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Abstract—Due to increased competitive pressure, modern organizations tend to rely on 

knowledge and its exploitation to sustain a long-term advantage. This calls for a precise understanding 

of knowledge management (KM) processes and, specifically, how knowledge is created, 

shared/transferred, acquired, stored/retrieved, and applied throughout an organizational system. 

However, since the beginning of the new millennium, such KM processes have been deeply affected 

and molded by the advent of the fourth industrial revolution, also called Industry 4.0, which involves 

the interconnectedness of machines and their ability to learn and share data autonomously. For this 

reason, the present study investigates the intellectual structure and trends of KM in Industry 4.0. 

Bibliometric analysis and a systematic literature review are conducted on a total of 90 relevant 

articles. The results reveal 6 clusters of keywords, subsequently explored via a systematic literature 

review to identify potential stream of this emergent field and future research avenues capable of 

producing meaningful advances in managerial knowledge of Industry 4.0 and its consequences. 

 

Index Terms— Industry 4.0, Knowledge Management, Fourth Industrial Revolution, IoT,  

Internet of Things, Big Data, Smart Factory, Knowledge Sharing, Manufacturing Innovations, 

Cyber Physical System, Condition Monitoring, Cyber-Physical Production Systems, Digital 

Economy, Digital Transformation, Literature Review, Bibliometrics, Future Research, 

Forecasting, Technology Foresight 

 

MANAGERIAL RELEVANCE STATEMENT  

This study suggests the evolving field of knowledge management significantly influences 

organizational performance in the era of Industry 4.0. Findings reported in the literature clearly 

demonstrate that companies must consider the topic of knowledge management concomitantly with 

the implementation of Industry 4.0 innovations. Novel interactions between machinery and humans 

are imminent and will reconfigure organizational approaches to production, product development, 

and monitoring. Managers need to create an environment where the effectiveness of these upcoming 

transformations is clearly understood. In Industry 4.0, where change occurs rapidly, managers should 

consider their organization’s capability of handling and managing high flows of knowledge resulting 

from the implementation of Industry 4.0. 
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I. INTRODUCTION 

Since its initial conceptualization in the nineties, knowledge management (KM) has become a well-

established discipline in academia and business due to their increasing emphasis on results [1]. 

Knowledge is a key resource for gaining sustainable competitive advantage, concretely translated into 

more efficient business processes and quality improvement, as well as increasing firms’ ability to 

recognize novel solutions and develop products that meet their customers’ needs [2]. Although a 

widely agreed-upon definition of KM has not been established [3], Hedlund [4, p.76] defines it 

comprehensively as “the generation, representation, storage, transfer, transformation, application, 

embedding, and projecting of group and organizational knowledge.” Thus, KM relates to a 

combination of processes that coordinate and capitalize on a firm’s cumulative knowledge to achieve 

sustainability and adapt to emerging changes in the environment [5].  

Recent technological advancements in the digital era have the potential to boost the knowledge-

driven economy [6]. The fourth industrial revolution, also referred to as Industry 4.0 in the literature, 

has become a topic of interest in many research areas, such as engineering, computer science, 

electrical engineering, and material science. The paradigm refers to technological evolution and 

futuristic paradigms using smart and intelligent systems, automation, and digitalized production [7]. 

Industry 4.0 is a tool used to shift from a manufacturing paradigm where machines simply 

operationalize routines to digital manufacturing, where machines are capable of communicating with 

each other and collaborating autonomously [8]. 

However, the outcomes of these changes and their relationship to KM have been irregular, and 

the parameters involved are generally ambiguous [9]. For example, in a constantly-connected 

environment, machines monitor processes continuously and produce reports, increasing the potential 

for knowledge creation exponentially [9]. As a result of this activity, substantially more unstructured 

data and information are produced increases, which may congest the information system [10]. For 

this reason, to truly benefit from this digital transformation, organizations should improve their KM 

approaches so they can scan and detect meaningful pieces of information and develop more 

sophisticated uses of this knowledge. However, the ways in which firms are profiting from KM 

practices in the digital revolution era remain inconsistent and confusing [11]. Although some attention 

has been paid to specific concepts/technologies introduced by Industry 4.0, such as the Internet of 

things (IoT) [12] and big data [13], as well as their impact on KM, the Industry 4.0 phenomenon is 

fairly new, and no comprehensive studies have addressed the full extent of the problem thus far. 

Aiming to address this gap, an investigation of the main existing contributions regarding the 

relationship between KM and Industry 4.0 relationship is conducted. The methods employed, 

bibliometric analysis and systematic literature review of a dataset of 90 relevant papers, identify 

possible connections and research directions, through a systematization of the main existing 

contributions on the KM-Industry 4.0 relation. Bibliometric methodologies have contributed to the 

development of a wide range of fields, including management [14], knowledge management [15], 

and even Industry 4.0 [7] by helping scholars frame their streams of research in the ‘tangled forest’ 

of scientific proliferation.  

Two overarching research questions guide this study. The first question, “How does the KM literature 

address the dramatic changes occurring in reason of the Industry 4.0 era?”, allows us to synthesize 

and systematize current knowledge on the topic. The second question, “How will this development 

impact KM practices in the future?”, helps set a tentative agenda for future research in the KM field. 

Thus, this paper makes a multifold contribution. For theory building purposes, it explores the 

knowledge structure, thus systematizing the emergent streams of the field, and gaps, indicating future 

directions of KM research as it relates to Industry 4.0. The study also offers a set of insights regarding 

emerging technologies and their practical application in organizations to improve KM 

systems/practices. The study is organized as follows. The next section describes the methodological 

approach, while the third section presents the bibliometric and cluster analysis results, and the fourth 

section synthesizes and discusses future research avenues. Finally, the fifth section discusses the 

conclusions and limitations of the study. 
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II. METHOD 

Since Industry 4.0 is a recent development, to review the current literature, the Scopus database 

was selected as it offers the widest coverage of documents throughout the available databases [16]. 

However, to assure the maximum level of reliability, the results were also cross-validated with the 

Web of Science Core Collection and EBSCO to confirm the inclusion of all the relevant studies. No 

discrepancies were detected, confirming Scopus as the most comprehensive dataset.  

