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Chapter 10
Internet of Things for Sustainability:
Perspectives in Privacy, Cybersecurity,
and Future Trends

Abstract In the sustainability IoT, the cybersecurity risks to things, sensors, and
monitoring systems are distinct from the conventional networking systems in many
aspects. The interaction of sustainability IoT with the physical world phenomena
(e.g., weather, climate, water, and oceans) is mostly not found in the modern
information technology systems. Accordingly, actuation, the ability of these devices
to make changes in real world based on sensing and monitoring, requires special
consideration in terms of privacy and security. Moreover, the energy efficiency,
safety, power, performance requirements of these device distinguish them from con-
ventional computers systems. In this chapter, the cybersecurity approaches towards
sustainability IoT are discussed in detail. The sustainability IoT risk categorization,
risk mitigation goals, and implementation aspects are analyzed. The openness
paradox and data dichotomy between privacy and sharing is analyzed. Accordingly,
the IoT technology and security standard developments activities are highlighted.
The perspectives on opportunities and challenges in IoT for sustainability are given.
Finally, the chapter concludes with a discussion of sustainability IoT cybersecurity
case studies.

10.1 Introduction

The cybersecurity in Internet of Things for sustainability is the process of protecting
the systems, sensors, and wireless communications from digital attacks [25]. It is
important to ensure that the sustainable IoT paradigm will operate in safe and secure
environment to achieve sustainability goals using systems which are dependable,
reliable, and trustworthy [10, 29, 33]. In many of the sustainability IoT paradigms
discussed in this book, the cybersecurity risks to sensors and monitoring systems
are different from the conventional networking systems in many aspects:

• The interaction of sustainability IoT with the physical world phenomena
(weather, climate, water, and oceans) is generally not found in the modern
information technology systems. Accordingly, the actuation (ability of these
devices to make changes in real world) based on sensing and monitoring, requires
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special consideration in terms of privacy and security. Moreover, the energy
efficiency, safety, power, performance requirements of these device distinguish
them from computers [89].

• The scale of IoT for sustainable community development expands beyond
cities, to the global scale including oceans, climate, and water monitoring
applications. Hence, diverse mediums of communications are involved (e.g.,
satellite, terrestrial air, cellular, and wide area networks) [90].

• Unlike server farms, various sustainability IoT are envisaged to function in
harsh and challenged environment for prolonged periods of time without little
or no physical access. Accordingly, unconventional security concerns emerge
regarding remote access and data privacy [2, 101].

• Lack of upgrade and patching due to high cost is a major challenge as compared
to conventional systems [58].

• The sensing data in some of the sustainability paradigms takes longer time to
accumulate (such as in climate and agriculture), thereby, presenting prolonged
exposure related security challenges [80, 81].

• The implementation of the security features on these sustainability IoT devices
requires well-thought design keeping in view its integration in the holistic
paradigm and novel insights (security by design) and innovations into the
potential risks that can comprise information [33, 43].

In IoT for sustainable community development, it is vital to recognize that
sustainability things do not function in a vacuum, rather these are part of the entire
ecosystem. Therefore, instead of the individual based security, the holistic approach
is of utmost importance. The holistic approach should take end-to-end strategy for
cybersecurity across the entire sustainability landscape [33, 54]. Moreover, within
each sustainability paradigm, each system has its own specific function and purpose
with its ability to tolerate risks. Hence, no single cybersecurity protocol or set of
rules can be applied to entire paradigm. These risk mitigation approaches vary based
on system needs, functions, and use cases.

Accordingly, it is import to underscore the characterization of risk-based insights
into functionality, deployment environment, set of behavior and applicabilities and
their integration into the paradigm [7]. In this regard, the outcome based cyberse-
curity approach can be applied where the final outcome becomes more important
as compared to less significant means to achieve those outcomes. The examples of
weaknesses and unreasonable cybersecurity approaches towards sustainability IoT
are discussed in the following [44, 53].

• Data and information storage in plain text
• Negligence in adequate policy implementation
• Oversight of in fixing current vulnerabilities
• Failure to utilize proper cybersecurity protocols
• Neglect of modern technology for protection such as firewalls
• Omission of network access regulations
• Lack of adequate incident response protocols
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Fig. 10.1 Security issues in IoT [44]

In sustainability IoT, both the device and data security are of vital importance.
Different security issues in IoT are shown in Fig. 10.1.

