
 
Accepted Manuscript 

Vacuolating Cytotoxin and Variants in Atg16l1 that Disrupt 
Autophagy Promote Helicobacter Pylori Infection in Humans 

D. Raju, S. Hussey, M. Ang, M.R. Terebiznik, M. Sibony, E. 
Galindo-Mata, V. Gupta, S.R. Blanke, A. Delgado, J. Romero-
Gallo, M. Ramjeet, H. Mascarenhas, R.M. Peek, P. Correa, C. 
Streutker, G. Hold, E. Kunstmann, T. Yoshimori, M.S. Silverberg, S.E. Girardin, D.J. 
Philpott, E. El Omar, N.L. Jones 

PII: S0016-5085(12)00170-9 
DOI: 10.1053/j.gastro.2012.01.043 

Reference: YGAST 57585 

To appear in: Gastroenterology 

Received date: 6 July 2011 
Revised date: 3 January 2012 
Accepted date: 26 January 2012 
 
Please cite this article as: Raju, D., Hussey, S., Ang, M., Terebiznik, M.R., Sibony, M., 
Galindo-Mata, E., Gupta, V., Blanke, S.R., Delgado, A., Romero-Gallo, J., Ramjeet, M., 
Mascarenhas, H., Peek, R.M., Correa, P., Streutker, C., Hold, G., Kunstmann, E., 
Yoshimori, T., Silverberg, M.S., Girardin, S.E., Philpott, D.J., El Omar, E., Jones, 
N.L., Vacuolating Cytotoxin and Variants in Atg16l1 that Disrupt Autophagy Promote 
Helicobacter Pylori Infection in Humans, Gastroenterology (2012), doi: 
10.1053/j.gastro.2012.01.043. 
 
This is a PDF file of an unedited manuscript that has been accepted for publication. As a 
service to our customers we are providing this early version of the manuscript. The 
manuscript will undergo copyediting, typesetting, and review of the resulting proof 
before it is published in its final form. Please note that during the production process 
errors may be discovered which could affect the content, and all legal disclaimers that 
apply to the journal pertain. 
 
 
All studies published in Gastroenterology are embargoed until 3PM ET of the day they 
are published as corrected proofs on-line. Studies cannot be publicized as accepted 
manuscripts or uncorrected proofs. 

http://dx.doi.org/10.1053/j.gastro.2012.01.043
http://dx.doi.org/10.1053/j.gastro.2012.01.043
http://dx.doi.org/10.1053/j.gastro.2012.01.043


Vacuolating Cytotoxin and Variants in Atg16L1 that Disrupt Autophagy Promote 

Helicobacter pylori Infection in Humans  

Short Title: H. pylori disrupts autophagy  

D. Raju1, S. Hussey1,2, M. Ang1, M.R. Terebiznik3, M. Sibony1,11, E. Galindo-Mata1,V. 

Gupta4, S.R. Blanke4, A. Delgado5, J. Romero-Gallo5, M. Ramjeet6, H. Mascarenhas1,2, 

R.M. Peek5, P. Correa5, C. Streutker7, G. Hold8, E. Kunstmann9, T. Yoshimori10, M. S. 

Silverberg11, S.E. Girardin6, D.J. Philpott2, E. El Omar8, N.L. Jones1* 

1 Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada, 

Departments of Paediatrics and Physiology, University of Toronto, Toronto, ON, Canada 

2Department of Immunology, University of Toronto, Toronto, ON Canada 

3Department of Cell and Systems Biology, University of Toronto, Scarborough, ON, Canada 

4Department of Microbiology and Institute for Genomic Biology, University of Illinois, Urbana, IL, USA. 

5Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Centre, Nashville, 

TN 

6Department of Laboratory Medicine and Pathobiology, and the Li Ka Shing Knowledge Institute 

University of Toronto, Toronto, ON 

7Department of Laboratory Medicine, St. Michaels’s Hospital, Toronto, ON 

8Institute of Medical Sciences, School of Medicine and Dentistry, Aberdeen University, Foresterhill, 

Aberdeen 

9 Praxis fur Humangenetik, Theodore-Boveri-Weg, University Wuerzburg, Germany 

10Department of Cellular Regulation, Research institute for Microbial Diseases, Osaka University, Suita, 

Osaka, Japan 

11Zane Cohen Centre for Digestive Diseases, IBD group, Mount Sinai Hospital, Toronto, ON 

 

 

 1



Grant Support: 

We would like to acknowledge the various funding agencies that supported this study. 