After several iterations and based on the current study’s research questions, the following search 

string was identified as the broadest yet most effective to retrieve relevant papers. The query was 

performed on February 18, 2018, using the following string: TITLE-ABS-KEY ("knowledge 

management") AND (TITLE-ABS-KEY (industry 4.0) OR TITLE-ABS-KEY (revolution 4.0) OR 

TITLE-ABS-KEY (fourth AND revolution) OR TITLE-ABS-KEY (4th AND revolution) OR TITLE-

ABS-KEY (4th AND industrial)). The TITLE-ABS-KEY operator conducted a Boolean search by 

running the aforementioned query of the selected terms in titles, abstracts, and keywords, which 

identified 107 articles. The results consider all journal articles and conference papers without a time-

period limitation due to the novelty of the topic. The first paper was published in 2014, and thus, the 

entire dataset covers a five-year time period (i.e., 2014-2019). However, only the most relevant 

subject areas were chosen: arts and humanities, business, management and accounting, chemical 

engineering, chemistry, computer science, decision sciences, economics, econometrics and finance, 

energy, engineering, environmental science, material science, psychology, and social sciences.  

The initial dataset was refined further by dropping 14 records because they were conference book 

proceedings that only contained a table of content, i.e., the list of papers of the conference. Next, a 

manual screening of the dataset was performed to ensure the papers contain a concrete focus on KM 

and Industry 4.0, meaning that each paper, beyond presenting a study of an Industry 4.0 technology 

or paradigm, offers concrete implications for organizational KM systems or one of the elements 

involved (e.g., KM platforms, KM interfaces, or human use of KM systems). Two authors reviewed 

the set independently, and their opinions differed on 3 papers, which were excluded. After this 

refinement, a total of 90 papers remained in the final dataset. 

To analyze the intellectual structure of the research reported on in this dataset, bibliometric 

analysis was performed and the specific technique was based on the visualization of similarities 

(VOS) [17], using the author’s keywords as the unit of analysis. Then, a systematic literature review 

developed the topics identified in the keyword analysis using Tranfield, et al. [18] approach. 

Prior to performing the bibliometric analysis, the dataset was pre-processed in a Microsoft Excel 

spreadsheet by associating qualitative attributes (e.g., the methodology employed and the main KM 

concepts touched upon) and bibliometric parameters related to the volume and influence of the 

research with each paper. During this stage, it was also crucial to check the input variable of the 

analysis (i.e., the authors’ keywords) for possible missing data, other errors (e.g., 

mistyping/misreading) and consolidate the dataset. Some keywords are the same term but written 

differently, thus creating duplications and affecting the analysis [19]. For example, the keywords 

‘IoT’ and ‘Internet of things’ are different terms but refer to the same meaning; therefore, they needed 

to be reconciled into a single keyword. Subsequently, to conduct the main analysis, we used 

VOSviewer version 1.6.6 software to perform the co-word analysis, based on the authors’ keyword 

aggregation mechanism [20]. To ensure the maximum level of inclusion and follow best 

methodological practices, this study considered the number of co-occurrences of a keyword at the 

lowest level, and thus, the keywords must co-occur at least once in the dataset [21]. The technique 

utilizes keywords to form a knowledge structure that enables the identification of the main topics in 

a research field and their internal relationships [22]. This approach relies on the fact that the more a 

keyword occurs in combination with others across the dataset of documents, the stronger the 

connection between them. In VOSviewer, the aggregation technique results in a two-dimensional 

map that uses a co-occurrence matrix of keywords generated from the presence of co-occurrences 

and their frequency, which relates to their spatial proximity [20]. Technically, this method formulates 
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measures of the similarities between lexical associations; hence, it assesses in-depth semantic 

interconnectedness and performs a set of routines to build a spatial map in which the items (i.e., 

authors’ keywords) are spatially distributed according to the distance between any pair of items. 

Therefore, considering these distances, a cluster analysis was also performed [20] because two 

spatially close keywords (i.e., keywords with a higher co-occurrence frequency) have a higher 

likelihood of being grouped by the algorithm in the same cluster. In a VOSviewer visualization [23], 

each point identifies a keyword that co-occurred at least once, with the size of the bubble indicating 

the number of occurrences and the assigned color identifying the cluster. The distance between terms 

corresponds to the frequency of their co-occurrence. 

Finally, a systematic literature review was conducted [18] based on the VOS cluster analysis 

results. To discover the core descriptors or research area of each cluster, we selected keywords with 

the highest number of occurrences. This enabled the analysis of the most important papers containing 

the most impactful keywords in each cluster. Following the methodological prescriptions in [18, 21], 

the dataset was reviewed by all four authors, and interpretations were discussed through several vis-

à-vis interactions to double-check the selected keywords and papers assigned to a specific stream in 

each cluster. All four authors discussed the most relevant papers in the dataset according to the 

relevance of the topic, the magnitude of the findings and their implications, the relevance of the outlet 

of the publication, and the normalized citations of the paper.  

 

III. RESULTS 

The main results of the bibliometric analysis can be summarized in Figure 1, which illustrates the 

results of the VOS analysis. For a more coherent visual presentation, only the most influential 

keywords are displayed in the figure, and the full set of keywords and their relative frequencies are 

presented in Table 1. The VOS analysis shows six different clusters related to different research areas 

emerging from studies of KM and Industry 4.0. Next, we present the results of the systematic 

literature review performed based on the VOS analysis.  

 

A.  Green Cluster 

Fig. 1. Diagram of the VOS keyword analysis results. 
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Keywords in the green cluster revolve around two sub-streams, namely cyber-physical systems 

(CPS) and condition monitoring (e.g., intelligent systems, product lifecycle management, process 

industry, preventive maintenance, fault prognostics, platforms). The first sub-stream addresses CPS 

as the central object of investigation in the era of Industry 4.0, which has already received extensive 

attention in both the academic and industrial domains [24]. Specifically, CPS research encompasses 

many subjects, including industrial design, industrial technologies, computer science, and electrical 

engineering. Practical examples of this technology are self-driving cars, robot surgeons, smart 

manufacturing, smart electric grids, implanted medical devices, and intelligent buildings [25]. 