Device security deals with protecting IoT devices from attacks, whereas the
data security is related to protection of data integrity and confidentiality being
generated from IoT sensors and other monitoring instrument. This also applies
to the user privacy. The first step towards the securing IoT devices is risk
identification and categorization, in which the impact of different IoT devices is
considered. A three-pronged stratagem can be employed to identify risks, which
include utilitarian, feasible, and verifiable. The first prong follows the utilitarian
principle to identify the practical importance and appropriateness of risk. Then
feasibility principle analyses the implementation complexity, cost, and verifiable
details which deals with the implementation verifiability. In this process, both
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sustainability IoT functionality and cybersecurity needs are considered (device
usage and management, configurations, networking capabilities, nature of data
collection storage, access and actuation capacity). These risk identification and
categorization includes [29]:

• A major factor for sustainability IoT risk categorization is consideration of things
based on their information related capabilities [29]. The sustainability IoT can
be characterized into active and passive. The examples of the passive devices,
which have no actuation capability, include water pH and nutrients sensors,
in sustainable water IoT, soil moisture sensor in sustainable agriculture IoT.
The active things collect data and also act as actuator to make changes in the
physical world. The examples of active things include center pivot systems
controllers based on soil moisture sensing which are used in sensor-guided
irrigation management systems and also in reservoir monitoring for flow control
in dams.

• The physical accessibility of sustainability IoT is considered to establish the
risk category. For example, underground soil sensors for monitoring physical,
chemical, and biological properties of soil in decision agriculture are hard to
locate, access, and excavate. Similarly, sensors in ocean floors, rivers, and other
water bodies, in urban underground infrastructure, and mines are difficult to
access. The remote access and authentication features should also be identified.

• The communication capabilities of these devices from short range to very
long-range communications using different mediums such as central offices
wire line, wireless, cellular networks, cable and broadcasting systems, and
satellite communications should also be considered for risk categorization. Each
of these communication mediums present diverse challenges in terms of risk
identification. Moreover, the types and duration of data collection transmission
should be analyzed to characterize risks.

• The power source and energy efficiency are vital for sustainability IoT risk
characterization. The things can be either battery powered or hard wired.
Accordingly, energy harvesting mechanism and power transfer mechanism to
enhance battery life should also be considered [37].

• The IoT authentication capabilities, device software graduation, and patching
approaches are also used to determine risks. It includes system and network
authentication and device access identification. The personally identifiable infor-
mation (PII) poses high risks [95].

• The sustainability IoT firmware and software modules complexity and configura-
tion are also fundamental components of the risk identification and categorization
[18].

Accordingly, based on sustainability IoT risk categorization, the risk mitigation
goals and areas are defined based on the significance of the risks categorization
identified in the first step. These risk mitigation challenges, recommendations in
different areas are discussed in the following [16, 67]:
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• To prevent unauthorized access to system, adequate logical and physical access
procedures should be instituted using the state-of-the-art authentication mecha-
nisms. Moreover, all access and use of resources by anyone should be logged
properly for proactive avoidance.

• For the purpose of efficient management of cybersecurity risks, a database should
be maintained for IoT and their operational characteristics (firmware version,
services, functionalities, and software version) as discussed above. This should
also include all relevant information about the device status.

• Keeping track of software and hardware vulnerabilities is useful to reduce
exposure of system to digital attacks. Accordingly, these vulnerabilities can be
fixed by employing a systematic approach.

• The data generated from all phases of sustainability IoT life cycle should be
protected at all stages during sensing, collection, transmission, analysis, and
visualization from manipulation and compromise by using best cryptography and
security practices.

• A continuous monitoring of data and devices is important to identify any
incidents of data and security breaches, vulnerabilities, and bugs.

The next step in securing sustainability IoT paradigm after identification of
cybersecurity goals and areas is implementation of these goals (also called the
cybersecurity feature implementation). This process is performed considering the
technical specifications of sustainability things (e.g., hardware needed to support a
particular feature keeping in view the current in future needs). The emphasis is on
hardware based feature implementation because of efficiency and use of some of the
existing built-in features in the devices. A cybersecurity risk management roadmap
is shown in Fig. 10.2. In this process, system performance is also monitored to
identify any adverse impacts of the features. The adoption of a system level
approach has tremendous potential where all elements of the sustainability IoT
are considered such wireless communications and interaction with other things.
For example, precision agriculture cybersecurity features should be implemented
considering all farm equipment and privacy issues [1].

