary border of energy and mass exchange, 

https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Canopy_(forest)
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important processes such as canopy interception, evapotranspiration, and gross photosynthesis 

are directly proportional to LAI. The most commonly method used for measuring LAI is ‘The 

hemispheric photography technique’, which relies on the acquisition and processing of 

hemispheric photographs (Becker et al., 1989). It consists on taking photos with a camera 

equipped with a FC_E8 Fish-eye lens (180° wide-angle lens). Several photos are taken in 

order to have a representative LAI value of the parcel (about 10 photos). The photos are taken 

under optimal lighting conditions to avoid the effects of shadow and overexposure 

phenomena that make the classification more delicate. The photos are then digitally processed 

to extract the value of the LAI. The principle treatment is as follows: 1) The photo is 

decomposed into a matrix, and a binary classification (soil / vegetation) is carried out based 

on thresholds in the green and red bands (Khabba et al., 2009). 2) The useful part of the 

matrix is extracted by masking the strong angles, which are outside the studied system. 3) 

Extraction of vegetation cover rate on concentric rings associated with fixed viewing angles 

4) Calculating the average directional LAI on photos taken in each parcel. 

 

 

Figure III. 3. Example of the digital processing procedure for photos taken in rainfed wheat field 

b. Vegetation cover fraction  

The vegetation cover fraction (fc) defined as the vegetated surface area projected on the 

ground at nadir, per soil surface area unit. It is dimensionless and varies between zero and 

one. In-situ methods of measuring the fraction of the canopy are very varied but the most 

widely used approach is the digital photography-based method. This is the same procedure as 

for the LAI. The vegetation cover fraction is then the ratio between the number of pixels of 

vegetation and the total number of pixels. Based on a comparison of the various techniques 

used to obtain field measurements of the fc, White et al. (2000) have argued that hemispheric 

photography is the simplest and most reliable technique. 
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In our work, the fc is considered as a variable which controls the energy partitioning between 

surface vegetation and soil. 

c. Surface soil moisture 

Among many existing methods for measuring in-situ soil moisture, we find: 

The gravimetric method, which is a direct method. The soil moisture content may be 

expressed by weight as the ratio of the mass of water present to the dry to the dry weight of 

the soil sample, or by volume as ratio of volume of water to the total volume of the soil 

sample. To determine any of these ratios for a particular soil sample, the water mass must be 

determined by drying the soil to constant weight and measuring the soil sample mass after and 

before drying. The water mass (or weight) is the difference between the weights of the wet 

and oven dry samples. The limits of this method are the destructive nature of the approach, 

the need to have a laboratory operator to perform the measurements and their low 

representativity, which is about only few centimeters. However, this method has the 

advantage of being simple and inexpensive.  

The electromagnetic method, which is an indirect approach that measure an electric field in 

the ground. The idea is to use the quasi-linear relationship between the measured electric field 

and the soil moisture. However, this relationship depends on the type of soil. It is therefore 

necessary to calibrate, from the gravimetric measurements, the measurements for each type of 

soil in order to match the measurement (in mV) and the soil moisture. This approach has the 

advantage of being able to obtain measurements of soil moisture over a long period of time 

with a high temporal resolution and automatically, thanks to the data acquisition units. In 

addition, these electromagnetic techniques are non-destructive, non-radioactive and the 

sensors are not costly.  

Two types of measuring devices are used in our study fields; the theta-probe devices that 

provide spatially point measurements and Time Domain Reflectometry (TDR) probes (model 

CS615, CS655) which are installed in a soil pit near the EC towers to measure soil water 

content at different soil depths of 5, 10, 20, 30, 50, 100 cm and 5, 15, 25, 35, 50, 80 cm and 5, 

15, 30, 50, 80 cm and 5,10, 20, 30, 50, 70 cm for the flood-, controlled drip- and reference 

drip-irrigated wheat and Bour field, respectively. 
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Figure III. 4. Photograph of (a) TDR (Time Domain Reflectometry) and (b) Theta Probe instruments 

III.2.2. Wankama basin (Niger) 

The data needed to test the TSEB model (presented in Chapter 2) were collected in the 

Wankama basin on three contrasting crops (millet, fallow and degraded shrubs). The LST and 

LAI observations, as well as the H and LE fluxes (from EC and scintillometer devices) to 

validate the estimation of TSEB at patch and grid scale, are collected during this study.  

III.2.2.1. Site description 

The region of interest is part of the Wankama catchment, which is located 70 km eastern the 

Niamey city, Niger (Figure III.5). It is situated between an upland at an altitude of 255 m and 

a pond at 200 m (Boulain et al., 2008). This semi-arid site belongs to the AMMA-CATCH-

Niger observatory (Cappelaere et al., 2007), one of three meso-sites along the West African 

latitudinal transect (Lebel et al., 2009). The climate is typically Sahelian with a short rainy 

season from June to September with an annual mean of 560 mm for the years 1905–2004, and 

very strong year-to-year and spatial variability. The site is characterized with high 

temperatures throughout the year with a daily average which ranges from 24°C to 35°C. 

Additionally, the potential evapotranspiration is about 2500 mm/year (Massuel et al., 2011), 

greatly exceeding the annual rainfall. The soil is sandy (>90% sand) and poor in nutrients 

(Rockström and Valentin, 1997). The study area is covered by: (1) Millet fields cover 58% of 

the catchment’s surface area. This rainfed crop is cultivated traditionally with little chemical 

fertilizer and no pesticides, being by far the main crop grown. (2) Fallow savannah fields 

represent 23% of the total surface area and they are no more than five years old and typical of 

the Niamey region. (3) Degraded shrubs occupy the remaining area (Ramier et al., 2009). 
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Vegetation usually emerges after the first rainfall events occurring in June or early July, peaks 

around the end of the rainy season in early September and then dries out during the 

senescence phase. 

 

Figure III. 5. (a) Map of the Wankama basin; (b) location of the three study sites (millet, fallow and 

(c) basin toposequence 

III.2.2.2. Experimental setup  

a. Patch scale 

The experiment was conducted between 23 July and 23 October 2006. The site was 

instrumented by different instruments summarized in table III.1.  
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Table III. 1. Characteristics of the instruments equipping EC station. 

Site 

 

 

Instrument 

 

 

Measurements 

 

Height or depth  

 

M
il

le
t 

a
n

d
 F

a
ll

o
w

 

Fluxes MAST  

Campbell CSAT3 sonic anemometer  

 

 

Wind direction and speed  

 

5,1m (Millet) et 

4,95m (Fallow) 

Li-Cor7500 IRGA 

 

CO2 and H2O concentration  

 

4,8m(Millet) et 4,65m 

(Fallow) 

CNR1 Kipp & Zonen radiometer 

 

Shortwave and longwave incoming and 

outcoming radiation  

 

2,5m(Millet) et 

3,4m(Fallow) 

Vaisala HMP45 

 

Air temperature and relative humidity  

 

2m 

Soil measurements     

 

Campbell CS616 water content 

reflectometer (x6)  

 

Soil volumetric water content  

 

-.1, -.5, -1, -1.5, -2 

and -2.5 m 

 

Campbell T108 temperature probe 

(X6) 

 

Soil temperature  
-.1, -.5, -1, -1.5, -2 

and -2.5 m 

 

Hukseflux HFP01SC  heat flux plates 

(x3) 

 

Surface soil heat flux  

 
-.05 m 

D
eg

ra
d

ed
 s

h
ru

b
s 

Flux MAST      

Solent R3-50 sonic anemometer 

 

 

Wind direction and speed  

 

5 m 

Kipp & Zonen  CNR1 radiometer 

 

Shortwave and longwave incoming and 

outcoming radiation  

 

2 m 

Vaisala WXT510 weather transmitter 

 

Air temperature, relative humidity, 

atmospheric pressure, wind speed, wind 

direction  

 

2 m 

RIMCO tipping bucket raingauge 

 

Rainfall amount, duration and intensity  

 
0 m 

Soil measurements      

 

Campbell CS616  water content 

reflectometer (x2) 

 

 

Soil volumetric water content  

 

-.1, -.5 m 

 

Campbell T107 temperature probe 

(X2) 

 

Soil temperature  

 
-.1, -.5 m 
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Figure III. 6. (a) An overview of theWankama basin and the experimental setup, locations of LAS (T 

and R stand for transmitter and receiver, respectively) and three EC systems are shown (millet, fallow 

and degraded shrubs sites). Photos (EC system (b) and scintillometer (c)) were taken by J. Ezzahar as 

part of the ACN project. 

b. Grid scale 

A Large Aperture Scintillometer (LAS) was set up over a 3.2 km transect spanning the three 

ecosystem types, i.e., millet and fallow fields and the degraded shrubs. The LAS used in this 

study was developed and built by the Meteorology and Air Quality Group from the 

Wageningen University (Netherlands). This instrument was constructed according to the basic 

design described in Ochs and Wilson (Ochs and Wilson, 1993). It has an aperture size of 0.15 

m and the transmitter operates at a wavelength of 0.94 µm. At the receiver, Cn
2 is sampled at 1 

Hz and averaged over 1 min intervals by a CR510 datalogger (Meijninger et al., 2005). The 

transmitter and the receiver were installed on 10 m towers with an altitude difference of 

approximately 46 m. The receiver was installed at the highest part of the basin (upland) whilst 

the transmitter was installed at the lowest part of the basin (Figure III.5). The direction of the 
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LAS path was 250° from the north. At the receiver tower, a 2D anemometer (Wp200, R.M. 

Young Company, Traverse City, MI, USA) to measure wind speed and direction at 10 m was 

also installed. Additionally, the air temperature and humidity were measured using Vaisala 

HMP45C probe. 

III.2.3. Spatial data 

III.2.3.1. MODIS and MSG data 

a. MODIS products 

The MODIS instrument operates on both Terra and Aqua spacecraft. It has a viewing swath 

width of 2330 km and views the entire surface of the Earth every 1–2 days. Its detectors 

measure 36 spectral bands between 0.405 and 14.385 μm, and it acquires data at three spatial 

resolutions: 250 m, 500 m, and 1000 m. The MOD15A2 LAI is a 1 km global data product 

updated once every 8 days derived from the MODIS sensor on board TERRA. The MODIS 

LAI algorithms were developed jointly by personnel at Boston University, the University of 

Montana SCF and NASA GSFC. The algorithm consists of a main procedure based on the 

inversion of a 3D radiative transfer model thanks to a look-up-table. This algorithm exploits 

the spectral information content of MODIS surface reflectances at up to seven spectral bands. 

Should this main algorithm fail, a back-up algorithm is triggered to estimate LAI empirical 

relationships with vegetation indices. The LAI products in the collection version 5 are 

available from 2001 to present. The MCD43B3 α product is upscaled from MCD43A3 and 

provides both the white-sky-albedo (α) and the black-sky- α at 1-km resolution every 16 days. 

Both Terra and Aqua data are used in the generation of this product. We were interested in a 

single integrated value over the entire solar emission spectrum (0.3–5.0 μm) called shortwave 

broadband α. The black-sky- α (directional hemispherical reflectance) is a directional α 

corresponding to 100% of direct light; it depends on the solar zenithal angle unlike the white-

sky- α (bihemispherical reflectance) which corresponds to a completely diffuse light. The 

“blue sky” α used in this study is a weighted average between these two extreme values. The 

weighting depends essentially on the aerosol content of the atmosphere (Lewis and Barnsley, 

1994). In our case, we considered that we have 85% direct light and 15% diffuse, and the final 

α value is calculated as follows (Lewis and Barnsley, 1994): 

α = 0.85 ∗ αblack−sky + 0.15 ∗ αwhite−sky              (III.1) 
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The MOD11A1 and MYD11A1 at 1 km spatial resolution under clear-sky conditions are the 

daily land surface temperature (LST) products, derived from Terra and Aqua, respectively. 

LST is derived from the brightness temperature using bands 31 and 32 through a generalized 

split-window algorithm. The daily level 3 MODIS LST (collection 5) were used in this study.  

The MOD11A1 and MYD11A1 at 1 km spatial resolution under clear-sky conditions are the 

daily land surface temperature (LST) products, derived from Terra and Aqua, respectively. 

LST is derived from the brightness temperature using bands 31 and 32 through a generalized 

split-window algorithm.  

The MOD13A2 provides spatio-temporal coverage of vegetation conditions via several 

indices at 1 km resolution as a gridded level-3 product in the Sinusoidal projection. One 

particular vegetation index of interest in this study is the normalized vegetation index 

(NDVI), available at 16 day temporal intervals. This product is derived from band 1 and 2 of 

the MODIS Terra satellite.  

All MODIS products were downloaded from the website 

(https://search.earthdata.nasa.gov/search). 

b. SEVIRI Land Surface Temperature 

The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard Meteosat Second 

Generation (MSG) is a multi-spectral sensor, imaging across the visible and near-IR, which 

provides data with a high temporal and spectral resolution every 15 min in 12 wavebands, and 

image spatial sampling scales of 3 km for nadir view. The land surface temperature is 

estimated from top of atmosphere (TOA) brightness temperatures of SEVIRI split-window 

channels, centered on 10.8 and 12.0 μm, using a generalized split-window (GSW) algorithm 

(Wan and Dozier, 1996) with the adoption of SEVIRI data (Trigo et al., 2008). IR radiance is 

absorbed and scattered even by thin clouds and aerosols. Therefore, the retrieval of LST 

works only for completely cloud-free pixels and the quality of this product is automatically 

assessed by means of the accuracy of the parameters used in the LST algorithm. LST products 

used in this study are distributed by EUMETSAT through the Satellite Application Facility on 

Land Surface Analysis (LSA SAF). 

III.2.3.2. SMOS data 

The SMOS mission measures the natural (passive) microwave radiation around the frequency 

of 1.4 GHz (L-band). It aims to monitor SM at a depth of about 3–5 cm with a spatial 

https://search.earthdata.nasa.gov/search
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resolution of about 40 km and an accuracy better than 0.04 m3/m3 (Kerr et al., 2012). The 

revisiting time at the equator is every 3 days for both ascending and descending passes, which 

are sun synchronous at 6 am and 6 pm respectively. The SMOS level-3 1-day global SM 

product (MIR CLF31A\D, version 2.72 in reprocessing mode RE02) posted on the ~25 km 

Equal Area Scalable Earth (EASE) version 1.0 grid is used as input to DisPATCh algorithm.  

