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Abstract—For the single-cell massive multiple-input multiple-
output (MIMO) downlink transmission, we investigate an ar-
tificial noise (AN) assisted secure transmission strategy where
the base station has only access to statistical channel state
information (CSI) of the legitimate user terminals and the
eavesdropper. By maximizing a lower bound of the ergodic
secrecy sum rate, we figure out the eigenvectors of the optimal
secrecy signal and AN transmit covariance matrices in the closed-
form. Notably, such a solution reveals that it is more favorable
to transmit both the secrecy signals and the AN in the beam
domain, by which we translate the original problem into a simpler
power allocation problem in the beam domain. Building on
the approaches of sequential optimization and the deterministic
equivalent, we further propose an iterative algorithm for power
allocation with guaranteed convergence to a local optimum.
Numerical results show the superior performance of the proposed
approach compared with the traditional one without AN.

Index Terms—Massive MIMO, secure transmission, artificial
noise, beam domain, statistic CSI.

I. INTRODUCTION

Wireless transmission is facing a critical threat of leaking
information to potential eavesdroppers owing to the broadcast
propagation nature of wireless medium. Utilizing the inher-
ent wireless channel propagation properties to enhance data
confidentiality, physical layer security has received extensive
attention [1]. Massive multiple-input multiple-output (MIMO)
is deemed a promising technology to improve physical layer
security thanks to the ability of generating sharp beams at
the base station (BS) towards targeted user terminals (UTs)
[2], [3]. As the number of BS antennas increases, spatially
separated channels become more and more orthogonal, for
which UTs’ transmission with sharp beams orthogonal to
the eavesdropper’s channel could protect information from
eavesdropping. Albeit promising from a theoretical viewpoint,
this approach requires accurate knowledge of instantaneous
channel state information at the transmitter (CSIT), which is
rather challenging in massive MIMO especially when channel
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reciprocity does not hold. As such, utilizing the slowly-
changing statistical CSIT for secure transmission seems more
appealing. However, the orthogonality is not maintained for
statistical CSI any more, so auxiliary approaches are required
to guarantee security.

To this end, we consider downlink transmission in massive
MIMO provided that only the statistical CSI is available at the
BS. To ensure secure communication, we adopt the artificial
noise (AN) based physical-layer security approach to prevent
the possible eavesdropping [4]. Introducing a lower bound of
the ergodic secrecy sum rate for the sake of tractability, we
could discover that it is favorable to perform AN assisted
secure transmission in the beam domain. Guided by this
insight, we translate the challenging ergodic rate maximization
problem with respect to transmit covariance matrices to a
simpler power allocation problem in the beam domain, and
propose a concave-convex procedure (CCCP) based iterative
power allocation algorithm with guaranteed convergence to
a stationary point. To further reduce the computational com-
plexity, we take the advantage of the deterministic equivalents
(DEs) calculation of the objectives in each iteration. Numerical
results demonstrate the performance gain of our proposed AN
assisted approach in contrast to the traditional one without AN
injection.

II. SYSTEM MODEL

Consider a single-cell massive MIMO secure downlink
transmission system including one M -antenna BS, K legit-
imate UTs, with Nk receive antennas at UT k, and one eaves-
dropper with Ne receive antennas. Denote by xk ∈ CM×1 the
transmitted signal from the BS to the kth UT with mean 0 and
covariance Qk, and by xAN ∈ CM×1 the AN vector which
is independent of xk (∀k) with mean 0 and covariance QAN,
respectively. Then the received signal at UT k is

yk = Hkxk +
∑

i ̸=k
Hkxi +HkxAN + nk ∈ CNk×1, (1)

and the received signals at the eavesdropper is

ye =
∑K

i=1
Hexi +HexAN + ne ∈ CNe×1, (2)

where nk and ne are the additive white Gaussian noise with
covariance INk

and INe , respectively.
With the number of BS antennas M tending to infinity, the

downlink channel matrices Hk in (1) and He in (2) can be
well approximated as [5], [6]