NLJ is supported by CIHR (No. 178886) and by the Crohn’s and Colitis Foundation of 

Canada. SH was funded by a Canadian Association of Gastroenterology/ CCFC 

Fellowship.  MRT was funded by NSERC discovery grant. SRB was supported by a grant 

from the NIH (R01 AI045928). RMP was supported by NIH (DK 58587, CA77955 and 

CA116037).  EK was funded by RUB/M 122/13. GH and EEO were supported by Cancer 

research UK (C8969/A6657). 

  

*Corresponding Author 

Dr. Nicola Jones 

Departments of Paediatrics and Physiology, University of Toronto 

Cell Biology Program, Hospital for Sick Children 

555, University Avenue 

Toronto, ON M5G1X8 

Phone no: 416-813-7072 

Email: Nicola.jones@sickkids.ca 

 

Conflict of interest: The authors declare no conflict of interest. 

 

Author Contributions: 

DR, MRT and MA performed experiments and data analysis. MR, MS, EGM, HM, JRG 

and GH performed experiments and sample preparation. 

 2



VG, SRB, TY, RMP, PC, MSS provided reagents. CS helped with data analysis. NLJ, 

DR, MT, SH planned the experiments. NLJ, DR, SH, MT, RMP, EEO, SG, DP wrote the 

manuscript. NLJ conceived of and supervised the study. 

 3



  

Abstract 

Background & Aims: The Helicobacter pylori toxin vacuolating cytotoxin (VacA) 

promotes gastric colonization and its presence (VacA+) is associated with more-severe 

disease. The exact mechanisms by which VacA contributes to infection are unclear. We 

previously found that limited exposure to VacA induces autophagy of gastric cells, which 

eliminates the toxin; we investigated whether autophagy serves as a defense mechanism 

against H pylori infection. 

 

Methods: We investigated the effect of VacA on autophagy in human gastric epithelial 

cells (AGS) and primary gastric cells from mice. Expression of p62, a marker of 

autophagy, was also assessed in gastric tissues from patients infected with toxigenic 

(VacA+) or nontoxigenic strains. We analyzed the effect of VacA on autophagy in 

peripheral blood monocytes obtained from subjects with different genotypes of 

ATG16L1, which regulates autophagy. We performed genotyping for ATG16L1 in two 

cohorts of infected and uninfected subjects.  

 

Results: Prolonged exposure of AGS and mouse gastric cells to VacA disrupted 

induction of autophagy in response to the toxin, because the cells lacked cathepsin-D in 

autophagosomes. Loss of autophagy resulted in the accumulation of p62 and reactive 

oxygen species. Gastric biopsies samples from patients infected with VacA+, but not 

nontoxigenic strains of H pylori, had increased levels of p62. Peripheral blood monocytes 

isolated from individuals with polymorphisms in ATG16L1 that increase susceptibility to 
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Crohn's disease had reduced induction of autophagy in response to VacA+ compared to 

cells from individuals that did not have these polymorphisms.  The presence of the 

ATG16L1 Crohn’s disease risk variant increased susceptibility to H pylori infection in 2 

separate cohorts. 

 

Conclusions: Autophagy protects against infection with H pylori; the toxin VacA 

disrupts autophagy to promote infection, which could contribute to inflammation and 

eventual carcinogenesis. 

 

Keywords: stomach cancer, genetic, bacteria toxin, tumor 
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Introduction: 

 Helicobacter pylori has been classified as a Class I carcinogen by the World Health 

Organization [1]. Chronic H. pylori infection is a risk for the onset of serious gastric 

disease, including peptic ulcer disease, mucosa lymphoid tissue (MALT) lymphoma and 

gastric cancer, the second leading cause of cancer deaths worldwide [1]. The mechanisms 

responsible for initial susceptibility to infection and subsequent chronic infection involve 

a complex interplay between host and bacterial factors. One specific virulence factor 

important for colonization and disease outcome is the vacuolating cytotoxin (VacA) [2]. 

The exact mechanisms by which VacA contributes to colonization and disease outcome 

remain unclear.  

 Autophagy is an evolutionarily conserved process that results in the sequestration of 

cytosolic components within double membrane compartments called autophagosomes. 