III.3. Conclusion 

Two different study sites, along with the remote sensing and meteorological data are 

described in this chapter. Thereafter, the Wankama Niger site will be used to validate the 

TSEB model (which provide estimates of evapotranspiration) over heterogeneous field. 

While, Haouz plain sites (including irriagated fields (Chichaoua and R3) and rainfed field 

(Bour)) will be used to test the robustness of the new version of TSEB model (named TSEB-

SM) which integrates LST, SM and fc simultaneously to retrieve the main parameters of soil 

evaporation (soil resistance) and plant transpiration (αPT). Then, DISPATCh SM and MODIS 

data will be integrated within the TSEB-SM to provide large-scale estimates of 

evapotranspiration.
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IV.1. Introduction 

Estimates of turbulent fluxes (i.e., sensible and latent heat fluxes H and LE) over 

heterogeneous surfaces is not an easy task. The heterogeneity caused by the contrast in 

vegetation, hydric and soil conditions can generate a large spatial variability in terms of 

surface–atmosphere interactions.  

SEB model driven by MODIS (Moderate resolution Imaging Spectroradiometer) and MSG 

(Meteosat Second Generation) observations in conjunction with an aggregation scheme are 

used to derive area-averaged H and LE over a heterogeneous watershed in Niamey, Niger 

(Wankama catchment) (Allies et al., 2017; Boulain et al., 2009; Ezzahar et al., 2009b; Ramier 

et al., 2009; Velluet et al., 2014). A spatial aggregation approach is conceived as a method 

which seeks to link the model parameters that control surface exchange (LST, α, d, 𝑧0, LAI, 

hc) on a patch scale with the area-average value of equivalent model parameters applicable on 

a larger scale or grid-scale, assuming that the same equations are used to describe surface 

fluxes at both scales (Ershadi et al., 2013; Ezzahar et al., 2009b, 2009a; Liu et al., 2016; Long 

et al., 2011). In general, aggregation scheme can be applied on the input requirements 

(Ezzahar et al., 2009b) or directly to predicted fluxes (Saadi et al., 2018). Nevertheless, the 

efficiency of this approach lies on the evaluation of their outputs/performances against field 

observations, which requires the development of a measurement network at the local scale 

such as Eddy covariance systems (Baldocchi, 2014; Baldocchi et al., 2018, 2016, 2001). Such 

a system is very costly, and man-power demanding with a competent staff for data processing 

and maintenance, as well as an important energy supply for operation. To overcome these 

difficulties, Large Aperture Scintillometer (LAS) is one of the alternative techniques 

employed to validate the satellite remote sensing H and LE estimates due to the comparable 

spatial resolutions. It has already been used in various contexts over complex topography and 

heterogeneous vegetation cover (Brunsell et al., 2011; Ezzahar et al., 2009b; Liu et al., 2013). 

Consequently, LAS is becoming popular in hydro-meteorological studies because it is 

relatively cheap, robust, and easy to operate and maintain. Additionally, the LAS can be 

potentially used to improve the representation of surface heterogeneity in land-surface-

atmosphere models operating at large scales. 
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In this chapter, the thermal-based two-source energy balance (TSEB; (Norman et al., 1995)) 

has been chosen as it has been evaluated with success in different contexts including sparse 

canopy in semi-arid areas ( Diarra et al., 2017; Kustas and Norman, 1999). TSEB algorithm is 

described in detail in chapter 3. As far as we know, the TSEB model has never been tested 

over a heterogeneous Sahelian agro-ecosystem. Therefore, a validation at patch scale was 

firstly investigated using in-situ measurements from three eddy-covariance stations sampling 

the dominating canopy (millet, fallow and degraded shrubs) of the studied area. TSEB 

predictions of the convective fluxes are then evaluated at the scintillometer fooprint scale by 

aggregating the station scale predictions fed by the in-situ observations of albedo, LST and 

Leaf area index (LAI). In a second step, remote sensing products are used. A first evaluation 

is directly conducted at the scale of the scintillometer measurements by using 3 km LST 

observations from the MSG SEVIRI instrument. Finally, three aggregation schemes of 

MODIS products are tested to assess if a better representation of heterogeneity based on the 

1-km products improves our large-scale estimates. Data collected in the context of the African 

Monsoon Multidisciplinary Analysis (AMMA) program 

IV.2. Results and discussion 

As a preliminary step, the quality of experimental data including EC and scintillometer 

surface fluxes and satellite products are assessed. In a second step, the TSEB predictions are 

evaluated at the station scale. Finally, the TSEB predictions of the convective fluxes are 

evaluated at the scale of the scintillometer fooprint: (1) by aggregating the station scale 

predictions using the in- situ observations of albedo, LST and LAI. This constitutes the ideal 

case (2) by using 3 km LST observations from the MSG SEVIRI instrument directly at the 

scale of the scintillometer measurements; and (3) by testing three aggregation schemes of 

MODIS products in order to assess if a better representation of heterogeneity based the 1-km 

products improves our large-scale estimates 

IV.2.1. Experimental data analysis  

IV.2.1.1. In-situ surface fluxes  

The quality of EC measurements is usually assessed by assuming that the energy balance is 

closed. The comparison of the (Rn-G) and the sum of the latent and sensible heat fluxes 

(LEEC + HEC), measured independently by the EC systems (data not shown here), showed an 

underestimation of the turbulent fluxes by about 8%, 17%, and 20% for the millet, fallow and 
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degraded shrubs, respectively. Several practical reasons preclude perfect closure (Foken et al., 

2006), e.g. spatial scale discrepancies between measurements of energy balance components, 

and spatial heterogeneities; storage between measurement levels (canopy and superficial soil); 

so-called eddy flux losses (not measured here); difficulties with ground flux estimation 

(Guyot et al., 2009; Heusinkveld et al., 2004). Results reported in other experimental studies 

have shown that balance shortfalls commonly stand between 10% and 40 % of the available 

energy (Foken et al., 2006; Mauder and Foken, 2006). As a conclusion, closure is quite 

satisfactory for our experiment, especially at the millet site which was more homogenous than 

fallow and degraded shrubs sites. 

Figure IV.1 plots the time series of the average between 9 am and 5 pm of HLAS, and LELAS 

during the entire study period. Note that the scintillometer only calculates H, and LE is 

derived as a residual term of the energy balance (LELAS = Rn − G − HLAS). In this case, the 

available energy has been aggregated using the values measured at each instrumented field 

(< Rn − G >agg= ∑ fi(Rn − G)i
3
1 ). Stages 1, 2 and 3 present respectively the beginning of 

season (June 1st –mid July), the growing stage which took place over two months (mid July- 

to mid-September) and the senescence stage (from mid-September). Preliminary to the 

scintillometer data analysis, a comparison between HLAS against weighted EC fluxes was 

done for the wind direction interval 70° to 250°, because the footprint of the LAS covers the 

monitored sites where the EC systems were installed. The statistical results show a good 

agreement between the LAS sensible heat fluxes and those derived from the EC systems with 

a relative error of about 20% (Ezzahar et al., 2009b). The HLAS and LELAS dynamics are 

almost stable throughout the season and LELAS does largely dominate HLAS through the 

growing stage. Rainfall is rather regular between mid-July and mid-September, which ensured 

enough soil moisture to keep millet growing until mid-September. It can be seen that every 

rainfall event caused an immediate response with a significant energy shift between H and 

LE. LELAS is around 200 W/m2 and increases after each rain event, and peaks at the end of 

August with 315 W/m2, which corresponds to the LAI peak for Millet crop (Boulain et al., 

2009). In the same period, soil moisture was high and reached its maximum. Some points 

with very low LELAS values were recorded during the growing stage which can be explained 

by the very dry conditions or by a considerable amount of bare soil. A sharp increase of LELAS 

was shown after the 40-mm rain event of 20nd September. However, LELAS decreases 

systematically from the end of September to the end of October, while HLAS reaches its 

maximum (265 W/ m2). 
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Figure IV. 1. Time series of LAS latent and sensible heat fluxes (daily average between 9am and 5pm) 

IV.2.1.2. Remote sensing products 

First, an evaluation of the agreement between MODIS albedo and LST products and in-situ 

measurements is required because of their great influence on the predicted fluxes. This 

comparison is carried out only for clear sky days when MODIS images are available. Figure 

IV.2 displays the scatter plots of MODIS derived LST and albedo against in-situ 

measurements, for millet and fallow sites as only one month of measurements were available 

for the degraded shrub site. The agreement between MODIS and measured albedo is 

relatively poor (RMSE=0.05, R=0.45). This may be attributed to the lack of representativity 

of the sites covered by relatively dense vegetation with regards to the north from the LAS 

path mainly composed of bare soil. This lack of representativity is particularly prominent in 

the Sahel as soils are very clear, especially at the beginning (July) of the season. The dry spell 

produced a short period of albedo increase. During the rain events, albedo follows a very 

markedly decreasing general trend, with large fluctuations due to alternating dry and wet 

spells (Ramier et al., 2009). This assumption is supported by the observed positive bias of 

0.03. The LST comparison shows a reasonable correlation of R=0.77 with an RMSE=3.8 K, 

and an underestimation of LST MODIS by -1.8 K on average. The RMSE is on the upper 

limit of the values reported in the literature that usually range between 2 and 4 K (Yu et al., 

2014). The observed scattering may also stem from the fact that the in-situ LST is not 

representative for the satellite LST.  A finer look at the results highlights also a very 

contrasted bias between the two sites: over Millet that dominates the Wankama land use with 

58% of the area, the bias is logically low (MBE=-0.5 K) while it reaches more than -4 K over 

the denser and thus colder vegetation of the fallow site. 
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Figure IV. 2. Scatterplot of MODIS Ts (a), and α (b) versus in-situ data (only Millet and Fallow sites 

are considered) 

Finally, Figure IV.3 shows an intercomparison of MSG SEVIRI and MODIS LST averaged 

over a 3 x 3 pixel windows to match the MSG resolution at time of Terra and Aqua MODIS 

overpasses. The overestimation of MSG SEVIRI LST with regards to MODIS LST is 

prominent along the whole LST range. This could be linked to the view zenith angle 

differences between MSG SEVIRI and MODIS satellites. The impact of changes in viewing 

angle is enhanced with surface heterogeneities. In addition, LST was retrieved using one 

MSG SEVIRI window channel (10.8 µm), while the MODIS algorithm is based on two 

windows channel (11.03 µm and 12.02 µm). These dissimilarities related to the spectral 

characteristics of the two instruments can induce the observed differences in retrieved LST. 

Finally, the positioning error of MSG that has been found to reach up to 8 pixels i.e. ~30 km 

(Aksakal et al., 2013) could also explain this over-estimation, in particular if the pixel is 

shifted to the north of the area characterized by bare and hot soils. 
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Figure IV. 3. Scatterplot of MODIS versus MSG SEVIRI LST 

IV.2.2. Results of multi-Scale surfaces fluxes 

The TSEB predictions are evaluated at the station scale both using in-situ and MODIS derived 

products. Focus is then put on the evaluation of TSEB at the grid scale using in-situ, MODIS 

and MSG products. 

IV.2.2.1. Station scale 

a. Using in-situ data 

The available energy and turbulent fluxes predicted by the TSEB model are compared to 

those measured over the three eddy covariance stations at half-hourly time step. Table IV.1 

summarizes the statistical results including the number of observations (n), the correlation 

coefficient (R), the root mean square error (RMSE), and the mean bias error (MBE). It can be 

seen that the TSEB model estimates correctly the available energy (Rn-G) with RMSE of 52, 

49, 57 W/m² for millet, fallow and degraded shrubs (see figures IV.4.a, IV.4.b and IV.4.c), 

respectively. A first remarkable feature is the slight underestimation (-23 W/m2) for the millet 

site. The second remarkable feature is a stronger dispersion for the degraded shrubs area. This 

dispersion is mainly related to the estimation of the soil heat flux, with RMSE=38 W/m2, 

Mean Bias Error MBE=23 W/m2 and RMSE=60 W/m2, MBE=54 W/m2 for the millet and 
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degraded shrubs sites, respectively. Indeed, affected by the complexity of the physical 

processes that occur in the soil as well as the vegetation cover, soil heat flux is the most 

difficult parameter to estimate with great precision. Several studies have pointed out this 

difficulty in estimating G especially on sparse vegetation (Ezzahar et al., 2009b, 2009a, 

2007). In addition, measuring this parameter at 5 cm and in sparse vegetation represents a 

major challenge to get representative measurement. The installation of heat flux plates in the 

soil must take into account several criteria: the plates must be totally covered to ensure that it 

is not directly exposed to the sunlight especially when the soil is very sandy as in the 

Wankama catchment where sand represents 80 to 90% (Verhoef et al., 2012). Additionally, 

heavy rainfall within a few hours, which is relatively common in the Sahel region, can 

uncover the plates and thus lead to exposing them to sunlight. Moreover, the use of the 

Brutsaert formula (developed for clear sky days by Brutsaert (Brutsaert, 1975) for the 

incoming longwave radiation (that replaced the measurements when they were not available 

for this station, to estimate Rn) can create a significant dispersion for low radiation values in 

cloudy conditions (Ezzahar et al., 2007).  