However, from a technical viewpoint, CPS is defined as the integration of physical processes with 

their computations in a way that both the virtual and physical parts of the system interact effectively 

[26]. Thus, CPS, as a class or collection of systems, enables this integration, which facilitates 

computation, communication, controlling operation, and interactions with the task environment, 

either physically or virtually [27]. KM envisions CPS as a facilitator of knowledge services in smart 

systems [28]. CPS contains collections of miscellaneous data stored within different links/nodes, for 

example, databases filled with software vendors and NoSQL. This integrated deployment of 

knowledge increases the possibility of retrieving and exploiting knowledge more efficiently [28].  

In one of the studies dealing with KM and CPS, Sivanathan, et al. [29] propose a specific approach 

to knowledge capture methods, promoting the real-time mapping of information and facilitating its 

retrieval and reusability. During the product lifecycle process, companies using traditional knowledge 

capture approaches have difficulty storing such knowledge, which often results in losing it. The 

authors suggest instant user logging in a virtual design environment called the virtual-aided design 

engineering review (VADER) system. This knowledge capture method allows for automatically 

integrating structured and unstructured data via a ubiquitous integration and temporal synchronization 

routine (UbilTS).  

CPS also relates to both vertical (i.e., within a company and its hierarchy) and horizontal (i.e., 

between companies or different organizational units and sites) knowledge sharing. Scheuermann, et 

al. [30] propose a CPS application for incident management and IT services. Their approach allows 

instant control of incidents by collecting data generated by wearable devices and sharing this 

information throughout the system, which cannot be done using traditional hand-written reports. In 

another study, Mládková [31] suggests implementing a CPS in the aviation industry to help pilots fly 

planes with more security and precision. A CPS, which captures and shares information about 

problematic situations, can reduce faults occurring due to inefficient interactions between humans 

(i.e., tacit and explicit knowledge) and technical machines (i.e., explicit knowledge).  

The second sub-stream of this cluster on condition monitoring is focused on individuating faults 

in machines, processes, or systems. In the Industry 4.0 era, the high demand for productivity and 

responsiveness in manufacturing processes necessitate automation in various environments. For this 

reason, machines should be monitored closely to proactively resolve problems that may halt or slow 

down a production system. A protocol is used to define and set the machine’s normal functioning 

state, thus allowing the program to detect any deviation [32]. Condition monitoring has made 

considerable contributions in a variety of fields, including electronic engines [33], wind turbines [34], 

and the railway industry [35]. From a KM perspective, a high volume of data tends to be generated, 

so the objective of condition monitoring is to use an intelligent CPS to handle various complicated 

situations and deal with failure prediction and planning repair work automatically  [32]. Knowledge 

content/standards for the monitoring should be available to an intelligent CPS, as it enables the 

automatic operation and maintenance of the system.  

Traditional monitoring techniques rely on programmed maintenance or, in some cases, human 

prerogative, to make decisions about fault prediction and maintenance planning. However, due to the 

growing complexity of production systems, these solutions may result in either an excessive or 

insufficient level of intervention or the inability to respond to problems in time to prevent a system 

or machine shutdown. However, a smart system can monitor the real-time status of equipment and 

regulate maintenance accordingly [36]. Wu, et al. [36] propose an interactive visual-analytics 
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approach to manage online equipment dedicated to condition monitoring. The authors present a semi-

supervised system using advanced analytical algorithms (i.e., a Gaussian mixture model with a 

Bayesian framework) and natural visualization design to extract valuable information from data 

collected via sensors and devices. This approach enables operators and managers to enhance their 

knowledge, make better use of inputs, guide the autonomous analytics, and obtain more reliable 

results. 

Similarly, Cao [37] presents an ontology-oriented framework using an intelligent system to 

support decisions regarding condition monitoring tasks (e.g., fault alarm recognition and maintenance 

plans). The intelligent system functions according to two dimensions; a core reference ontology for 

capturing general conceptions and associations, and a second combines a collection of domain 

ontologies to integrate condition monitoring and manufacturing knowledge. 

 

B. Aqua Cluster 

Keywords belonging to the aqua cluster focus on a variety of terms related to big data (e.g., 

banking, decision making, machine learning, financial sector data, and product data). Big data is 

generated continuously through digital processes and transferred via multiple devices and systems. 

In the literature, the concept of big data consolidates around three dimensions, the traditional ‘3Vs’: 

volume, velocity, and variety [38]. Volume refers to the mass of data produced, while velocity refers 

to the speed at which data are produced, obtained, or transferred, and variety represents the growth 

of new data types that are assimilated. However, these three dimensions place more emphasis on the 

purely technical side of big data, and thus, researchers have begun to enlarge the set of attributes. 

First, a challenge exists in relation to the data generated daily from these digital processes. A large 

quantity of big data may result in unstructured forms of data that are less reliable. Thus, the level of 

reliability of such complicated forms of data is referred to as ‘veracity’ [39]. Nevertheless, 

unstructured data has also proven to be a useful asset in the development of several fields, including 

risk management [40], customer relationship management [41], and the banking industry [42]. For 

example, unstructured data are easy to store, retrieve, and analyze. Thus, the same combination of 

unstructured data may be evaluated differently and have a different ‘value,’ according to 

organizational needs and uses. 

Big data is a KM enabler as these digital processes provide a large base of information that can 

be turned into knowledge. Therefore, a task for KM is to better structure such inputs through, for 

example, codification, personalization, and representation, which improves data interpretation [43]. 

Transforming big data into understandable knowledge so that it can be used or shared is also a key 

factor in promoting innovation [44].  

Several papers in this cluster deal with the possibility of increasing knowledge creation from big 

data. For example, Costa, et al. [44] propose a novel conceptual framework using knowledge 

representation for unstructured data sources. This technique facilitates the transformation of 

unstructured data into a representation schema that is more structured, usable, and sharable when 

needed. To do so, the authors use an enriched vector space model (i.e., semantic vector) developed to 

support ontologies. Using semantic technologies helps enrich the implicit information within 

documents’ complicated relationships (i.e., semantic associations), thus extracting additional 

information from documents.  