These compartments fuse with lysosomes to become autophagolysosomes, which degrade 

vesicle contents through the action of lysosomal hydrolases. Although initially 

recognized to occur in response to cellular stresses such as nutrient starvation, current 

evidence indicates that autophagy plays a critical role in modulating host immunity and 

inflammatory responses. Importantly autophagy is thought to serve as an innate defense 

mechanism against infection. Autophagy is stimulated in response to the invasion of 

intracellular pathogens and the presence of bacterial toxins [3]. In addition, studies in 

Caenorohabditis elegans, Drosophila and mice suggest that autophagy is a critical 

pathway for controlling infection. For example, inactivation of an autophagy dependent 

gene in C. elegans increases intracellular replication of Salmonella typhimurium [4]. In 

mice, disruption of a bacterial-selective autophagy pathway promotes intracellular 
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replication of Shigella [5]. However, a number of pathogens evade or utilize the 

autophagy pathway for enhanced survival and persistence in host cells [6,7]. 

 While an increasing number of pathogens have been demonstrated to subvert 

autophagic pathways to promote intracellular survival, much less is known about the 

potential consequences of pathogen-mediated disruption of autophagic pathways or, 

alternatively, the influence of autophagic defects within host cells for controlling 

infection in humans and influencing disease pathology. Recent studies from our lab 

revealed that within gastric epithelial cells in vitro, autophagic signaling is induced in 

response to infection with H. pylori in a VacA-dependent manner [8]. Furthermore, 

autophagy eliminates VacA. Here, we specifically evaluated the biologic significance of 

the autophagy pathway during H. pylori infection in vitro and in vivo in human subjects, 

and assessed the influence of both pathogen and host genetic factors.  

 

Methods and Materials: 

Cells, bacteria and antibodies:  

Culture conditions for human gastric epithelial cells (AGS) and murine primary gastric 

cells were as described previously [9,10]. Growing conditions for wild-type H. pylori 

strain 60190 (ATCC 49503; cagA+ cagE+ VacA+) and its isogenic vacA mutant strain 

(provided by Dr. R. Peek) were as described previously [11,12]. Rabbit polyclonal p62 

antibodies were from Santacruz Biotechnology, CA. Rabbit anti-H. pylori antibodies 

were from DAKO (Denmark).  Mouse anti-human Lamp1 antibodies were purchased 

from (Developmental Studies Hybridoma Bank, Iowa City, IA). Cathepsin D antibodies 
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were from Upstate (Lake Placid, NY). Rabbit anti-VacA antibodies were a kind gift from 

Dr. S. R. Blanke. All other reagents were obtained from Sigma-Aldrich (St. Louis, MO). 

 

Detection of reactive oxygen species and cell death using FACS: 

For the detection of reactive oxygen species, a redox-sensitive dye 5-(and-6)-

chloromethyl-20,70-dichlorodihydrofluorescein diacetate, acetyl ester(CM-H2DCFDA) 

was used. Fluorescence was measured using a FACSCalibur flow cytometer.  

Cell death analysis was performed using 3μM propidium iodide (Invitrogen) in PBS 

buffer and assessed by fluorescent-activated cell sorting FACS (FACSCalibur, BD 

Biosciences). The percentage of stained cells was determined and compared with 

appropriate negative controls. 

 

Isolation of Peripheral blood monocytes (PBMC): 

Venous blood was drawn from healthy genotyped volunteers in sterile EDTA coated 

tubes (BD Vacutainer,) diluted 1:1 with pyrogen-free saline and layered over Ficoll-

Paque (GE Healthcare Sciences, Canada). Approval for the study was provided by the 

local ethics board (Approval No. MSH REB#02-0234-E). 

Cells were spun at 400g for 30min to obtain the mononuclear cell fractionation via 

density centrifugation, washed and suspended in culture medium. Cells were counted and 

plated in 6-well plates where they were treated with various stimuli: muramyl dipeptide 

(MDP, 10μg/ml, InvivoGen, San Diego), and concentrated culture supernatants of H. 

pylori strain 60190 (200μl/ml) for 24 hours with bafilomycin (50μg/ml, Sigma) and 
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rapamycin (100ng/ml, Enzo Life Sciences International, USA) used for the last 4 hours of 

incubation. Collected cells were then lysed and used for immunoblots.  

Densitometric analysis was performed using FlourChem FCII software. All blots from 

each independent experiment were used. Densities of the LC3 II and actin bands were 

measured for each treatment and expressed as a ratio of LC3II/actin, normalized to each 

subjects control. 

 

Statistical analysis: 

Analysis of variance (ANOVA), unpaired T test and other statistical analysis of the 

results were performed utilizing GraphPad Prism 4 for Macintosh V 4.0b. 

 

Other assays: 

Immunofluorescence, immunohistochemistry, immunoblotting, bacterial survival, 

genotyping and other assays were performed as previously described and are outlined in 

detail in the supplementary materials section. 

