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Abstract

We develop bespoke rational bubble models for Bitcoin and cryptocurrencies that incor-

porate both heavy tails and the probability of a complete collapse in asset prices. Empirically,

we present robustified evidence of bubbles in Bitcoin and Ethereum. Theoretically, we show

that liquidity risks may generate heavy-tails in Bitcoin and cryptocurrency markets. Even

in the absence of bubbles dramatic booms and busts can occur. We thus sound a timely note

of caution.
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1 Introduction

Bitcoin and cryptocurrencies are the subject of much recent popular (Vigna and Casey, 2015)

and academic (Gandal et al., 2018) interest. Economically, Bitcoin is interesting due to a lack

of clarity over its definition (Fry and Cheah, 2016) with much recent work tending to classify

Bitcoin as more of a speculative asset than a genuine currency (Baeck and Elbeck, 2015). We thus

contribute to recent debates (see e.g. Cheah and Fry, 2015; Corbet et al., 2017) by developing

a bespoke model for bubbles in cryptocurrency markets. In particular, it is the thesis of this

paper that liquidity risks can generate heavy-tails in cryptocurrency prices even in the absence

of speculative bubbles. Further, our model allows for the possibility that a lack of economic

clarity may cause cryptocurrency prices to collapse completely (White, 2014).

Following previous work on liquidity (Tsuji, 2003) suppose that the returns rt of an asset

are given by

rt = λt ln Qt, (1)
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where Qt is the trading volume and λt is the liquidity. As a simplifying assumption suppose

that λt and Qt are independent and that Qt is log-normally distributed. If λt is constant then

asset returns are log-normally distributed in agreement with classical models (Black and Scholes,

1973). If λt is stochastic then equation (1) leads to heavy-tailed asset returns related to market

illiquidity. If, as an extreme example, the expected liquidity does not exist e.g.

1

λt
∼N(0, σ2

1), (2)

then the asset returns are Cauchy distributed. Taken together equations (1-2) give a plausible

mechanism through which liquidity risks can generate heavy-tails in cryptocurrency prices. A

simulated sample path from the Cauchy random walk model shown in Figure 1 demonstrates

that in this case the nature of the market means that dramatic boom-bust episodes can occur

even without the destabilising effect of a speculative bubble. We thus develop new models for

speculative bubbles in an environment where the underlying level of financial risk is extreme.

[Insert Figure 1 about here]

The layout of this paper is as follows. Section 2 introduces the model used. Empirical

applications to Bitcoin and other cryptocurrency markets are discussed in Section 3. Section 4

concludes.

2 The model

Let Pt denote the price of a cryptocurrency at time t. The set up of the model is as follows.

Adapting the original model in Johansen et al. (2000) our starting point is the equation

P (t) = eX−(t)[1−H(t− t0)], (3)

where t0 denotes the time of the crash and H(·) denotes the Heaviside function. When a crash

occurs the asset price collapses completely. This follows qualitative features of past cryptocur-

rency crashes (White, 2014). The timing of the crash t0 is assumed to be unknown but described

by the probability density f(t) and CDF F (t). Further, X−(t) satisfies the stochastic differential

equation

dX−(t) = µ(t)dt+ σ(t)dW−(t), (4)

where W−(t) is symmetric Cauchy noise (Samarodnitskiy and Taqqu, 1994). Set up in this way

the model also incorporates empirical evidence of extreme heavy-tails in empirical cryptocur-

rency prices (Gkillas and Katsiampa, 2018). Use of the Cauchy distribution as a financial model

(Harris, 2017) is also motivated by analytical tractability (Samarodnitskiy and Taqqu, 1994),
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classical financial models (Mandelbrot, 1963) and the study of Black Swans and heavy-tailed

phenomena (Taleb, 2007). The Cauchy parameters µ and 2σ also have a convenient interpreta-

tion as the median and the inter-quartile range respectively (Lee, 1997). These are often thought

to be more robust summaries of financial risk and return (McNeil et al., 2005) alongside further

links to theoretically coherent measures of financial risk (Artzner et al., 1999).

Taking logarithms it follows that prior to the crash X−(t) = log P (t) satisfies the equation

dX−(t) = µ(t)dt+ σ(t)dW−(t)− δ(t− t0)

1−H(t− t0)
. (5)

Modifying the risk and return definitions in a related model in Cheah and Fry (2015) we have

that:

Assumption 1 (Intrinsic Rate of Return) The intrinsic rate of return is assumed to be

asymptotically constant:

Median[Xt+∆ −Xt|Xt] = µ(t)∆ + o(∆2). (6)

Assumption 2 (Intrinsic Level of Risk) The intrinsic level of risk is assumed to be asymp-

totically constant:

Inter Quartile Range[Xt+∆ −Xt|Xt] = 2σ(t)∆ + o(∆2). (7)