Bao, et al. [45] focus on using semantic web technologies and a semantic web rule language in 

the steel industry. Ontology modeling is used to turn a large volume of data, such as historical stored 

data, into valuable knowledge, thus providing knowledge exchange and reusability for future 

modeling and integration. The authors also discuss the characteristics of different methodologies used 

for ontology modeling and sematic deductions. Similarly, Peroni and Vitali [46] use semantic web 

technologies but apply them to an Italian fashion company, Imperial Fashion. The authors present an 

ontology model (OWL 2 DL) for converting all original data stored in the company’s database into 

knowledge, unifying the data for product sales. Hence, it is possible to apply different visualization 

methods and various interfaces with greater interactivity, as well as employ self-operating analytical 
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assets. Cárdenas, et al. [47] focused, instead, on the necessity of fully integrating big data logics into 

organizational and information systems, typically referred to as KM systems. The results of this 

integration can boost the intellectual capital of personnel, who can then benefit from improved 

machine-based data collection.  

Another specific case of big data integration and utilization was conducted by Mungai and Bayat 

[42] in the banking sector. The authors use two cases, Capitec and FirstRand, and employ the clients’ 

information, specifically interactions and relationships with clients and account holders. All of this 

information is used to design innovative and improved client-centered services. Changes in the 

branches’ design, back-office policies (e.g., offering flexible working hours), and data-driven 

decision making were implemented, which increased client satisfaction. 

 

C. Purple Cluster 

The purple cluster reflects the discussion on smart factories with keywords such as digital 

manufacturing, sustainable manufacturing, and digital twin. The trend toward building smart factories 

has stimulated a new approach to analytic- and predictive-driven production thinking [48]. Indeed, 

the smart factory concept is not limited to traditional factory automation approaches, such as using 

robots to substitute human labor or improving the efficiency of production processes. Instead, this 

concept involves the use of analytics to explore the feasibility of possible solutions [48]. For this 

reason, from a KM perspective, the term smart factory does not relate simply to the use of 

technologies in an organizational setting; it represents the practical advantage that an organization 

can acquire by using knowledge in the development of its production processes [49]. Increased 

knowledge about the production process in a smart factory context can be obtained through digital 

twin technology, which is an extensive physical and operational description of assets and, thus, a 

‘virtual copy’ of products, machines, and other systems involved in the production process [50]. This 

gives to human operators and access to a technical process that may not be completely known or 

knowable. 

Padovano, et al. [51] propose an application-based model using digital twin technologies, which 

allow operators to foresee the future status and position of physical assets involved in the production 

system. Thus, operators’ decision-making ability and knowledge acquisition and use are enhanced. 

Similarly, Longo, et al. [49] aimed to develop a more human-centered manufacturing paradigm where 

employees can acquire ubiquitous knowledge about processes, which can facilitate business and 

production performance. To do so, the authors propose a human-centric approach, the ‘industrial 

internet pyramid’. It uses a service-oriented digital twin as a kind of ‘on-demand’ service. This digital 

twin is integrated with an audio system that captures inputs, such as spoken information. A close 

interaction between the CPPS and employees facilitates a knowledge process based on the intuitive 

knowledge obtainable by this eased interaction and, thus, enables further knowledge creation.  

The smart factory concept is also related to modeling processes to enrich predictive lean 

production. On this topic, Lee, et al. [48] present a novel approach to integrate knowledge flows and 

business process management. In their study, the authors propose a process modeling approach that 

facilitates analytics by using the extensible markup language (XML) process modeling language. This 

analytic KM approach provides businesses insights using past experience to frame upcoming and 

existing problems. 

Finally, human competencies are also important in a smart factory environment. Graczyk-

Kucharska, et al. [52] formulate a framework for managerial competencies necessary to fully benefit 

from this type of context. One of the elements confirmed is the ability and necessity of exchanging 

practical engineering knowledge and coordinating processes more effectively in relation to 

knowledge of employees’ competencies. This, in turn, enables a faster response to market demands 

and much quicker resource access.  

 

D. Yellow Cluster 
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The yellow cluster mainly contains keywords that refer to the role of the Internet of things (IoT) 

(e.g., internet of services, the web of objects, virtual objects, microservices, interoperability, semantic 

integration). The IoT is envisioned as the connectivity of every object through the internet to send, 

share, exchange, and comprehend data and information [53]. Thus, IoT services generate new data 

that can be turned into useful knowledge, which enables the implementation of certain types of smart 

solutions and applications (e.g., smart health care, smart homes, connected cars, self-driving vehicles, 

smart farming, and smart agriculture) [54].  

At a more practical level, the IoT allows Industry 4.0 systems to integrate and connect effectively 

and reliably, from both a syntactical and semantical perspective. This places the IoT at the core of the 

whole industry architecture [55]. Each object has an individual virtual identity and the capacity to 

integrate and interact independently within a network of other similar or different machines [56]. 

However, single objects may have different semantic protocols that need to be interpreted to establish 

autonomous communication [57], which is the IoT’s role, thus providing access to real-time 

information from sensors, devices, and even objects. From a knowledge management perspective, 

this cluster also contains various keywords, such as knowledge dynamics, knowledge management 

systems, and knowledge-driven architecture. When viewed through the KM lens, the IoT allows more 

ways to manage and monitor knowledge in an organization and requires innovative knowledge 

management systems that can adapt to more complex knowledge flows [12]. Moreover, the IoT can 

be considered a prominent enabler of all KM processes[12] since the objects’ interconnectivity relates 

to an expanding potential for data generation, storage, acquisition, transfer, and application [58]. 

For this reason, KM is particularly interested in the management of platforms to fully exploit the 

benefits of IoT. Jarwar, et al. [53] propose an IoT service platform called ‘web of objects.’ This 

platform favors the application of interoperable microservices and the virtualization of objects. In 

doing so, the authors mention three major concerns: (a) how to connect of all these objects and control 

the complexity of the semantic cooperation between them, (b) how these objects aim to interpret 

information and data provided by IoT services, and (c) how to monitor the functionality of every 

object rapidly and realize a less centralized management of the system, which also provides high 

levels of scalability, recovery, and resiliency. Resolving these concerns would require further 

technological advancements and applications, as well as faster improvement and replacement in terms 

of the IoT. The architecture proposed uses platforms that simplify the activities of single objects 

located in a variety of different domains (e.g., data transfer and data capture). Rodríguez-Molano, et 

al. [56] also focus on the role of interconnected platforms in an IoT system and present several 

examples of IoT platforms. For each of them, the authors discuss characteristics, advantages, and 

different levels of diffusion among transitional, emerging countries.  