There are many common security vulnerabilities that go unnoticed during
development and shipment phase. The update related issues that are generally
observed include user/devices never getting an update (inability in terms of device
capabilities), failure of the vendor to send updates (due to absence of autonomous
sending patches and updates), and users failure to apply updates.

Moreover in the absence of adequate authentication and encryption mechanisms
in place, the update and patch push approach is unlikely to be successful because
of security issues and devices can be compromised. Moreover, data theft issue
can happen at unsecured device (no or plain text passwords), cloud (man in the
middle attack), and network communications levels (no encryption) The detailed
IoT security considerations at different levels are outlines in the following:
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Fig. 10.2 A cybersecurity risk management road map

• At data and application layers in IoT Applications: It includes malware, theft
of data, unauthorized access, man-in-the-middle attacks, unauthorized software,
spoofing, fraud, denial of service, and inconsistent software versions.

• At networking level: It includes denial of service, spoofing, protocol tampering,
hijacking, clear text communications, false base station, man-in-the-middle
attacks, and lack of monitoring.

• At device level: It includes back doors and call home functions, reverse engineer-
ing, unauthorized software, side channel, device cloning, proxy acts, and resource
limitation.

10.1.1 IoT Security Principles

The U.S. Department of Homeland Security in its report Strategic Principles For
Securing The Internet Of Things (IoT) has defined following principles to address
IoT security challenges [25]:

• Incorporate Security at the Design Phase
• Advance Security Updates and Vulnerability Management
• Build on Proven Security Practices
• Prioritize Security Measures According to Potential Impact
• Promote Transparency across IoT
• Connect Carefully and Deliberately
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10.1.2 Digital Forensics in Sustainability IoT

The digital forensics in sustainability IoT deals with the investigation of data on
IoT and digital devices related to legal matters and computer crime. Currently,
there is no standard set of guidance for data retrieval for the purpose of the
litigation investigation in case of cyber comprise, theft, or other crimes. To meet
this requirement, there is a need for collaboration to cyber, digital, computer, and
network forensics experts, industry, and government authorities.

10.2 Openness Paradox and Data Dichotomy:
Privacy and Sharing

In sustainability IoT, data collected at large spatial, temporal, and environmental
scales carries a huge economic value. The openness and data flow are of vital
importance for decision support systems and for developing sound data driven
practices, and at the same time requires protection as well [31]. In this section, the
challenges of data sharing and privacy in sustainable IoT are discussed in detail.

10.2.1 Privacy in Sustainability IoT

The identification of privacy regime and concerns is important in sustainability
IoT due to the sensitive nature data in sustainability IoT. Due to its large-scale
sensing and data monitoring capabilities, the enormousness amount of data is being
generated in different paradigms such as climate, water, energy, and health. In this
regard, the data privacy and protection is being considered pivotal for successful
functionality of the system. However, different IoT generate different amount of
data. One big motivation for protecting data is to avert users data being revealed and
to block circulation of protected information. For the first case, well-designed sifting
approaches can be used to curb revealing individual information. For proprietary
information, formation of proper training is vital to protect dissemination of the
data.

10.2.1.1 Data Sifting

Data sifting is an important privacy mechanism to ensure privacy and achieves
balance between the scenarios of no data sharing at all and everything being shared.
This approach also ensures that the important information and data about climate
change, water, and health related issues while protecting the privacy of individuals
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(e.g., age, name, address, location, and social security numbers). However, by
removing this information entirely makes gender, age, and location based analysis
impossible to conduct.

Another important privacy achieving mechanism also called the differential
privacy includes adding a well calculated noise to the aggregated understudy data
set such that results are twisted to make identification of the individuals difficult. In
this approach, the exact data is replaced with range and data granularity is reduced
statistics based data summarization. The quantity and quality of noise depends on
the size of data set being analyzed. Accordingly, machine learning [15] can be used
for data mining and to construct models from the data. An aggregation approach is
shown in Fig. 10.3.

10.2.1.2 Proxy Data Analyzer

In this approach, intelligent proxy data analyzers are used to process data based
on the data request. This approach enables selective data sharing across different
domains based on metadata, data sensitivity, and previous requests. Using proxy
data analyzer, multiple sustainability IoT data sets can be combined to regional to
universal planning. The FLEX is an example of proxy data analyzer that provides
differential results by using a set of precomputed data metric. These privacy-
preserving approaches will enhance end user trust in system, hence removing
barriers in technology adaption by encouraging innovation.

