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Metformin, the world’s most prescribed anti-diabetic drug, is also effective in 30 

preventing Type 2 diabetes in people at high risk1,2. Over 60% of this effect is 31 

attributable to metformin’s ability to lower body weight in a sustained manner3. 32 

The molecular mechanisms through which metformin lowers body weight are 33 

unknown.  In two, independent randomised controlled clinical trials, 34 

circulating levels of GDF15, recently described to reduce food intake and lower 35 

body weight through a brain stem-restricted receptor, were increased by 36 

metformin.  In wild-type mice, oral metformin increased circulating GDF15 with 37 

GDF15 expression increasing predominantly in the distal intestine and the 38 

kidney. Metformin prevented weight gain in response to high fat diet in wild-39 

type mice but not in mice lacking GDF15 or its receptor GFRAL. In obese, high 40 

fat-fed mice, the effects of metformin to reduce body weight were reversed by 41 

a GFRAL antagonist antibody. Metformin had effects on both energy intake 42 

and energy expenditure that required GDF15. Metformin retained its ability to 43 

lower circulating glucose levels in the absence of GDF15 action. In summary, 44 

metformin elevates circulating levels of GDF15, which are necessary for its 45 

beneficial effects on energy balance and body weight, major contributors to its 46 

action as a chemopreventive agent. 47 

 48 

 49 

 50 

 51 

 52 



Metformin has been used as a treatment for Type 2 diabetes since the 1950s. 53 

Recent studies have shown that it can also prevent or delay the onset of Type 2 54 

diabetes in people at high risk 1 2 . At-risk individuals treated with metformin manifest 55 

a reduction in body weight, glucose and insulin levels and enhanced insulin 56 

sensitivity 3. Although many mechanisms for the insulin sensitizing actions of 57 

metformin have been proposed 4, none would explain weight loss. The robustness 58 

and persistence metformin-induced weight loss in participants in the Diabetes 59 

Prevention Program (DPP) has drawn attention to the importance of this to the 60 

chemopreventive effects of the drug 5.  A recent observational epidemiological study6 61 

noted a strong association of metformin use with circulating levels of GDF15, a 62 

peptide hormone produced by cells responding to stressors7 . GDF15 acts through a 63 

receptor complex solely expressed in the hindbrain, through which it suppress food 64 

intake 8-11. We hypothesized that metformin’s effects to lower body weight might 65 

involve the elevation of circulating levels of GDF15.  66 

Human studies 67 

We first measured circulating GDF15 in a short term human study12 and found that 68 

after 2 weeks of metformin,  there was  a  ~2.5-fold increase  in  mean circulating 69 

GDF15 (Fig. 1a).   70 

To determine if this increase was sustained, we measured circulating GDF15 levels 71 

at 6, 12 and 18 months in all available participants in CAMERA 13, a randomized 72 

placebo-control trial of metformin in people without diabetes but with a history of 73 

cardiovascular disease. In this study, metformin treated participants lost ~3.5% of 74 

body weight with no significant change in weight in the placebo arm13. Metformin 75 

treatment was associated with significantly (p < 0.0001) increased levels of 76 



circulating GDF15 at all three time points (Fig.1b and Extended Data Fig.1b,c,d,e). 77 

Furthermore, the change in serum GDF15 from baseline in metformin recipients was 78 

significantly correlated (r=-0.26, p=0.024) with weight loss (Extended Data Fig. 1a). 79 

The correlation of GDF15 increment with changes in body weight, while statistically 80 

significant, was modest in size. While we consider it does contribute to weight loss in 81 

some individuals taking metformin, we acknowledge is by no means necessary and 82 

there are individuals with increases in GDF-15 that do not exhibit weight loss. 83 

However, in the context of a long term human study with imperfect drug compliance 84 

and intermittent sampling of GDF15 levels it is noteworthy that such an association 85 

was seen at all. Further, there was no association of weight change with change in 86 

GDF-15 in the placebo group (r=-0.0374, p=0.740, n=81).” 87 

Murine studies 88 

Following these findings in humans, we undertook a series of animal experiments to 89 

determine the potential causal link between the changes in GDF-15 and weight 90 

changes induced by metformin. We administered metformin to high fat diet fed mice 91 

by oral gavage and measured serum GDF15. A single dose of 300 mg/kg of 92 

metformin increased GDF15 levels for at least 8 hours (Fig. 1c). A higher dose of 93 

metformin, 600 mg/kg, increased serum GDF15 levels 4-6 fold at 4 and 8-hours 94 

post-dose, which were sustained over vehicle-treated mice for 24 hours. The effects 95 

of metformin in chow-fed mice were less pronounced (Extended Data Fig.2) 96 

suggesting an interaction between metformin and the high fat fed state.  97 

To determine the extent to which metformin- induced increase in GDF15 affects  98 

body weight, Gdf15 +/+ and Gdf15 -/- mice were switched from chow to a high fat diet 99 

and  dosed with metformin for 11 days. High fat feeding induced similar weight gain 100 



in both genotypes (Fig. 2a).  Metformin completely prevented weight gain in Gdf15 101 

+/+ mice but Gdf15 -/- mice were insensitive to the weight-reducing effects of 102 

metformin (Fig.2a, Extended data Fig.3a). Metformin significantly reduced 103 

cumulative food intake in wild type mice but this effect was abolished in Gdf15-/- mice 104 

(Fig. 2b).   105 

 106 

The identical protocol was applied to mice lacking GFRAL, the ligand-binding 107 

component of the hindbrain-expressed GDF15 receptor complex.  Consistent with 108 

the results in mice lacking GDF15, metformin was unable to prevent weight gain in 109 

Gfral -/- mice (Fig. 2c, Extended data Fig.3b), despite similar levels of serum GDF15 110 

(Extended Data Fig. 4a,b). In this experiment, the reduction in cumulative food 111 

intake did not reach statistical significance (Extended Data Fig. 4c). 112 

To investigate the contribution of GDF15/GFRAL signalling to sustained, metformin-113 

dependent weight regulation, we performed a 9-week study in which mice received 114 

approximately 250-300 mg/kg/day of metformin incorporated into their high-fat diet.  115 

The mice lost ~10% body weight after 1 month on this diet (Fig. 2d). At this time, an 116 

anti-GFRAL antagonist antibody or IgG control was administered. Metformin-117 

consuming mice treated with anti-GFRAL regained ~12% body weight after 5 weeks, 118 

while the weight loss seen in IgG control treated mice was maintained, reaching ~7% 119 

below starting weight (Fig. 2d). The significant reduction in fat mass seen with 120 

metformin treatment and control antibody was not seen in the anti-GFRAL group. 121 

(Extended Data Fig. 4d). The delivery of metformin in chow resulted in an initial 122 

reduction in food intake in all metformin treated groups, presumably because of a 123 

taste effect. This reduction in food intake will have affected metformin levels and is 124 



likely to have impacted GDF15 levels with potential to bias the results. However, it is 125 

reassuring to note that any persistence of this would have worked against the 126 

detection of a specific effect of GFRAL antagonism, which was clearly demonstrable.   127 

We undertook indirect calorimetry in metformin- and placebo-treated mice treated 128 

with anti-GFRAL antibody to establish whether there are additional effects on energy 129 

expenditure. Data were analysed by ANCOVA with body weight as the co-variate. 130 

Metformin treatment resulted in a significant increase in metabolic rate which was 131 

blocked by antagonism of GFRAL (Fig. 2e). Thus under conditions where GDF15 132 

levels are increased by metformin, body weight reduction is contributed to by both 133 

reduced food intake and an inappropriately high energy expenditure. 134 

 GDF15 and glucose homeostasis 135 

To examine the extent to which the insulin sensitising effects of metformin are 136 

dependent on GDF15 we repeated the experiment described in Fig.2a (see 137 

Extended Data Fig. 5), undertaking insulin tolerance testing in metformin and 138 

vehicle-treated GDF15 null mice and their wild type littermates (Fig. 3a). Circulating 139 

metformin levels achieved in both genotypes were identical (Extended Data Fig. 5d) 140 

and consistent with the high end of the human therapeutic range 14.  Metformin 141 

significantly increased insulin sensitivity as assessed by the area under the plasma 142 

glucose curve with no significant effect of genotype (Fig. 3b).  Similarly, metformin 143 

reduced fasting blood glucose and fasting insulin in a GDF15-independent manner 144 