 

Results: 

Prolonged exposure to VacA toxin causes accumulation of defective 

autophagosomes: 

Previous studies have shown that limited exposure to H. pylori VacA for 6h triggers 

autophagy in AGS cells, resulting in degradation of the toxin in autophagosomes 

suggesting that autophagy serves as a protective host response during infection [8]. To 

further assess the biologic significance of the pathway during infection we exposed 
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gastric cells to VacA toxin for prolonged periods to mimic the setting of chronic infection 

and utilized the LC3-eGFP-mRFP tandem construct to follow the maturation of 

autophagosomes [13]. After formation, autophagosomes fuse with lysosomes and acquire 

cathepsins and acid phosphatases to become mature autolysosomes [6,14]. Modified LC3 

remains associated with autophagosomes until hydrolysis at the autolysosomal stage. 

During autophagosome maturation the mRFP-LC3 signal persists longer than the GFP-

LC3 signal since mRFP is resistant to autolysosomal proteases and has a lower pKa [13]. 

As we had previously shown that VacA was necessary and sufficient to induce autophagy 

and that autophagy did not occur during infection with isogenic vacA- mutants we 

focused our experiments on VacA. When AGS cells transfected with the tandem 

construct were treated with culture supernatants from VacA+ H. pylori (CCMS), both the 

GFP-LC3 and mRFP-LC3 signals persisted (Figure 1B,D) in a comparable manner to 

cells incubated with vinblastine (Figure 1C,D), which prevents autophagosome-lysosome 

fusion. These findings were recapitulated in VacA+ CCMS treated primary murine 

gastric epithelial cells indicating the effect was not related to cancerous transformation 

(Supplementary figure 1). 

Next we measured the hydrolysis of long half-life proteins, whose turnover depends on 

autophagy, in VacA+ CCMS treated cells [15,16].  Figure 1E shows that the degradation 

of long half-life proteins in VacA+ CCMS treated cells was lower than in cells 

undergoing autophagy triggered by rapamycin treatment. Taken together, these findings 

suggest that the autophagosomes formed by VacA are defective and have reduced 

catalytic activity.  

 

 10



VacA protects cells from rapamycin-mediated cell death: 

Autophagy is considered cytoprotective but in certain settings excessive autophagy can 

cause cell death [17,18]. For instance, overexpression of Atg1 in Drosophila 

melanogaster salivary glands triggers an autophagic phenotype followed by cell loss 

which is prevented by inhibiting autophagy [19]. Similarly prolonged treatment with 

rapamycin, which triggers autophagy, induces death of mammalian cells [20]. Therefore, 

we next assessed the effect of VacA mediated changes in autophagy on rapamycin-

induced cell death. Similar to ATG12 siRNA treated cells, pre-incubation of cells with 

VacA + CCMS attenuated rapamycin-triggered cell death (Figure 1F, Supplementary 

figure 2). These findings indicate that VacA effects on autophagy can promote increased 

cell viability in response to rapamycin comparable to siRNA-mediated disruption of 

autophagy (Supplementary figure 2).  

 

VacA induced autophagosomes lack Cathepsin-D: 

We next determined if VacA+CCMS-triggered autophagosomes failed to mature due to 

lack of fusion with lysosomes. VacA+CCMS-induced autophagosomes acquired the late 

endosomal lysosomal marker Lamp1 (Figure 2) and co localized with lysosensor probes 

(Supplementary figure 3) indicating that autophagosome-lysosome fusion and 

acidification were not affected. 

Previous reports indicate that VacA alters the degradative properties of the endocytic 

pathway by subverting the sorting and activation of cathepsin enzymes [11,21]. We had 

shown that in VacA positive but not isogenic VacA mutant infected cells, lysosomes lack 

cathepsin D, a key hydrolase, which in turn affects their degradative properties [11,21]. 

 11



Therefore, we determined if cathepsin D was present in autophagosomes in 

VacA+CCMS treated cells. As shown in Figure 2 A-E and Supplementary figure 4, 

VacA+CCMS treated cells displayed a reduction in cathepsin D over time in comparison 

with control cells. Furthermore, in comparison with rapamycin, starvation, and 

vinblastine treated cells, negligible amounts of cathepsin D were found in Lamp1-labeled 

late endosomes in CCMS-treated cells. These findings indicate that VacA -induced 

autophagosomes fuse with lysosomes and acquire an acidic pH but lack cathepsin D and 

thus the catalytic activity required to complete the autophagic degradative process [22].  