Burzlaff and Bartelt [59] focus on the IoT’s impact on production processes. Specifically, 

languages with normalized semantics may improve automation in the component integration process, 

thereby simplifying manual integration (e.g., a ‘plug and play’ approach). When complicated 

specifications are involved the production process in terms of design, manual integration is not 

recommended. Indeed, manual integration relies on informal standards and ad hoc solutions that are 

not re-usable, thus impairing knowledge integration. The proposed solution is an interface 

specification based on a knowledge-driven architecture for the re-use of these combinations and 

integrations. Similarly, Toc and Korodi [60] discuss the challenges of automating component 

integration, which can be summarized as the need for particular protocols and lower costs of 

hardware, software, and middleware tools to ease the knowledge exchange of integrators. The authors 

used a Modbus-OPC UA wrapper as hardware, IoT 2040 as a middleware tool, and a Node-RED 

software environment. In their experiment, developments were tested in a real case scenario of a 

wastewater pumping station.  

Finally, the IoT concept is quite central to the whole intellectual structure of the field, and hence, 

it is also closely related to other central keywords, such as big data, predictive maintenance, machine 

learning, and sensors. This also means, for example, that the literature often addresses the joint effects 

of the IoT and big data on KM. Indeed, Candanedo, et al. [61] paper focuses on a case study of a 
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heating, ventilation, and air conditioning systems (HVAC). Such systems monitor the temperature, 

humidity, and indoor climate to obtain the most favorable production environment. The authors 

dwelled on the important role of IoT sensors in supporting intelligent systems’ ability to transfer 

information and on big data as a source of useful, more detailed information, which facilitates 

decision-making processes, including those involving predictive maintenance, failure anticipation, 

and emerging demand prediction. 

 

E. Red Cluster 

Keywords in the red cluster focus on a broad range of aspects associated with several 

organizational transformations brought forth by the industry 4.0 (e.g., factory of the future, factory 

automation, organization 4.0, operator 4.0, factory work, and new product development). One specific 

sub-stream could be aggregate around the evolutions occurring in manufacturing, with a strong focus 

on humans’ role in relation to knowledge exchange in the digital era. The manufacturing 

developments are generally related to creating adaptive and connected value chains to handle the 

complexity of the market, thus creating extra value for customers during product life cycles [62]. 

 Specifically, KM views manufacturing from the perspective of the ‘factory of the future’ (FoF) 

concept, which involves the integration of production technologies with IT to improve automation 

via cyber-physical systems [63]. Consequently, sufficient data and information can be provided about 

each production element, facilitating their connection accordingly [63]. The FoF is a virtual milieu 

of interaction based on knowledge transfer practices involving both the eternal environment, such as 

collaboration with external resources (e.g., other companies), exploiting new connections with local 

ecosystems (e.g., universities and policymakers), exchanging best implementation practices (e.g., 

sharing successful stories), using the internal environment as a space to learn and improve knowledge 

transfer approaches (e.g., ‘train the trainers’), and facilitating a culture of sharing knowledge among 

workers [62].To explore this perspective, Zangiacomi, et al. [62] investigate best practices for an 

efficient FoF in an Italian manufacturing organization. The authors identify two key drivers of the 

implementation: technology investments in the FoF (e.g., adapting lean management approaches and 

training specialists on specific technological skills), the organization’s ability to realize the FoF, and 

investigating the shift in the company’s business model and its consequences. This contributed to the 

readiness of the organization and to the promotion of knowledge transfer. 

Another important concept related to manufacturing approaches in the digital era is the idea of 

the human operator, known as ‘operator 4.0,’ specifically stressing the importance of knowledge 

sharing. In an organizational Industry 4.0 environment, human capital has a strong potential for 

organizational knowledge transfer by exchanging and integrating individual knowledge. 

Accordingly, Li, et al. [64] conduct a study of knowledge mapping by using individual perspectives 

to realize how sharing knowledge (i.e., tacit or explicit) influences the organization’s information 

systems. Using the ‘make time to discuss, explore differences, encourage respect, take responsibility’ 

(MEET) model, which promotes mutual respect in the work environment, the authors study and link 

knowledge sharing activities, the intensive technological adoption of the Industry 4.0 paradigm, and 

organizational logics, coining the term ‘organization 4.0’ to describe this approach. 

Aromaa, et al. [65] conducted another case study focused primarily on the human aspects of the 

Industry 4.0 manufacturing transformation, proposing the ‘Facory2Fit’ project for work engagement 

and involvement. The project is based on four components: knowledge-sharing ability and 

interactions using discussion platforms, information visualization using augmented reality 

technology, task and workplace design using 3D software, and training tools used on a training 

platform. All the components were found to have positive impacts on workers’ performance and well-

being. 

A second sub-stream refers to the role of digital transformation (DT), which revolutionizes the 

way work is performed rather than focusing solely on the requirements of the physical environment 

(e.g., construction and manufacturing). This stream, in comparison to the other in this cluster, places 

more emphasis on the organizational component of transformation. Indeed, DT is defined as a digital 
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approach to connect people, IT facilities, and machines. However, DT has been mainly approached 

from a technical perspective so far, stressing roles and the effects of technology platforms and their 

integration on organizational change, while consequences for people are addressed less frequently 

[6]. In a transforming organization, people should be considered an asset that can deal with complex 

knowledge domains through rapid collaboration and exchanges. From a KM perspective, focusing on 

the role of people during digital transformation leads to a stronger ability to develop innovations [66], 

and therefore, they are an important source of competitive advantage [67].  

In the dataset, several successful concrete cases of DT implementation are described. Wolf, et al. 

[68] discuss the successful use of DT in a project called ‘Healthy Work Pioneer Industries.’ They 

state that successful drivers include shifting the mindset of the management, foreseeing the potential 

for innovation in different sectors, and motivating knowledge transfer within the organization. 