(Fig. 3 c,d). 145 

We also undertook oral glucose tolerance testing of metformin treated mice given 146 

either control IgG or anti-GFRAL antibody for 5 weeks (Fig  3e,f, Extended Data 147 

Fig. 6a and see Fig. 2d). Although the effect of metformin glucose disposal at OGTT 148 



as assessed by the area under the plasma glucose curve did not reach statistical 149 

significance (2W ANOVA, p=0.072), there was a significant effect of metformin on 150 

insulin, both fasting and AUC after glucose bolus, that was independent of antibody 151 

(Fig. 3 g,h,i,j). 152 

As these mice were of different body weight at the time of assessment (Fig. 2d and 153 

Extended  Data Fig. 3c), we undertook further glucose tolerance testing  in a cohort 154 

of weight matched Gdf15 +/+ and Gdf15-/- mice that had been fed a high fat diet for 2 155 

weeks before receiving a single dose of metformin (300mg/kg) (Fig 3k,l and 156 

Extended Data Fig. 6b-d) In these mice there was a significant effect of metformin 157 

upon glucose (AUC plasma glucose) that was independent of GDF15 (extended 158 

Data Fig. 6 e). 159 

Metformin’s effect to lower fasting glucose and insulin and to improve glucose 160 

tolerance appear not to require GDF15. Given the “a priori” expected effect of weight 161 

loss on insulin sensitivity it is worthy of comment that the effect of GDF15 status on 162 

insulin sensitivity as measured by ITT (Fig 3b) fell just short of statistical 163 

significance. In the follow up of the DPP study in non–diabetic individuals, weight 164 

loss after 5 years of metformin therapy was approximately 6.5% of baseline weight5 .  165 

We therefore estimated the effect of a 6.5% weight loss on improvements in fasting 166 

insulin over  5 years in the Ely Study, a prospective observational population-based 167 

cohort study of men (n=465) and women (n=634) in the UK (mean age 52 years, 168 

mean BMI 26 at baseline)15 ,  showing that this magnitude of weight loss was 169 

associated  with a reduction  in fasting plasma insulin (mean ±95% CI)  of -5.74 (-170 

9.03, -2.45) pmol/l  in women and  -8.78 (-16.24, -1.33) in men. We conclude that 171 

while there are GDF15-independent effects of metformin on circulating levels of 172 



glucose and insulin, it is likely that the GDF15 dependent weight loss will make a 173 

contribution to enhancing insulin sensitivity.  174 

 175 

Source of GDF15 production 176 

We examined GDF15 gene expression in a tissue panel obtained from mice fed a 177 

high fat diet (for 4 weeks) and sacrificed 6 hours after a single gavage dose of 178 

metformin (600mg/kg). Circulating concentrations of GDF15 increased ~4-fold 179 

compared to vehicle treated mice (Extended Data Fig. 6f). Gdf15 mRNA was 180 

significantly increased by metformin in small intestine, colon and kidney. (Fig. 4a). In 181 

situ hybridisation studies demonstrated strong Gdf15 expression in crypt enterocytes 182 

in the colon and small intestine and in periglomerular renal tubular cells (Fig. 4b, 183 

Extended Data Fig. 7a, b). We confirmed these sites of tissue expression in HFD 184 

fed mice (those used in Fig 2a), treated with metformin for 11 days (Extended Data 185 

Fig. 8).  186 

Further, in human (Fig. 4c) and murine (Fig. 4d) intestinal-derived organoids grown 187 

in 2D transwells and treated with metformin, we saw a significant induction of mRNA 188 

expression and GDF15 protein secretion. 189 

Given the proposed importance of the liver for metformin’s metabolic action it was 190 

notable that the dominant GDF15 expression signal was not from the liver (Fig. 4a, 191 

Extended Data Fig. 7a, Extended Data Fig. 8). To test whether hepatocytes are 192 

capable of responding to biguanide drugs with an increase in GDF15 we incubated 193 

freshly isolated murine hepatocytes (Extended Data Fig. 9a) and  stem-cell derived 194 

human hepatocytes (Extended Data Fig. 9b) with metformin and found  a clear 195 

induction of GDF15 expression.  Additionally, acute administration of the more cell 196 



penetrant biguanide drug phenformin to mice increased circulating GDF15 levels 197 

(Extended Data Fig. 9c) and markedly increased Gdf15 mRNA expression in 198 

hepatocytes (Extended Data Fig. 9d,e). We conclude that biguanides can induce 199 

GDF15 expression in many cell types, but at least when given orally to mice, GDF15 200 

mRNA is most strikingly induced in the distal small intestine, colon and kidney. 201 

GDF15 expression has been reported to be a downstream target of the cellular 202 

integrated stress response (ISR) pathway16-18.Gdf15 mRNA levels were increased in 203 

kidney and colon 24 h after a single oral dose of metformin and these changes 204 

correlated positively with the fold elevation of CHOP mRNA (Extended Data Fig. 205 

10a,b).  As phenformin has broader cell permeability than metformin19  we used it to 206 

explore the effects of biguanides on the ISR and its relationship to GDF15 207 

expression in cells. In murine embryonic fibroblasts (MEFs), which do not express 208 

the organic cation transporters needed for the uptake of metformin, phenformin (but 209 

not metformin) increased EIF2α phosphorylation, ATF4 and CHOP expression, 210 

(Extended Data Fig. 10c) and GDF15 mRNA (Extended Data Fig. 10d), though the 211 

changes in EIF2a phosphorylation and ATF4 and CHOP expression were modest 212 

compared with those induced by tunicamycin despite similar levels of GDF15 mRNA 213 

induction. Both genetic deletion of ATF4 and siRNA-mediated knockdown of CHOP 214 

significantly reduced phenformin-mediated induction of GDF15 mRNA expression 215 

(Extended Data Fig. 10e,f). In addition, phenformin induction of GDF15 was 216 

markedly reduced by co-treatment with the EIF2α inhibitor, ISRIB but, notably, not by 217 

the PERK inhibitor, GSK2606414 (Extended Data Fig. 10g). Further, GDF15 218 

secretion in response to metformin in murine duodenal organoids was also 219 

significantly reduced by co-treatment with ISRIB (Extended Data Fig. 10h). 220 

However, gut organoids derived from CHOP null mice are still able to increase 221 



GDF15 secretion in response to metformin (Extended Data Fig. 10i) indicating the 222 

existence of CHOP-independent pathways under some circumstances. The data 223 

suggest that the effects of biguanides on GDF15 expression are at least partly 224 

dependent on the ISR pathway but are independent of PERK. However, the relative 225 

importance of components of the ISR pathway may vary depending on specific cell 226 

type, dose and agent used. 227 

Our observations represent a significant advance in our understanding of the action 228 

of  metformin, one of the world’s most frequently prescribed drugs. Metformin 229 

increases circulating GLP1 levels20-22 , but its metabolic effects in mice are 230 

unimpaired in mice lacking the GLP-1 receptor 23. Metformin alters the intestinal 231 

microbiome24,25  but it is challenging to firmly establish acausal relationship to the 232 

beneficial effects of the drug 26. 233 

 In the work presented herein, we describe a body of data from humans, cells, 234 

organoids and mice that securely establish a major role for GDF15 in the mediation 235 

of metformin’s  beneficial effects  on  energy balance. While these effects likely 236 

contribute to metformin’s role as an insulin sensitizer, metformin continues to have 237 

effects to lower glucose and insulin in the absence of GDF15. 238 

 239 

While there have  been many mechanisms suggested for the glucoregulatory 240 

mechanisms of metformin27   there has been less attention paid to its effects on 241 

weight. Our discoveries relating to metformin’s effects via GDF15 provide a 242 

compelling explanation for this important aspect of metformin action. 243 

It is notable that the lower small intestine and colon are a major site of metformin 244 

induced GDF15 expression. A body of work is emerging which strongly implicates 245 

the intestine as a major site of metformin action. Metformin increased glucose uptake 246 



into colonic epithelium from the circulation28   and a gut-restricted formulation of 247 

metformin had  greater  glucose lowering efficacy than  systemically absorbed 248 

formulations 29 .Our finding that the intestine is a major site of metformin-induced 249 

GDF15 expression provides a further mechanism through which metformin’s action 250 

on the intestinal epithelium  may mediate some of its benefits.  251 
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Figure Legend 331 