Hk
M→∞
= UkGkV

H , He
M→∞
= UeGeV

H , (3)

where Uk ∈ CNk×Nk , Ue ∈ CNe×Ne , and V ∈ CM×M

are all deterministic unitary matrices. We point out that V is
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independent of the locations of UTs and is only related to
the BS antenna array geometry [5], [7]. For instance, given
the uniform linear array (ULA) with antenna spacing of half-
wavelength, it has been shown in [5] that the discrete Fourier
transform matrix is a good approximation of V. Note that
we usually refer to Gk and Ge in (3) as the beam domain
channel matrices with independently distributed elements [5].
The statistical CSI of Gk and Ge can be modeled as [8]

Ωk = E {Gk ⊙G∗
k} , Ωe = E {Ge ⊙G∗

e} , (4)

respectively, where ⊙ denotes the Hadamard product.

It is assumed that only legitimate UT and the eavesdropper’s
statistical CSI, i.e., Ωk and Ωe in (4), is known at the BS,
and the legitimate UTs and the eavesdropper have access to
instantaneous CSI of their own channels with properly de-
signed pilot signals [9], [10]. The interference-plus-noise item∑

i ̸=k Hkxi + nk in (1) is treated as the Gaussian noise with
covariance Kk = INk

+
∑

i ̸=k E
{
HkQiH

H
k

}
∈ CNk×Nk at

each legitimate UT k. By assuming the worst-case scenario
that the eavesdropper could be able to cancel the interfering
signals of all UTs other than the one of interest [11], we have
the ergodic secrecy rate of the kth UT

Rsec
k = [Rk −Re,k]

+
, (5)

where Rk is the ergodic rate of the kth UT, i.e.,

Rk =E
{
logdet

(
Kk +GkV

H (Qk +QAN)VGH
k

)}
− E

{
logdet

(
Kk +GkV

HQANVGH
k

)}
, (6)

and Re,k represents the ergodic rate of the eavesdropper,
which attempts to eavesdrop the signal for the kth UT, i.e.,

Re,k =E
{
logdet

(
INe +GeV

H (Qk +QAN)VGH
e

)}
− E

{
logdet

(
INe

+GeV
HQANVGH

e

)}
, (7)

and Kk in (6) can be expressed as

Kk = INk
+
∑K

i ̸=k
E
{
GkV

HQiVGH
k

}
∈ CNk×Nk . (8)

We consider the AN assisted secure transmission strategy,
with the objective to design the transmit covariance matrices
Q , {QAN,Q1, · · · ,QK} maximizing (5), as follows

argmax
Q

Rsec ,
∑K

k=1
[Rk −Re,k]

subject to
K∑

k=1

tr (Qk) + tr (QAN) ≤ Pmax

QAN ≽ 0, Qk ≽ 0, ∀k, (9)

where Pmax denotes the BS power budget. Note that in the
objective of (9) we omit the operator [·]+ without loss of
optimality as Qk = 0 leads to a zero secrecy rate of UT
k for arbitrary k, and any feasible point with the secrecy rate
being negative will not be the optimal solution.

Due to the nonconcavity of the ergodic secrecy sum rate
Rsec in (9) over Q and the involved expectation operation, it
is in general challenging to identify the optimal solution to
the transmit covariance matrices. For the sake of tractability,
a lower bound on the ergodic secrecy sum rate is firstly

introduced as

Rsec,lb ,
∑K

k=1

[
Rlb

k −Rub
e,k

]
, (10)

where Rlb
k is a lower bound of Rk, and Rub

e,k is an upper
bound of Re,k. Both of them can be obtained from Jensen’s
inequality as

Rlb
k =E

{
logdet

(
Kk +GkV

H (Qk +QAN)VGH
k

)}
− logdet

(
Kk + E

{
GkV

HQANVGH
k

})
, (11)