The agreement between the measured and predicted turbulent fluxes is obviously lower than 

for the estimated available energy (see figures, IV.4.d, IV.4.e and IV.4.f for H and IV.4.g, 

IV.4.h and IV.4.i for LE)but, despite a significant dispersion, correlation coefficients and 

RMSEs are encouraging (Table IV.1). The observed dispersion can be related to the footprint 

effect, as the footprint of the EC system is considerably larger than the representativity scale 

of the measured input variables (mainly α, LST and LAI). In addition, other parameters such 

as roughness length (z0m) and displacement height (d) were estimated as a fraction of the 

vegetation height using classical rules of thumb (Shaw and Pereira, 1982; Thom, 1971). These 

equations have been established for homogeneous and dense covers while the study sites are 

heterogeneous and sparse. A further step to minimize dispersions would be to estimate these 

variables using EC data following Hoedjes et al. (2007) and Lagouarde et al. (2006). Finally, 

several empirical and constant model parameters have been used in the TSEB model, which 

require calibration according to the specific conditions of the study area. Among them, the 

Priestley-Taylor parameter (αPT) directly relates latent heat flux to the available energy at the 

surface. Most studies driven by TSEB model have used its theoretical value of 1.26 (Bindlish 

et al., 2001; Colaizzi et al., 2014; Kustas and Norman, 1999; Norman et al., 1995). Other 

studies have identified that it is variable under different surface and atmospheric conditions 

(varies in the range 0.5-2). In particular, the αPT was found to be smaller for dry surfaces and 

higher for humid conditions (Eichinger et al., 1996). In the same context, (Ait Hssaine et al., 
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2018b) demonstrated, using a new TSEB-based evapotranspiration model (called TSEB-SM), 

that αPT cannot be considered as a constant because it varies in time according to several 

factors including LAI, green vetation cover fraction and soil water availability. In particular, it 

can take extreme values under dry, water deficit and advective conditions. Interestingly 

enough, the partition between latent and sensible heat fluxes is correctly reproduced for the 

degraded shrub site (mean biases lower than 0.92 W/m² and 11 W/m2 for respectively, H and 

LE). Indeed the results of sensible heat flux over the millet crop matches perfectly with the 

results found by Lhomme et al. (1994) (RMSE=43 W/m2) who used a two layer model to 

estimate H from LST. Lhomme et al. (1994) used an empirical relationship between LST and 

Ta (δT = a(LST − Ta)m),  m and a being statistically determined by adjusting the modelled 

to the H observed by the Bowen ratio method. 
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Figure IV. 4. Scatterplot of simulated versus observed AE,H and LE for the (left) Millet, (middle) 

Fallow and (right) Degraded shrubs, respectively, using in-situ data. 
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Table IV. 1. Statistical metrics of the comparison between measured and estimated values of available 

energy and turbulent fluxes (H and LE) at patch and grid scale 

  
Fluxes 

n R MBE RMSE 

  

(-) (-) (W/m2) (W/m2) 

Patch-scale 

(using in-

situ data) 

Millet 

H 1442 0.81 26 43 

LE 1442 0.69 -17 66 

Rn-G 1442 0.92 -23 52 

Fallow 

H 1905 0.89 -21 40 

LE 1905 0.88 0.38 65 

Rn-G 1905 0.98 -37 49 

Degraded-

shrubs 

H 486 0.82 0.92 24 

LE 486 0.71 11 65 

Rn-G 486 0.95 -42 57 

Patch-scale 

(using 

MODIS 

data) 

Millet 

H 52 0.45 13 31 

LE 52 0.58 58 94 

Rn-G 52 0.67 4 50 

Fallow 

H 52 0.73 25 54 

LE 52 0.71 32 93 

Rn-G 52 0.79 23 69 

Degraded-

shrubs 

H -  -  -  -  

LE -  -  -  -  

Rn-G -  -  -    

Grid-scale 

(using in-

situ data) 

  

H 370 0.87 -21 37 

LE 186 0.72 39 75 

Grid-scale 

using MSG 

SEVIRI 

data 

  H 51 0.39 -19 65  

  LE 51 0.2 32 75 

Grid-scale 

(using 

MODIS 

data) 

Scheme 1 
H 

20 
0.71 -48 73 

LE 0.85 73 102 

Scheme 2 
H 

20 
0.7 -30 65 

LE 0.82 49 91 

Scheme 3 
H 

20 
0.71 -23 63 

LE 0.82 45 88 
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b. Using MODIS  

An intercomparison between (Rn-G) and turbulent fluxes measured by each station and the 

fluxes estimated by TSEB model using MODIS data is done and the error statistics are 

reported in Table IV.1. Overall, the discrepancies between the available energy estimated 

from TSEB model and measured one, for both sites (millet and fallow) is likely due to greater 

scatter between MODIS and measured α, and to the difference between MODIS and in-situ 

LST. In all cases, LE does largely dominate H through the growing season (July-September), 

in particular for the fallow field. For the Millet site, the late start of the rainy season had 

significant adverse effects and the crop was not able to take advantage of the abundant rainfall 

because of insufficient plant development (Boulain et al., 2006). For both sites, an 

overestimation of simulated LE compared to measured ones is recorded at the end of the 

season. Indeed, the saturation of TSEB in the higher range of LE is due to the fixed maximum 

value for αPT (equal to 1.26) (Ait Hssaine et al., 2018b). The structure of the model cannot 

accommodate large evaporative demand conditions and strong advective conditions (Song et 

al., 2016b). Moreover, the change in wind direction in monsoon periods strengthens advection 

effects. As conclusion, TSEB prediction although slightly biased at the end of the season 

reproduces quite well the observations: RMSE/ MBE are relatively low for both Millet and 

Fallow sites. 
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Figure IV. 5. Scatterplot of simulated versus observed AE,H and LE for the (left) Millet, (middle) 

Fallow and (right) Degraded shrubs, respectively, using MODIS data. 

IV.2.2.2. Grid scale  

a. Using in-situ data 

Figure IV.6 displays the comparison between three sites-averaged turbulent fluxes values 

derived from TSEB model using weighted input data (LST, α, d, 𝑧0, LAI, hc) compared 

against the turbulent fluxes measured by the scintillometer. The corresponding statistics are 

shown in Table IV.1. TSEB provides satisfying results for the sensible heat flux with a 

relative error of about 24% (R=0.87, RMSE=37 W/m2, MBE=-21 W/m2). Indeed, the 

scintillometer path is very heterogeneous. This can generate a difference in flux even between 

two adjacent plots. Therefore, the dispersion observed can be related to the differences in the 

footprint of LAS, as well as to the uncertainties of the similarity stability functions. The 

surface temperature is a key parameter for turbulent fluxes and for monitoring the energy 

balance. Weighted LST over heterogeneous surface using locally measured values can lead to 

errors in the partition of temperature between soil and vegetation, and consequently to 

estimate sensible heat flux. A visual assessment of scatter plots in 4.6.b and the statistics 

(Table IV.1) clearly indicates that TSEB overestimates LE fluxes with MBE=39 W/m2, 

especially at the end of the season. LE measured by the LAS never exceeds 300 W/m2 while 
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simulations reach 400 W/m2, which could be related to the fixed value of αPT to 1.26. Note 

also that any error in the available induces the LELAS errors. 

 

Figure IV. 6. Sensible (a) and latent (b) heat fluxes scatterplots between LAS measurements and 

TSEB prediction feeded by aggregated in-situ data (at 30min time). 

 

b. Using 3km MSG SEVIRI LST 

Here, MSG SEVIRI LST is used to simulate H and LE by TSEB directly at the scale of the 

scintillometer path (3 km) spanning the three vegetation types (only the interval 70° to 250° is 

considered). Those data were used in conjunction with an average of a 3 x 3 pixel MODIS 

area for α and LAI. TSEB estimates are compared to HLAS and LELAS. According to 

precipitated amounts during the growing season, the LE is noticeably higher at the fallow site 

compared to millet site (Patch scale). Note that the MSG SEVIRI pixel covers diverse land 

cover (millet, fallow, degraded shrubs and bare soil), which can explain the discrepancies 

obtained between MSG SEVIRI-based and measured LE (Figure IV.7.b). By contrast, the 

overestimation of H at the end of the season is linked meanly to the higher surface 

temperatures measured by MSG SEVIRI. It is reminded that the scintillometer fetch doesn’t 

exceed a hundred meters, while the MSG SEVIRI resolution at the study site is about 3 km.  
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Figure IV. 7. Sensible and latent heat fluxes scatterplots of the comparison between the LAS grid 

scale measurements and TSEB predictions based on MSG SEVIRI products ( at MSG-SEVIRI 

overpass time). 

c. Using MODIS products  

In this section, the effect of land cover heterogeneity on the estimated turbulent fluxes has 

been studied by combining TSEB model driven by Terra and Aqua remotely sensed data and 

an aggregation scheme, at Terra-MODIS and Aqua-MODIS overpass time. Figure IV.8 

displays results for three different aggregation schemes (the simple averaging at the MODIS 

resolution scale (scheme1 (IV.8.a, IV.8.d)), the simple averaging over the footprint extent 

(scheme2 (IV.8.b, IV.8.e)), and a weighted average of the footprint extent (scheme 3 (IV.8.c, 

IV.8.f). Statistical metrics are reported in Table IV.1.  

The simple averaging method using MODIS resolution data in Figure IV.8.a underestimates 

H with a relative error of about 21% ( RMSE =73 W/m2, R=0.71, MBE=-48 W/m2). The 

correspondence between simulated and measured fluxes for scheme 2 is good compared to 

scheme 1 (figure IV.8.b). The relative error was about 13%, the RMSE value was 65W/m2, 

and the linear regression forced through the origin yielded an R of 0.70 and the mean bias 

error was reduced to -30 W/m2 instead of -48 W/m2 for the first scheme. H simulated by using 

scheme 3 in figure IV.8.c is closer to the 1:1 line, providing a quite significant improvement 

with regards to the second scheme. The RMSE and the mean bias error between the simulated 

and measured values were 63 and -23 W/m2, respectively. The relative error of 10% indicates 

that the scheme 3 is very reliable in providing area-averaged sensible heat flux over 

heterogeneous surfaces. 
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In a subsequent step, simulated LE was compared to the observed one using the three schemes 

described before. As shown in figure IV.8.d, the Scheme 1 overestimates LE with a relative 

error of about 58% (RMSE= 102 W/m2, R=0.85, MBE=73 W/m2). That can be explained by 

the fact that LE is a residual term affected by errors in both available energy and sensible heat 

flux. Figures IV.8.e and IV.8.f plot simulated versus observed LE for the simple scheme 2 and 

scheme 3. TSEB provides satisfying results with a RMSE of 65 W/m2 and 63 W/m2, and 

relative error of 39% and 35% for the second and third schemes, respectively. Based on the 

above results, the first scheme could not achieve satisfactorily the upscaling of turbulent 

fluxes over heterogeneous land surfaces. In fact, the method considers that all pixels 

belonging to the footprint of LAS contributes 100% of the pixel value, even for pixels of low 

contribution. This will obviously lead to large differences in LST, which is a key feature for 

determining the turbulent fluxes. 

 

Figure IV. 8. Sensible and latent heat fluxes scatterplots of the comparison between the LAS grid 

scale measurements and TSEB predictions based on MODIS products for a simple averaging (a,d), 

area weighted method (b,e) and footprint weighted method (c,f) ( at MODIS overpass time). 

To go further into the comparison, the Figure IV.9 shows the time series of the convective 

fluxes observed by the LAS (HLAS and LELAS) at the time of the satellite overpass and 

simulated by TSEB based on MODIS products for the footprint weighted method (Hsim and 

LEsim). According to the availability of MODIS images, and considering the wind direction 
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interval 70° to 250°, only LAS data from mid-August to the end of the experiment on 22 

October were available. Despite a significant scattering, both observed and simulated fluxes 

depict a similar behavior with a gradual switching of available energy from latent to sensible 

heat following the last rainfall around mid-September. An interesting feature is the 

underestimation of H by TSEB during the senescence while LE is overestimated for the same 

period. This could be attributed to the constant value of αPT equal to 1.26 used in this study. 

Indeed, this value is usually accepted for semi-arid to sub-humid agricultural areas under 

irrigation regime (Anderson et al., 2007; Diarra et al., 2017; Norman et al., 1995) while it has 

been shown that lower αPT are obtained for dry areas such as in our region of study after the 

end of the rainy season. Finally, the obtained significant scattering, in particular after the last 

rainfall could also be related to the radiative properties of vegetation that are not well 

represented for dry vegetation. 
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Figure IV. 9. Time series of the comparison between the LAS grid scale measurements (𝐻𝐿𝐴𝑆and 

𝐿𝐸𝐿𝐴𝑆) and TSEB predictions based on MODIS products (𝐻𝑠𝑖𝑚 and 𝐿𝐸𝑠𝑖𝑚) for footprint weighted 

method (at MODIS overpass time). 

IV.3. Summury and Conclusions  

The main objective of this chapter is to estimate the turbulent fluxes over a path covering the 

three dominant crops (millet, fallow and degraded shrubs) in the Wankama basin by 

combining TSEB model, an aggregation method and satellite data (MODIS and MSG 

SEVIRI). The data used to validate this approach were collected within the framework of the 

AMMA project. Each site was equipped with meteorological stations and Eddy Covariance 

systems for monitoring the energy and water balance as well as the soil and vegetation 

characteristics. In addition, a large aperture scintillometer was installed over a transect of 

about 3.2 km spanning the three dominant vegetation types (with contrasted energy balances 

and different fluxes behaviours) to derive the integrated H and LE values over this 

heterogeneous landscape. Our approach was organized into three steps. The experimental data 

including in-situ surface fluxes and remote sensing products were evaluated. The TSEB 

model was then evaluated at the station scale for the three study sites (millet, fallow and 

degraded shrubs) instrumented with EC systems. Finally, the TSEB prediction of surface 
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fluxes were evaluated at the grid-scale based on in-situ data (at the 30 min time), MODIS (at 

Terra and Aqua overpass time), and MSG products (at MDG-SEVIRI overpass time) and 

aggregation schemes. 

 

The results obtained at the station scale for H and LE are relevant, especially when using in-

situ data given the complexity of the study sites and in the range of what has been reported in 

the literature in terms of RMSE and correlation coefficient. Some scatter was noted, which is 

mainly related to the difference in footprints of the measuring instruments (about 100 m for 

EC systems with regard to less than 10 m for inputs variables such as LAI, albedo and LST), 

as well as to the fixed maximum value for αPT (equal to 1.26) during the entire season. 

Despite this dispersion and as already underlined by several authors, TSEB provides with 

good performances for H and LE prediction at the station scale by using in-situ measured 

inputs or, to a lesser extent, MODIS derived inputs.  