Figure 1. Effect of Metformin on circulating GDF15 levels in humans and mice.  332 

a, Paired serum GDF15  concentration in 9 human subjects after 2 weeks of either 333 
placebo or  metformin,  P (95% confidence interval)  by 2-tailed t-test. 334 

b, Plasma GDF15 concentration (mean± SEM) in overweight or obese non-diabetic 335 
participants with known cardiovascular disease randomised to metformin or placebo 336 
in CAMERA, using a mixed linear model. Subject numbers: placebo vs metformin, 337 



respectively, at time points: baseline, n=85 vs n=86; 6 months, n=81 vs n= 71;12 338 
months, n=77 vs n=68; 18 months, n=83 vs n=74. Comparing metformin vs placebo 339 
groups, two-sided p=0.311 at baseline, and p<0.0001 at 6,12 and 18 months 340 
individually. 341 

c, Serum GDF15 levels (mean± SEM) in obese mice measured 2, 4, 8 or 24 hours 342 
after a single oral dose of 300 mg/kg or 600 mg/kg metformin, n=7/group, P by 2-way 343 
ANOVA with Tukey’s correction for multiple comparisons. 344 

 345 

Figure 2. GDF15/GFRAL signalling is required for the weight loss effects of 346 
metformin on a high fat diet. 347 

a, Percentage change in body weight of Gdf15+/+ and Gdf15-/- mice on a high-fat 348 
diet treated with metformin (300mg/kg/day) for 11 days, mean ± SEM, n=6/group 349 
except Gdf15+/+ vehicle n=7, P by 2-way ANOVA with Tukey’s correction for 350 
multiple comparisons. 351 

b, Cumulative food intake of mice as Figure 2a, P by 2-way ANOVA with Tukey’s 352 
correction for multiple comparisons. 353 

c, Percentage change in body weight of Gfral+/+ and Gfral-/-  mice on a high-fat diet 354 
treated with metformin (300mg/kg/day) for 11 days, mean ± SEM, n=6/groups, P  by 355 
2-way ANOVA with Tukey’s correction for multiple comparisons.  356 

d, Percentage change in body weight of metformin-treated obese mice dosed with 357 
an anti-GFRAL antagonist antibody, weekly for 5 weeks (yellow), starting 4 weeks 358 
after initial metformin exposure (grey),mean ± SEM, n=7 Vehicle + control IgG and 359 
Metformin + anti –GFRAL,  n=8 other groups, P by 2-way ANOVA with Tukey’s 360 
correction for multiple comparisons. “calo” = period in which energy expenditure 361 
measured (see Figure 2e), Arrow and “GTT”- timing of oral glucose tolerance test 362 
(see Figure 3e-h). 363 

e, ANCOVA analysis of energy expenditure against body weight of mice treated as in 364 
Figure 2d, n=6 mice/group. Data are individual mice and P for metformin calculated 365 
using ANCOVA with body weight as a covariate and treatment as a fixed factor. 366 

 367 

Figure 3. Effects of metformin on glucose homeostasis. 368 

a, Insulin tolerance test (ITT) (insulin=0.5 U/kg) after 11 days of metformin treatment 369 
(300mg/kg) to high fat  fed Gdf15 +/+ and Gdf15 -/- mice, glucose levels are mean ± 370 
SEM, n=6/group, except Gdf15 -/- vehicle= 7, Gdf15+/+ vehicle= 5.  371 

b, Area under curve (AUC) analysis of glucose over time in Figure 3a, mean ± SEM, 372 
P by 2-way ANOVA , interaction of genotype and metformin p= 0.037. 373 

c, Fasting glucose (time 0) of ITT in Figure 3a, mean ± SEM, P by 2-way ANOVA, 374 
effect of genotype p= 0.144, interaction of genotype and metformin p= 0.988. 375 



d,  Fasting insulin (time 0) of ITT in Figure 3a, mean ± SEM, P by 2-way ANOVA, 376 
effect of genotype p= 0.131, interaction of genotype and metformin p 0.056. 377 

e, f, Glucose over time after oral glucose tolerance test  (GTT) in metformin treated 378 
obese mice given either IgG (e ) or anti –GFRAL (f) once weekly for 5 weeks (as 379 
Figure 2d). AUC analysis by 2-way ANOVA, effect of antibody p= 0.031, effect of 380 
metformin p= 0.072, interaction of antibody and metformin p 0.91. 381 

g, h, Insulin (mean ± SEM) over time after GTT in mice as Figure 3e and f. 382 

i, Fasting insulin (time 0) of GTT in mice as Figure 3e and f, mean ± SEM, P by 2-383 
way ANOVA, effect of antibody p= 0.544, interaction of genotype and metformin p 384 
0.691. 385 

j, AUC analysis of insulin over time in  Figure 3g and h, mean ± SEM,  P by 2 -way 386 
ANOVA, effect of antibody p= 0.197, interaction of genotype and metformin p 0.607. 387 

k, l, Glucose (mean ± SEM) over time after intraperitoneal GTT in high fat fed mice 388 
given single dose of oral metformin ( 300mg/kg) 6 hrs before GTT,  n=8/group.  389 

 390 

Figure 4.  Metformin increases GDF15 expression in the enterocytes of distal 391 
intestine and the renal tubular epithelial cells. 392 

a, Gdf15 mRNA expression (normalised to expression levels of ActB) in tissues from 393 
high-fat fed wild type mice 6 hrs after single dose of oral metformin (600mg/kg), 394 
mean ± SEM, n=7/group,  P value (95% confidence interval) by two tailed t-test. 395 

b, In situ hybridization for Gdf15 mRNA (red spots) n= 7 per group. Representative 396 
images from the mouse with circulating GDF15 level closest to group median, either 397 
vehicle-treated (panel 1a,1b,1c, blue box) or metformin-treated ( panels 2a, 2b, 2c, 398 
red box). Mice from groups described in Figure 4a.  399 

c, Gdf15 mRNA expression (left panel) and GDF15 protein in supernatant (right 400 
panel) of human derived 2D monolayer rectal organoids treated with metformin. 401 
Each colour represents independent experiments (n= 4), mean ± SD, P value (95% 402 
confidence interval) by two-tailed t-test.  403 

d, GDF15 protein in supernatants of mouse-derived 2D monolayer duodenal (left 404 
panel) and ileal (right panel) organoids treated with metformin. Each colour 405 
represents independent experiment (duodenal n= 5, ileal n=3),mean ± SD, P value 406 
(95% confidence interval) by two-tailed t-test.  407 

  408 

 409 

 410 

 411 



Methods. 412 

Human Studies. 413 

We analysed samples from 9 participants from a study with a placebo-controlled, 414 

double-blind crossover design (previously described in12 ).  In brief, placebo or 415 

metformin (week 1, 500mg twice daily; week, 2 1000mg twice daily) were 416 

administered following a six week period of washout. Samples were collected in the 417 

morning after overnight fasting.  The study was approved by the Mayo Clinic 418 

Institutional Review Board and all participants provided written, informed consent 419 

(NCT01956929). 420 

CAMERA was a randomized, double-blinded, placebo-controlled trial designed to 421 

investigate the effect of metformin on surrogate markers of cardiovascular disease in 422 

patients without diabetes, aged 35 to 75, with established coronary heart disease 423 

and a large waist circumference (≥ 94cm in men, ≥80 cm in women) 424 

(NCT00723307). This single-centre trial enrolled 173 adults who were followed up for 425 

18 months each. A detailed description of the trial and its results has been published 426 

previously13. In brief, participants were randomized 1:1 to 850mg metformin or 427 

matched placebo twice daily with meals. Participants attended six monthly visits after 428 

overnight fasts and before taking their morning dose of metformin. Blood samples 429 

collected during the trial were centrifuged at 4 degrees Celsius soon after sampling, 430 

separated and stored at -80°C 431 

All participants provided written informed consent. The study was approved by the 432 

Medicines and Healthcare Products Regulatory Agency and West Glasgow 433 

Research Ethics Committee, and done in accordance with the principles of the 434 

Declaration of Helsinki and good clinical practice guidelines. 435 



Serum GDF15 assays were completed by the Cambridge Biochemical Assay 436 

Laboratory, University of Cambridge. Measurements were undertaken with 437 

antibodies & standards from R&D Systems (R&D Systems Europe, Abingdon UK) 438 

using a microtiter plate-based two-site electrochemiluminescence immunoassay 439 

using the MesoScale Discovery assay platform (MSD, Rockville, Maryland, USA).  440 

Mouse Studies. 441 

Studies were carried out in two sites; NGM Biopharmaceuticals, California, USA and 442 

