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We explore many-body entanglement in spinful Fermi gases with short-range interactions, for metrology
purposes. We characterize the emerging quantum phases via density-matrix renormalization group
simulations and quantify their entanglement content for metrological usability via quantum Fisher
information (QFI). Our study establishes a method, promoting QFI to be an order parameter. Short-range
interactions reveal to build up metrologically promising entanglement in the XY-ferromagnetic and cluster
ordering, the cluster physics being unexplored so far.
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Strongly correlated systems are progressively becoming a
paradigm for precision metrology, attracting broad interest
[1]. Quantum gases represent a powerful platform to develop
quantum measurement devices [2,3], bridging between
engineering of quantum states of matter [4] and progress
in atom interferometry [5,6]. Atom interferometry has many
sources of uncertainty, classifiable into device and statistics-
driven causes [7]. Accurate experimental schemes have
blossomed, providing significant reduction of the former,
now comparable or even lower than statistical error [7–12].
Further precision improvements can be obtained by address-
ing the statistical uncertainty problem, in particular the
quantum phase estimation [13,14]. A conceptual tool to
reduce statistical uncertainty may come from entanglement,
specifically quantum squeezing [15–18], where uncertainty
in a selectedobservable can be reducedbelow theHeisenberg
bound at expenses of a conjugate observable [19]. Atomic
spin squeezing has been implemented in numerous exper-
imental setups, using interactions either collision driven or
light mediated in optical cavities [15,20–23]. Entanglement
is a necessary but not sufficient condition for squeezing, its
metrological usefulness being quantified via quantum Fisher
information (QFI) from the Cramér-Rao bound for statistical
estimation of variances [1,14,24]. Generation of useful
entanglement is often performed by means of infinite-range
interactions [15,25,26], and can survive a power-law decay
of the coupling [27]. However, also many-body finite-range
interactions can drive long-range correlations, reinforcing
the need to account for particles’ indistinguishability [28]
andmaking the quantification of entanglement an evenmore
subtle issue, as witnessed by a timely debate [29–32] in both
quantum information and many-body communities, also
motivated by experimental observations in quantum gases
[33]. The interesting question thus arises, whether short-
range interactions can provide phases with useful entangle-
ment content for metrology.

In this Letter, we tackle the problem from a conceptual
perspective and investigate many-body entanglement via a
minimal model able to reproduce the essential desirable
features of a strongly correlated quantum fluid with short-
range interactions and motional degrees of freedom [34].
To this aim, we consider a system of N fermionic atoms in
two spin states within the tUJ model [35], correlated via
nearest-neighbor coupling J and on-site U, and in the
presence of tunneling processes t. We use density-matrix
renormalization group (DMRG) simulations to characterize
the system quantum phases and classify them by finding a
quantitative correspondence between QFI and the order
parameters characterizing the quantum fluid, conveying
two central messages. First, this idea acquires methodo-
logical significance, since QFI can be seen as an order
parameter. Second, two particular ground states in a short-
range interacting system result especially promising for
metrological use, because of their QFI scaling with the
number of atoms N. These phases correspond to an XY
ferromagnet and a cluster ordering, the latter being here
identified and quantitatively analyzed in the whole U-J
phase diagram. Exploiting this metrological usability
requires the devising of suited protocols [36], which we
will discuss along with possible experimental realizations.
The Fermionic tUJ model.—We consider an ensemble of

fermions in two (real or pseudo)-spin states, moving in a
one-dimensional (1D) geometry in the presence of a short-
range interaction. We model the system as cartooned in
Fig. 1 (top), according to the tUJ Hamiltonian:

H¼
X

i

½−tðc†iσciþ1σþH:c:ÞþUni↑ni↓þJðsþi s−iþ1þH:c:Þ�:

ð1Þ

Here, cð†Þj;σ are destruction (creation) operators for fermions

with spin σ on site j, nj ≡P
σ c

†
jσcjσ is the number
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operator, and sþð−Þ
j ≡ c†j↑ð↓Þcj↓ð↑Þ the spin raising (low-

ering) operators. The t term mimics atomic motion via
hopping. The U and J terms represent, respectively, the
contact and nearest-neighbor parts of a same two-body
interaction, from now on in jtj ¼ 1 units.
We explore the quantum phases of the tUJ model by

resorting to a DMRG method [38–40], as described in
detail in the Supplemental Material [41], which includes
Refs. [42–48]. We probe different quantum correlation
functions hO†

i Oji, with Ok an operator acting on site k. We
have considered spin density wave (SDW) correlations
with O ¼ sx;y;z, charge density waves (CDW) with O ¼ n,
and superfluid pairing (SF) withO ¼ c↑c↓. As we focus on
the connection between the system quantum phases and
their metrological usability, we only display results for ν ¼
1=4 filling, though results at ν ¼ 1=2 are also discussed.
Quantum phases.—Figure 1 (bottom) displays the sys-

tem quantum phases. We first discuss the phase diagram for
−∞ < U < þ∞ and jJj values below the solid thickest
curves. Large and negative U favor a SF phase in the 1D
sense with a large fraction of doubly occupied sites [49],
while small J couplings are ineffective without opposite

spins to pair. Moving towards U → 0, on-site pairs pro-
gressively become disfavored, and hopping starts to domi-
nate. As expected, this leads to CDW ordering for
J > 0 and SDWz for J < 0; U > 0, both characterized
by a typical 2kF oscillation in the correlation functions.
Overall, the behavior around the origin is consistent with a
smooth merging into a Luttinger-liquid (LL) description.
Larger and positive U values drive instead a dominance of
antiferromagnetic (AFM)-like ordering in the form of
SDWx;y oscillating correlation functions for J > 0. For
J < 0, a positive and nonoscillatory power-law behavior
sets in, along with suppression of the spin-z correlations,
while the spin-x, y expectation values on each site are solid
zeros. We call this the XY-ferromagnetic (XY-FM) phase in
the 1D sense, the power-law decay being the longest range
ordering possible [49]. All this suggests the many-body
ground state to be fully symmetric in the xy pseudospin
plane, as dictated by the symmetry of the Hamiltonian. The
SDWx;y and XY-FM phases can be understood noticing that
þJ

P
iðsþi s−iþ1 þ H:c:Þ can be cast as ∼sxi sxiþ1 þ syi s

y
iþ1, so

that spin-exchange coupling favors spin (anti-)alignment in
the x, y plane.
We remark that a similar tUJ model has been inves-

tigated by Dziurzik et al. [35] in the context of high-
temperature superconductivity via bosonization and
DMRG techniques, exploring the J, U space at different
fillings. While we find good agreement on the phases’
nature and boundaries discussed so far (tilted dot-dashed
lines in Fig. 1 [35]), our analysis provides qualitative and
quantitative evidence of a new phase. In this phase,
particles clusterize, i.e., form regions with unit density
surrounded by zero density. Inside the clusters, spins are
strongly aligned (FM) or antialigned (AFM) in their x, y
components. In Fig. 1 these are the XY-FM and XY-AFM
cluster phases, emerging for J < 0 and J > 0, respectively,
above and below a U-dependent threshold Jc. We now
investigate the nature of these phases, turning our attention
to the density profiles displayed in Fig. 2 for the illustrative
value J=U ¼ −0.1 [41].
While for U < 0 and U ≲ 3 values (top panel), the

density profiles show the usual Friedel oscillations around
average density [41], for U ≳ 38 we encounter the typical
situation depicted in the lower panel. The system’s bulk
ceases to be translationally invariant, and fermions form
clusters of singly occupied sites. Simultaneously, very
strong spin-x correlations arise among particles inside
clusters [41]. A similar simulation for the Hubbard model
with J ¼ 0 shows no trace of this phase (inset), leading us
to infer that the cluster phase be driven by the dominance of
the local nearest-neighbor (FM and AFM) xy coupling over
the delocalizing hopping term. We assess the robustness of
this phase by performing a number of runs against
variations of simulation parameters. Though the clusters’
positions and number are seen to change in a sensible
manner, their qualitative behavior persists as detailed in