10.2.1.3 Multi-Layered Approach to Privacy

In a multi-layer approach to protect privacy in sustainability IoT paradigm, each
layer can guard against the specific set of data being reveled. For example, data
element encryption added an additional layer of protection. Similarly, at the session
and presentation layers, use of encryption mechanisms is useful to mitigate attacks
conducted during data communications. In summary, the strong privacy protections
will be helpful to advance the sustainability IoT paradigm.

10.2.2 Universal Data Flow, Sharing, and Standardization

The open flow of data and sharing coupled with best management practices brings
tremendous value to sustainability IoT and is the lifeline of the entire ecosystem.
The design of new data sharing platforms for sustainability has the potential to bring
robust policy planning and decision making in different areas such as environment.
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Fig. 10.3 An analytical aggregation approach [31]

10.2.2.1 Significance of Data Sharing

The data localization inhibits global scale mitigation, cross-border forecasting, and
planning efforts, whereas more socioeconomic and environmental benefits can be
realized by global sharing. For example, in energy sector, loads can be identified
and proper system planning can be done. Similarly, in health sector, the underlying
causes of spread of a particular disease in affected communities can be established,
which will also be beneficial for world population at large to prevent disease
outbreak. In transportation, better public services can be designed. Similarly, the
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availability of timely and certain data has a vital role to play in improving the
urban underground infrastructure monitoring. It can also facilitate the development
of monitoring systems for sewer and storm water overflows through real-time
operation. The data localization also presents a barrier to international adoption of
different sustainability IoT paradigms. In this regard an establishment of a global
cloud for sustainable IoT will be good step in the right direction. The data flow and
sharing can be conducted at two levels.

• At strategic level (community and large geographical level): to give certain
pertinent data about the community to policy makers for analysis and strategic
decision making

• At tactical level: for local operation, planning and forecasting and behavior
identification to understand and address the societal, social, and environmental
issues and challenges.

10.2.2.2 Data Standardization

The deployment of sustainability IoT devices in different infrastructures with multi-
tude of sensors and instruments provide many tremendous avenues for valuable data
collection. The data collection from different sustainability IoT can be classified into
(1) exhaust, (2) sensing, (3) crowdsourcing, and (4) web-based. However, different
schematics and data access procedures, variations in data storage formats, difference
in spatial and temporal granularity present big challenges in combining, comparison,
analysis, and interpretations of these data sets.

The data standardization deals with data storage and management using reliable
mechanisms in structured format to enable large-scale data analytics. The avail-
ability of structured data makes it extremely easy to make futuristic predictions.
Accordingly, advanced data analytics can be used to predict, estimate, diagnose,
and prognose events and outcomes from past and current data flows in real time.
It also enables a consistent aggregation of data across different sources and places.
Accordingly data-driven and analytical models can be developed in different areas
related to sustainability (e.g., renewable energy profiles, weather forecasting, water
monitoring planning, and analysis for sustainable community development).

10.3 Opportunities and Challenges in IoT for Sustainability

The IoT has strong potential to transform different sustainability areas using sensing
and communications technology. It is capable of effectively responding to the
current environmental, energy, water, and health challenges using the technology
and hence can achieve the sustainability goals and bring improvements to quality of
life. Its sensing and monitoring brings benefits to the society by fixing environmental
issues, and also guides regulations and policy making. For example, sensors in
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water bodies are used to obtain useful information about the quality and flow of
water, which helps in waste and treatment management. Similarly, soil sensors
provide useful information about the physical, chemical, and biological proprieties
of the soil which aids in improving crop yield and water resource conservation. Yet,
bountifulness of these opportunists comes with many challenges at the technical
level and policy level. These challenges are discussed in the following section.

10.3.1 Technical Challenges

The challenges in IoT for sustainability are:

• Sustainability Data management. Novel approaches are needed for data collec-
tion, storage, sharing, and analysis due to size, scale, and distributed nature

• In privacy and cybersecurity, and equitable access regarding exposure, manipu-
lation, and misuse of critical data

• Lack of encryption, resources for a certain level of protection, privacy guidelines,
and protection against malicious cyberattacks

• Sustainability device homogeneity increases vulnerability of cascading and
repetitive attacks

• Existing public infrastructure compatibility and integration issues. Lack of
interoperability (at network, system, and data formatting levels) causes data silos,
redundancy, and inefficiency

10.3.2 Policy Challenges

Smart global and national strategy for public regulations and policies, based
on environmental, social, and economic factors are critical for the success of
sustainability IoT to deal with huge challenges in meeting sustainable development
goals. The policies developed using collaboration and civic engagement will have
strong impact on sustainability. The policy level challenges and sustainable actions
recommendations are discussed in the following section.