 

VacA induces formation of p62 aggregates in vitro and in vivo: 

Dysfunctional autophagy leads to an accumulation of p62, which has been implicated in 

promoting tumorigenesis [23,24].  Therefore, we determined the levels of p62 in AGS 

cells treated with VacA+CCMS. AGS cells treated with VacA+CCMS showed 

accumulation of p62, which increased over time and co-localized with GFP-LC3 (Figure 

3A-E). The accumulation of p62 in VacA+CCMS-treated cells was similar to the p62 

aggregates in cells where autophagy was suppressed using ATG12 siRNA (data not 

shown).  

To extend our in vitro findings to the bacterial niche in humans, we next looked at p62 

expression in human gastric biopsies. All H. pylori strains carry the VacA gene and can 

be divided into toxigenic, expressing a functional VacA toxin, or nontoxigenic based on 

their VacA genotype (s1m1 vs s2m2). Gastric tissue sections from patients infected with 

toxigenic s1m1 VacA-producing strains showed a significantly higher accumulation of 

p62 in the foveolar cells of the gastric epithelium when compared to tissue sections 
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obtained from patients infected with a nonfunctional VacA genotype (s2m2) strain 

(Figure 3F-G). These in vivo observations were concordant with our in vitro findings. 

Furthermore, the expression level of p62 was independent of the degree of gastric 

inflammation indicating that p62 accumulation was likely due to a bacterial factor (data 

not shown) 

In addition to increasing p62 aggregation, disrupted autophagy increases levels of 

reactive oxygen species (ROS) in tumor cells[23] . Therefore we next assessed the effect 

of VacA treatment on ROS expression in gastric cells by flow cytometry. As seen in Fig 

4 (A-B), treatment with purified active VacA toxin increased the levels of ROS 

comparable to  cells treated with hydrogen peroxide. In contrast levels of ROS in inactive 

VacA toxin-treated cells were comparable to untreated control cells. The VacA-mediated 

increased ROS was ameliorated by pre treatment with the anti-oxidant N- acetyl cysteine 

(Fig 4B). These findings indicate that VacA treatment increases ROS expression, which 

could be mediated by VacA’s effect on autophagy. 

 

Autophagy restricts the growth of intracellular VacA+ H. pylori  

Autophagy can inhibit the growth of intracellular bacteria and our results suggest that 

prolonged exposure to VacA disarms autophagosomes thereby inhibiting their anti-

bacterial function. To conclusively determine the effect of autophagy on intracellular 

survival of H. pylori, we employed wildtype and autophagy deficient Atg5-/- MEFs. 

Similar to mutant Shigella whose growth is restricted by autophagy[25], survival of 

VacA+ H. pylori was increased in autophagy disrupted Atg5-/- MEFs in comparison with 
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wildtype MEFs (Figure 5). These findings indicate that autophagy restricts the growth of 

VacA+ H. pylori. 

 

Crohn’s disease autophagy risk allele reduces autophagy in response to VacA toxin: 

Our previous studies indicated that while autophagy targets VacA to eliminate the toxin 

and restrict the growth of the bacteria, during prolonged exposure to VacA the toxin can 

counteract this effect by disrupting autophagy. Therefore, we next asked whether 

alterations in the host genetic autophagy machinery could modulate infection in the 

human setting. We took advantage of the recent genome wide association studies that 

identified a SNP in the autophagy gene, ATG16L1 (ATG16L1T300A-rs2241880), as a 

causal risk variant for Crohn’s disease [26,27]. Although the functional relevance of this 

variant remains unclear, it is speculated that the ATG16L1 CD risk allele may result in an 

unstable ATG16L1 protein and lead to impaired cytokine responses and anti-microbial 

autophagy, though without affecting basal autophagy function [28-30].  

We first assessed if ATG16L1 was required for VacA-mediated autophagy. In ATG16L1 

siRNA-treated cells a lack of LC3 II conversion in response to CCMS was detected 

indicating requirement for ATG16L1 (Supplementary figure 5). To determine if the 

ATG16L1 genotype influenced VacA mediated autophagy, we reconstituted the wildtype 

or CD allele in ATG16L1 knockdown cells. However, we could only rescue the 

autophagy phenotype by overexpressing ATG16L1 (Supplementary figure 5). Therefore, 

we assessed the induction of autophagy in response to VacA or CCMS in peripheral 

blood monocytes (PBMCs). As previous studies indicate the effects of the toxin may 

differ in immune cells compared to epithelial cells we first characterized the autophagic 
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responses to VacA in PBMCs. The response to VacA in PBMCs recapitulated the 

findings observed in gastric epithelial cells as demonstrated by increased conversion of 