TSEB was then evaluated at the (1 km and 3 km) grid-scale along the scintillometer transect 

spanning a heterogeneous landscape. To this end, in-situ data were first aggregated to 

estimate the mean turbulent fluxes. In this ideal case where the major inputs are well known 

thanks to in-situ measurements on the dominant vegetation type, the predicted fluxes 

obviously showed a good agreement with the scintillometer observations with statistical 

metrics on the same order of values as those of the comparison at the station scale (RMSE=37 

W/m2 and 75 W/m2 for H et LE, respectively) although some dispersions were observed. The 

latter were explained by the difference in the footprints of the measuring instruments as well 

as because LELAS was calculated as a residual term of the energy balance using the average 

available energy values derived from measurements at each site. In a second step, TSEB is 

validated at the grid-scale but with remotely-sensed inputs. To this objective, MSG SEVIRI 

and MODIS sensors only offers a revisit time able to sample the high inter- and intra-daily 

variability of the SEB in semi-arid areas. The first assessment was performed by using the 

MSG SEVIRI LST at 3 km without explicit representation of the sub-pixel heterogeneity. The 

agreement between H and LE simulated by TSEB model and scintillometer observations is 

very poor, in particular in terms of temporal dynamic (R=0.39 and 0.2 for H and LE, 

respectively). This dispersion could be attributed to the large bias on MSG SEVIRI LST 

linked to the heterogeneity of land cover. In addition, this highlights the need to represent the 

sub-pixel heterogeneity. This was tested in a final step by using 1-km MODIS products as 

input of the TSEB model and 3 aggregation schemes. If the results with the simplest 

aggregation scheme consisting in averaging MODIS inputs independently of the footprint 
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provides poor results (RMSE of 73 W/m2 and 102W/m2 for H and LE, respectively), the 

statistical metrics based on the two other aggregation schemes are encouraging. In particular, 

the scheme 2 considering the MODIS pixel included in the scintillometer footprint only but 

without weighting the values based on the footprint contribution as in the scheme 3, 

represents a good trade-off between accuracy and ease of implementation to map 

evapotranspiration over complex landscape. 

In this chapter, LST has been extensively used to retrieve ET at a wide range of spatial 

resolutions. To improve these models to take into account the water stress conditions, TSEB 

formalism is modified (in the next chapter), to a new model named TSEB-SM, by using, in 

addition to LST and fc data, the near-surface soil moisture (SM) as an extra constraint on soil 

evaporation. An innovative calibration procedure of TSEB-SM is proposed to retrieve the 

main parameters of soil evaporation (soil resistance) and plant transpiration (αPT).
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V.1. Introduction 

Data available from space can help in implementing the PT approach from three distinct 

perspectives: i) applying a constraint on vegetation transpiration using an a priori value for 

αPT (Anderson et al., 2008; Kustas et al., 1999; Norman et al., 1995), ii) applying a constraint 

on soil evaporation using SM data (Bindlish et al., 2001; Yao et al., 2017), or iii) retrieving 

the PT coefficient from vegetation indices (Fisher et al., 2008; Jin et al., 2011; Yao et al., 

2017) or from an interpretation of the LST-vegetation index feature space  (Jiang and Islam, 

2001; Pérez et al., 2017; Wang et al., 2006). While LST, vegetation indices and SM are 

alternatively used by satellite-based PT approaches, few studies have combined all three data 

types. In fact, most studies have compared LST-based versus SM-based ET models separately 

(Gokmen et al., 2012; Kustas et al., 2003, 1998; Li et al., 2006). Given that SM controls the 

soil temperature (via the soil evaporation) and that LST integrates both soil and vegetation 

temperatures, the main issue to integrate simultaneously SM and LST into an unique model is 

to ensure a robust convergence of soil/vegetation temperatures (Kustas et al., 2003; Li et al., 

2006) and associated evaporation/transpiration fluxes. The recent studies of Li et al. (2015) 

and Song et al. (2016b) combined LST and SM to better constrain ET but both approaches 

relied on a priori reduction coefficients of potential ET. Reduction coefficients of potential ET 

are equivalent to the soil evaporative efficiency (defined as the ratio of actual to potential 

evaporation, e.g. Merlin et al., 2016) and to the vegetation stress functions (defined as the 

ratio of actual to potential transpiration, e.g. Hain et al., 2009) for the soil and vegetation 

component, respectively. The point is there is no universal parameterization of both soil 

evaporation efficiency and vegetation stress functions. Alternatively, Sun et al. (2012) 

proposed an innovative assimilation method to calibrate the parameters of a SVAT (Soil 

Vegetation Atmosphere Transfer) model from available remote sensing variables including 

LST and SM. Assimilation results improved ET estimates but the retrieved parameters were 

mostly conceptual due to the simplicity of the surface model used. 

First of all, the modification of the PT-based TSEB formalism (Norman et al., 1995) to 

integrate LST and SM data simultaneously (the modified version is named TSEB-SM), as 

well as the calibration procedure of TSEB-SM to retrieve the main parameters of soil 

evaporation (soil resistance) and plant transpiration (αPT) are described in chapter 3. In the 

present chapter, the approach is tested over three irrigated wheat crops in the Tensift basin, by 

using in-situ data, central Morocco. In each case, the calibration procedure is tested and the 
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TSEB-SM latent and sensible heat fluxes are evaluated and compared against the original 

TSEB simulations.  

V.2. TSEB-SM Model Description and Implementation 

The TSEB-SM is the modified version of TSEB model, by using in addition to LST and fc 

data, the near-surface soil moisture (SM) as an extra constraint on soil evaporation. A 

calibration procedure is proposed to retrieve three key parameters: αPT and the pair parameters 

(arss,brss) of a soil resistance formulation. Specifically, arss,  and brss are retrieved at the 

seasonal time scale from SM and LST data with fc ≤ fc,thres, while αPT is retrieved at the daily 

time scale from SM and LST data for fc > fc,thres. The TSEB-SM is tested over 1 flood- and 

2 drip-irrigated wheat fields using in-situ data collected during two field experiments in 2002-

2003 and 2016-2017.  

V.3. Retrieving  (𝐚𝐫𝐬𝐬, 𝐛𝐫𝐬𝐬) and αPT parameters 

V.3.1. Calibration first step 

Figure V.1 plots the iterative values of arss, brss and mean αPT during calibration step 1. 

Iteration 0 corresponds to default values. The convergence of all three parameters is very fast, 

requiring only 2 or 3 iterations for achieving a relative error better than 1%. This result 

confirms the appropriateness of separating the calibration range in fc intervals where one 

parameter has significantly more weight on simulation results (i.e. simulated LST and 

associated fluxes) than the others. The calibrated pair (arss, brss) is (5.67, 1.40), (6.51, 3.82) 

and (9.47, 6.87) for the flood-, controlled drip- and reference drip-irrigated field, respectively. 

The mean retrieved values (7.2, 4.0) are relatively close to those estimated in Sellers et al. 

(1992) (8.2, 4.3). The variability of arss and brss can be explained by numerous factors such 

as soil texture (Merlin et al., 2016) and meteorological conditions (Merlin et al., 2011). 

Nevertheless, retrieved parameters are significantly different for both drip sites whereas they 

i) are located about 200 m apart only and ii) have similar soil texture and meteorological 

conditions. In fact, retrieved arss is an increasing function of retrieved brss due to 

compensation effects between arss and brss for a given SM and LST observation pair and 

regardless of soil properties and meteorological conditions. Such compensation reveals the 

empirical nature of the rss formulation in Sellers et al. (1992).  
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The mean value of αPT at the semi-hourly time scale (see Figure V.2) is 0.81, 0.88 and 1.24 

for the flood-, controlled drip- and reference drip-irrigated wheat fields, respectively. Note 

that the mean value is very close to the theoretical αPT value for the reference drip-irrigated 

field case. It is suggested that fg generally equals 1 at the maximum of αPT (peak of ET), so 

that the maximum αPT value is directly comparable to its default value (1.26) corresponding to 

fully unstressed conditions (Priestley and Taylor, 1972). Nonetheless, the mean αPT is 

significantly smaller than the default value for the flood- and controlled drip-irrigated cases. 

Lower values can be associated with stress conditions that may have occurred during the crop 

development. 

 

Figure V. 1. Iterative values of 𝑎𝑟𝑠𝑠,(a), 𝑏𝑟𝑠𝑠 (b) and mean value of retrieved αPT  (c) for the flood-, 

controlled drip- and reference drip-irrigated wheat fields separately (calibration step 1). 

V.3.2. Calibration 2nd step  

Figure V.2 plots the time series of daily retrieved αPT for each site separately. It can be seen 

that the maximum value of daily αPT varies from field to field. It is estimated as 1.8, 2.10 and 

2.82 for the flood-, controlled drip- and reference drip-irrigated fields, respectively. It is 

clearly observed that the values related to drip irrigation are significantly greater than the 

values related to flood irrigation. This could be explained by the difference in agricultural 
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practices of each field (sowing date, irrigation events, rainfall and fertilization) as well as 

uncertainties in retrieved αPT. Two effects are likely to explain the highly variable and 

excessively high retrieved αPT values over the drip irrigated site for the first few daily 

retrievals. First, it is reminded that αPT is retrieved for fc > 0.5. When fc is slightly larger than 

0.5 (that is on the first few retrieval days of the season), large uncertainties in retrieved αPT are 

expected because the soil surface still plays a significant role in the observed LST. Little 

response is shown for the first two months over the flood irrigation field, because the flux 

measurements over this site started when wheat was already well developed (fc significantly 

larger than 0.5). Second, the R3 site is surrounded by homogeneous irrigated wheat fields 

while the drip irrigated fields are surrounded by dryland, which potentially reinforces 

advection effects, leading to enhanced retrieved αPT. Note that the retrieved αPT values above 

2 and near 0 are due to the uncertainties in LST-derived daily estimates, especially during the 

periods when wheat is partially covering the soil. 

As explained above, a smoothing function is applied to reduce uncertainties in daily αPT. The 

smoothing length (it is one parameter of the smoothing function) is set to 10% of the total 

time series, that is about 10-20 days. Such a smoothing procedure is justified by the fact that 

both biomass and root-zone soil moisture commonly change across the agricultural season 

with a characteristic time of 1 to 2 weeks (Albergel, 2008). Furthermore, Figure V.2 clearly 

shows that the smoothing function removes all outliers while capturing significant patterns at 

the quasi daily scale. The smoothed αPT ranges from 0.03 to 1.22, 0.17 to 1.26 and 0.61 to 

1.38 for the flood-, controlled drip- and reference drip-irrigated wheat, respectively.     
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Figure V. 2. Time series of daily retrieved and smoothed αPT  for the (a) flood-, (b) controlled drip- 

and (c) reference drip-irrigated wheat fields, separately (calibration step 2). 

V.3.3. Calibration 3th step  

The normalization in Equation (3.27) of smoothed αPT between its assumed minimum value 

(0) and smoothed maximum value makes the calibrated daily αPT range from 0 to 1.22, 0 to 

1.26 and 0 to 1.38 for the flood-, controlled drip- and reference drip-irrigated fields, 

respectively. Time series of calibrated daily αPT are presented in Figure V.3 superimposed 

with fc for comparison purposes. The maximum calibrated daily αPT is close to the theoretical 

value of 1.26 in each case. However, its temporal variability is found to be significant even 

during the growing stage of wheat. Calibrated daily αPT is more stable for the reference drip 

field than for both flood and controlled drip fields, with a relative change during the growing 
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period of 8.08% compared to 26.94% and 22.66% for the other two fields, respectively. This 

result is consistent with the fact that the reference drip field had been irrigated according to 

the water needs estimated by the FAO-56 method while the other two fields (flood and 

controlled drip) had been under water deficit conditions for one or several periods during the 

growing stage. Note that the controlled-drip field has a special feature in terms of αPT daily 

dynamics. The maximum value is reached by the beginning of March, which is much earlier 

than the αPT peak observed at the reference drip (around late April) and flood (beginning of 

May) fields, although wheat was sowed on the same date as reference drip field. It is 

suggested that the controlled drip-irrigated wheat did not recover well from the first 

(relatively long) stress period from 22/02/2017 to 06/03/2017. The irrigation water supplied 

after mid-March was probably not sufficient for the wheat of controlled drip field to catch up 

with the reference drip-irrigated wheat, even if the amount of water used for irrigation after 

this period was approximately the same (about 166 mm).  
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Figure V. 3. Time series of calibrated daily αPT, superimposed with fc for the (a)  flood-, (b) controlled 

drip- and (c) reference drip-irrigated wheat fields, separately. The red segments represent irrigations 

during the season. 

V.4. Results 

V.4.1. Interpretation of αPT variabilities 

αPT is expected to vary according to several factors including LAI, green fraction cover and 

soil water availability. In order to verify the consistency of the variations in daily retrieved 

PT, Figure V.4 presents the time series of calibrated daily αPT superimposed with near-

surface (5-cm) soil moisture, deeper (30-cm) soil moisture and VWC for each site separately. 

It is reminded that VWC was available for the controlled- and reference drip-irrigated wheat 

fields only and that the daily αPT for fc ≤ 0.5 is set to the mean daily αPT obtained for fc >

0.5(see Figure V.3). Therefore, the variability of αPT should be interpreted for fc > 0.5 only, 

that is from fc= 0.5 until harvest. Figure V.4 illustrates the expected relationships between αPT 

and both biomass (related to VWC) and the water availability in the soil column. In each case, 

the αPT dynamics are driven by soil moisture variations and the maximum αPT values clearly 

follows an envelope defined by the amount of green biomass. In fact, the contour line that 
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interpolates αPT peaks generally increases up to the maximum of VWC and then decreases as 

the green vegetation fraction starts to decline at the onset of senescence. Note that the 

maximum of VWC may not necessarily coincide perfectly with the maximum of αPT since αPT 

is also affected by soil water availability. In the case of controlled drip field, the maximum of 

αPT appears significantly sooner than the maximum of green biomass. This is explained by a 

lack of moisture in the soil in this crop field as depicted by the strong drop in the 30-cm soil 

moisture from early February. This can also be explained by the fact that fertilization 

(nitrogen) was provided to the plant via irrigation water. Hence, a deficit in irrigation had the 

dual effects of decreasing soil water availability and depleting the soil in nutrient compared to 

the reference drip field.  

The qualitative analysis of αPT variability in relation to soil water availability and the amount 

of green biomass thus indicates that αPT cannot be considered as a constant. Large variations 

in this parameter are likely to occur during the agricultural season, especially under stress 

conditions. Water deficit may happen with flood irrigation when the frequency of water 

supplies (every 3 weeks on average over R3) is relatively low compared to the water demand 

under such semi-arid conditions. Indeed the water stress observed in the flood-irrigated wheat 

may be attributed to the increase in water depletion at the root zone through a removal of 

water by transpiration and percolation losses (Er-Raki et al., 2007). Water stress may also 

happen with drip when the technique is not appropriately implemented or by applying 

regulated deficit irrigation.  
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Figure V. 4. Time series of 𝛼𝑃𝑇,𝑐𝑎𝑙,𝑑𝑎𝑖𝑙𝑦  superimposed with 5-cm/30-cm soil moisture (SM) and 

vegetation water content (VWC) for: (a) flood-, (b) controlled drip- and (c) reference drip-irrigated 

fields, respectively. For the flood-irrigated wheat, VWC is unavailable. 