University of Cambridge, UK.  443 

At NGM, all experiments were conducted with NGM IACUC approved protocols and 444 

all relevant ethical regulations were complied with throughout the course of the 445 

studies, including efforts to reduce the number of animals used. Experimental 446 

animals were kept under controlled light (12hour light and 12hour dark cycle, dark 447 

6:30 pm - 6:30 am), temperature (22 ± 3°C) and humidity (50% ± 20%) conditions. 448 

They were fed ad libitum on 2018 Teklad Global 18% Protein Rodent Diet containing 449 

24 kcal% fat, 18 kcal% protein and 58 kcal% carbohydrate, or on high fat rodent diet 450 

containing 60 kcal% fat, 20 kcal% protein and 20 kcal% carbohydrates from 451 

Research Diets D12492i,( New Brunswick NJ 089901 USA) herein referred to as 452 

“60%HFD”. 453 

In Cambridge, all mouse studies were performed in accordance with UK Home 454 

Office Legislation regulated under the Animals (Scientific Procedures) Act 1986 455 

Amendment, Regulations 2012, following ethical review by the University of 456 

Cambridge Animal Welfare and Ethical Review Body (AWERB). They were 457 

maintained  in a 12-hour light/12-hour dark cycle (lights on 0700–1900), 458 

temperature-controlled (22°C) facility, with ad libitum access to food (RM3(E) 459 



Expanded chow, Special Diets Services, UK) and water. Any mice bought from an 460 

outside supplier were acclimatised in a holding room for at least one week prior to 461 

study. During study periods they were fed ad libitum high fat diet, either D12451i (45 462 

kcal% fat, 20 kcal% protein and 35 kcal% carbohydrates, herein referred to as 463 

“45%HFD”)  or  D12492i ( Research Diets, as above) as highlighted in individual 464 

study. 465 

Sample sizes were determined on the basis of homogeneity and consistency of 466 

characteristics in the selected models and were sufficient to detect statistically 467 

significant differences in body weight, food intake and serum parameters between 468 

groups. Experiments were performed with animals of a single gender in each study. 469 

Animals were randomized into the treatment groups based on body weight such that 470 

the mean body weights of each group were as close to each other as possible, but 471 

without using excess number of animals. No samples or animals were excluded from 472 

analyses. Researchers were not blinded to group allocations. 473 

Mouse study 1. Acute two- dose metformin study in high fat diet fed mice.   474 

Male C57Bl6/J mice fed 60% HFD for 17 weeks were studied aged 23 weeks ( body 475 

weight, mean±SEM, 45.6±0.8g). Metformin (Sigma-Aldrich # 1396309) was 476 

reconstituted in water at 30 mg/ml for oral gavage and given in early part of light 477 

cycle. Terminal blood was collected by cardiac puncture into EDTA- coated tubes.  478 

GDF15 levels were measured using Mouse/Rat GDF15 Quantikine ELISA Kit (Cat#: 479 

MGD-150, R&D Systems, Minneapolis, MN) according to the manufacturers’ 480 

instructions.  RNA was isolated from tissues using the Qiagen RNeasy Kit.  RNA was 481 

quantified and 500ng was used for cDNA synthesis (SuperScript VILO 11754050 482 

ThermoFisher) followed by qPCR. All Taqman probes were purchased from Applied 483 



Biosystems. All genes are expressed relative to 18s control probe and were run in 484 

triplicate.  485 

 486 

Mouse study 2. Acute metformin study in chow fed animals. 487 

2.i) ad libitum group. 488 

Male C57BL6/J mice (Charles River, Margate, UK) were studied at 11 weeks old. 489 

500mg of metformin was dissolved in 20 mls of water to make a working stock of 490 

25mg/ml.  1 hr after onset of light cycle mice received a single dose by oral gavage 491 

of either metformin at 300mg/kg dose (Sigma, PHR1084-500MG) or matched 492 

volume of vehicle (water).  Weight (mean± SEM) of control and treatment groups 493 

were 27.2 ± 0.3 vs 26.7 ± 0.2 g, respectively on day of study.  After gavage mice 494 

were returned to an individual cage and were sacrificed at relevant time point by 495 

terminal anaesthesia (Euthatal by Intraperitoneal injection). Blood  was collected  496 

into Sarstedt Serum Gel 1.1ml Micro Tube, left  for 30mins at room temperature, 497 

spun for 5mins at 10k at 40C before being frozen and stored at -80oC until assayed. 498 

Mouse GDF15 levels were measured using a Mouse GDF15 DuoSet ELISA (R&D 499 

Systems) which had been modified to run as an electrochemiluminescence assay on 500 

the Meso Scale Discovery assay platform. 501 

2.ii) fasted group. 502 

Mice, conditions and methods as in (2.i) except male mice studied at 9 weeks old 503 

and that 12 hr prior to administration of metformin mice and bedding were 504 

transferred to new cages with no food in hopper. Weight (mean± SEM) after fasting 505 

and on day of gavage were 22.3±0.5 g and 23.2±0.7g for control and treatment 506 

groups, respectively. 507 



Mouse study 3. Metformin to high fat diet fed Gdf15 -/- mice and wild type 508 

controls. 509 

C57BL/6N-Gdf15tm1a(KOMP)Wtsi/H  mice  ( herein referred to as “Gdf15 -/- mice“) 510 

were obtained from the MRC Harwell Institute which distributes these mice on behalf 511 

of the European Mouse Mutant Archive (www.infrafrontier.eu). The MRC Harwell 512 

Institute is also a member of the International Mouse Phenotyping Consortium 513 

(IMPC) and has received funding from the MRC for generating and/or phenotyping 514 

the C57BL/6N-Gdf15tm1a(KOMP)Wtsi/H mice. The research reported in this 515 

publication is solely the responsibility of the authors and does not necessarily 516 

represent the official views of the Medical Research Council. Associated primary 517 

phenotypic information may be found at www.mousephenotype.org. Details of the 518 

alleles have been published 30-32. 519 

Experimental cohorts of male Gdf15 -/- and wild type mice were generated by het x 520 

het breeding pairs. Mice were aged between 4.5 and 6.5 months.  One week prior to 521 

study start mice were single housed and 3 days prior to first dose of metformin 522 

treatment, mice were transferred from standard chow to 60% high fat diet.  On day of 523 

first gavage body weight of study groups (mean±SEM) were 38.2±1.0g vs 38.8±0.6g 524 

for wild type vehicle and metformin treatment respectively, and 37.9±0.8g vs 525 

37.0±1.4g for Gdf15 -/-  vehicle and metformin treatment respectively. Each mouse 526 

received a daily gavage of either vehicle or metformin for 11 days, and their body 527 

weight and food intake measured daily in the early part of the light cycle. One data 528 

point of 25 food intake points  collected on  day11  of study was lost due to technical 529 

error (mouse; Gdf15 +/+ metformin). On day 11 mice were sacrificed by terminal 530 

anaesthesia 4 hours post gavage, blood was obtained as in study 2. Tissues were 531 

fresh frozen on dry ice and kept at -800C until day of RNA extraction. 532 



 533 

Mouse study 4. Metformin to high fat diet fed Gfral -/- mice. 534 

Gfral-/- mice were purchased from Taconic (#TF3754) on a mixed 129/SvEv-C57BL/6 535 

background and backcrossed for 10 generations to >99% C57BL/6 background at 536 

NGM’s animal facility. Experimental cohorts were generated by het X het breeding 537 

pairs. Study design as Study 3, except terminal blood was collected into EDTA- 538 

coated tubes. 539 

Mouse study 5. Anti GFRAL antibody to metformin treated high fat diet fed 540 

mice.  541 

Anti-GFRAL antibody generation. Anti-GFRAL monoclonal antibodies were 542 

generated by immunizing C57Bl/6 mice with recombinant purified GFRAL ECD-hFc 543 

fusion protein, which was purified via sequential protein-A affinity and size exclusion 544 

chromatography (SEC) techniques using MabSelect SuRe and Superdex 200 545 

purification media respectively (GE Healthcare), as described in patent number 546 

US10174119B2, https://patents.google.com/patent/US10174119B2/en.  An in-house 547 

pTT5 hIgK hIgG1 expression vector was engineered to include the DEVDG 548 

(caspase-3) proteolytic site N-terminal to the Fc domain. The heavy chains of anti-549 