LC3II and p62 expression (Supplementary Figure 6). We then utilized PBMCs obtained 

from healthy volunteers who had been genotyped for ATG16L1. As we had shown 

previously that Nod2fs and ATG16L1 interact in the autophagic pathway we also 

genotyped these individuals for NOD2fs. None of the subjects harbored the NOD2fs 

mutation. Induction of autophagy and autophagic flux was determined by assessing 

conversion of LC3 I to LC3 II in control and CCMS-treated cells treated with 

bafilomycin. The LC3II/LC3I ratios of PBMC’s harboring the risk 300A allele were 

expressed as ratios of LC3II/LC3I in PBMC’s harboring the wild type protective 300T 

allele to indicate the difference between the two genotypes. In PBMCs with the protective 

300T allele, VacA+ CCMS increased LC3 II conversion (Figure 6A,B) comparable to the 

Nod2 ligand MDP (data not shown), which is known to induce autophagy [31]. In 

PBMCs from individuals harboring the 300A “risk” allele, the response to VacA+CCMS  

was reduced when compared to the 300T allele-harboring PBMCs (Figure 6 A, B).   

 

Variants in the host autophagy gene, ATG16L1, increase susceptibility to infection: 

These in vitro findings suggested that induction of autophagy in response to VacA is 

inefficient in the presence of the CD ATG16L1 risk allele. Since our studies indicate that 

autophagy restricts the intracellular survival of VacA+ H. pylori we next determined if 

the presence of this ATG16L1 variant had any impact on susceptibility to infection in 

humans.  We initially studied Scottish first degree relatives of patients with gastric 

cancer, to minimize potential confounders such as variants in dietary and environmental 
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exposures, housing standards etc. since potential exposure to infection would be the same 

[32]. All subjects were genotyped for ATG16L1 and NOD2 and underwent upper 

endoscopy and biopsies, including culture for H. pylori, to diagnose and characterize the 

extent of H. pylori infection and related gastritis phenotypes. Genotyped population 

controls were derived locally from umbilical cord blood sampling. Odds ratios (OR) for 

H. pylori infection were then calculated. There was a significantly increased OR for H. 

pylori infection among subjects who were homozygous for the 300A allele (GG 

genotype) compared with those homozygous for the ‘protective’ 300T allele (AA 

genotype) (Table 1) but no correlation with the NOD2 genotype (Data not shown)  Since 

induction of autophagy was entirely dependent on the presence of toxigenic VacA, we  

then assessed the correlation between  VacA genotype of the infecting strain and 

ATG16L1 genotype [33]. Among patients harboring the toxigenic s1m1 strains, 38% had 

the GG genotype. In contrast, of those harboring the less toxigenic s1m2 strain, only 17% 

had the GG genotype. Taken together, these findings indicate that there was a positive 

correlation between the ATG16L1 genotype and susceptibility to infection with the 

toxigenic strain of H. pylori. 

We replicated our study in a cohort of German subjects who similarly underwent 

genotyping and upper endoscopy and biopsies, including culture for H. pylori. Once 

again, subjects homozygous for the risk 300A allele had a significantly higher OR of H. 

pylori infection in comparison to those harboring the 300A allele (Table 1).  These results 

confirm that the 300A allele in ATG16L1 confers a modest but significant host genetic 

risk of H. pylori infection.  This is the first study to show that variants in an autophagy 
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gene, ATG16L1, increase susceptibility to H. pylori acquisition and chronic infection in 

Caucasian populations.  

 

Discussion: 

Current evidence indicates that autophagy can be induced in cells as an innate defense 

mechanism to eliminate bacteria or toxins during infection [6,7]. However, a number of 

pathogens are able to subvert this pathway as a strategy for their increased intracellular 

survival [6,34]. Here we show that although autophagy is initially induced in gastric 

epithelial cells (AGS) in response to VacA and serves a cytoprotective role, prolonged 

exposure to VacA causes disrupted autophagy, as determined by i) persistence of both the 

GFP and RFP signal when the tandem LC3-eGFP-mRFP construct was used, ii) reduced 

degradation of long-lived proteins, accumulation of p62 and elevated ROS levels iii) 

protection of cells from rapamycin-induced autophagic cell death and iv) lack of 

cathepsin D within autophagosomes in VacA treated cells. In addition, our in vitro 

findings were recapitulated in the natural setting of infection in human subjects as 

evidenced by higher levels of endogenous p62 in gastric tissues from patients infected 

with toxigenic H. pylori. 