FIG. 1. System concept. Top. The tUJ Hamiltonian (1): t drives
the hopping, U the on-site interaction, and J the spin-exchange
coupling. Bottom. Qualitative phase diagram at quarter filling in
the U=t − J=t parameter space, including the following phases:
Luttinger liquid, superfluid, charge-density-wave-like, spin-den-
sity wave, XY ferromagnetic, clusters with internal XY-FM or
antiferromagnetic spin ordering, and hemmed clusters (see text
for descriptions). Simulations have been performed along the
solid lines. Thick solid straight lines: jJ=Uj ¼ 1. Thick curves:
Guidelines delimiting cluster phases. As U → þ∞, Jc ≃ 3.8
separates AFM-like SDWx;y and XY-AFM cluster phases, while
Jc ≃ −3.8 separates XY-FM and XY-FM clusters. Dot-dashed
straight lines: studies from Refs. [35] (tilted) and [37] (horizontal)
(see text). We explore the metrological usability of these phases,
finding XY-FM and XY-FM cluster phases especially convenient
(see text).
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Ref. [41]. In essence, with our DMRG algorithm, single
clusters more likely form at relatively small system sizes
(L≲ 40), and moving clusters may merge under larger
numbers of finite-size algorithm iterations. We infer that the
variability of the clusters’ positions be due to the vanishing
energetic cost of moving around one of them in the
surrounding free space.
In fact, we found traces of this state in studies of the tJ

model performed via exact diagonalization [37], yielding
Jc ¼ 3.22, and via DMRG, resulting in Jc ≃ 3.15 [50].
From our density profiles, we infer that the cluster phase
appears at Uc ≃ 38, i.e.; given J=U ¼ −0.1, Jc ≃ −3.8. We
infer that this phase transition is driven by the same
physical mechanism as in Ref. [37], but with a critical
Jc modified by the on-site U. In fact, their no-double
occupancy setting can be viewed as our U → þ∞ limit,
where we find jJcj ≃ 3.8. For large U < 0, the boundary is
instead located on the lines jJ=Uj ∼�0.85. As one would
expect jJ=Uj ¼ �1, the observed modified value could be
due to superexchange. In the −1 < J=U < −0.85 gap, we
observe peculiar clusters characterized by double occu-
pancy at the density edges, which we name hemmed
clusters (HC) [41]. This is not the case in the symmetric
region with J=U > 0.
Quantum Fisher information.—Having characterized

our quantum phases, we can now turn to measure their
degree of many-body entanglement via quantum Fisher
information F, and test the system’s metrological usability.
The quantum Cramér-Rao lower bound [14] on an esti-
mator variance is given by ðΔΘÞ2 ¼ 1=F½ρ; Ŝ�. QFI

depends in a complicated way on both the system’s initial
state and the transformation performed by the physical
phenomenon to be measured, but it considerably simplifies
for a pure state undergoing a unitary transformation
exp ðiθSa⃗Þ, becoming F½ψ ; Ŝa⃗� ¼ 4ðΔSa⃗Þ2ψ [14]. Here Sa⃗ ≡
aαSα is a linear combination of global (pseudo-)spin
operators [14]. F½ψ ; Ŝa⃗� fixes a criterion for evaluating
the metrological usability of a quantum state, here the
ground state of the many-fermion system. It is known that
for an N-body uncorrelated product state, F ∼ N corre-
sponds to the shot-noise limit [14]. For possibly good
metrological usability then, QFI needs to scale as Nγ <,
with 1 < γ < 2 limited by the Heisenberg principle [13].
Results on QFI.—We now quantify these expectations by

computing QFI across the phase diagram and comparing it
with the quantum phases’ order parameters. In all compu-
tations we select the spin axis that offers the largest QFI
value from the angular momentum covariance matrix
Covab ¼