GFRAL mAbs were subcloned via EcoR1/HindIII sites of in-house engineered pTT5 550 

hIgK hIgG1 caspase-cleavable vector. Light chains of anti-GFRAL mAbs were also 551 

subcloned within the EcoR1/HindIII sites in the pTT5 hIgK hKappa vector. The 552 

antibody were transiently expressed in Expi293 cells (Thermo Fisher Scientific) 553 

transfected with the pTT5 expression vector, and purified from conditioned media by 554 

sequential protein-A affinity and size-exclusion chromatographic (SEC) methods 555 

using MabSelect SuRe and Superdex 200 purification media respectively (GE 556 



Healthcare). All purified antibody material was verified endotoxin-free and formulated 557 

in PBS for in vitro and in vivo studies. Characterization of anti-GFRAL functional 558 

blocking antibodies was carried out using a cell-based RET/GFRAL luciferase gene 559 

reporter assays, in vitro binding studies (ELISA and Biacore) and in vivo studies, as 560 

described in patent number; US10174119B2, 561 

https://patents.google.com/patent/US10174119B2/en).  562 

In all studies with anti-GFRAL, purified recombinant non-targeting IgG on the same 563 

antibody framework was used as control. Metformin was mixed with food paste 564 

made from the 60 kcal% fat diet (Research diet# D12492) using a food blender at a 565 

concentration to achieve an approximate consumption of 300mg/kg metformin per 566 

day per mouse. Male animals were single housed throughout and at start of study  567 

period body weight ( mean ±SEM) was 43.7±1.4g, 42.3±1.4g, 41.9±1.1g,43.3±1.3g,  568 

veh + control IgG, veh +anti-GFRAL, metformin + control IgG,  Metformin + anti-569 

GFRAL, respectively. Recombinant antibodies were administered by subcutaneous 570 

injection in the early part of the light cycle. Body composition (lean and fat mass) 571 

was analyzed by ECHO MRI M113 mouse system (Echo Medical Systems). The 572 

metabolic parameters oxygen consumption (VO2) and carbon dioxide production 573 

(VCO2) were measured by an indirect calorimetry system (LabMaster TSE System, 574 

Germany) in open circuit sealed chambers. Measurements were performed for the 575 

dark (from 6pm to 6am) or light (from 6am to 6pm) period under ad libitum feeding 576 

conditions. Mice were placed in individual metabolic cages and allowed to acclimate 577 

for a period of 24 hours prior to data collection in every 30 minutes. 578 

 Finally, mice underwent a glucose tolerance test. Mice were fasted for 6 hours 579 

(7am-1pm) in a clean cage. Blood samples (~30 ul) were collected as baseline prior 580 

to oral glucose tolerance test.  Mice were orally gavaged with 1 g/kg of 20% glucose 581 



solution with a dosing volume of 5 mL/kg. Blood samples were then collected 582 

through tail nick into K2EDTA-coated tubes (SARSTEDT Microvette; REF 583 

20.1278.100) at 15, 30, 60 and 120 minutes post glucose challenge. Blood samples 584 

were centrifuged at 4 °C and the separated plasma are stored at  -20 °C until used 585 

for plasma glucose and insulin assays. Glucose assay reagents obtained from 586 

Wako, Cat# 439-90901, and the insulin ELISA kit obtained from ALPCO, Cat# 80-587 

INSMSU-E01. 588 

 589 

Mouse study 6. Insulin tolerance test after metformin treatment to high fat diet 590 

fed Gdf15-/- and wild type controls. 591 

Mice generation and protocol as Study 3, except aged 4 to 6 months. On day of first 592 

gavage body weights (mean±SEM) of study groups were 35.1±1.2g; 35.05±1.2g for 593 

wild type Vehicle  and Metformin treatment respectively, and 35.08±1.02g; 594 

35.02±1.47g for Gdf15-/-  Vehicle  and Metformin treatment respectively. On day 11, 595 

after final dose of metformin mice were fasted for 4 hours. Baseline venous blood 596 

sample was collected into heparinised capillary tube for insulin measurement and 597 

blood glucose was measured using approximately 2 μl blood drops using a 598 

glucometer (AlphaTrak2; Abbot Laboratories) and glucose strips (AlphaTrak2 test 2 599 

strips, Abbot Laboratories, Zoetis) .Mice were given intraperitoneal injection of insulin 600 

(0.5U/kg mouse, Actrapid, NovoNordisk Ltd) and serial mouse glucose levels 601 

measured at time points indicated. Mice were sacrificed by terminal anaesthesia as 602 

in Study 2. Mouse insulin was measured using a 2-plex Mouse Metabolic 603 

immunoassay kit from Meso Scale Discovery Kit (Rockville, MD, USA), performed 604 

according to the manufacturer’s instructions and using calibrators provided by MSD. 605 



Serum metformin levels were quantified using a stable isotope dilution LC-MS/MS 606 

method described previously33 . 607 

Mouse study 7. Glucose tolerance test after single dose metformin treatment 608 

to high fat diet fed Gdf15-/- and wild type controls. 609 

Mice generation as Study 3, except female mice aged 3.5 to 5.5 months. 2 groups of 610 

mice (Gdf15+/+ and Gdf15-/- littermates, body weight (mean±S.E.M), 24.1 ±1.4g  vs 611 

24.3±1.3g , respectively) were fed 60% HFD for 2 weeks. Each genotype was then 612 

further split into vehicle or metformin (300mg/kg) treatment group, given a single 613 

gavage dose at 8am and fasted for 6 hrs. At time of GTT, body weights 614 

(mean±S.E.M) of study groups were 26.4.1±1.5g; 26.5±1.0g for wild type Vehicle  615 

and Metformin treatment respectively, and 25.6±1.2g; 27.1±1.3g for Gdf15-/-  616 

Vehicle  and Metformin treatment respectively (1 way ANOVA, p=0.8722). Baseline 617 

testing as mouse study 6. Mice then received a single dose of 20% glucose via 618 

intraperitoneal route (2mg/g dose) with serial measurement of glucose levels 619 

measured at time points indicated. Sacrifice and insulin analysis as mouse study 6. 620 

 621 

Mouse study 8. Acute single high dose metformin study in high fat diet fed 622 

wild type mice. 623 

Male C57BL6/J mice (Charles River,Margate, UK) aged 14 weeks  were switched 624 

from standard chow  to  45 %HFD fat (D12451i) for 1 week then 60%HFD (D12492i,) 625 

for 3 weeks). At time of study (18 weeks old) body weights (mean ±SEM) were 40.4± 626 

1.2g vs 41.1±1.3g, vehicle vs metformin group, respectively.  500mg of metformin 627 

(Sigma, PHR1084-500MG) was dissolved in 8.35 mls of water to make a working 628 

stock of 60mg/ml.  Mice received a single dose by oral gavage of either 600mg/kg 629 



metformin or matched volume of vehicle (water). They were returned to ad lib 60 % 630 

fat diet and 6 hrs later blood was collected as study 2.  Tissue samples for RNA 631 

analysis were collected into Lysing Matrix D homogenisation tube (MP Biomedicals) 632 

on dry ice and stored at -800C until processed. Intestine between pylorus of stomach 633 

and caecum was laid out into 3 equal parts, with tissue taken from mid-point of each 634 

third labelled as “proximal”, “ middle” and “ distal” (adapted from 34). Colon section 635 

was from mid-point between caecum and anus. Tissue for in-situ hybridisation were 636 

dissected and placed into 10% formalin/PBS for 24hr at room temp, transferred to 637 

70% ethanol, and processed into paraffin. 5μm sections were cut and mounted onto 638 

Superfrost Plus (Thermo-Fisher Scientific). Detection of Mouse Gdf15 was 639 

performed on FFPE sections using Advanced Cell Diagnostics (ACD) RNAscope® 640 

2.5 LS Reagent Kit-RED (Cat No. 322150) and RNAscope® LS 2.5 Probe Mm-641 

Gdf15-O1 (Cat No. 442948) (ACD, Hayward, CA, USA). Briefly, sections were baked 642 

for 1 hour at 60oC before loading onto a Bond RX instrument (Leica Biosystems). 643 

Slides were deparaffinized and rehydrated on board before pre-treatments using 644 

Epitope Retrieval Solution 2 (Cat No. AR9640, Leica Biosystems) at 95°C for 15 645 

minutes, and ACD Enzyme from the LS Reagent kit at 40oC for 15 minutes. Probe 646 

hybridisation and signal amplification was performed according to manufacturer’s 647 

instructions. Fast red detection of mouse Gdf15 was performed on the Bond RX 648 

using the Bond Polymer Refine Red Detection Kit (Leica Biosystems, Cat No. 649 

DS9390) according to the ACD protocol. Slides were then counterstained with 650 

haematoxylin, removed from the Bond RX and were heated at 60oC for 1 hour, 651 

dipped in Xylene and mounted using EcoMount Mounting Medium (Biocare Medical, 652 