Suppose that a crash has not occurred by time t. The median return is given by∫ t+∆

t
µ(u)du+

[∫ t+∆

t
σ(u)du

]
tan

[
π

2

(
q

q − 1

)]
, (8)

where q = F (t+∆)−F (t)
1−F (t) = ∆h(t)+o(∆) is the probability that a crash occurs during time [t, t+∆]

and h(t) is the hazard rate. It follows from Assumption 1 and equation (8) that

∆µ(t) +
µ′(t)∆2

2
+ o(∆) + [∆σ(t) + o(∆)]

[
−π

2
∆h(t) + o(∆)

]
= ∆µ(t) + o(∆2),

µ′(t) = πh(t)σ(t). (9)

Relatedly, the inter-quartile range of the return is given by[∫ t+∆

t
σ(u)du

] [
tan

(
π

2
− 3π

4(1− q)

)
− tan

(
π

2
− π

4(1− q)

)]
. (10)
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Expanding (10) in a power series gives[
∆σ(t) +

∆2σ′(t)

2
+ o(∆)

] [
2 +

∆πh(t)

4
+ o(∆)

]
= 2σ(t)∆ + o(∆). (11)

Thus equation (11) gives

σ′(t) +
πh(t)σ(t)

4
= 0; σ(t) = σ(1− F (t))

π
4 . (12)

From equations (12) and (9) it follows that

µ(t) = µ+ 4σ − 4σ(1− F (t))
π
4 . (13)

In the absence of a bubble 1−F (t) = 1 and it follows from equations (12) and (13) that in this

case µ(t) = µ, σ(t) = σ and the model reduces to a Cauchy distributed random walk. More

generally, if F (t) 6=0, it follows from equations (12-13) that the full solution of the model is

X−(t) = X0 + (µ+ 4σ)t− 4σ

∫ t

0
(1− F (u))

π
4 du+ σ

∫ t

0
(1− F (u))

π
4 dW−(u). (14)

Following a related model in Zeira (1999) we assume that t0∼U(0, T ). It follows that in this case

prior to the crash the log-returns ∆Xt = Xt+1 −Xt are Cauchy distributed with parameters∗

location = (µ+ 4σ) +
16σT

−π
4

π + 4

[
(T − t− 1)1+π

4 − (T − t)1+π
4

]
(15)

scale =
4σT

−π
4

4 + π

[
(T − t)1+π

4 − (T − t− 1)1+π
4

]
. (16)

Statistical tests for bubbles. From the above it follows that we can test for the presence

of a speculative bubble by testing the null hypothesis H0 : 1/T = 0 (F (t) = 0) against the

alternative hypothesis H1 : 1/T 6=0 (F (t)6=0). As an illustration a Monte Carlo simulation of

the likelihood ratio statistic under the null hypothesis of no speculative bubble in Bitcoin is

shown in Table 1 and in Figure 2 and shows a reasonable agreement with a non-standard 50:50

mixture of a χ2
0 and χ2

1 distribution discussed in Self and Liang (1987) though results suggest

that in practice this asymptotic approximation may be conservative.

[Insert Table 1 and Figure 2 about here]

Economic size of the effect. Robustified estimates of the economic size of the effect can be

obtained in terms of the median price P̃ (t). Refining a previous approach in Cheah and Fry

∗A random variable X has a Cauchy distribution with location parameter µ and scale parameter σ if the
probability density function of X is given by f(x) = σ

π((x−µ)2)+σ2 , see e.g. Samorodnitskiy and Taqqu (1994),

Ch. 1.
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(2015) define the fundamental value as the median price when a bubble is absent:

PF (t) := [P̃ (t)] = P0e
µt

In the presence of a bubble define

PB(t) := [P̃ (t)] = PF (t) exp

{
4σt− 16σT

π + 4

[
1−

(
1− t

T

)1+π
4

]}
.

An estimated bubble component can then be defined in terms of the average distance between

fundamental and bubble prices:

Bubble Component = 1− 1

T

∫ T

0

PF (t)

PB(t)
dt

= 1− 1

T

∫ T

0
exp

{
16σT

π + 4

[
1−

(
1− t

T

)1+π
4

]
− 4σt

}
dt, (17)

where T represents the length of the estimation window.

3 Empirical application

In this section we fit our model to empirical prices from the four major cryptocurrencies as

determined by their current market capitalisation. Motivated by the recent boom and bust in

cryptocurrencies we closing prices for Bitcoin and Ripple from January 1st 2015-January 1st

2018 and compare against newer altcoins that have only come into being more recently. As

such, we look at Ethereum prices from August 7th 2015-January 1st 2018 and Bitcoin Cash

prices from July 23rd 2017 to January 1st 2018. In common with similar studies the data are

obtained from the authoritative website coinmarketcap.com. A plot of the data is shown in

Figure 3. Summary statistics are shown in Table 2 and present clear evidence of the heavy-tails

and excess kurtosis that our model can account for.