P
i;jhsai sbj i [15], always obtaining the x axis as

a nongranted outcome. A simple reasoning would lead us to
infer that QFI on SDW or SF states would return a tiny
value as compared even to shot-noise QFI ∼ N. In fact, the
oscillating spin-x correlations between different sites would
add up to zero in the SDW and vanish for each doubly
occupied site of the SF state. This view corresponds to our
numerical findings. QFI results to be large only in the
XY-FM and XY-FM cluster phases. For a quantitative
comparison, we now define the corresponding order
parameters. For the XY-FM phase, this is taken to be
the area CCxð0Þ of the normalized k ¼ 0 peak in the
Fourier transform of the spin-x correlation function
Cxði − jÞ. For the clusters’ phase, it is the normalized
density variance L−1P

iðΔn2Þi.
Since we are originally interested in systems where J and

U are effectively caused by the same term, we run
simulations at fixed J=U while varying U to cross all
possible phases. The results for QFI (red points and curve),
XY-FM (green points and curve), and cluster (blue points
and curve) order parameters are collected within one single
graph in Fig. 3, one central result of the present work. We
see that the QFI shows a steep change in correspondence of
the quantum phase transition to spin-x ordering, the QFI
and CCxð0Þ curves getting quite closely along with varying
U. In fact, one may use QFI to infer the occurrence of the
two quantum phase transitions around U ∼ 4 and U ∼ 38.
The correspondence between QFI and order parameters is
quantitative for the XY-FM phase. The fact that particles in
different clusters are uncorrelated makes the comparison
qualitative for the cluster phases at this stage. A quantitative
treatment is recovered via the QFI scaling analysis
below, generalizing this central message to different J=U
values in the phase diagram. In particular, we now study the
dependence of QFI on J=U and filling, and assess the
degree of metrological usability from QFI scaling with the
particle number N ¼ 2νL [51]. We display in Fig. 4 QFI

FIG. 2. Density profiles for J ¼ −0.1U and different U values.
Top: typical profiles in the SF and CDW (left), SDWand XY-FM
phases (right). Friedel oscillations are present [41]. Bottom:
Density profile for U ¼ 60 with cluster formation. Inset: same
profile with J ¼ 0.
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density QFI=N at two commensurate fillings, 1=4 (red) and
1=2 (blue). As anticipated, QFI vanishes for U < 0 and
J=U ¼ þ0.8, where XY-FM and cluster phases are absent.
At ν ¼ 1=2, QFI density is larger and, unlike ν ¼ 1=4,
smooth since the whole system is in the form of a single
cluster. For both fillings, larger (negative) values of J favor
cluster formation and steeper QFI rise.
We study the N scaling with special care at ν ¼ 1=4,

where several uncorrelated clusters may form at large
U > 0. Thus, we keep relatively small system sizes
(L < 40) to have one single cluster [41]. For both fillings,
we fit the QFI dependence on N with QFI ¼ kNγ, as

illustrated in the inset. The table in Fig. 4 reports γ for
U ¼ 11, corresponding to the QFI maximum in the XY-FM
phase, and the large-U limit for the cluster phase at
ν ¼ 1=4. We see that half-filling shows better scaling
outside the cluster region. Inside it, the scalings at ν ¼
1=4 and 1=2 are compatible within error.
Metrology implementations.—QFI scaling is promising,

but a real use of these reduced-quantum uncertainty states
injected in an interferometric sequence requires suited
protocols. The XY-FM and cluster phases represent non-
Gaussian states with a Wigner distribution located around
the equator in the Bloch sphere [41] and hSx;y;zi ¼ 0, so that
the signal cannot be encoded in a mean spin direction. This
unconventional situation reminds us of the one experimen-
tally investigated in Ref. [52] for twin-Fock states with the
method proposed in Ref. [53]. Adopting a similar strategy,
one might operate a rotation by angle θ about an axis
in the xy plane, and consider the lower bound F ≥
jdhS2zi=dθj2=ðΔS2zÞ2 for the classical Fisher information,
leading to the uncertainty Δθ ≥ ð ffiffiffiffiffiffiffiffiffi