CA, USA. Cat No. EM897L).  653 



Slides imaged on an automated slide scanning microscope (Axioscan Z1 and 654 

Hamamatsu orca flash 4.0 V3 camera) using a 20x objective with a numerical 655 

aperture of 0.8. Hybridisation specificity was confirmed by the absence of staining in 656 

Gdf15-/- mice. 657 

RNA extraction was carried out with approximately 100mg of tissue in 1ml Qiazol 658 

Lysis Reagent (Qiagen 79306l) using Lysing Matrix D homogenisation tube and 659 

Fastprep 24 Homogeniser (MP Biomedicals) and Qiagen RNeasy Mini kit (Cat no 660 

74106) with DNase1 treatment following manufacturers’ protocols. 500ng of RNA 661 

was used to generate cDNA using Promega M-MLV reverse transcriptase followed 662 

by TaqMan qPCR in triplicates for GDF15. Samples were normalised to Act B. 663 

TaqMan Probes: Mm00442228 m1 GDF15, Mm02619580_g1 Act B, TaqMan;2X 664 

universal PCR Master mix (Applied Biosystems Thermo Fisher 4318157); 665 

QuantStudio 7 Flex Real time PCR system (Applied Biosystems Life Technologies) 666 

Mouse study 9. Acute phenformin study in standard chow-fed wild type 667 

animals. 668 

Male C57BL6/J mice aged 14 weeks with supplier, protocol and methods as study 2, 669 

except phenformin (Sigma PHR1573-500mg) used instead of metformin.  670 

Organoid studies. 671 

Duodenal and ileal mouse organoid line generation, maintenance and 2D culture 672 

was performed as previously described35. CHOP null mice were kind gift of Dr Jane 673 

Goodall (University of Cambridge), with line  from Jackson Laboratory,Maine  674 

(B6.129S(Cg)-Ddit3tm2.1Dron/J, Stock No: 005530 ) Human rectal organoids 675 

(experiments approved by the Research Ethics Committee under license number 676 

09/H0308/24) were generated from fresh surgical specimens (Tissue Bank 677 



Addenbrooke’s Hospital (Cambridge, UK)) following a modified protocol 35,36. Briefly 678 

rectal tissue was chopped into 5mm fragments and incubated in 30 mM EDTA for 679 

3x10mins, with tissue shaken in PBS after each EDTA treatment to release intestinal 680 

crypts. The isolated crypts were then further digested using TrypLE (Life 681 

Technologies) for 5 mins at 37⁰C to generate small cell clusters. These were then 682 

seeded into basement membrane extract (BME, R&D technology), with 20 μl domes 683 

polymerised in multiwell (48) dishes for 30-60 mins at 37⁰C. Organoid medium (Sato 684 

et al 2011) was then overlaid and changed 3 times per week. Human organoids were 685 

passaged every 14-21 days using TrypLE digestion for 15 mins at 37⁰C, followed by 686 

mechanical shearing with rigorous pipetting to breakup organoids into small clusters 687 

which were then seeded as before in BME. For transwell experiments TrypLE 688 

digested organoids were seeded onto matrigel (Corning) coated (2% for 60 mins at 689 

37⁰C) polyethylene Terephthalate cell culture inserts, pore size 0.3 μm (Falcon) in 690 

organoid medium supplemented with Y-27632 (R&D technology). Organoids were 691 

observed through the transparent cell inserts to ensure 2D culture formation 692 

(allowing apical cell access for drug treatments). Medium was changed after 2 days 693 

and then switched on day 3 to a differentiation medium with wnt3A conditioned 694 

medium reduced to 10% and SB202190 / nicotinamide omitted from culture for 5 695 

days.  696 

For GDF 15 secretion experiments 2D cultured organoid cells were treated for 24 hrs 697 

with indicated drugs, with medium then collected and GDF15 measured at the Core 698 

Biochemical Assay Laboratory (Cambridge) using the human or mouse  GDF15 699 

assay kit as outlined in CAMERA human study and mouse study 2 above. 700 

RNA was extracted using TRI reagent (Sigma), with any contaminated DNA 701 

eliminated using DNA free removal kit (Invitrogen). Purified RNA was then reverse 702 



transcribed using superscript II (Invitrogen) as per manufacturer’s protocol. RT-703 

qPCR was performed on a QuantStudio 7 (Applied Biosystems) using Fast Taqman 704 

mastermix and the following probes (Applied Biosystems); Human GDF15 705 

(Hs00171132_m1), Human ACTB (Hs01060665_g1). Gene expression was 706 

measured relative to β-actin in the same sample using the ∆Ct method, with fold (cf. 707 

control) shown for each experiment.  708 

Hepatocyte studies.  709 

Primary mouse hepatocyte isolation and culture. 710 

Hepatocytes from 8-12 week old C57B6J male mice were isolated by retrograde, 711 

non-recirculating in situ collagenase liver perfusion. In brief: livers were perfused with 712 

modified Hanks medium without calcium (NaCl- 8.0 g/L; KCl- 0.4 g/L; MgSO4.7H2O- 713 

0.2 g/L; Na2HPO4.2H2O- 0.12 g/L; KH2PO4- 0.12 g/L; Hepes- 3 g/L; EGTA- 0.342 714 

g/L; BSA- 0.05 g/L) followed by digestion with perfusion media supplemented with 715 

calcium (CaCl2.2H2O- 0.585 g/L) and 0.5mg/ml of collagenase IV (Sigma, C5138). 716 

The digested liver was removed and washed using chilled DMEM:F12 (Sigma) 717 

medium containing 2 mM L-glutamine, 10 % FBS, 1%  penicillin/streptomycin 718 

(Invitrogen). Viable cells were harvested by Percoll (Sigma) gradient. The final pellet 719 

was resuspended in the same DMEM:F12 media. Cell viability was greater than 720 

90%. Hepatocytes were plated onto primaria plates (Corning). Hepatocytes were 721 

allowed to recover and attach for 4-6 hr before replacement of the medium overnight 722 

prior to stress treatments the following day for the times and concentrations 723 

indicated. 724 

Generation and culture of iPSC derived human hepatocytes. 725 



The human induced pluripotent cell (hiPSC) line A1ATDR/R used in this work was 726 

derived as previously described 37,38 under approval by the regional research ethics 727 

committee (reference number 08/H0311/201). hiPSCs were maintained in Essential 728 

8 chemically defined media39 3supplemented with 2ng/ml Tgf-ß (R&D) and 25ng/ml 729 

FGF2 (R&D), and cultured on plates coated with 10µg/ml Vitronectin XFTM 730 

(STEMCELL Technologies). Colonies were regularly passaged by short-term 731 

incubation with 0.5mM EDTA in PBS. For hepatocyte differentiation, colonies were 732 

dissociated into single cells following incubation with StemPro™ Accutase™ Cell 733 

Dissociation Reagent (Gibco) for 5 minutes at 37°C. Single cell suspensions were 734 

seeded on plates coated with 10µg/ml Vitronectin XFTM (STEMCELL Technologies) 735 

in maintenance media supplemented with 10µM ROCK Inhibitor Y-27632 736 

(Selleckchem) and grown for up to 72h prior to differentiation. Hepatocytes were 737 

differentiated as previously reported40, with minor modifications as listed. Briefly, 738 

following endoderm differentiation, anterior foregut specification was achieved after 5 739 

days of culture with RPMI-B27 differentiation media supplemented with 50ng/ml 740 

Activin A (R&D)40 . Foregut cells were further differentiated into hepatocytes with 741 

HepatoZYME-SFM (Gibco) supplemented with 2mM L-glutamine (Gibco), 1% 742 

penicillin-streptomycin (Gibco), 2% non-essential amino acids (Gibco), 2% 743 

chemically defined lipids (Gibco), 14μg/ml of insulin (Roche), 30μg/ml of transferrin 744 

(Roche), 50 ng/ml hepatocyte growth factor (R&D), and 20 ng/ml oncostatin M 745 

(R&D), for up to 27 days.  746 

 747 

Cellular studies on integrated stress response. 748 

Chemicals and Reagents. 749 



Tunicamycin and ISRIB were purchased from Sigma-Aldrich. Metformin and 750 

Phenformin was purchased from Cayman Chemicals and GSK2606414 from 751 

Calbiochem. The antibody for GDF15 and CHOP (sc-7351) were obtained from 752 

Santa Cruz. Phospho S51 EIF2α (ab32157) and Calnexin (ab75801) were 753 

purchased from Abcam. The antibody for ATF4 was a kind gift from Dr David Ron 754 