• Need of inclusive collaboration and civic engagement planning among different
sectors keeping in view the current and future needs. For example, sensing in one
area has the potential to meet the needs of other area too (e.g., carbon dioxide
emissions in energy, climate, and transportation). In this regard engagement with
public, academia, and private industry is also of vital importance to develop and
deploy the state-of-the-art technologies.

• Community engagement should also be focused on people participation and
citizen engagement. The sustainability things will be useless and wastage of
resources and other infrastructure if citizens are unable to use the system.
In this regard, providing access and expansion of services to rural broadband
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will certainly increase access to these systems. The constituency resources and
demographics are of fundamental importance for the planning and deployment
purpose.

• Policies for data access, ownership, and stewardship.
• Policies to mitigate behavior change resulting from the deployments of sustain-

ably IoT systems.
• Development of trust and reliability frameworks.

10.4 Progress in IoT Security Standardization

The full potential of sustainability IoT will be realized only if it operates in an open
and secure environment. Different security groups and industry are developing tech-
nology and security standards to promote interoperability, and to encourage open
and secure cross-border data communications. The different technology and security
groups for IoT and their standardization efforts are discussed in Table 10.1 [98].

10.5 Case Studies

In this section, different sustainability IoT cybersecurity case studies are discussed.
First, the case study of cybersecurity and data privacy in digital agriculture is
presented.

10.5.1 Cybersecurity and Data Privacy in Digital Agriculture

The digital agriculture has been envisaged as a novel archetype to transform present-
day agricultural practices by real-time sensing, processing, and collection of data
for the purpose of developing efficient seeding and irrigation techniques, fertilizer
applications, and other farm operations [3, 9, 27, 36, 52, 70–78, 80, 82–87, 93, 96].
Many security threats are emerging in the nascent field of digital agriculture (also
referred to as decision agriculture and precision). In digital agriculture, various types
of sensing and communication technologies are used (e.g., in situ sensing, remote
sensing, machine learning, and data analytics.) Hitherto, the agriculture field was
dependent on mechanical device and technology use was minimal. Accordingly, by
using these networked technologies for sensing and data collection, different types
of field inputs such as water for irrigation, fertilizer, and pesticides can be applied
precisely in agricultural farms that improve efficiency, bring enhancements in crop
yield, and lower costs. However, with this rapid growth of agricultural technologies,
there is corresponding increase in vulnerabilities. In this section, we discuss those
vulnerabilities, prospective threats, and solutions.
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Table 10.1 The IoT technology and security standard developments activities [98]

Organization Description

IoT Cybersecurity Alliance A group of industry leading cybersecurity and IoT
experts to help address the challenges that exist
across the IoT ecosystem

Cloud Security Alliance Best practices and research

Alliance for Internet of Things Innovation It aims to strengthen the dialogue and interaction
among Internet of Things (IoT) players in Europe,
and to contribute to the creation of a dynamic Euro-
pean IoT ecosystem to speed up the take up of IoT.

Broadband Forum A non-profit industry consortium dedicated to devel-
oping broadband network

European Telecommunications Standards
Institute (ETSI)

Produce applicable standards for ICT-enabled sys-
tems, applications and services deployed across all
sectors of industry and society

GSMA IoT Security Guidelines It include 85 detailed recommendations for the secure
design, development, and deployment of IoT services
that cover networks as well as service and endpoint
ecosystems. It addresses security challenges, attack
models, and risk assessments while providing several
worked examples.

IEEE Internet of Things Security and Encryption Standards. IoT security
issues and vulnerability.

Industrial Automation and Control System
Security

It develops security standards and technical reports.

Industrial Internet Consortium (IIC) Security-related architectures, designs and technolo-
gies.

International Electrotechnical Commis-
sion (IEC)

International Standards and Conformity Assessment
for all electrical, electronic, and related technologies

International Organization for Standard-
ization (ISO) IoT Standards

Develops standards for security

Internet of Things Consortium IoTC is a non-profit member based organization
connecting a global ecosystem of leading companies
building the Internet of Things

IoT Security Foundation IoTSF is a collaborative, non-profit, international
response to the complex challenges posed by security
in the expansive hyperconnected world

ITU-T SG20 An emerging standard

National Institute of Standards and Tech-
nology

CPS PWG cyber-physical systems (CPS) framework,
and NIST cybersecurity for IoT program

North American Electric Reliability Corp Responsible for reliability and security of the bulk
power system in North America

oneM2M It is a global standards for machine to machine
communications and the Internet of Things.