FnÞp
after n measure-

ments. In essence, the signal would be related to the second
moment of Sz instead of the first one, and the noise to the
fourth instead of the second. Eventually, optimization with
respect to θ is to be performed. Signal extraction and
optimization can be operated after sampling the full
probability distribution or the second and fourth Sz
momenta [54] in a time-dependent simulation of the
interferometric sequence.
Conclusions.—Our study conveys two unforeseen mes-

sages. First, short-range interactions are able to build
metrologically useful entanglement in a many-fermion
system. This is demonstrated by a large degree of quantum
Fisher information, accompanied by interesting scaling
with the number of particles. The best performing phase
is indeed the cluster one, driven by the J coupling, which in
our study models the short-range interactions. Second,
our results imply that QFI represents a powerful tool to
characterize the phases of the quantum fluid, acting as an
order parameter.
Implementations in ultracold gases platformsmay include

currently realized systems of dipolar fermions in optical
lattices [55] and suitably engineered versions of Fermi-
Hubbard setups [56] in both cases after further reduction
of dimensionality to one dimension. Finally, a microscopic
origin of this tUJ model can be provided by a photon-
mediated effective interaction among fermions in an optical
cavity [57], leading to a spin-squeezing-like Hamiltonian
[15]. Multimode optical cavities [58] may bring in the short-
range environment, though a realistic probe requires detailed
modeling to include unavoidable dissipation processes [59].
Single-particle decoherence could be suppressed in the
presence of a spin gap, as in the cluster phase [35]. While
one might expect superradiance-enhanced decoherence to
still be an issue, one might ask whether delocalization in
Eq. (1) and the xy-symmetric structure of the ground state

FIG. 3. Quantum fermionic correlated phases and metrological
usability in a single-shot phase diagram. The QFI (red) vs U gets
along the order parameters CCxð0Þ (green) and

P
iðΔn2Þi (blue)

describing the building up of XY-FM and cluster correlations,
respectively (see text).

FIG. 4. QFI density QFI=N (N number of atoms) vs U for
ν ¼ 1=4 (red) and 1=2 (blue), and different J=U (see legend).
Table: exponents fitted from QFI ¼ kNγ for ν ¼ 1=2, 1=4 at
J=U ¼ −0.1. U values are chosen to correspond to the QFI
maximum in the XY-FM phase (U ¼ 11) and in the large-U limit
for the cluster phase (U ¼ 60), at ν ¼ 1=4. Inset figure: example
of QFI scaling for ν ¼ 1=4, U ¼ 60, and J=U ¼ −0.1.
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might be exploited to limit the effect. We are currently
working along this direction, via an actual time-dependent
simulation of the open system [59].
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quantum metrology, Phys. Rev. A 94, 010102(R) (2016).

[47] D. J. Wineland, J. J. Bollinger, W.M. Itano, F. L. Moore,
and D. J. Heinzen, Spin squeezing and reduced qua-
ntum noise in spectroscopy, Phys. Rev. A 46, R6797
(1992).

[48] G. I. Japaridze and E. Müller-Hartmann, Triplet supercon-
ductivity in a one-dimensional ferromagnetic t-J model,
Phys. Rev. B 61, 9019 (2000).

[49] T. Giamarchi, Quantum Physics in One Dimension, Int. Ser.
Monogr. Phys. (Clarendon Press, Oxford, 2003).

[50] A. Moreno, A. Muramatsu, and S. R. Manmana, Ground-
state phase diagram of the one-dimensional t-J model, Phys.
Rev. B 83, 205113 (2011).
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