Our discovery that H. pylori infection is increased in hosts harboring the ATG16L1 300A 

polymorphism provides support for the importance of the pathway in mediating 

resistance to infection in humans. The 300A polymorphism is relatively common in 

Caucasian populations and the implications of research to date in Crohn’s disease would 

suggest that it facilitates chronic inflammation. That the resultant protein may result in 

reduced autophagic responses to VacA and increased susceptibility to infection with an 
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enteric microbe in humans is intriguing. We propose a model whereby during initial 

exposure to infection where bacterial load and therefore levels of VacA may be low, host 

cell autophagy plays an important role in reducing the effects of the toxin, and clearance 

of bacteria (Figure 6C). In individuals with the ATG16L1 risk allele, a reduced host 

autophagic response could result in enhanced toxigenic effects, thereby increasing 

susceptibility to acquisition of infection.  In contrast to the setting of initial exposure to 

infection, during chronic infection, persistent exposure of VacA could disrupt the 

autophagic pathway thereby resulting in a failure to clear bacteria and accumulation of 

genotoxic material in cells (p62, ROS). Since H. pylori possesses a variety of antioxidant 

strategies [35] accumulation of ROS would likely not impact bacterial survival. However 

increased ROS and genotoxic materials in epithelial cells may ultimately promote 

carcinogenesis (Figure 6C).  

 

Autophagy plays dual roles, both as a tumor suppressor and tumor enhancer. The 

inability to eliminate protein aggregates and damaged organelles that produce genotoxic 

free radicals could increase the mutation rate within the genome, promoting cellular 

changes associated with oncogenesis. Tumor cells induce autophagy to handle metabolic 

stress and promote survival. However, defects in autophagy within tumor cells could also 

lead to cell death, inflammation and genetic instability.  This in turn might create a 

microenvironment that predisposes to cancer [36,37]. Mice lacking Beclin 1 accumulate 

p62, ROS and DNA damage in the liver leading to tissue damage, inflammation and 

ultimately hepatocellular carcinoma [23,24,37]. Thus our finding that VacA-mediated 

disrupted autophagy increases known risk factors for tumorigenesis including ROS in 
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vitro and p62 in vivo in human subjects suggests that alterations in this pathway may be 

highly relevant for disease outcome during H. pylori infection. Thus infection with H. 

pylori may serve as a unique model system to determine the role of autophagy disruption 

in microbial-mediated carcinogenesis.  

 

To our knowledge this is the first study to provide evidence that the Crohn’s disease 

variant of ATG16L1 alters susceptibility to infection with an enteric microbe in human 

subjects at the population level. These findings support a role for altered autophagy in 

regulating the host response to enteric microbes in Crohn’s disease pathogenesis. Of 

interest recent studies indicate that infection with H. pylori may actually serve a 

protective role against inflammatory bowel disease [38,39]. It is interesting to speculate 

that due to increased susceptibility to infection, early exposure and acquisition of H. 

pylori in individuals with the ATG16L risk allele may decrease their risk for the 

subsequent development of inflammatory bowel disease. However, further studies are 

needed to confirm this contention. 

 

In summary, our studies have uncovered previously unappreciated roles of autophagy in 

host susceptibility to H. pylori infection. We are the first group to identify an autophagy 

gene, ATG16L1, as a host candidate gene for susceptibility to H. pylori infection. Our 

novel in vitro and in vivo translational studies delineate mechanisms by which H. pylori 

usurps the autophagy pathway which in turn leads to accumulation of ROS and p62.  

Rather than eliminating the bacteria and the toxin, this sequence of events predisposes to 

chronic H. pylori infection, and ultimately may promote gastric cancer. Thus, the 
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relationship between host autophagy genotype and VacA toxin-mediated induction of 

disarmed autophagosomes is an elegant example of the complex manner in which host 

factors and bacterial virulence factors modulate host cell responses and disease 

susceptibility. 

 20



Table 1: 

 

 Number of Cases/Controls 
Odds Ratioa (95% Confidence Interval); p-value 

 AA AG GG Recessive  Dominant 

German Study 57/57 
1.0 (ref) 

132/107 
1.2 (0.8-1.9); 0.51 

84/46 
1.8 (1.1-3.1); 0.03 1.7 (1.0-2.8); 0.03 1.4 (0.9-2.1); 0.13 

Scottish Study 26/18 
1.0 (ref) 

39/24 
1.2 (0.6-2.5); 0.67 

42/13 
2.3 (1.0-4.9); 0.05 2.3 (1.0-4.3); 0.05 1.5 (0.8-3.0); 0.18 

 
 
 
 