V.4.2. Surface fluxes 

The ability of TSEB and TSEB-SM for partitioning the available energy into H and LE is 

assessed by forcing -in each case- Rn and G to their measured values. Note that the calibration 

of TSEB-SM is still undertaken using observed LST, SM and fc whereas the validation of 

TSEB and TSEB-SM model output is undertaken using EC measurements of H and LE. The 
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metrics used to evaluate results comprise the determination coefficient (R2), the root mean 

square error (RMSE) and the mean bias error (MBE) between simulated and observed fluxes. 

Figure V.5 plots simulated versus observed LE for the three sites separately. TSEB provides 

satisfying results for the flood site with a RMSE of 78 W/m2 and a relative error (estimated as 

RMSE divided by mean observed LE) of 27%. However, two notable features are observed 

for the other two (controlled and reference drip) sites: i) the LE simulated by TSEB never 

exceeds 500 W/m2 over the entire growing season (fc > 0.5) although observations reach 700 

W/m2 and ii) the overall MBE is about 29 W/m2 and 66 W/m2 for the controlled and reference 

drip field respectively, meaning that TSEB also overestimates LE in the lower ET range. To 

dig deeper, the performance of TSEB is now assessed by analyzing the metrics computed for 

three distinct periods of the agricultural season: the period for fc ≤ 0.5, for fc > 0.5  and the 

senescence stage. Note that the senescence period is defined herein as starting after the last 

peak observed on the calibrated daily αPT (becomes remarkable after about one week) and 

finishing when green fraction cover becomes zero, which corresponds to the last date of the 

three time series. Hence the senescence starts on 27/04/2003, 19/04/2017 and 15/04/2017 for 

the flood-, controlled drip- and reference drip-irrigated field, respectively. A visual 

assessment of scatter plots in Figure V.5 and the statistics presented in Table V.1 clearly 

indicate that TSEB underestimates LE fluxes at around the maximum of ET (well developed 

crop before senescence) while it overestimates LE fluxes during senescence until harvest. The 

saturation of TSEB in the higher range of ET is due to the fixed maximum value for αPT 

(equal to 1.26). The structure of the model cannot accommodate large evaporative demand 

conditions and strong advective conditions (Song et al., 2016a).     

Both limitations identified in the TSEB formalism seem to be partly solved by the TSEB-SM 

approach. In particular, the LE simulated by TSEB-SM (Figure V.5) is closer to the 1:1 line in 

each case (fc ≤ 0.5 and fc > 0.5 and the senescence), providing a quite significant 

improvement for drip sites. The simulated LE does not saturate as it reaches 700 W/m2 over 

the reference drip site. In fact, the retrieval of daily αPT values larger than the theoretical 

maximum 1.26 significantly improves ET estimates. Moreover, the overestimation of LE 

during the senescence stage is much reduced for TSEB-SM. It is suggested that the decrease 

in calibrated daily αPT integrates the drop in green vegetation fraction that takes place during 

senescence. 
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Figure V. 5. Scatterplot of simulated versus observed LE for the (top) food-, (middle) controlled drip- 

and (bottom) reference drip-irrigated fields and for (left) TSEB-SM and (right) TSEB models, 

respectively. 

The comparison between TSEB and TSEB-SM is continued by plotting simulated versus 

observed H for each site in Figure V.6. Consistent with previous results obtained for LE, the 

calibration strategy within TSEB-SM provides in general a significantly improved RMSE 

compared to the original TSEB. The RMSE is 49 W/m2 instead of 73 W/m2, 78 W/m2 instead 

of 78 W/m2 and 119 W/m2 instead of 128 W/m2 for the flood-, controlled drip- and reference 

drip-irrigated field respectively. The determination coefficient between simulated and 

observed H is significantly improved from 0.61 to 0.67, from 0.37 to 0.75 and from 0.29 to 

0.82, respectively when including calibrated parameters to TSEB-SM. 

One can observe that the slope of the linear regression between TSEB and in-situ H is very 

low in all cases. The modeled H does not seem to be sensitive enough to changes in surface 

and atmospheric conditions during all three periods (fc ≤ 0.5, fc > 0.5 and senescence).  
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Figure V. 6. Scatterplot of simulated versus observed H for the (top) food-, (middle) controlled drip- 

and (bottom) reference drip-irrigated fields and for (right) TSEB and (left) TSEB-SM model, 

respectively. 

Table V. 1. Error statistics (RMSE, R2 and MBE) between  modeled and measured sensible and latent 

heat fluxes for the flood, controlled drip- and reference drip-irrigated fields, and for TSEB and TSEB-

SM model, separately (Rn and G are forced to their measured value) 

  TSEB-SM TSEB 

  RMSE 

(W/m2) 

R2 

(-) 

MBE 

(W/m2) 

RMSE 

(W/m2) 

R2 

(-) 

MBE 

(W/m2) 

 

Latent 

heat flux 

(LE) 

Flood 49 0.79 -4 78 0.79 66 

Controlled drip 73 0.64 -6 119 0.22 29 

Reference drip 78 0.86 56 128 0.28  66 

 

Sensible 

heat flux 

(H)  

Flood 49 0.67 4 78 0.61 -66 

Controlled drip 73 0.75 7 119 0.37 -29 

Reference drip 78 0.82 -56 128 0.29 -66 
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The intercomparison between TSEB and TSEB-SM is finally undertaken by simulating the 

available energy, instead of forcing Rn and G to their measured values as in Table V.1. Table 

V.2 reports the error statistics for the four energy fluxes separately. The larger discrepancies 

for LE estimated from TSEB-SM model in this case is likely due to greater scatter between 

modeled and measured Rn, which is related to the difference between simulated and observed 

LST. Note also that the determination coefficient between simulated and measured G is about 

0.4-0.5 for both TSEB and TSEB-SM and all three sites. This is linked in part to the relatively 

small magnitude and range in the observed values combined with the simplicity of the 

approach used to estimate G. Overall, the simulations of LE and H when modeling Rn and G 

are fully consistent with those obtained when forcing Rn and G to their measured values. 

TSEB-SM still provides superior results to TSEB in terms of RMSE, R2 and MBE between 

simulated and observed fluxes. Especially the sensible heat flux is significantly improved in 

all cases.  

Table V. 2. Error statistics (RMSE. R2 and MBE) between modeled and measured net radiation, 

conductive flux, and sensible and latent heat fluxes for the flood, controlled drip- and reference drip-

irrigated fields, and for TSEB and TSEB-SM model, separately. 

  TSEB-SM TSEB 

  RMSE 

(W/m2) 

R2 

(-) 

MBE 

(W/m2) 

RMSE 

(W/m2) 

R2 

(-) 

MBE 

(W/m2) 

 

Net 

radiation 

(Rn) 

Flood 31 0.98 -25 18 0.99 -17 

Controlled drip 27 0.98 -10 16 0.99 1 

Reference drip 50 0.95 -32 9 0.99 1 

 

Conductif 

flux (G) 

Flood 23 0.41 2 22 0.43 1 

Controlled drip 20 0.5 9 25 0.48 12 

Reference drip 14 0.39 14 30 0.38 26 

 

Sensible 

heat flux 

(H)  

Flood 27 0.66 34 78 0.61 -67 

Controlled drip 61 0.82 8 118 0.38 -28 

 

V.5. Summary and Conclusions  

A new evapotranspiration model named TSEB-SM is derived from the TSEB formalism by 

explicitly representing soil evaporation using a soil resistance. An innovative calibration 
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approach is also developed to retrieve the main parameters of soil evaporation and plant 

transpiration via the soil resistance and αPT respectively. In practice the soil resistance 

parameters are retrieved at the seasonal time scale from SM and LST data with fc ≤ 0.5. 

While αPT is retrieved at the daily time scale from SM and LST data for fc > 0.5. The 

performance of TSEB-SM and TSEB models is assessed in terms of LE and H partitioning 

using an in-situ data set collected over 1 flood- and 2 drip-irrigated wheat fields.  

The convergence of the iterative calibration procedure on (arss, brss) and αPT is successfully 

tested when all three parameters are estimated at the seasonal time scale, as well as when 

considering a daily variability of αPT. The maximum calibrated daily αPT is close to the 

theoretical value of 1.26 for all three sites. However, its temporal variability is found to be 

significant even during the growing stage of wheat. A qualitative analysis of αPT variabilities 

in relation to soil moisture at 5 cm and 30 cm depth and to VWC indicates that αPT cannot be 

considered as a constant in the conditions of the experiments. Large deviations about the 1.26 

value are likely to occur during the agricultural season especially under dry, water deficit and 

advective conditions. 

In terms of flux estimates, TSEB provides satisfying results for the flood site but not for the 

other two (controlled and reference drip) sites. The saturation of TSEB in the higher range of 

ET is due to the fixed maximum value for αPT (equal to 1.26). Moreover, the overestimation 

of LE by TSEB during senescence is associated with a very low sensitivity of simulated H to 

any surface/atmospheric conditions. Both limitations identified in the TSEB formalism seem 

to be partly solved by the TSEB-SM approach with a slope of the linear regression between 

simulated and observed LE/H much closer to 1 in all cases. Such an evapotranspiration model 

simultaneously constrained by LST, fc and SM seems to respond robustly in terms of LE/H 

partitioning for wheat crops under the conditions of the experiments. However, the calibrated 

daily αPT needed to be i) smoothed to reduce random uncertainties and ii) normalized between 

its two extreme values since the 0 value was not necessarily reached at harvest.  

In the next chapter, the microwave-derived near-surface soil moisture (SM), in addition to the 

thermal-derived LST and fractional vegetation cover (fc) will be used to investigate how 

remote sensing data can be used to derive the main parameters (arss, brss and αPT) of TSEB-

SM model. In this purpose, TSEB-SM at 1 km resolution using MODIS (Moderate resolution 

imaging spectroradiometer) LST/ fc data and SMOS SM data will be applied. To make the 

SMOS data spatially consistent with MODIS data, the SMOS SM is disaggregated at 1 km.
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VI.1. Introduction  

The TSEB-SM model was tested in the previous chapter using in-situ measurements. The 

model provided an important improvement in terms of latent heat flux/sensible heat flux 

estimates compared to the classic TSEB all along the agricultural season, especially during 

the crop emergence and the senescence periods. Such improvements are attributed to stronger 

constraints exerted on the representation of soil evaporation (via SM data and the calibrated 

soil parameters) and plant transpiration (via the calibrated daily PT coefficient). It is reminded 

that TSEB-SM is based on the original TSEB formalism, meaning that the energy balance for 

vegetation is the same as in TSEB using the PT formula, while the soil evaporation is 

explicitly represented (contrary to TSEB) as a function of SM via a soil resistance term. The 

use of the soil resistance formulation is justified by the fact that its main parameters (arss, 

brss) can be calibrated from soil texture information (Merlin et al., 2016) or a combination of 

SM and LST data under bare (Merlin et al., 2018) or partially covered (Ait Hssaine et al., 

2018b) soil conditions. 

In this part, the TSEB-SM will be applied at 1km resolution using remote sensing data 

including thermal-derived LST and NDVI and DisPATCh SM in order to provide surface 

energy fluxes over a rainfed wheat field in the Tensift basin, central Morocco during four 

agricultural seasons. 

VI.2. TSEB-SM Model improvements 

Two improvements are made on the former of TSEB-SM, First, the calibration of αPT is 

bounded by a minimum (0) and maximum (2) acceptable physical value, in order to avoid 

unacceptable values of αPT that can be produced due to the uncertainties in LST-derived daily 

estimates. Such an upper bounding is especially needed when vegetation partially covers the 

soil. Second, the output fluxes are normalized using the LST-derived available energy. 

Therefore, the new version of TSEB-SM uses both LST and SM data (in addition to 

vegetation cover fraction data) as forcing on a daily basis. In practice, the latent and sensible 

heat fluxes derived from the TSEB-SM model are re-computed using the TSEB-SM derived 

evaporative fraction (EF, defined as the ratio of latent heat to available energy) and the LST-

derived available energy. The rationale is that numerous modelling studies have shown the 

regularity and constancy of EF during daylight hours in cloud-free days (Gentine et al., 2011; 
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Lhomme and Elguero, 1999; Shuttleworth et al., 1989) and the EF has a strong link with SM 

availability (Bastiaanssen and Ali, 2003), which is an important factor for estimating latent 

heat flux. For that purpose, the LST data collected at the Terra and Aqua-MODIS overpass 

times are used separately to estimate the instantaneous Rn and G. A ratio between the daily 

(obtained as an average value between Aqua and Terra overpass times) latent heat flux LEdaily  

and the daily available energy (Rn,daily-Gdaily) is used to calculate an average daily EF: 

EF =
LEdaily

(Rn,daily−Gdaily)
                  (VI.1) 

         

The daily EF and the instantaneous available energy (calculated using Terra and Aqua 

MODIS LST, separately) are finally used to re-calculate the instantaneous TSEB-SM output 

of LE and H by the following formulas: 

LE = EF ∗ (Rn − G)                  (VI.2) 

H = (1 − EF) ∗ (Rn − G)                 (VI.3) 

VI.3. Accuracy of Remote Sensing data 

The LST collected by MODIS at Terra and Aqua overpass times and the SM product derived 

at 1 km resolution from the DisPATCh algorithm applied to SMOS data, are used as input to 

TSEB and TSEB-SM models. Validation of TSEB and TSEB-SM input data prior to the 

evaluation of models output is an important issue, notably due to the scale mismatch existing 

between the spatial resolution (1 km) of MODIS/DisPATCh data and the footprint of the EC 

flux measurements that does not exceed 100 m (Schmid, 1994).  

Several studies have demonstrated the effectiveness of DisPATCh 1km resolution SM.  