(CIMR, Cambridge). 755 

Eukaryotic cell lines and treatments. 756 

Mouse embryonic fibroblast (MEF) cells lines were obtained from David Ron 757 

(CIMR/IMS, Cambridge) and maintained as previously described18. MEFs were 758 

transfected with 30 nM control siRNA or a smartpool on-target plus siRNA for mouse 759 

CHOP (Dharmacon - L-062068-00-0005) using Lipofectamine RNAi MAX 760 

(Invitrogen) according to the manufacturer’s instruction. 48 h post siRNA 761 

transfection, cells were processed for RNA and protein expression analysis. All cells 762 

were maintained at 37 °C in a humidified atmosphere of 5 % CO2 and seeded onto 763 

6- or 12-well plates prior to stress treatments for the times and concentrations 764 

indicated. Vehicle treatments (e.g. DMSO) were used for control cells when 765 

appropriate.  766 

RNA isolation/cDNA synthesis/Q-PCR. 767 

Following treatments, cells were lysed with Buffer RLT (Qiagen) containing 1 % 2-768 

Mercaptoethanol and processed through a Qiashredder with total RNA extracted 769 

using the RNeasy isolation kit according to manufacturer’s instructions (Qiagen). 770 

RNA concentration and quality was determined by Nanodrop. 400 ng - 500 ng of 771 

total RNA was treated with DNase1 (Thermofisher Scientific) and then converted to 772 

cDNA using MMLV Reverse Transcriptase with random primers (Promega). 773 



Quantitative RT-PCR was carried out with either TaqMan™ Universal PCR Master 774 

Mix or SYBR Green PCR master mix on the QuantStudio 7 Flex Real time PCR 775 

system (Applied Biosystems). All reactions were carried out in either duplicate or 776 

triplicate and Ct values were obtained. Relative differences in the gene expression 777 

were normalized to expression levels of housekeeping genes, HPRT or GAPDH for 778 

cell analysis, using the standard curve method. Primers used for this study: mouse 779 

GDF15 (Mm00442228_m1 – ThermoFisher Scientific), human GDF15 780 

(Hs00171132_m1 - ThermoFisher Scientific), human GAPDH (Hs02758991_g1 – 781 

ThermoFisher Scientific), mouse HPRT (Forward – AGCCTAAGATGAGCGCAAGT, 782 

reverse - GGCCACAGGACTAGAACACC) 783 

Immunoblotting. 784 

Following treatments, cells were washed twice with ice cold D-PBS and proteins 785 

harvested using RIPA buffer supplemented with cOmplete protease and PhosStop 786 

inhibitors (Sigma). The lysates were cleared by centrifugation at 13 000 rpm for 15 787 

min at 4 °C, and protein concentration determined by a Bio-Rad DC protein assay. 788 

Typically, 20-30 μg of protein lysates were denatured in NuPAGE 4× LDS sample 789 

buffer and resolved on NuPage 4-12 % Bis-Tris gels (Invitrogen) and the proteins 790 

transferred by iBlot (Invitrogen) onto nitrocellulose membranes. The membranes 791 

were blocked with 5 % nonfat dry milk or 5 % BSA (Sigma) for 1 h at room 792 

temperature and incubated with the antibodies described in the reagents section. 793 

Following a 16 h incubation at 4 °C, all membranes were washed five times in Tris-794 

buffered saline-0.1% Tween-20 prior to incubation with horseradish peroxidase 795 

(HRP)-conjugated anti-rabbit immunoglobulin G (IgG), HRP-conjugated anti-mouse 796 

IgG (Cell Signalling Technologies). The bands were visualized using Immobilon 797 



Western Chemiluminescent HRP Substrate (Millipore). All images were acquired on 798 

the ImageQuant LAS 4000 (GE Healthcare). 799 

Statistical analyses. 800 

CAMERA data were analysed using a mixed linear model with restricted maximum 801 

likelihood to investigate the metformin effect on GDF-15. This is analogous to 802 

conducting a repeated measures ANOVA, but is a more flexible analysis and allows 803 

for missing observations within subject. The 0-18 months difference in weight and 804 

GDF15 correlation was tested using Spearman’s coefficient. CAMERA data were 805 

analysed using STATA version 15.1. 806 

 Other statistical analyses were performed using Prism 7 and Prism 8, using 807 

unpaired 2 tailed t-tests ,  or 2-way ANOVA, with multiple comparison adjustment by 808 

Tukey’s  or Sidak’s test. Metabolic rate was determined using ANCOVA with energy 809 

expenditure as the dependent variable, body weight as a covariate and treatment as 810 

a fixed factor. ANCOVA and analyses of glucose and insulin tolerance testing in 811 

mice were performed using SPSS 25 (IBM). 812 

 813 

 814 

Data availability.  815 

The data that support the findings of this study are available from the corresponding 816 

authors upon request. The CAMERA trial dataset is held at the University of 817 

Glasgow and is available on request from the investigators subject to a signed 818 

agreement operating within the confines of the original ethics application. 819 

 820 
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Extended Data Figures Legends. 923 

Extended Data Figure 1. Expanded CAMERA data set. 924 

a, Linear association between change in body weight and change in plasma GDF15 925 
between 0 and 18 months among metformin treated participants (n=74, Spearman 926 
correlation r=-0.26, two-sided p=0.024). Red line is linear regression slope, and grey 927 
area is 95% confidence interval for slope. 928 

b, Absolute and relative differences in plasma GDF15 concentration between 929 
metformin and placebo groups at each time point (total 625 observations in 173 930 
participants). 931 

c,d, Individual measures of plasma GDF15 levels in placebo group (c)  and 932 
metformin group (d)  over time. 933 

e, Plasma GDF15 concentration (95%CI) in overweight or obese non-diabetic 934 
participants with known cardiovascular disease randomised to metformin or placebo 935 
in CAMERA; modelled using a mixed linear model as per Figure 1 and grouped as 936 
“all participants” and “ all participants not reporting diarrhoea and vomiting”. Model 937 
includes all participants 938 

 939 

Extended Data Figure 2.Effect of single oral dose of metformin in chow fed 940 
mice.  941 

Serum GDF15 levels in male mice measured 2, 4, or 8 hours after a single gavage 942 
dose of metformin (300mg/kg). a, mice ad libitum overnight fed prior to gavage. b, 943 



mice fasted for 12 hour prior to gavage. Data are mean ± SEM (a; n=6/group, b; n= 944 
4/group); P by 2-way ANOVA with Tukeys correction for multiple comparisons. 945 

 946 

Extended Data Figure 3. Body weight changes with metformin treatment in 947 
mice with disrupted GDF15-GFRAL signalling.  948 

a, Absolute body weight  in Gdf15 
+/+

 and Gdf15 
-/-

 mice on a high-fat diet treated with 949 
metformin (300mg/kg/day) for 11 days, mice as Figure 2a. Data are mean ± SEM, P 950 
by 2-way ANOVA with Tukey’s correction for multiple comparisons. 951 

b, Absolute body weight in high fat diet fed Gfral 
+/+

 and Gfral 
-/-

  mice  given oral 952 
dose of metformin  (300mg/kg) once daily for 11 days, mice as Figure 2c. Data are 953 
mean ± SEM.  954 
c, Absolute body weight of metformin-treated, obese mice dosed with an anti-GFRAL 955 
antagonist antibody or with control IgG  weekly for 5 weeks starting 4 weeks after 956 
initial metformin exposure, mice as Figure 2d. Data are mean ± SEM.  P by 2-way 957 
ANOVA with Tukey’s correction for multiple comparisons. 958 