Online Trust Alliance OTA is convener of a multi-stakeholder initiative to
address public policy and technology issues impact-
ing IoT devices.

(continued)
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Table 10.1 (continued)

Organization Description

Open Connectivity Foundation The open connectivity foundation (OCF) is a group of
over 300 technology companies, including Cisco, Intel,
and Samsung, and is developing interoperability
standards for the IoT and sponsoring an open source
project to make this possible.

Open Mobile Alliance (OMA) OMA device management security describes general
security requirements, and provides description of
transport layer security, application layer security

Open Web Application Security
Project

The OWASP Internet of Things project is designed to
help manufacturers, developers, and consumers better
understand the security issues associated with the
Internet of Things, and to enable users in any context to
make better security decisions when building,
deploying, or assessing IoT technologies.

OpenFog Consortium Enabling advanced IoT, 5G and AI with fog computing

SAFECode The software assurance forum for excellence in code
(SAFECode) is a non-profit organization dedicated to
increasing trust in information and communications
technology products and services through the
advancement of effective software assurance methods.

Smart grid interoperability panel
(SGIP)

SGIP is an industry consortium representing a
cross-section of the energy ecosystem focusing on
accelerating grid modernization and the energy internet
of things through policy, education, and promotion of
interoperability and standards to empower customers
and enable a sustainable energy future.

Thread Group Thread was designed with one goal in mind: to create
the very best way to connect and control products in the
home

The Update Framework (TUF) The update framework (TUF) helps developers to
secure new or existing software update systems, which
are often found to be vulnerable to many known
attacks.

U.S. Food and Drug Administration
(FDA)

Management of postmarket cybersecurity
vulnerabilities for marketed and distributed medical
devices

US Department of Homeland Security
(DHS)

Strategic principles for securing the Internet of Things

3rd Generation Partnership Project
(3GPP)

A global initiative that unites seven
telecommunications standards development
organizations (known as “organizational partners”), the
3GPP develops specifications covering cellular network
technologies, including radio access standards.

Internet Engineering Task Force IoT Standards

CIS Center for Internet Security CIS is a forward-thinking nonprofit that harnesses the
power of a global IT community to safeguard public
and private organizations against cyber threats.
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It is important to note some of the common threats (e.g., malware, theft of data,
unauthorized access, man-in-the-middle attacks, unauthorized software, spoofing,
fraud, denial of service, and inconsistent software versions) found in conventional
connected systems also pose risks in the field of digital agriculture [28, 69].
Therefore, these can be identified by using the conventional risk characterization
approaches discussed in this chapter, and, accordingly the same established risk
mitigation can be applied. However, due to distinctive operation of the farm
machinery, equipment and underground sensors, vast area of exposure from field to
farms, various type of new threats are emerging which were not observed previously
with wide range of ramifications. These consequences range from interference to
routine field work to total disruption and unavailability of farm operations and
compromised integrity and confidentiality of farm data. Moreover, the data leakage
and theft negativity impacts the agricultural resiliency and sustainability.

10.5.1.1 Information Privacy in the Field

In digital agriculture, the data privacy is a major issue in relation to technology
implementation. Recently, plenty of critical data has been collected by farmers about
their farms such as crop yield data which they are reluctant to share due to different
factors (e.g., finance, market trends, and soil value) [104, 105]. Across a typical
agricultural farm, many variations in soil texture, nutrients, and volumetric water
content are observed [76]. The agricultural technology is used in these temporal and
spatial variations to ascertain field conditions for variable applications of fertilizer
and irrigation in order to maximize yields and profits which provides financial
gains to farmers. To determine field conditions for best resource allocation, various
technologies (e.g., GPS, GIS, and sensors are being used) where data can be
collected and stored in cloud for processing.

Since, at large spatial scales, the soil texture and rain data is highly correlated,
the cloud data collected from multiple farms can be utilized for decision support
systems at regional levels. For example, soil moisture data along with temperature
across different farms can be used to inform irrigation decisions [27]. Consequently,
with this benefit, the data privacy becomes a concern particularity in geo-spatial
usage of privacy information [20]. For the reason that location data is used
by vendors, dealers, and digital agriculture service and equipment providers for
developing analytics, improving service and for creation of new business models;
the security threats and attacks make the farmers data exposed and vulnerable.