Malbéteau et al. (2016) compared DisPATCh SM data with the in-situ measurements of 38 

stations distributed within the Murrumbidgee catchment in Southeastern Australia. Their 

results showed that DisPATCh improved the spatial representation of SM at 1 km resolution 

(compared to the original 40 km resolution SMOS SM) independently from the temporal 

information provided by SMOS satellite, especially in semi-arid areas. Recently, Malbéteau et 

al. (2018) combined the DisPATCh SM over the entire year 2014 (Sidi Rahal-Morocco) with 

the continuous predictions of a surface model in order to obtain a better estimate of daily SM 

at 1 km resolution. They found that the assimilation of DisPATCh data improved quasi 

systematically the dynamics of SM.  
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Figure VI.1 displays the scatter plots of MODIS LST (at Terra and Aqua overpass) versus in-

situ measurements for the four agricultural seasons separately. The obtained R2, RMSE, and 

MBE are reported in Table VI.1. The statistical comparison shows strong linear correlations 

(0.76 ≤ R2 ≤ 0.90) for all years. The RMSE is around 4 K for S2 (2016-2017) and S3 (2017-

2018) agricultural seasons while it reaches 6 K for S1 (2014-2015) and B1 (2015-2016), 

respectively. The observed scatter may stem from the fact that the localized (1 or 2 m wide) 

in-situ LST is not fully representative of the 1 km resolution MODIS pixel (Ait Hssaine et al., 

2018b; Yu et al., 2017). For all years (S1-3, B1), it can be seen that the MBE is negative. 

Note that the MBE is the greatest when the temperatures are largest. Such a systematic error 

is probably due to the non-representativeness of the in-situ LST observations when compared 

to the corresponding scale of MODIS observations. 

 

Figure VI. 1. Scatter plots of MODIS versus in-situ LST at Sidi Rahal site for S1 (2014-2015), B1 

(2015-2016), S2 (2016-2017) and S3 (2017-2018) agricultural seasons, separately, (red dashed line is 

the line(1:1)-black line is the regression line) 
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Table VI. 1. Validation results of DisPATCh SM and MODIS LST at Sidi Rahal site. 

 Period R2 RMSE MBE 

LST 

S1 0.80 6.4 (K) -3.7 (K) 

B1 0.76 5.6 (K) -4.6(K) 

S2 0.91 4.3 (K) -2.9 (K) 

S3 0.89 4 (K) -2 (K) 

SM 

S1 0.55 0.07 m3/m3 -0.04 m3/m3 

B1 0.36 0.04 m3/m3 -0.03 m3/m3 

S2 0.27 0.09 m3/m3 -0.05 m3/m3 

S3 0.47 0.08 m3/m3 -0.03 m3/m3 

 

In order to evaluate the 1 km resolution SM during the study period, Figure VI.2 shows a 

comparison of DisPATCh SM with in-situ measurements for the four wheat agricultural 

seasons (S1, B1, S2 and S3) separately. The statistical results including the coefficient of 

determination (R2), the root mean square error (RMSE), and the mean bias error (MBE) are 

reported in Table VI.1. The R2 ranges from 0.27 to 0.55, the RMSE from 0.04 to 0.09 m3/m3 

and the MBE from -0.05 to -0.03 m3/m3. These results are encouraging considering the 

heterogeneous land use composed of rainfed wheat, bare soil, fallow and farm building (see 

Figure VI.3). In fact the localized in-situ measurements may not be perfectly representative of 

the 1 km resolution satellite data. Note that the efficiency of DisPATCh is supposedly higher 

for low SM values (Malbéteau et al., 2016), which is clearly illustrated during B1 season, 

while it is lower for high SM values (after rain events). This can be explained by the 

constraints of atmospheric and vegetation conditions on disaggregation results, as well as the 

saturation of SEE in the higher SM range. Another major issue that can lead to differences 

between DisPATCh and in-situ SM is that the ground SM sensors are buried at a depth of 5 

cm while the penetration of the L-band wave varies between 2 and 5 cm depending on soil 

conditions (notably SM content, texture). For S2, the SM provided by DisPATCh 

underestimated field measurements, especially in the higher SM range. This particular 

behaviour could be explained by the particularly low precipitation amount during this year. 

Especially, it is possible that the surrounding plots were not sown by neighbour farmers, 

resulting in a soil that dried quickly compared to our field, which retained the SM for a longer 

period of time. 
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Note that despite the relative heterogeneity within the 1 km pixel (characterized by rainfed 

wheat in addition to bare soil and fallow), the comparison between field measurements and 1 

km resolution satellite data reflects acceptable accuracies.  
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Figure VI. 2. Scatter plots of the 1 km resolution DisPATCh versus in-situ SM at Sidi Rahal site for S1 

(2014-2015), B1 (2015-2016), S2 (2016-2017) and S3 (2017-2018) agricultural seasons, separately. 

 

Figure VI. 3. NDVI image derived from Landsat data acquired on 17/04/2018. The experimental field 

and the overlaying 1 km resolution MODIS pixel are superimposed 
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VI.4. Retrieving  (𝐚𝐫𝐬𝐬, 𝐛𝐫𝐬𝐬) parameters 

The soil resistance rss is inverted for fc ≤ fc,thres, between 11 am and 2 pm and at Terra and 

Aqua overpass time step for in-situ and satellite data, respectively. The inverted rss is then 

correlated to the ratio SM/SMsat to estimate arss and brss parameters. These latter are the 

intercept of the linear regression between the log (rss) and SM/SMsat relationship. The 

calibration process is applied for each season independently. Then a pair (arss, brss) is 

calculated for the entire study period for in-situ and satellite data, respectively. 

Figures VI.4.a and VI.4.b plot the log (rss) versus in-situ SM/SMsat using in-situ and satellite 

data, respectively. The mean retrieved values (7.62, 2.43) and (7.32, 4.58) for in-situ and 

satellite data, respectively, are relatively close to the values estimated in Sellers et al. (1992) 

(8.2, 4.3) and in Ait Hssaine et al. (2018b) (7.2, 4). However, by comparing both figures 

(VI.4.a and VI.4.b), one notes that the use of in-situ data generates more scatter than with 

satellite data. The apparent scatter in retrieved rss could be interpreted by the impact of the 

daily cycle of meteorological (evaporative demand) conditions  or soil properties differences 

(Merlin et al., 2011; 2016; 2018). The retrieved soil parameters also vary from year to year: 

the standard deviation is 0.39 and 1.69 for arss and brss, respectively. This can be explained 

by the compensation effects between arss and brss parameters which justifies the empirical 

nature of the rss formulation in Sellers et al. (1992).  Another major issue that can lead to 

these differences is the depth of SM measurements (Merlin et al., 2011). In Sellers et al. 

(1992), the near-surface soil moisture is defined in the 0-5-cm soil layer, whereas in our field, 

SM measurements are made at 5-cm depth. Also, the sensing depth of SMOS observations is 

generally shallower than the in-situ surface measurements (Escorihuela et al., 2010). 

Moreover, the variability of arss and brss in Fig. 5b using remote sensing data can be linked 

to the scale difference between DisPATCh SM/MODIS products (1 km) and the field 

measurements. As shown in Figure VI.3, the field is surrounded by trees, buildings and 

fallows, which causes the spatial heterogeneity within the pixel of 1 km. This heterogeneity 

can introduce errors on the model inversion. Nevertheless, soil parameters are quite similar 

for in-situ and satellite data sets. Therefore, the heterogeneity issues within the 1 km pixel 

scale are minor in this study. 
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Figure VI. 4. log(𝑟𝑠𝑠) versus SM/𝑆𝑀𝑠𝑎𝑡 (calibration step 1) using in-situ (a)  and satellite (b) data. 

VI.5. αPT variablities 

The second calibration step consists in inverting the daily αPT when vegetation is covering a 

significant part of soil (fc> fc,thres), for the three seasons of rainfed wheat (S1, S2 and S3), by 

using in-situ data and satellite data, separately. It is reminded that the daily αPT for fc≤fc,thres 

is set to the mean daily αPT obtained for fc> fc,thres (Ait Hssaine et al., 2018b).  

VI.5.1. Using in-situ data 

Figure VI.5 plots the time series of daily retrieved αPT for each season (S1, S2 and S3) 

separately, using in-situ data. The mean retrieved values of αPT are 1.26, 1.12 and 1.09 for S1, 

S2 and S3 respectively. In all cases, the mean αPT is close to the theoretical αPT value (1.26). It 

is well observed that the retrieved αPT for S1 is slightly larger compared to those obtained for 

both S2 and S3. This can be explained by the timing and amount of rainfall during each 

season. Note that unexpected low values of αPT are recorded for S3 during the first few days 

(25 January-4 March) of the development stage. They may be associated with uncertainties in 

retrieved αPT as the soil surface could still play a significant role in the observed LST, as well 
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as to a relatively low evaporative demand especially since this period coincides with cloudy 

days and abundant precipitations. Indeed, the coupling between transpiration (and hence 

retrieved αPT) and LST is expected to be lower under lower atmospheric demand. 

The retrieved αPT is then smoothed as in Ait Hssaine et al. (2018b) to remove outliers and to 

reduce uncertainties at the daily time scale. The smoothed values of αPT range from 0 to 1.54, 

0 to 1.38 and 0.45 to 1.43 for S1, S2 and S3 respectively. The maximum of αPT is close to 

1.26 for S2, while it is higher for S1 and S3. This result is in accordance with the total rainfall 

amounts which were about 608, 214 and 421mm for S1, S2 and S3 respectively. Additionally, 

one can state that the stability of αPT strongly depends on the rainfall distribution along the 

agricultural season. The daily αPT is more stable for S1 than for S2 and S3. Indeed, the 

amount of rain during S1 is very important with two peaks of about 83 mm that occurred at 

the beginning of the season and during the growing stage. The second one coincides exactly 

with the maximum value of the retrieved αPT. However, different results are obtained for S2 

compared to S1 due to the lowest precipitation amount recorded over that season. As shown 

in Fig. 6 the amount of rain is concentrated at the beginning of the growing stage (mid 

December), when the αPT peaks. Afterward, the smoothed αPT tends to decrease because of 

insufficient soil water reserve in the root zone to enable wheat to continue growing. Rainfall 

is also significant for S3 and every rainfall event causes an immediate (daily) response of αPT 

(after 4
th March). As mentioned before, the significant error in αPT retrievals for S3 between 

25 January and 4 March induces strong uncertainties in the smoothing function estimates. 

VI.5.2. Using satellite data 

Figure VI.5 illustrates the time series of daily retrieved αPT for each season separately, using 

satellite data. It can be seen that S1 and S2 have a very similar distribution of the retrieved αPT 

as compared to the retrieved αPT using in-situ data, respectively. For S3, only six retrieved αPT 

values are available because of the non-availability of MODIS products during cloudy days. 

For this reason, no information linked to the variability of αPT can be derived during this 

season. The retrieved values are smoothed and superimposed with the rainfall events. It is 

clearly shown that the smoothed αPT for S1 and S2 have the same shape with a small 

variability, when comparing with the smoothed αPT using in-situ data, with a relative error 

(estimated as the RMSE divided by the mean αPT) of about 11 and 19 %, for S1 and S2 

respectively. For S1 the maximum of smoothed αPT is reached at the same time as when using 

the in-situ data, with a value of about 1.38, while the maximum for S2 is reached 10 days 

before the maximum of the αPT derived from in-situ data with little response of αPT to rainfall 
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events. These differences may be linked to uncertainties in disaggregated SMOS SM, as well 

as to the weaker availability of satellite data. Because of the small number of data points 

(retrieved αPT) during S3, the smoothed αPT remains at a mostly constant value (~0.7) 

throughout the study period, with a significant relative difference of about 34 % when 

comparing with the αPT  retrieved using in-situ data. 

 

Figure VI. 5. Time series of daily retrieved and smoothed αPT (calibration step 2-using in-situ data, 

and satellite data) collected during S1, S2 and S3. 

VI.5.3. Interpretation of αPT variabilities 

Figure VI.6 plots the time series of calibrated daily αPT, superimposed with NDVI and rainfall 

events. It is visible that the maximum value of NDVI appears sooner than the maximum value 

of αPT for both S1 and S3. Such a delay is attributed to the high soil moisture level in the root-

zone during the maturity stage. Later in the season, αPT decreases as NDVI starts to decline at 

the onset of senescence. In contrast, the maximum value of NDVI appears later than the 

maximum value of αPT for S2. This can be explained by the fact that rainfall at the beginning 

of the development phase satisfies the plant requirements, while the rainfall amount during 

the development stage is relatively low compared to the crop water needs (Kharrou et al., 

2011). Large variations in αPT occur during the agricultural season, as a result of the amount, 

frequency, and distribution of rainfall along the season. In general, the analysis of the αPT 

variability using satellite data illustrates the robustness of the proposed approach, which 
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combines microwave and optical/thermal data to retrieve a water stress indicator at the daily 

time scale. 

 

Figure VI. 6. Time series of calibrated daily αPT (red-using in-situ data, green- using satellite data) 

superimposed with NDVI and the rainfall events during S1, S2 and S3, separately. 

VI.6. Surface fluxes 

The robustness of TSEB and TSEB-SM for partitioning (Rn-G) into H and LE is evaluated by 

considering several hypothesis.1) Rn and G are forced to their measured values, for each 

season separately. 2) The calibration process of TSEB-SM is applied using in-situ and 

remotely sensed LST, SM and NDVI, separately, at the Terra and Aqua MODIS overpasses. 

3) The validation of TSEB and TSEB-SM model output is assessed by using EC 

measurements (H and LE). 4)The performance of TSEB is evaluated by analyzing the metrics 

computed for three distinct periods of each agricultural season: the period for 

fc≤(fc,thres =0.5), for fc >(fc,thres =0.5) and the senescence stage (starting after the last peak 

observed on the calibrated daily αPT and finishing at the end of the agricultural season), by 
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using the statistical results including R2, RMSE and MBE between simulated and observed 

fluxes. 

VI.6.1.  Using in-situ data 

Figure VI.7 shows an intercomparison of simulated and observed LE for the 4 seasons 

separately. TSEB-SM clearly provides improved results compared to the original TSEB. The 

obtained values of RMSE by TSEB-SM are about 68 and 72 W/m2 for S1 and S2 

respectively, which is significantly lower than those revealed by TSEB (109 and 86 W/m2, 

respectively) (see Table VI.2). For B1 (season of bare soil), TSEB largely overestimates LE 

with a MBE of about 165 W/m2 compared to TSEB-SM, which yields a MBE of 59 W/m2. 