Another successful DT case is in the banking sector in Africa, described by Ochara, et al. [69]. The 

aim is to facilitate cashless banking for the ABC Bank group. In their approach, the authors address 

the increasing need to capture knowledge of experiences regarding DT in Africa. Finally, Bibaud-

Alves, et al. [70] studied DT in a new product development (NDP) process introduced in a French 

furniture manufacturing company. The DT was motivated by a company crisis caused by both 

managerial and technical backwardness. The first intervention was made in relation to the technology 

needed to improve the company’s data collection and processing, which led to the creation of a KM 

(i.e., formalization and computerization) system. Although this first intervention was successful, 

other organizational areas still need improvement and revision, such as developing new competencies 

and skills, process management approaches, and decision-making procedures. Thus, the NDP 

redesign needs to be human-centered to handle resistances to change and unleash the true potential 

of human capital. Finally, Ilvonen, et al. [71] focus on problems related to knowledge protection 

during a digital transformation. These challenges may manifest in the tools used to protect proper 

knowledge manifestation, legal regulations, and approaches to balancing the necessity of transferring 

and securing knowledge. 

 

F. Blue Cluster 

The blue cluster also concerns the human-machine relationship, but in this case, the focus is 

oriented more specifically toward production processes (e.g., augmented reality, problem-solving, 

cyber-physical human system, cyber-physical market visualization, process simulation visualization, 

production modeling, and simulation process building). The first sub-stream addresses cyber-physical 

production systems (CPPS) as a new production system that emerged from the industrial application 

of cyber-physical systems [72]. CPPS is described as a set of production systems acting on feedback 

systems, resulting in an adaptive and predictive approach [26]. An example of CPPS is an on-demand 

print service offering high-speed printing, which requires avoiding equipment failures (e.g., paper 

jams) by controlling and initiating rapid shutdowns if necessary [26]. From a KM perspective, CPPS 

implementation calls for not only changes in the technical side, such as processes and systems, but 

also human-based skills and organizational competencies [73]. Thus, CPPS implementation promotes 

cultural change by empowering workers to become decision makers rather than simply data handlers 

[74]. Ansari and Seidenberg [74] discuss interactions between the human component and CPPS 

during problem-solving processes. The authors propose to discover the facilitating factors involved 

in knowledge transfer, reciprocal learning, and synergy in the smart organization context. A 

management portfolio matrix is used to identify environments in which human-CPPS interaction may 

occur. Their study confirms that CPPS learn not only from human decisions (e.g., using machine 

learning techniques) but also from communicating with humans. Similarly, Ansari, et al. [27] 

introduce ‘problem solution and problem-solver’ ontology, a semantic framework capable of 

identifying optimal conditions (i.e., states) to regulate human-CPPS interaction in a problem-solving 

context. Specifically, this ontology is able to frame a task or problem and identifies the best 

configuration for human-CPPS interaction. 
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The second sub-stream deals with the role of process modeling and focuses on the design of 

production processes. Indeed, incorporating powerful Industry 4.0 technologies into traditional 

production systems demands a more thorough consideration of the necessity of adaptations and shifts 

in capabilities for true integration. For example, in a traditional production system, IoT technologies 

may ease customization, providing more flexibility as real-time changes in demand or requests can 

be adjusted easily during the production process based on further feedback loops between cyber-

physical systems [75]. However, this also means dealing with a great variety of system conditions 

and statuses/states and, thus, dealing with greater complexity considering that all the processes need 

to be coordinated and controlled efficiently and effectively. For this reason, Grum and Gronau [76] 

propose a modeling process language using augmented reality integration to understand coordination 

requirements in what they call ‘non-transparent processes.’ Their approach enables visualizing and 

envisioning prospective tacit knowledge exchanges, complex coordination mechanisms, and a full 

simulation of the processes involved. 

 

IV. DISCUSSION AND DIRECTIONS FOR FUTURE RESEARCH 

We created Table 1 to summarize the results of our study. The table synthesizes the intellectual 

structure of the emergent field of KM after the advent of Industry 4.0. Our primary goal is the 

systematization of this research field, as stated in our first research question. Since Industry 4.0 is 

such a recent phenomenon, systematizing its impact on KM is a strong contribution. For this purpose, 

each cluster indicates the main research areas, described in detail in the previous section, as well as 

the full set of keywords, and some exemplary references from the literature. However, addressing our 

second research question requires offering a tentative agenda for future research in this area based on 

the identified gaps. Thus, we highlight more recent sub-streams of research and the main KM 

processes touched upon in the literature to identify some useful areas of further development in future 

studies.  
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Cluster Sub-Topic Keywords (co-occurrence numbers) Exemplary 

References 

Most acquired KM 

process  

Future Research Questions  

G
re

en
 

Cyber-Physical 

System 

cyber physical system (6); condition monitoring (3); product 

lifecycle management (3); industrial internet (3); platforms (2); 

chemical industry (1); decisional dna (1); design review (1); 

multimodal time synchronisation (1); plm challenges (1); product 

development (1); semantic technology (1); set of experience 

knowledge structure (1); supply chain network (1); time series 

data (1); user logging (1); visual analytics (1); intelligent systems 

(1); manufacturing process (1); process industry (1); 

manufacturing data (1); preventive maintenance (1); fault 

prognostics (1); knowledge capture (1); knowledge engineering 

(1). 

[29],[30],[31] Knowledge 

Documentation 

Knowledge Transfer 

• How can CPS evolution 

transform learning in an 

organization? 

• What is the effect of this 

evolution on different level of 

learning (i.e. individual, group 

and institutional level)? 

Condition 

Monitoring 

[36],[37] Knowledge Creation • How can condition monitoring 

systems/techniques develop 

better management of 

uncertainty for PHM systems? 

A
q

u
a Big data 

 

big data (7); decision making (2); machine learning (2); digital 

disruption (1); product data (1); financial sector (1); banking (1); 

knowledge management processes (1); dynamic knowledge 

integration (1); platforms iot (1); predictive maintenance (1); 

semantic interoperability (1); sensors (1) 

[44],[45],[46], 

[47],[42] 

Knowledge Application 

Knowledge Acquisition 

Knowledge Creation 

• How can Big data capabilities 

transform new knowledge into 

new competitive advantage? 

 

P
u

rp
le

 

Smart Factory 

smart factory (7); digital manufacturing (2); digital twin (2); 

enterprise architecture (1); grinding process (1); human-centric 

industrial internet (1); industrial internet of services (1); rami4.0 

(1); service-oriented digital twin (1); sustainable manufacturing 

(1); competency management (1); knowledge creation (1); 

ubiquitous knowledge (1); web-based knowledge sharing 

platform (1) 

[51],[49],[48], 

[52] 

Knowledge Transfer 

Knowledge Acquisition 

Knowledge Creation 

• How business models are 

transformed in regard with 

smart factory context? 