[Insert Table 2 and Figure 3 about here]

Results of our model applied to this data are shown in Tables 3-4. Evidence of bubbles is

found in Bitcoin and Ethereum and clearly constitutes a significant proportion of observed prices.

In contrast, no evidence of a bubble is found in Ripple prices once we account for heavy-tails

and background levels of liquidity risk. This lack of a bubble may reflect technical advantages of

Ripple relative to Bitcoin (Swan, 2015). Relatedly, no conclusive evidence of a bubble is found in

the price of Bitcoin Cash – despite signs of marked volatility. However, there is some uncertainty

related to a reduced sample size and the relatively recent inception of Bitcoin cash. A plot of

the Google Relative Search Trends Index is shown in Figure 4 and suggests that generally higher
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numbers of searches may be linked to increased speculation and Bitcoin and Ethereum during

the period in question though the number of searches decreases as the bubble comes to an end.

This lends further support to the idea that cryptocurrencies are inherently speculative in nature

(Baeck and Elbeck, 2015). Figure 5 shows that plotting Google Relative Search Trends index

for Bitcoin and Ripple over an extended time period leads to similar conclusions.

[Insert Tables 3-4 and Figures 4-5 about here]

4 Conclusions and discussion

The evolution of financial technology changes the nature of financial risk (Cliff and Northrup,

2012). Fears have been raised over excessive speculation and price manipulation in Bitcoin and

cryptocurrency markets (Gandal et al., 2018). A lack of clear accountability, coupled with liq-

uidity risks, means that these markets are inherently risky. Market participants should exercise

caution. In this paper we develop a rational bubble model for cryptocurrencies that combines

heavy-tails with more realistic measures of risk and return and incorporates the possibility that

in the absence of central regulation cryptocurrencies can collapse completely. We find evidence

of bubbles in Bitcoin and Ethereum. In contrast no evidence of a bubble is found in Ripple

once we account for heavy-tails and liquidity risk. This represents a theoretical refinement of

the model in Cheah and Fry (2015) which fits a general asset bubble model to cryptocurrency

data without accounting for specialised features of these markets. From a practical perspective

findings may reflect technical advantages of Ripple relative to Bitcoin (Swan, 2015) and reduced

levels of speculation according to Google data. However, the risk-management implications

remain unclear as bubbles are not a necessary pre-requisite for boom-bust episodes to occur.
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Figures and Tables
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Figure 1: Example sample path of simulated Bitcoin prices under a Cauchy random walk assum-
ing a Bitcoin price of 314.25 on January 1st 2015 and using parameters estimated by maximum
likelihood.

Statistic Monte Carlo simulation χ2 mixture distribution

Mean 0.410 0.5
Median 0 0
F−1(0.9) 1.320 1.642
F−1(0.95) 2.340 2.706
F−1(0.99) 4.932 5.412
F−1(0.999) 9.145 9.550

Table 1: Comparison of Monte Carlo simulations with χ2 mixture distribution.
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Figure 2: Distribution of the likelihood ratio statistic under the null hypothesis of no speculative
bubble. Dashed line Monte Carlo simulation based on 100,000 simulations. Solid line, χ2 mixture
distribution.

Cryptocurrency Bitcoin Ethereum Ripple Bitcoin Cash

Mean 0.003441454 0.006413401 0.004183281 0.01094505

Median 0.002545052 -0.000437772 -0.003363368 -0.004980641

Maximum 0.225119 0.4123373 1.027356 0.4315819

Minimum -0.2375701 -1.302106 -0.6162727 -0.4460382

St. Dev 0.03844948 0.08519927 0.07305693 0.1247863

Skewness -0.3492134 -3.719406 3.802519 0.5728303

Kurtosis 7.037797 64.47281 49.25887 2.599135

Table 2: Summary statistics for log-returns from cryptocurrency markets.
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Figure 3: Plot of cryptocurrency prices over time: Bitcoin (top left), Ethereum (top right),
Ripple (bottom left), Bitcoin Cash (bottom right).

Maximum likelihood ratio test for a
speculative bubble H0 : 1

T
= 0, H1 : 1

T
6=0

Cryptocurrency LR-test p-value

Bitcoin 6.248 0.006
Ethereum 12.358 0.000
Ripple 0.000 0.500
Bitcoin Cash 0.6092 0.218

Table 3: Results of speculative bubble (likelihood ratio) test.
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Cryptocurrency Estimate Estimated t-value p-value
Standard Error

Bitcoin 0.502 0.108 4.636 0.000
Ethereum 0.672 0.044 15.191 0.000
Ripple 0.000 0.000 0.017 0.493
Bitcoin Cash 0.375 0.266 1.410 0.079

Table 4: Estimated bubble component shown in equation (17) and test of the null hypothesis
bubble component=0.
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Figure 4: Plot of Google Relative Search Trends index over time: weekly data from 25/6/2017
to 31/12/2017.
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Figure 5: Plot of Google Relative Search Trends index over time: weekly data from 4/1/2015
to 31/12/2017.
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