Rub
e,k =logdet

(
INe + E

{
GeV

H (Qk +QAN)VGH
e

})
− E

{
logdet

(
INe +GeV

HQANVGH
e

)}
, (12)

respectively. We will demonstrate the tightness of the lower
bound presented in (10) in Section IV. With the lower bound
in (10) being the objective function, the problem in (9) can be
reformulated as

argmax
Q

Rsec,lb

subject to constraints in (9). (13)

III. AN ASSISTED SECURE TRANSMISSION DESIGN

To figure out the optimal AN assisted secure transmission
design in (13), we first decompose the transmit covariance ma-
trices into Qk = ΨkΛkΨ

H
k , ∀k and QAN = ΨANΛANΨ

H
AN

by eigenvalue decomposition, with Ψk and ΨAN representing
the subspaces in which the transmit secrecy signals and the
AN fall, respectively. Note that the elements of diagonal
matrices Λk and ΛAN represent the power assigned to each
dimension/direction of the subspace for the transmit secrecy
signals and the AN, respectively. By doing so, we identify the
eigenmatrices (i.e., the matrices consist of all eigenvectors) of
the transmit covariance of the secrecy signals and the AN.

Proposition 1: The corresponding eigenmatrices of the opti-
mal transmit covariance Qk for all k and QAN to problem (13)
are all given by the eigenmatrix V of the transmit correlation
matrices, i.e., Ψk = V (∀k) and ΨAN = V.

Proof: The nth diagonal element of E
{
GkXGH

k

}
can

be calculated by
[
E
{
GkXGH

k

}]
n,n

=
∑M

m=1 [Ωk]n,m [X]m,m

according to (4), and then the off-diagonal entries of X will
not affect the value of E

{
GkXGH

k

}
. Thus, the values of

Kk(∀k) in (8) are not related to the off-diagonal elements
of VHQk′V(∀k′). Then, using a proof approach similar to
that in [12], we can show that VHQkV(∀k) and VHQANV
should be all diagonal to maximize Rsec,lb in (10). Moreover,
the transmit power

∑K
k=1 tr (Qk)+tr (QAN) is only related to

the diagonal entries of VHQkV (∀k) and VHQANV. Thus,
in order to maximize the objective of problem (13) under the
given constraints, we can conclude that VHQkV (∀k) and
VHQANV should be all diagonal.

Proposition 1 reveals that, to maximize the objective in (13),
the transmit directions of both the secrecy signals and the
AN should be aligned with the eigenvectors of the transmit
correlation matrices of the downlink channels. The result in
Proposition 1 indicates that the transmission of all secrecy
signals and the AN in secure massive MIMO favors the
beam domain. By Proposition 1, we can therefore simplify
and replace the original optimization problem in (13) by
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optimizing the eigenvalues of the transmit covariance matrices
of the secrecy signals and the AN, i.e.,

argmax
Λ,{ΛAN,Λ1,··· ,ΛK}

Rsec,lb (Λ) =
K∑

k=1

(fk (Λ)− gk (Λ))

subject to
K∑

k=1

tr (Λk) + tr (ΛAN) ≤ Pmax

ΛAN ≽ 0, Λk ≽ 0, ∀k, (14)

where

fk (Λ) , E
{
logdet

(
Kk (Λ) +Gk (Λk +ΛAN)G

H
k

)}
+ E

{
logdet

(
INe +GeΛANG

H
e

)}
, (15)

gk (Λ) , logdet
(
Kk (Λ) + E

{
GkΛANG

H
k

})
+ logdet

(
INe + E

{
Ge (Λk +ΛAN)G

H
e

})
. (16)

Noting that fk (Λ) and gk (Λ) in (14) for all k are all
concave over Λ, we then adopt the iterative CCCP approach
[13] to address this problem. To reduce the computational
complexity of the expectation operation, we calculate the DEs
of fk (Λ) for all k in each iteration instead of averaging over
the channel realizations [14]. Specifically, the DE of fk (Λ)
is given by (17) at the top of the next page where