Y
el

lo
w

 

Internet of 

things 

internet of things (6); interoperability (2); internet of services (1); 

interoperable architecture (1); composite virtual object (1); data-

driven (1); dynamic adaptable systems (1); fault diagnosis (1); 

microservices (1); knowledge management systems (1); 

knowledge dynamics (1); knowledge-driven architecture 

composition (1); plug-and-play control (1); semantic integration 

(1); smart power grids (2); system monitoring (1); tacit 

knowledge (1); virtual object (1); web of objects (1) 

[53],[56],[59],[

60],[61] 

Knowledge Transfer • How can IoT/ICT technologies 

transform new innovation 

paradigms (e.g., inbound open 

innovation)? 

R
ed

 

Manufacturing 

knowledge sharing (5); manufacturing (4); digital transformation 

(4); training (3); engagement (2); business intelligence (1); 

business process management (1); communication (1); 

computer-integrated manufacturing (1); e-learning (1); 

emergency management (1); emergency preparedness (1); 

[62],[64],[65] Knowledge Transfer • What is the relationship 

between risk of knowledge 

leakage and firm’s openness? 

• How can firm’s openness lead 

to knowledge leakage? 
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Table 1 - Summary of the Bibliometric Analysis and Literature Review Findings.

factory work (1); intellectual capital (1); literature review (1); 

medium enterprises (1); new product development (1); 

organizational learning ambidexterity (1); participatory design 

(1); product-service (1); product-service system (1); sentiment 

analysis (1); simulation (1); sustainable development (1); user 

studies (1); value chain (1); value creation (1); virtual reality (1); 

worker model (1); workplace monitoring (1); factory of the future 

(1); factory automation (1); operator 4.0 (1); organization 4.0 (1); 

knowledge synergy (1); knowledge protection (1); knowledge 

management evaluation (1). 

• How can risk of knowledge 

leakage transform firm’s 

perspective for openness?  

Digital 

Transformation 

[68],[70],[71] Knowledge Transfer 

Knowledge 

Documentation 

• How can DT lead to 

successfulness of company’s 

strategy? 

B
lu

e 

CPPS 

cyber-physical production systems (5); process modeling (3); 

augmented reality (2); problem solving (2); annotation system 

(1); business analytics (1); collective intelligence (1); collective 

intelligence system (1); community of practice (1); cyber-

physical human system (1); cyber-physical market visualization 

(1); portfolio matrix (1); product innovation (1); set of experience 

(1); smart innovation engineering (1); software architecture (1); 

production modeling (1); simulation process building (1); system 

engineering (1); process simulation visualization (1); tacit 

knowledge transfer visualization (1); knowledge modeling 

description language (1). 

[27],[74] Knowledge transfer • How can Human-CPPS 

interaction facilitate 

knowledge-based CPPS 

design? 

• What benefit can Human-CPPS 

interaction provide for a 

knowledge-based CPPS 

design? 

 

 

 

Process 

Modeling 

[76],[48] Knowledge Transfer 

Knowledge Creation 
• How are process modeling 

languages developing new 

business processes? 

• How having quantitative 

approach in using process 

modeling languages can rise a 

comprehension for its use? 
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We began by analyzing the evolution of topics in the different clusters over time (see Figure 2). 

As described by Ortiz-de-Urbina-Criado, et al. [77], the diverse colors assigned to topics are based 

on the occurrence frequencies over the past two years. It provides a representation of how emerging 

topics have been formed over the timespan and individuates those receiving more recent attention. 

 

Fig. 2. Evolution of topics over time.  

 

At the beginning of 2017, the most common topics were ‘cyber physical system,’ ‘industrial 

internet,’ ‘process modeling,’ and ‘cyber-physical production systems.’ Later in the same year, 

‘internet of things’ and ‘digital manufacturing’ gained the highest frequency. In the first few months 

of 2018, ‘big data,’ ‘smart factory,’ and ‘condition monitoring’ were among those with the highest 

relative frequency. Topics such as ‘digital manufacturing,’ ‘manufacturing,’ and ‘knowledge sharing’ 

appeared in the second part of 2018. In 2019, the most frequent topics are ‘factory automation,’ 

‘engagement,’ ‘virtual reality,’ and ‘new product development.’  

In addition to identifying these ‘hot’ topics, our study investigated the nature of the relationships 

between KM processes and emerging technologies, resulting from our cluster analysis. As mentioned 

previously in the quote by Hedlund [4, p.76], KM processes are defined through different activities, 

namely knowledge acquisition, documentation, transfer, creation, and application. Subsequently, 

each KM process, according to each specific cluster, forms a unique contribution. Knowledge 

acquisition combines intangible tacit and tangible explicit knowledge obtain from the external 

environment by an organization. This process is mostly targeted in the aqua and purple clusters and 

in relation to technologies, such as digital twin, semantic web, and semantic web rule language, which 

are focused primarily on knowledge acquisition capability. Knowledge documentation relates to the 

process of storing and retrieving knowledge form organizational systems (e.g., databases). 

Accordingly, studies dealing with this process were linked to two sub-streams, including DT and 

CPS, respectively, in the red and green clusters. Our study reveals that this process was mostly 

associated with knowledge capture approaches used to enable storing and reusing knowledge in a 
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digital environment. Knowledge transfer/sharing is the process by which employees are able to share 

their tacit or explicit knowledge within and outside of the organization. This was the most inquired 

process (i.e., in 66% of the papers) and common to all clusters and to many sub-streams (e.g., cps, 

smart factory, manufacturing, process modeling). This process is addressed effectively in the ‘factory 

of future,’ ‘Factory2Fit,’ ‘operator 4.0,’ and ‘organization 4.0’ concepts. Knowledge creation 

involves ways to facilitate the creation of new knowledge from both tacit and implicit knowledge 

inside the organization and is a central topic, as approximately half of the papers in the dataset address 

it. The aqua and purple clusters, especially in the condition monitoring and process modeling sub-

streams, have strong connections with the knowledge transfer process. Additionally, semantic 

technologies and ontology-based models are frameworks to extend knowledge transferability in smart 

and digital environments. Knowledge application is the process by which knowledge, either tacit or 

explicit, is reused within an organization. However, this process is the least investigated, as only 16% 

of the papers in the dataset address it. Only the aqua cluster truly considers its implications thoroughly 

and focuses on innovative client-centered approaches, specifically in the banking industry. 