This overestimation of TSEB is most probably related to an inadequate value of αPT (=1.26) 

for bare soil surfaces. In fact, 1.26 is an optimum value for the potential transpiration rate 

(Agam et al., 2010a; Chirouze et al., 2014). In the case of TSEB-SM, biases are reduced 

thanks to the calibration of the rss resistance. Additionally, according to TSEB-SM 

assumptions, αPT for fc≤0.5 is set to the average value of the αPT retrieved for fc >0.5. During 

B1 season (bare soil conditions), αPT was hence obtained as an average value of the mean αPT 

retrieved for all seasons S1, S2 and S3 when fc >0.5 (αPT~1). However, this value remains 

relatively high for a bare soil, which yields a slight overestimate of LE measurements (see B1 

case in Figure VI.7).  

For S3 season, the error on daily retrieved αPT at the beginning of the development stage has a 

strong impact on LE predictions and thus yields to greater discrepancies illustrated in Figure 

VI.7. To overcome this error, the threshold on fc to separate calibration steps 1 and 2 was 

increased to 0.63 (arbitrary value). The TSEB-SM model is then run using the new threshold. 

The LE simulations are improved, with a RMSE of 73 W/m2 instead of 98 W/m2 and a 

relative error (estimated as the RMSE divided by the mean observed LE) of about 42 % 

instead of 58 %. The increase in the threshold is intended to decrease the uncertainties in αPT 

retrievals when vegetation is not fully covering the soil. It can be concluded that the errors in 

αPT retrievals have a strong impact on LE estimates. 
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Figure VI. 7. Scatterplot of simulated versus observed LE for (top) TSEB and (bottom) TSEB-SM 

models using in-situ data collected during S1, B1, S2 and S3, respectively. 

The ability of TSEB-SM to estimate the sensible heat fluxes is also investigated. Figure VI.8 

displays the comparison between TSEB and TSEB-SM for each season and Table VI.2 

summarized the different statistical parameters. One can notice that TSEB shows greater 

discrepancies in H estimation, with a RMSE of about 127, 112 and 103 W/m2 and MBE of 

about -41, 1, and -71 W/m2 for S1, S2 and S3 respectively. Both RMSE and MBE values are 

generally much reduced when using TSEB-SM with RMSE values of about 68, 72, and 98 

W/m2 and MBE values of about -10, 24, and 7 W/m2, respectively. The slope of the linear 

regression between simulated (TSEB) and observed H is very low during B1. The simulated 

H does not seem to be sensitive enough to changes in surface and atmospheric conditions 

during all three stages (fc≤0.5, fc >0.5  and senescence) consistent with former results 

obtained on a different sites of irrigated wheat (Ait Hssaine et al., 2018b). The discrepancies 

between TSEB-SM and in-situ H during S3 are mostly rectified by using the new threshold on 

fc: the statistical results are improved, the RMSE is about 73 W/m2 and the relative error is 39 

% (instead of 52 %). It can be concluded that the uncertainty observed over the αPT during the 

first few days of development stage (25 January-4 March) is mainly related to the impact of 

the soil, which is not negligible during the first weeks of the growing stage. Nevertheless, by 

considering the overall results obtained for the 3 seasons, the threshold of fc,thres = 0.5 can be 

considered as an acceptable value to calibrate the soil resistance parameters and the Priestly 

Taylor coefficient. 
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Figure VI. 8. Same as Fig VI.7 but for H fluxes. 

Table VI. 2. Statistical results (RMSE, R2 and MBE) between modeled and measured sensible and 

latent heat fluxes for S1, S2, B1 and S3, and for TSEB and TSEB-SM model, separately (Rn and G are 

forced to their measured value). 

 

   

TSEB TSEB-SM 

   

RMSE R2 MBE RMSE R2 MBE 

Using in-

situ data 

LE 

(W/m2) 

S1 109 0.39 76 68 0.59 10 

B1 136 0.15 165 52 0.22 59 

S2 86 0.22 30 72 0.16 -24 

S3 103 0.53 71 98 0.29 -7 

H 

(W/m2) 

S1 127 0.33 -41 68 0.70 -10 

B1 136 0.44 -165 52 0.91 -59 

S2 112 0.47 1 72 0.63 24 

S3 103 0.38 -71 98 0.14 7 

Using 

satellite 

data 

LE 

(W/m2) 

S1 95 0.34 119 55 0.51 39 

B1 66 0.07 181 27 0.01 62 

S2 67 0.02 94 41 0.08 4 

S3 56 0.55 128 24 0.68 7 

H 

(W/m2) 

S1 98 0.3 -104 55 0.54 -39 

B1 66 0.37 -181 27 0.52 -62 

S2 73 0.33 -71 41 0.6 -4 

S3 56 0.28 -128 24 0.36 -7 
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As a further step, the intercomparison between TSEB and TSEB-SM is assessed by predicting 

Rn and G fluxes instead of forcing them to their measured values. The statistical results of the 

comparison between simulated and observed Rn, G, H and LE are listed in Table VI.3. The 

simulations of LE and H when modeling Rn and G are consistent with those obtained when 

forcing Rn and G to their measured values. The scattering obtained when comparing turbulent 

flux estimations to measurements is mainly related to the uncertainty in available energy 

estimates, mainly related to the uncertainty in soil heat flux estimates. Indeed, as reported in 

Table VI.3, Rn is very well simulated for both TSEB and TSEB-SM. The R2 between 

simulated and observed Rn is about 0.99 during all seasons. Meanwhile G shows a poor 

correlation, with an R2 varying from 0.05 to 0.45. This is mainly linked to the simplicity of 

the approach used to estimate G, which requires local calibration. Kustas et al. (1998) hence 

indicated that the ratio G/Rn,soil cannot be considered as a constant, because it is affected by 

different factors such as time of day, moisture conditions and soil texture and structure.  

VI.6.2. Using satellite data 

In order to gain greater insight into how TSEB and TSEB-SM models respond to different 

surface conditions across a landscape, an analysis of the spatial distributions and the 

magnitude of the turbulent fluxes using remotely sensing data produced from the two models 

is conducted. The comparisons between TSEB/TSEB-SM versus observed LE over the four 

seasons are illustrated in Figure VI.9. A visual assessment of scatter plots in Figure VI.9 and 

the statistical results (Table VI.2) clearly indicates that TSEB overestimates LE fluxes. The 

overall MBE are about 119, 181, 94 and 128 W/m2 for S1, B1, S2 and S3 respectively. The 

overestimation of LE fluxes can be explained by the fact that αPT is set to be 1.26 for the 

whole study period, including both stressed and unstressed conditions. This probably causes 

larger errors on the LE estimation especially during the growing stage. Indeed, the saturation 

of TSEB in the higher range of ET during the senescence period is precisely due to the fixed 

maximum value of αPT to 1.26. The errors are reduced when using TSEB-SM. In fact, the 

constraint on plant transpiration, while retrieving daily αPT values instead of using the 

theoretical value 1.26 significantly improves ET estimates especially for the growing stage. 

Moreover, the large bias of LE during the senescence stage is much reduced. It is suggested 

that the decrease in calibrated daily αPT integrates the drop in green vegetation fraction that 

takes place during senescence (Ait Hssaine et al., 2018b). Additionally, the constraint on the 

soil evaporation via the DisPATCh SM, clearly reduces the MBE values during the 
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emergence period (fc ≤fc,thres). Finally, the constraint applied on TSEB-SM output fluxes 

using LST-derived available energy and TSEB-SM-derived evaporative fraction (Equation 

6.1) improves the LE estimates for the whole study period. The MBE are about 39, 4, 7 and 

62 W/m2 for S1, S2, S3 and B1 respectively. 

 

 

Figure VI. 9. Same as Fig VI.7 but for satellite data. 

TSEB consistently exhibits larger errors on H estimation (see Fig. VI.10), with RMSE values 

up to 98, 73, 56 and 66 W/m2 during S1, S2, S3 and B1 respectively. TSEB-SM provides in 

general a significantly improved RMSE compared to the original TSEB. The RMSE is 55, 41, 

24 and 27 W/m2 during S1, S2, S3 and B1 respectively.  
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Figure VI. 10. Same as Fig VI.8 but for H fluxes and satellite data. 

The intercomparison between TSEB and TSEB-SM is finally undertaken by simulating the 

available energy. The statistics listed in Table VI.3 indicate that there are similar differences 

between modeled versus measured Rn using either TSEB or TSEB-SM. Overall, the 

discrepancies between estimated and measured Rn are likely due to a greater scatter between 

MODIS and in-situ measured LST. Note that RMSE values up to 6 K have been noted when 

comparing LST MODIS with ground-based measurements. These uncertainties are likely to 

be explained by the huge scale mismatch between the 1 km resolution of MODIS LST and the 

footprint size (approximately 1 m) of ground-based radiometers. The uncertainties in key 

input data generate large differences in simulated Rn compared to the tower measurements. 

The greater scatter between modeled and measured G from the two models reflect the fact that 

there is a major mismatch in scale between the area sampled by the soil heat flux sensors and 

the 1 km resolution of model inputs. It appears that the LE estimates from TSEB-SM are 

generally in closer agreement with the measurements than the TSEB model outputs. The 

RMSE is significantly improved from 103 to 52 W/m2, from 151 to 30 W/m2, from 101 to 35 

W/m2 and from 83 to 24 W/m2, during S1, B1, S2 and S3, respectively. For the sensible heat 

flux H, the difference between TSEB estimates and EC measurements listed in Table VI.3 

indicates a fairly large underestimation, the MBE values varying between -56 W/m2 and -240 

W/m2. However, the TSEB-SM output provides a quite significant improvement, with an 

absolute MBE lower than -61 W/m2 during all seasons. 
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Table VI. 3. Same as Table VI.2. but for simulated Rn  and G 

   

TSEB TSEB-SM 

   

RMSE R2 MBE RMSE R2 MBE 

Using in-

situ data 

Rn (W/m2) 

S1 35 0.99 -38 35 0.99 -38 

B1 14 0.99 12 14 0.99 12 

S2 20 0.99 9 20 0.99 9 

S3 7 0.99 -0.46 7 0.99 -0.46 

G  

(W/m2) 

S1 19 0.32 17 19 0.32 17 

B1 19 0.05 12 19 0.05 12 

S2 30 0.28 -13 30 0.28 -13 

S3 26 0.44 9 26 0.44 8 

LE  (W/m2) 

S1 87 0.35 27 65 0.58 -21 

B1 141 0.12 174 52 0.16 60 

S2 91 0.23 35 68 0.22 -15 

S3 91 0.62 54 84 0.47 22 

H 

 (W/m2) 

S1 127 0.33 -44 70 0.73 34 

B1 145 0.43 -177 52 0.90 -60 

S2 112 0.48 2 78 0.68 36 

S3 99 0.30 -64 87 0.30 -32 

Using 

satellite 

data 

Rn (W/m2) 

S1 23 0.94 8 22 0.93 8 

B1 85 0.47 32 85 0.47 32 

S2 22 0.94 12 22 0.94 12 

S3 17 0.97 2 17 0.97 2 

G 

 (W/m2) 

S1 20 0.41 24 19 0.40 24 

B1 20 0 15 20 0 15 

S2 25 0.12 -15 25 0.12 -15 

S3 22 0.08 10 22 0.08 10 

LE  (W/m2) 

S1 103 0.24 86 52 0.49 28 

B1 151 0.02 240 30 0.01 65 

S2 101 0.07 96 37 0.06 28 

S3 83 0.47 74 24 0.69 14 

H  

(W/m2) 

S1 112 0.34 -91 63 0.44 -45 

B1 150 0.16 -240 28 0.49 -61 

S2 97 0.4 -56 38 0.52 -4 

S3 85 0.12 -83 27 0.28 -29 
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VI.7. Summary and Conclusions  

The microwave-derived near-surface soil moisture (SM) from SMOS and thermal-derived 

land surface temperature (LST) from MODIS are integrated simultaneously within a 

calibration procedure to retrieve the main parameters of soil evaporation (soil resistance, rss) 

and plant transpiration (Priestly Taylor coefficient, αPT) based on a threshold on fc. The 

TSEB-SM model is applied during a four-year period (2014-2018) over a rainfed wheat field 

in the Tensift basin, central Morocco. The first calibration step with fc≤fc,thresconsists in 

inverting rss at Terra and Aqua overpass times. Despite the scale difference between the 

spatial resolution (1 km) of satellite data and the footprint size of in-situ measurements, the 

pair parameters (arss, brss) calculated for the entire study period using satellite data are 

relatively close to those derived from in-situ measurements.  The second calibration step 

consists in estimating αPT on a daily basis for fc> fc,thres by using LST and SM data. The 

maximum of daily calibrated αPT are 1.38, 1.25 and 0.87, when using satellite data, for S1, S2 

and S3, respectively. Those values are in accordance with the total rainfall amounts, which 

were about 608, 214 and 421mm/wheat season for S1, S2 and S3 respectively. S1 and S2 

have the same distribution of daily calibrated αPT when comparing with the αPT retrieved 

using in-situ data, while the retrieved αPT remains at a mostly constant value (~0.7) 

throughout the study period S3 because of the non-availability of MODIS products during 

cloudy days. 

An analysis of the spatial distributions and the magnitude of the turbulent fluxes using 

remotely sensing data produced from the two models were conducted. TSEB exhibits larger 

errors on H and LE estimates. These uncertainties can be linked to the theoretical value of αPT, 

which is fixed to 1.26 for the whole study period, including both stressed and unstressed 

conditions, as well as to the scale mismatch between the 1 km resolution of MODIS LST and 

the footprint size (approximately 1 m) of the ground-based radiometer. The constraint applied 

on the soil evaporation represented explicitly as a function of SM via a soil resistance term 

reduces the errors when using TSEB-SM. In fact, the use of the SM derived from microwave 

data is one of the main controlling factors of the evaporative fraction, which helps to 

determine with more accuracy the LE/H partitioning.



Chapter VII. Conclusion and perspectives 

110 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter.VII. Conclusion and perspectives 

 

 

 

  



Chapter VII. Conclusion and perspectives 

111 
 

Improving the management of water resources in semi-arid areas requires accurate knowledge 

of the hydrological processes involved. ET is a critical component of the hydrologic cycle and 

a link between the energy, water, and carbon cycles. It strongly impacts the drought 

monitoring, the water resource management and climate (Littell et al., 2016; Molden et al., 

2010). Furthermore, a precise estimate of ET determines the crop water requirements, which 

subsequently allow for optimizing water management practices and irrigation regimes (Allen 

et al., 1998). Three key remote sensing variables can be used to determine the spatial 

distribution of ET: 

- microwave-derived surface (0-5 cm) soil moisture (SM), which is the main controlling 

factor of soil evaporation considering a given evaporative demand (e.g. Chanzy and Bruckler, 

1993), 

- visible/near-infratred-derived vegetation cover fraction (fc), which provides an essential 

structural constraint on the evaporation/transpiration partitioning (e.g. Allen et al., 2000), and  

- thermal-derived land surface temperature (LST), which is a signature of both available 

energy and ET rate (e.g. Norman et al., 1995). 