Such security breaches are detrimental as not only the farm’s equipment and
sensing data is revealed, the other proprietary information is laid bare such as
irrigation cycles conducted in a typical growing seasons, software design and
version, seeding approaches, and yields. Since, the success of the farming depends
on these, therefore, the farmers keep these information confidential. Currently, in
the developing area there is dearth of mechanisms to protect data privacy [49].
One privacy protection mechanism that has applications in this area is obfuscation
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Fig. 10.4 A privacy computing framework [49]

(see Fig. 10.4) where exact location information is replaced with confusing and
ambiguous information. However, this will render geographic services unable to
function because of lack of true data. Moreover, the obfuscation techniques are also
vulnerable to the location deduction attacks. Thus, in digital agriculture, advanced
mechanisms to protect privacy and location information without surrendering the
location information are needed.
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Farm data privacy related threats in digital agriculture are discussed in the
following [30, 105]:

• Deliberate stealing or unintended leakage of farmers information from decision
making systems and other agricultural information management systems to third
parties. This targets mobile and tablet apps on the farm equipment and farmers
phones. Currently, these applications lack update features and privacy protection
mechanisms [91, 105].

• The purposeful publicizing of information to harm a company’s reputation and
sow mistrust about technology in farmers’ minds leads to hindrances in adaption
of decision agriculture [105].

• The exploitative trading of confidential data, where companies are approached to
sell farmers data in return for some incentives [34].

10.5.1.2 Data Usability in the Field

In digital agriculture, sensors are being used for condition monitoring and real-time
decision making at different temporal and spatial scales that cause data consistency
issues. These challenges are discussed in the following [75]:

• Publishing of false data about crop disease or other related agriculture to create
fears among farmers [69, 105].

• Injection of false data into the sensing networks to create false alarms or trigger
harmful actuation such as over irrigation and under irrigation [80, 88].

• Inefficient control algorithms for farm machinery and other in-field equipment.

10.5.1.3 Farm Equipment and Data Availability in the Field

Because agricultural farm operations are heavily dependent on the farm equipment
therefore, the data loss is the major challenge in the field. In this major disruptions
to the availability are:

• There are some critical time windows in every crop where the of equipment
usage is at its peak such as combines in the harvesting systems, center pivot,
seeders during planting season, and drip irrigation systems in long dry weather
or short-term droughts. Loss or malfunction of equipment during these intervals
is detrimental to the crop health. It can also cause crop yield reduction leading
to the financial loss to farmers. Attacks conducted to exploit vulnerabilities
in the equipment can cause large-scale food shortage and harm the vendors
reputation [6].

• The overcrowding of wireless spectrum can cause disruptions to the wireless
systems and GPS signals in the agricultural farms. The overcrowding of the
spectrum can also lead to improper and unpredictable functionality of the system.



316 10 Internet of Things for Sustainability: Perspectives in Privacy, Cybersecurity, and. . .

The Federal Communication Chart (FCC) has permitted the use of the cognitive
radio devices in the spectrum range of 470 to 698 MHz on farm machinery and
agricultural equipment for digital agriculture applications [79].

• The limited availability of rural broadband leads to loss of data, slow data rate,
maintenance downtime, and frequent service outages. The wireless communica-
tions can also be used to exploit the data being transferred in plain text [61].

10.5.1.4 Cybersecurity Recommendations for Precision Agriculture

Some important recommendations for protection of precision agriculture systems in
the field are discussed in the following [17, 51, 103]:

• Security of applications and software being used in the field on farm equipment
can be achieved using latest updates, patches, and security mechanisms [92]

• Blocking of communication loopholes by using strong encryption standards
for data transfer, and blocking services and protocols not required for device
functionality. The implementation of the latest security standards will also reduce
risks [12]

• An updated record of device functionality, software, and current status. The
continuous monitoring and logging of the device access to verify authorized
users. Understanding of data ownership, protection, and recovery protocols is
also useful to develop proper incident response strategy

10.5.2 Smart Grid

In modern smart grid systems disruptions in one system can lead to cascading effects
in the entire power system [40]. The cyberattacks in grid can cause substantial
losses. There is strong need to increase the reliability of these systems by protecting
them from cyberattack by incorporating the cybersecurity in the design process.
This can be achieved through development of reference security architecture. An
example of cybersecurity architecture for the power grid is shown in Fig. 10.5. The
design of the next generation power grid system including renewable energy systems
can benefit from this which is based on the IP networking.