Γk = Πk

(
Φ̃−1

k K
−1

k

)
, Γe = Πe

(
Φ̃−1

e

)
,

Γ̃k = Ξk

(
Φ−1

k (Λk +ΛAN)
)
, Γ̃e = Ξe

(
Φ−1

e ΛAN

)
,

Φ̃k = I+Ξk

(
Φ−1

k (Λk +ΛAN)
)
K

−1

k ,

Φ̃e = I+Ξe

(
Φ−1

e ΛAN

)
,

Φk = I+Πk(Φ
−1
k K

−1

k ) (Λk +ΛAN) ,

Φe = I+Πe

(
Φ−1

e

)
ΛAN,

Πk (X) , E
{
GH

k XGk

}
, Πe (X) , E

{
GH

e XGe

}
,

Ξk (X) , E
{
GkXGH

k

}
, Ξe (X) , E

{
GeXGH

e

}
. (18)

Via utilizing CCCP and replacing fk (Λ) with its DE
fk (Λ), the problem in (14) is converted to a sequence of
convex sub-problems as (19) on the top of the next page, where
Λ(ℓ) ∆

= {Λ(ℓ)
AN,Λ

(ℓ)
1 , . . . ,Λ

(ℓ)
K }, the gradients of gk (Λ) over

Λa (∀a) and ΛAN are all diagonal matrices. The mth entries of
the gradient matrices are given by (20) and (21), respectively,
on the top of the next page, and Λ

(ℓ)
\k =

∑K
i ̸=k Λ

(ℓ)
i . Our pro-

posed AN assisted secure transmission design with statistical
CSI is formally presented in Algorithm 1.

Each sub-problem generated by CCCP is a concave prob-
lem. From [13], the solution sequence

{
Λ(ℓ)

}∞
ℓ=0

converges
monotonically to a stationary point of the original problem in
(14). In addition, the DE expression fk (Λ) is still concave
over Λ, and is a quite good approximation of fk (Λ). Then,
each sub-problem in (19) is still concave, and the solution
sequence still converges to the stationary point.

IV. NUMERICAL RESULTS

Numerical analysis is presented to evaluate the performance
of our proposed AN assisted approach. The QuaDRiGa chan-
nel model with a suburban macro cell scenario [15] is adopted
throughout the simulations. The signal-to-noise-ratio (SNR)
is defined as Pmax. In the simulations, K = 8 legitimate

Algorithm 1 Iterative Power Allocation Algorithm for AN
Assisted Secure Massive MIMO
Input: Statistical CSI Ωk (∀k) and Ωe, an initial power

allocation matrix Λ(0), the iterative threshold ϵ
Output: Power allocation matrix Λ

1: Initialize the iteration index ℓ = −1 and R
(
Λ(ℓ)

)
= 0

2: repeat
3: ℓ = ℓ+ 1
4: Calculate R

(
Λ(ℓ)

)
=
∑K

k=1

(
fk

(
Λ(ℓ)

)
− gk

(
Λ(ℓ)

))
5: Calculate Λ(ℓ+1) by solving (19) with Λ(ℓ)

6: until
∣∣R (Λ(ℓ)

)
−R

(
Λ(ℓ−1)

)∣∣ ≤ ϵ
7: Return Λ = Λ(ℓ)
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Fig. 1. The convergence behavior of secrecy sum rate obtained by Algorithm
1 as the number of iterations increases.

UTs, each with Nk = 4 antennas, and one eavesdropper with
Ne = 4 antennas are randomly distributed in the cell sector.
The BS is equipped with M = 128 antennas. The antenna
array topology ULA is adopted for the BS, legitimate UTs
and the eavesdropper, with half-wavelength antenna spacing.