The aim of this thesis is to consistently integrate those independent and complementary 

information on total ET within an energy balance model. As a state-of-the-art and commonly 

used model, we chose the TSEB modelling as a basis for developments.  

 

Our initial proposal ‘The validation results of TSEB model over sparse and heterogeneous 

vegetation in Sahel region (Niger)’ aims to test the TSEB model, which operates the ET 

partitioning by using the LST, fc, and the Priestley Taylor (PT) assumption that relates 

transpiration to net radiation via a fixed PT coefficient (αPT). This study considers the issue of 

using TSEB driven by MODIS (Moderate resolution imaging spectroradiometer) observations 

in conjunction with an aggregation scheme to derive area-averaged sensible (H) and latent 

(LE) heat fluxes over an heterogeneous watershed in Niamey, Niger (Wankama catchment). 

Data collected in the context of the African Monsoon Multidisciplinary Analysis (AMMA) 

program, including a scintillometry campaign, are used to test the proposed approach. The 

model predictions of area-averaged turbulent fluxes are compared to data acquired by a Large 

Aperture Scintillometer (LAS) set up over a transect about 3.2 km-long and spanning three 

vegetation types (millet, fallow and degraded shrubs). First, H and LE fluxes are estimated at 

the MSG-SEVIRI grid scale by neglecting explicitly the subpixel heterogeneity. Next, the 

impact of upscaling the model’s inputs is investigated using in-situ input data and three 

aggregation schemes of increasing complexity based on MODIS products: a simple averaging 
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of inputs at the MODIS resolution scale, another simple averaging scheme that considers the 

scintillometer footprint extent, and the weighted average of inputs based on the footprint 

weighting function. The results obtained for H and LE are relevant. However, an 

overestimation of simulated fluxes is recorded at the end of the season, mainly due to the 

fixed maximum value for αPT (equal to 1.26). 

In fact, there are two main limitations of the TSEB model. The first one is when considering 

the most common value of the Priestley-Taylor coefficient as a constant (1.26) meaning that 

vegetation has access to enough water in the root zone to transpire at a potential rate. This 

implies that the vegetation stress conditions are not properly taken into account. Indeed, 

several studies found that αPT is variable according to several parameters (LAI, vapour 

pressure deficit, and SM) (Baldocchi and Xu, 2007; Pereira, 2004), while αPT can reach values 

up to 2 under wettest SM conditions (Baldocchi, 1997, 1994). Agam et al. (2010) reported 

that over partially covered surfaces, αPT is more likely less than 1.26, as the soil evaporation 

decreases because of the drying of the top soil (Stannard, 1993). She also stressed that αPT is a 

critical parameter for natural vegetation and sites with strong vapour pressure deficit values 

where the root zone moisture does not limit transpiration. The second limitation of the TSEB 

approach lies on the estimation of soil evaporation as a residual to the soil component energy 

budgets. This equation may contain biases from the net radiation, soil heat flux and sensible 

heat flux estimates. To overcome these limitations, data available from space can help in 

implementing the PT approach by applying a direct constraint on soil evaporation and plant 

transpiration simultaneously. 

 

The second part of the thesis is hence dedicated to ‘Improving TSEB model by integrating 

SM data (TSEB-SM): a feasibility study using in-situ data (the land surface 

temperature, vegetation cover fraction and near-surface soil moisture) data’. For this 

purpose, a new ET model named TSEB-SM is derived from the TSEB formalism by 

explicitly representing soil evaporation using a soil resistance. To help constrain the 

evaporation/transpiration partition of TSEB-SM, an innovative calibration approach is also 

developed to retrieve the main parameters of soil evaporation (soil resistance, rss) and plant 

transpiration (αPT). In practice, the soil resistance parameters are retrieved at the seasonal time 

scale from SM and LST data with fc≤fc,thres (an empirical threshold dedicated to iteratively 

separate the soil/vegetation parameters on ET estimates), while αPT is retrieved at the daily 

time scale from SM and LST data for fc> fc,thres. TSEB-SM model is tested over 1 flood- and 

2 drip-irrigated wheat fields using in-situ data collected during two field experiments in 
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2002–2003 and 2016–2017. The coupling of the soil resistance formulation with the TSEB 

formalism improves the estimation of soil evaporation, and consequently, improves the 

partitioning of ET. Analysis of the retrieved time series indicates that the daily αPT mainly 

follows the phenology of winter wheat crop with a maximum value coincident with the full 

development of green biomass and a minimum value reached at harvest. The temporal 

variations of αPT before senescence are attributed to the dynamics of both the root zone soil 

moisture and the amount of green biomass. These results encourage us to develop a parameter 

estimation method based on SM remote sensing. 

The major limitation of the TSEB-SM model lies on the different resistances used to estimate 

the turbulent fluxes. Indeed, the soil resistance formulation rss is impacted by soil texture and 

structure. Errors on arss and brss estimations reveal the empirical nature of the rss. The soil 

surface resistance (rs) is also difficult to characterize, because it depends on many factors 

including wind speed, roughness, and cover type (Norman et al., 1995; Sauer et al., 1995). In 

our work the simplified equation given by Norman et al. (1995) is used with its default 

coefficients (a and b) that are suitable for semi-arid regions. However, a sensitivity study of 

these two parameters shows their strong impact on the surface fluxes, which implies that a 

calibration procedure is necessary for each type of cover. 

 

The third section ‘Remote sensing application of TSEB-SM (Combining DisPATCh soil 

moisture and MODIS LST/𝐟𝐜 data for mapping ET at 1 km resolution’ aims to evaluate 

the performance of  TSEB-SM in real-life using 1 km resolution MODIS LST and fc data and 

the 1 km resolution SM data disaggregated from SMOS (Soil Moisture and Ocean Salinity) 

observations by using DisPATCh. The approach is applied over a rainfed wheat field in the 

Tensift basin, central Morocco, during a four-year period (2014-2018). The field was seeded 

for the 2014-2015 (S1), 2016-2017 (S2) and 2017-2018 (S3) agricultural season, while it 

remained under bare soil conditions during the 2015-2016 (B1) wheat seasons. Compared to 

eddy covariance measurements, TSEB driven only by LST and fc data significantly 

overestimates latent heat fluxes for the four seasons. The overall mean bias values are 119, 

94, 128 and 181 W/m2 for S1, S2, S3 and B1 respectively. In contrast, these errors are much 

reduced when using TSEB-SM (SM and LST combined data) with the mean bias values 

estimated as 39, 4, 7 and 62 W/m2 for S1, S2, S3 and B1 respectively. The constraint applied 

on the soil evaporation by using the SM derived from SMOS data is one of the main 
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controlling factors of the evaporative fraction, which helps to determine with more accuracy 

the LE/H partitioning. 

There are two main limitations regarding the DisPATCh SM product used as input to TSEB-

SM. The first one is linked to the temporal resolution (discussed in detail in Malbéteau et al., 

2018, 2016) and the second one is linked to the spatial resolution. The temporal resolution of 

DisPATCh data is constrained by the number of SMOS overpasses (a global coverage every 3 

days) and by the gaps in MODIS images due to cloud cover. Moreover, the spatial resolution 

of 1 km is still coarse for applications and validation studies at the field scale. This is the main 

reason why the model is applied over a rainfed parcel located within a larger area occupied 

mostly by rainfed wheat (‘Bour’). This field was chosen to be representative at a scale of 1 

km, thus enabling the comparison between 1 km resolution satellite-derived and localized in-

situ measurements. Over irrigated areas however, wheat fields do not exceed 4 ha, and they 

are sowed and irrigated on different dates, which generate heterogeneity in SM as well as LST 

and NDVI fields within a 1 km resolution pixel, and result in systematic errors in the model 

predictions.  

Overall, this thesis is based on a development of original methods exploiting optimally the 

synergy between different sensors. In particular, combining the microwave / optical data for 

the high spatial resolution estimation of root zone SM and appropriate partitioning of ET into 

transpiration and soil evaporation. These targeted researches respond to the needs of 

managing agencies by providing spatialized indicators of drought and crop water 

requirements. Based on the results obtained and the conclusions reached, several promising 

perspectives can be considered for improving this work. 

Further efforts should be made to investigate the variability of αPT at the daily and finer time 

scales and to relate its variations to variables other than biomass and soil water availability. 

Reciprocally, the retrieved αPT could serve as a basis for deriving a proxy for root zone soil 

moisture and crop water needs. The aim is to evaluate the modelling approaches for 

partitioning the ET at regional scale, while using very different physical constraints. Besides, 

modelling the transpiration schemes in a more physically and realistic way, hence obviating 

the semi-empirical formulation of PT, can provide valuable results. Several studies 

incorporate the canopy conductance model into the thermal-based TSEB model under various 

atmospheric and SM conditions (Anderson et al., 2008, 2000; Zhan and Kustas, 2001). 

Recently Gan and Gao (2015) embedded a biophysical canopy conductance model (modelled 

as a function of the LAI, water vapor deficit, and visible radiation) into TSEB model to 
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replace the PT assumption, and updated the formulation of the under-canopy resistance. 

While optimizing the resistance networks by using the LST data, results show that the canopy 

conductance is successfully incorporated into the resistance network giving reasonable ET 

estimates. In the same way, Anderson et al. (2008) incorporated an analytical light-use 

efficiency (LUE, defined as the ratio between net canopy carbon assimilation rate, and the 

photosynthetically active radiation absorbed by the vegetative canopy) based model of canopy 

resistance within the TSEB model instead of using the PT based transpiration. Results show 

that LUE module improves the partitioning of the surface energy budget. It reflects its 

robustness to achieve appropriate reductions in canopy conductance in response to elevated 

midday vapour pressure deficits, which implicitly reduce the errors on flux predictions. These 

previous results are very encouraging, because they prove that the stomatal conductance can 

be a critical indicator for monitoring the water status/stress of crops.  

Parallel to ongoing work in a more realistic representation of canopy resistance, the resistance 

to soil evaporation also needs some improvements. Merlin et al. (2016) proposed a pedo-

transfer function to relate the main soil evaporation parameter to soil texture. To better 

constrain the soil evaporation using microwave / thermal data, a new formulation was 

developed in Merlin et al. (2018) to correct the cyclic phenomenon of drying/rewetting of the 

top soil during daytime/night-time.  

Regarding the input data of TSEB-SM, a new method is being developed to apply DisPATCh 

to (Landsat-7 and Landsat-8) thermal infrared data in order to disaggregate SMOS and SMAP 

SM data to a spatial resolution of 100 m (Nitu Ojha's thesis). This spatial resolution of 100 m 

will allow the crop field size to be resolved and thus a finer and more precise estimate of SM 

and associated ET/water stress predictions. Alternatively, the use of active sensors recently 

launched, as Sentinel-1 that potentially provides the surface SM at resolutions of 20 m each 6 

days. Such high spatio-temporal resolution is consistent with Sentinel-2 mission, which 

follows the characteristics of the canopy at resolution of 10 to 60 m with a repeat cycle of 5 

days by combining both ascending and descending overpasses. The integration of these recent 

high-resolution products could improve the partitioning of evaporation/ transpiration and 

consequently provide a better estimate of ET at large scale. Recently, a new work developed 

in the framework of LMI/TREMA (Nadia Ouaadi thesis) demonstrates the sensitivity of the 

backscattering coefficient and the interferometric coherence (Sentinel-1) to SM variabilities 

and wheat crops growth. Nadia developed a new method to retrieve SM combining the 

interferometric coherence and C-band backscattering coefficient over irrigated wheat from 

sowing to harvest. The preliminary results are very encouraging. The proposed approach 
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present the advantage of applying the TSEB-SM model over extended areas. Moreover, an 

India-France joint high spatio-temporal resolution TRISHNA mission (Thermal infraRed 

Imaging Satellite for High-resolution Natural resource Assessment) will be launched at 2024-

2025 horizon. It will provide the LST at resolution of 50 m, each 3 days. With its high spatial 

resolution and high repeatability, TRISHNA will accurately track spatio-temporal changes in 

different types of crops. It will help progress on the surface fluxes modelling and the crop 

stress detection. 

In addition to SM and LST, other relevant remote sensing indicators could be used as input to 

the TSEB-SM approach. In particular, the Photochemical Reflectance Index (PRI) derived 

from narrow-band spectroradiometers is a spectral index based on the short term reversible 

xanthophyll pigment changes that accompany plant stress and associated photosynthetic 

activities. Strong relationships between PRI and LUE were shown at leaf and canopy scales 

and over a wide range of species (Garbulsky et al., 2011; Peñuelas et al., 2011). Suárez et al. 

(2008) found that PRI is well correlated to physiological indicators of water stress, such as 

stomatal conductance, stem water potential, and fluorescence over an olive orchard. Our 

challenge lies on developing a new formulation of stomatal conductance, which embed hydric 

stress information provided from the PRI index. In this context, the Earth Explorer - 

Fluorescence Explorer (FLEX) mission will be launched by 2022 to provide global maps of 

vegetation fluorescence, PRI, canopy temperature measurements and all the relevant variables 

(chlorophyll content, Leaf Area Index, etc.) needed to assess the actual physiological status of 

vegetation. In the same context, current work conducted in the framework of LMI/TREMA 

(Zoubair Rafi thesis) aims to analyse the PRI data collected over several irrigated wheat fields 

in Morocco by developing a new early water stress indicator that could be used in addition to 

LST-derived indices.  

Lastly, it is important to note that TSEB-SM has not been specifically evaluated in terms of 

evaporation/transpiration partitioning, meaning using ground measurements separating both 

components simultaneously. Especially the derived evaporation/transpiration products should 

be validated using lysimeter and sap flow measurements instead of validating the total ET by 

eddy covariance system (Rafi et al. 2019). In addition, the evaluation of ET at large scale is 

missing. Spatialized measurements that could be collected by scintillometers installed at 

various points in the region would be a solution for that purpose. 
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