10.5.3 Health and Cybersecurity

The cybersecurity vulnerabilities and threats can affect the availability of critical
lifesaving medical equipment and data. The cybersecurity threats can cause physical
impact in patients, hinder the regular hospital operation leaving them unable to
provide care [14, 35]. Therefore, attaining the highest level of cybersecurity in
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Fig. 10.5 A power grid control system and the designed cybersecurity protection system [40]

healthcare is important for patient safety. The identity theft, ransomware, and
targeted patient hacking are some of the vulnerabilities. Other issues are addressed
in the following section.

10.5.3.1 Critical Conditions of the Healthcare Cybersecurity

The challenges being faced by the healthcare industry in the area of cybersecurity
are discussed below [14]:

• Healthcare industry is facing lack of expert security professionals.
• The legacy equipment is either old or unsupported and contains vulnerable

operating systems. The funding dearth allows unsupported equipment to continue
functioning.

• The network design is focused heavily on hyper connectivity with less focus on
security [32]

• The patient care outage incidents such as locking by ransomware are serious
threats to healthcare industry [11]

• Unwillingness to address known vulnerabilities [42]
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10.5.3.2 Healthcare Cybersecurity Objectives

The health care security objectives for different patient safety aspects are
[1, 22, 35, 66]:

• Confidentiality. The protection of patient information from unauthorized disclo-
sure and access [60].

• Integrity. The protection of patient safety from unauthorized modification of the
adequate use of the medical device [102]. It includes the unauthorized access and
modification of patient identifiable information including protected health data.
The safety of patients’ systems from malicious unauthentic actuation, protection
of patient physiological data modifications to ensure correct functionality of
the software (e.g., processing and algorithmic capabilities) particularly in the
monitoring and treatment components of the system are of critical importance.

• Availability. Ensuring the availability of patient information and medical equip-
ment to authorized entities on need basis [50]. It includes rapid updates, secure
and authenticated patches, and updates to the equipment, and correct usage
of the device for the right purpose thus ensuring and maximizing optimum
functionality.

Therefore, continuing cybersecurity risk management is important to use secure
state-of-the-art technology [108] to safeguard medical devices and their updates
[41]. Some potential cases of risks in the connected medical systems are shown
in Fig. 10.6.

10.5.4 Smart Meter

A smart meter is used for electricity usage monitoring. It is used to transmit
data to service providers using various types of communication links where this
information is used for customer billing, load balancing, energy consumption
analysis, and price optimization. The cybersecurity threats related to the smart grids
and meters include [39, 45, 46, 62, 97, 97, 107]:

• Malicious attack to disconnect utilities service resulting in loss of power [94]
• Coordinated cascading network attacks on grids, using compromised meters [24]
• Theft and break-in planning when the home owner is away based on the analysis

of energy usage [55]
• Denial of service attacks where legitimate requests by the utility service provider

are rejected [13]
• Data injection attack to produce invalid measurements of energy consumption [5]
• Smart metering privacy compromising attacks and man in the middle attacks [68]
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Fig. 10.6 A list of healthcare cybersecurity risks

• The meter spoofing, authentication attacks, and disaggregation attacks are some
of the other examples [109]

The smart metering cybersecurity threats are shown in Fig. 10.7.

10.5.5 Water Systems

The fresh water is crucial for life on earth. The water systems face different types of
threats such as natural, caused by human activity, disasters, droughts, earthquakes,
and terrorism [21, 56, 65].
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Fig. 10.7 The cybersecurity threats in smart meters [97]

• The contamination attacks and other terrorism related activities, flooding, and
storms are the direct threats to these systems [4]

• The water scarcity and lack of water resource availability are also major threats
to the sustainability [8]

• Threats of contamination and pollution from point- sources and non-point source
and biodiversity loss [48] (see Fig. 10.8.)

• The climate related threats on water [19, 23, 26, 47, 57, 59, 63, 100, 106]

The waters systems security threats can be mitigated by water systems risk char-
acterization, use of sustainable water IoT contamination monitoring and warning
systems and through use of advanced machine learning systems for threat modeling
[38, 64].



References 321

Fig. 10.8 The contamination cycle [99]
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