The convergence behavior of the proposed iterative Algo-
rithm 1 at different SNRs is firstly presented in Fig. 1. We
can observe that the proposed AN assisted algorithm has
quick convergence performance in a wide range of SNRs.
Furthermore, the algorithm converges more slowly when SNR
goes higher, which indicates that in the high SNR region,
the proposed algorithm could be able to provide performance
gains for secure transmission.

Fig. 2 compares the secrecy transmission rate performance
of the AN assisted approach with that of the conventional
approach where AN is not injected [7]. We can observe that
the exploitation of AN yields performance gains over the
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Fig. 2. The performance comparison of secrecy sum rate between our
proposed AN assisted approach and the traditional one without AN.
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fk (Λ) = log det (INk
+ Γk(Λk +ΛAN)) + log det

(
Γ̃k +Kk (Λ)

)
− tr

(
INk

− Φ̃−1
k

)
+ log det (INe + ΓeΛAN) + log det

(
Γ̃e + INe

)
− tr

(
INe − Φ̃−1

e

) (17)

Λ(ℓ+1)=argmax
Λ

K∑
k=1

fk (Λ)−gk

(
Λ(ℓ)

)
−

K∑
a=1

tr


(
∂gk

(
Λ(ℓ)

)
∂Λa

)T(
Λa−Λ(ℓ)

a

)− tr


(
∂gk

(
Λ(ℓ)

)
∂ΛAN

)T(
ΛAN−Λ

(ℓ)
AN

)


subject to

K∑
k=1

tr (Λk) + tr (ΛAN) ≤ Pmax, ΛAN ≽ 0, Λk ≽ 0, ∀k (19)

[
∂gk

(
Λ(ℓ)

)
∂Λa

]
m,m

=



Ne∑
n=1

[Ωe]n,m

1+
M∑

q=1
[Λ

(ℓ)
k +Λ

(ℓ)
AN]

q,q
[Ωe]n,q

, a = k

Nk∑
n=1

[Ωk]n,m

1+
M∑

q=1
[Λ

(ℓ)

\k+Λ
(ℓ)
AN]

q,q
[Ωk]n,q

, a ̸= k

(20)

[
∂gk

(
Λ(ℓ)

)
∂ΛAN

]
m,m

=

Nk∑
n=1

[Ωk]n,m

1 +
M∑
q=1

[Λ
(ℓ)
\k +Λ

(ℓ)
AN]q,q

[Ωk]n,q

+

Ne∑
n=1

[Ωe]n,m

1 +
M∑
q=1

[Λ
(ℓ)
k +Λ

(ℓ)
AN]q,q[Ωe]n,q

(21)

conventional approach without utilizing AN. The considerable
improvement happens in the high SNR region, indicating
that injecting AN is an effective way of secrecy enhance-
ment. We can observe that the exploitation of AN yields
performance gains over the conventional approach without
utilizing AN. The considerable improvement happens in the
high SNR region, indicating that injecting AN is an effective
way of secrecy enhancement. Notably, the simulation results
demonstrate the tightness of the introduced lower bound and
the accuracy of the derived DE in a wide SNR region. We
also compare the proposed approach with the numerical one
solving (9) and observe that its performance is almost identical
with that solving (9) in a wide SNR region.

V. CONCLUSION

We have investigated the AN assisted secure downlink
transmission in massive MIMO systems, in which the BS has
only access to the statistical CSI of the legitimate UTs and
the eavesdropper. A tight lower bound of the ergodic secrecy
sum rate was firstly introduced as the tractable objective of
optimization, followed by the closed-form derivation of the op-
timal secrecy signal and AN transmit directions. Consequently,
the secrecy signal and AN transmit strategy design can be
reduced to a power allocation problem in the beam domain.
A CCCP based iterative algorithm with convergence guarantee
was further proposed to solve such a power allocation problem,
together with the reduction of computational complexity using
deterministic equivalent theory. We demonstrated by numerical
results the secrecy improvement of the proposed AN assisted
approach over the traditional one without AN injected.
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