 959 

Extended Data Figure 4. Response of high fat diet fed Gdf15 
-/-

 and Gfral
-/- 

mice 960 
to metformin. 961 

a, Circulating GDF15 levels   in high fat diet fed Gdf15 
+/+

 and Gdf15 
-/-

  mice given 962 
oral dose of metformin  ( 300mg/kg) once daily for 11 days. Data are mean ± SEM, 963 

mice as Figure 2a. All samples from Gdf15
-/-

 were below lower limit of assay (< 964 
2pg/ml), P value by 2-way ANOVA with Tukey’s correction for multiple comparisons. 965 

b,  Circulating GDF15 levels in high fat diet fed Gfral 
+/+

 and Gfral 
-/-

  mice  given oral 966 
dose of metformin  ( 300mg/kg) once daily for 11 days. Data are mean ± SEM, mice 967 
as Figure 2c, P by 2-way ANOVA with Tukey’s correction for multiple comparisons. 968 

c, Cumulative food intake in high fat diet fed Gfral 
+/+

 and Gfral 
-/- 

 mice on a high fat 969 
diet given oral dose of metformin  (300mg/kg) once daily for 11 days . Data are mean 970 
± SEM, mice as  Figure 2c, non-significant difference  vehicle vs metformin by 2W 971 
ANOVA. 972 

d, Fat mass ( left panel) and lean mass ( right panel)  in metformin-treated obese 973 
mice dosed with an anti-GFRAL antagonist antibody, weekly for 5 weeks, starting 4 974 
weeks after initial metformin exposure (mice as Figure 2d). Body composition was 975 
measured using MRI after 4 weeks of metformin exposure, prior to receiving anti-976 
GFRAL (week 4), after 6 weeks of metformin exposure and 2 weeks after receiving 977 
anti-GFRAL (week 6) and after 9 weeks of metformin exposure and 5 weeks after 978 
receiving anti-GFRAL (week 9). Data are mean ± SEM (n=7 Vehicle + control IgG 979 
and Metformin + anti – GFRAL; n=8 other groups); P by 2-way ANOVA with Tukey’s 980 
correction for multiple comparisons. 981 

 982 



Extended Data Figure 5. Response of second, independent cohort of high-fat 983 

diet fed Gdf15 
+/+

 and Gdf15 
-/-

 mice to metformin. 984 

a,b,c,   Percentage change in body weight (a),  absolute body weight (b)  and  985 

cumulative food intake (c)  in Gdf15 
+/+

 and Gdf15 
-/-

 mice on a high-fat diet treated 986 
with metformin (300mg/kg/day) for 11 days. Data are mean ± SEM (n=6/group, 987 

except Gdf15
 -/-

 vehicle= 7), P by 2-way ANOVA with Tukey’s correction for multiple 988 
comparisons. 989 

d, Circulating metformin levels in mice 6 hrs after final dose of metformin on day 11. 990 

Data are mean ± SEM (n=6/group, except Gdf15 
+/+

 vehicle= 4,   Gdf15 
-/-

 vehicle= 991 
7), P by 2-way ANOVA with Tukey’s correction for multiple comparisons. 992 

Extended Data Figure 6. Glucose, insulin  and GDF15 response to metformin. 993 
a, Fasting glucose from OGTT as Figure 3e and 3f. ANOVA analysis, effect of 994 
antibody p= 0.028, effect  of metformin p= 0.271, interaction of antibody and 995 
metformin p 0.707. 996 
b, Circulating GDF15 in mice undergoing ipGTT post single dose metformin as 997 
Figure 3 k and 3l. P by 2-way ANOVA with Tukey’s correction for multiple 998 
comparisons. 999 
c,d,  Fasting glucose (c)  and  fasting insulin (d)at time 0 of ipGTT as Figure 3 k and 1000 
3l, non-significant by 2-way ANOVA. 1001 
e, AUC analysis of glucose levels as in Figure 3k and l. P by 2-way ANOVA, effect of 1002 
genotype p= 0.392, interaction of genotype and metformin p= 0.883. 1003 
f, Circulating GDF15 levels in high-fat diet fed Gdf15 +/+ mice after single oral dose 1004 
of metformin (600mg/kg). Samples were collected 6 hours after dosing, data are 1005 
mean ± SEM, (n=7/group), P value (95% confidence interval) by two tailed t-test. 1006 
 1007 
Extended Data Figure 7. a,  Representative images from the mouse with circulating  1008 
GDF15 level closest to group median shown in Fig4b with images from other regions 1009 
of the gut and from liver.  b,  In situ hybridization for Gdf15 mRNA expression (red 1010 
spots) in colon.  Tissue collected from  high-fat fed wild type mice, 6 hrs after single 1011 
dose of oral metformin (600mg/kg)( right side, red box, m1-m7) or vehicle gavage ( 1012 
left side, blue box, v1-v7),  n=7/group, mice as Figure 4. 1013 

Extended Data Figure 8. Analysis of Gdf15 mRNA expression (normalised to 1014 

expression levels of ActB) in tissue from high fat diet fed Gdf15 
+/+

 mice.   1015 
Metformin dose (300mg/kg) once daily for 11 days (see Figure 2a).  Data are mean 1016 
± SEM, n=6 metformin, n=7 vehicle, P value (95% confidence interval) by two tailed 1017 
t-test. 1018 

Extended Data Figure 9.Hepatic GDF15 response to biguanides. 1019 

a,b,Gdf15 mRNA expression in (a) primary mouse hepatocytes or (b) human iPSC 1020 
derived hepatocytes treated with vehicle control (Con) or metformin for 6 h. mRNA 1021 
expression is presented as fold expression relative to control treatment (set at 1), 1022 
normalised to Hprt and GAPDH gene in mouse and human cells,  respectively. Data 1023 
are expressed as mean ± SEM from four (a) and two (b) independent experiments. P 1024 



value (95% confidence interval)  by 1 way ANOVA  with Tukey’s correction for 1025 
multiple comparisons.  1026 

c,d, Circulating levels of GDF15 (c)  and  hepatic Gdf15 mRNA expression (d) 1027 
(normalised toβ2 microglobulin) in chow fed, wild type mice 4 hrs after single oral 1028 
dose of phenformin (300mg/kg). Data are mean ± SEM, n= 6/group,  P value (95% 1029 
confidence interval)   by  two tailed t-test.  1030 

e,  Representative image of  in situ hybridization for Gdf15 mRNA expression (red 1031 
spots) of fixed liver tissue derived from animals treated as described in (c) and (d). 1032 

Extended 10. Role of the Integrated Stress Response (ISR) in biguanide-1033 
induced Gdf15 expression 1034 

a,b, mRNA levels in kidney (a) and colon (b) isolated from obese mice 24 hours after 1035 
a single oral dose of metformin (600mg/kg). Data are mean ± SEM (n=5/group). P 1036 
values (95% confidence interval) by two tailed t-test.  Gdf15 mRNA fold induction 24 1037 
hrs post metformin 600mgs/kg is positively correlated with CHOP mRNA induction in 1038 
both kidney (a, right panel) and colon (b, right panel), black line= linear regression 1039 
analysis. 1040 

c-g,  Immunoblot analysis of ISR components (c) and  Gdf mRNA expression (d) in 1041 
wild type MEFs (mouse embryonic fibroblasts) treated with vehicle control (Con), 1042 
metformin (Met, 2 mM) or phenformin (Phen, 5 mM) or tunicamycin (Tn, 5 �g/ml -1043 
used as a positive control) for 6 hrs. e, Gdf15 mRNA expression in ATF4 knockout 1044 
(KO) MEFs or (f) in control siRNA and CHOP siRNA transfected wild type MEFs 1045 
treated with Tn or Phen for 6 hrs or (g) in wild type MEFs pre-treated for 1 h either 1046 
with the PERK inhibitor GSK2606414 (GSK, 200 nM) or eIF2α inhibitor ISRIB (ISR, 1047 
100 nM) then co-treated with Phen for a further 6 hrs. mRNA expression is presented 1048 
as fold-expression relative to its respective control treatment (set at 1) or phen 1049 
treated samples (set as 100) with normalisation to Hprt gene expression. Data are 1050 
expressed as mean ± SEM from two for (c) and (d) and at least three independent 1051 
experiments for (e-g).  P value (95% confidence interval) by two tailed t-test relative 1052 
to Phen treated control wild and control siRNA treated samples. 1053 

h, GDF15 protein in supernatant of mouse derived 2D duodenal organoids treated 1054 
with metformin in the absence or presence of ISRIB (1 μM). Data are expressed as 1055 
mean ± SEM from two independent experiments. From each well, measurement of 1056 
protein was at least in duplicate. P by 2 way ANOVA with Sidak’s correction for 1057 
multiple comparisons. 1058 

i, GDF15 protein in supernatants of mouse-derived 2D duodenal organoids from wild 1059 
type and CHOP null mice treated with metformin from two independent experiments 1060 
From each well, measurement of  protein was at least in duplicate. Data are mean ± 1061 
SEM, P value (95% confidence interval)  by two-tailed t-test. 1062 
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