Based on these further elaborations, we attempted to envision future directions regarding KM 

practices and determine how different practice categories relate to various firm performance 

outcomes. We used a classification approach described by Inkinen [78, p. 232] in his recent literature 

review of KM practices to develop a clear interpretation of our findings. He considered KM as related 

to four main foci: human-related KM practices, primarily the human aspects and consequences of 

KM (e.g., culture, people, and leadership); organization-related KM practices, mainly the overall 

organizational system (e.g., organizational processes and structures).; technology-related KM 

practices (e.g., infrastructure and applications); and management process-related KM practices (e.g., 

strategies, goals, and measurement).  

In relation to human-centered KM practices, the CPPS stream emphasizes how knowledge 

sharing and reciprocal learning can be enhanced [27, 74]. The same challenge is identified in the 

establishment of CPPS design with a specific relationship to human interactions [79]. Therefore, there 

is a need for more knowledge-based support of human planners, providing timely information and 

knowledge in the right context, where it can be fruitful. According to Francalanza, et al. [79], few 

studies have considered CPPS and design activities. Consequently, CPPS design should include a 

more thorough understanding of the digital factory and its consequences for human capital. Hence, 

CPPS designs that promote human-CPPS interaction can be studied further. 

Regarding organizational-related KM practices, CPS, big data, and manufacturing may be a 

fruitful avenue of further investigation. For example, CPS studies have made a positive contribution 

to knowledge sharing mechanisms, both vertical and horizontal. Knowledge sharing behaviors can 

boost learning among staff and improve problem solving ability by sharing past experiences, thus 

fostering quicker responses to emerging problems [80]. This type of learning can also occur at 

different levels of the organization (i.e., individual, group, institutional) Crossan, et al. [81]. 

Therefore, we encourage more studies of outcomes at different organizational levels.  

Big data is another valuable topic of organizational-level KM research [82]. Thus far, investments 

in big data technologies have not provided any direct benefits. For this reason, Ferraris, et al. [83] 

emphasize the organizational capabilities required to exploit the advantages of big data, namely big 

data analytics (BDA) and KM capabilities. The impact of big data capabilities as a new competitive 

advantage in relation to creating new knowledge needs to be further developed. 

Manufacturing studies are the third stream that reveals particular contributions to organizational-

related knowledge management practices, especially knowledge sharing. In the emerging knowledge-

intensive environment, there is a need to balance the vital necessity of sharing to gain new insights 

and the risk of knowledge leakages. Specifically, studies have so far failed to address the problem 

and identify ways to balance open collaboration and the necessity to create a trustworthy network. 

For this reason, we suggest focusing more attention on this aspect. 

Considering the technology-related KM practices that may be involved in the IoT, focusing on 

condition monitoring, and process modeling could advance the discussion on utilizing technology for 
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efficient knowledge management. First, the IoT is a tool that enables on-demand data access for 

individuals and organizations. As Chesbrough [84] states, open innovation can refer to the 

accessibility of knowledge/information both within and outside of the organization, which may 

stimulate a discussion of ICT technologies and development in emerging open innovation paradigms 

(e.g., the inbound open innovation model). These considerations need to be rethought and reshaped 

in relation to business models. Condition monitoring is another stream of research that can contribute 

to advancing technology-related aspects as they facilitate fault identification by processing 

information collected via different devices or sensors. As Cristaldi, et al. [85] explains, although 

condition monitoring assists in monitoring the life-cycle costs of products, the level of uncertainty is 

high [86]. Specifically, there is a lack of knowledge about inputs and their reliability and accuracy. 

Thus, our study aims to shed light on the benefits that condition monitoring systems/techniques may 

offer in the management of existing uncertainty. Process modeling languages have become more 

important in developing business processes [76]. Indeed, in the volatile Industry 4.0 environment, 

where business processes are becoming continuously more knowledge-intensive, the need for 

developing tools to analyze them efficiently is crucial. Finally, regarding management process-related 

KM practices, two streams of research are relevant, specifically smart factories and DT, suggesting 

they are strategic to improving KM implementation (e.g., using KM tools to accomplish 

organizational objectives). 

In relation to the fist stream, the importance of modeling production processes is confirmed in the 

context of smart factories. This evolution can have a profound impact on business models in general 

and may lead to the emergence of completely new combinations of its elements [89]. One of the 

critical factors for success are knowledge sharing and the creation of a knowledge-sharing culture 

among employees. For this reason, we identify business models in smart factories as an underexplored 

topic. The second stream of the DT-related literature reveals how this impacts new product 

development (NPD). In particular, Schweitzer, et al. [87] discovered that companies with a strong 

NPD-orientation may thrive during a DT. Indeed, NPD processes that rely on IT-based workflows 

and product data management practices are most successful when integrated with the overall 

company’s strategy. Thus, our study informs further research on how DT may change a company’s 

strategies Kahn, et al. [88].  

 

V. CONCLUDING REMARKS 

This study constitutes the first attempt to conduct a detailed, systematic, and objective review of 

academic research in the KM literature in the Industry 4.0 era. Bibliometric analysis was used in the 

investigation and helped discover the structure of the field and identify fruitful avenues for further 

research, in line with our two research questions. After the analysis, a systematic literature review 

was also performed in relation to the cluster results, identifying the unique contribution of each 

cluster.  

The insights gained from this study have some implications for academics and practitioners. From 

an academic perspective, the bibliometric analysis carried out lays the groundwork to help determine 

how KM and its practices are evolving in the digital era, thus providing scholars with a proper 

systematization of knowledge regarding the research field. From a practical perspective, the findings 

of this research suggest that practitioners in the KM field should consider, understand, and integrate 

different dimensions of Industry 4.0 advancements in their organizations, which will help mitigate 

the potential negative effects on organizational performance.  

This study has some limitations. The analysis of keyword co-occurrence provides a small number 

of significant clusters considering the number of occurrences of keywords. For this reason, the results 

seem to show significant fragmentation of some terms in some clusters. For future research, it would 

be of interest to employ other bibliometric techniques (e.g., bibliographic coupling or co-citation 

analysis), which would complement this study and help to further develop the KM field. 
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