Table 1. Association of the rs2241880 polymorphism with risk of H pylori infection in 
the German and Scottish studies. The Scottish study data were generated by comparing 
the two H pylori-infected subgroups (n=107) vs. the uninfected group (n=55); 4 samples 
(1 from infected and 3 from uninfected group) failed. The German study data were 
generated by comparing H pylori-infected subjects (n=273) vs. uninfected subjects 
(n=210); 3 samples failed (two from uninfected and 1 from infected group). Odds ratios, 
confidence intervals and p-values are given for per-genotype, dominant and recessive 
models. 

   
 aFor the Scottish study, odds ratios were adjusted for age, sex and within-family 
sampling. For the German study, odds ratios were adjusted for age and sex. The alleles at 
the rs2241880 polymorphic locus were in Hardy-Weinberg equilibrium, with non-
significant χ2 values, in all control populations. 
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Figure Legends: 

Figure 1: Effects of prolonged VacA treatment on autophagy.  The confocal 

micrographs in panels A-C show accumulation of LC3-eGFP-mRFP in AGS cells 

incubated in nutrient starvation conditions (A), treated with wild type CCMS (B) or 

vinblastine (C) at different time points (2h, 6h and 24h). Panel D shows the comparison 

of the percent co-localization of the GFP and mRFP signals under the different conditions 

at 2h and 6h. * p< 0.001, as analyzed by Student’s T-test. Experiments were performed 

twice, each time in duplicate and at least 10 cells were used to calculate the Pearson’s co-

localization coefficient using the Volocity acquisition software.  

Panel E: The graph shows the quantitation of the hydrolysis of long half-life proteins in 

control, CCMS treated and rapamycin treated cells. AGS cells were grown for 72h in the 

presence of [3H]leucine and exposed to CCMS or rapamycin for 8h. [3H]leucine release 

due to protein hydrolysis was calculated as a percentage of the total radioactivity present 

in the medium normalized by control cell data. Panel F: Quantitation of cell viability 

using FACS analysis of propidium iodide staining of AGS cells incubated with CCMS 

(black bars) or standard culture media (white bars) for 12h prior to treatment with the 

indicated concentrations of rapamycin for an additional 12h. Graphs depict results 

(expressed as the mean± SEM) of 3 independent experiments performed in triplicate. * 

represents p<0.05 

 

Figure 2: VacA reduces Cathepsin D sorting to autophagosomes. The micrographs in 

panels A-C show 3D projections of de-convolved confocal z-stack slices obtained each 
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0.25 μm from (A) control GFP-LC3 (green) expressing AGS cells, or GFP-LC3 (green) 

expressing AGS cells treated with (B) rapamycin, (C) starvation, (D) vinblastine or (E)  

with VacA +CCMS for12h. After treatment cells were immunolabeled for cathepsin D 

(blue) and Lamp-1 (Red). The insets in panels A-C show details of the framed area in the 

main panels. The top insets show the merge of GFP-LC3 and cathepsin D. The middle 

insets show the merge of GFP-LC3 and Lamp-1. The bottom insets show the merge of 

GFP-LC3, cathepsin D and Lamp-1.  The scale bars indicate 10μm. Micrographs are 

representative of 100 cells observed in three independent experiments. 

 

Figure 3: VacA induces p62 aggregation both in vitro and in vivo: The accumulation 

of p62 in AGS cells (Panel A-C) and in gastric biopsies from patients infected with 

VacA (+) H. pylori or VacA(-) H. pylori is shown in these representative images (Panel 

D-E). Panel A shows control AGS cells transfected with GFP-LC3 and treated with 

CCMS either from wild type H. pylori (CCMS +) or VacA mutant H. pylori (CCMS-). 

Cells were fixed and immunostained for p62 (Red). Insets show the colocalization of 

GFP-LC3 and p62. Scale bars indicate 10μm. 

Panel B shows the accumulation of p62 in CCMS treated cells by Western blot with p62 

antibody. Cells were left untreated or treated with CCMS from wild type H. pylori or 

VacA mutant H. pylori for 24 h. Lysates were then collected and Western blot was 

performed. β-actin was used as loading control. The blots shown are a representative of 

three independent experiments. Panel C shows the quantitation of p62 by densitometry 

for three different western blots. Cells treated with CCMS from wild type H. pylori 

showed significant accumulation of p62 compared to control cells. Statistical analysis 
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was performed using a one way ANOVA on the Graph Pad Prism program. (P 

value=0.0133). 

Panel D shows immunohistochemistry with p62 antibody on gastric biopsies from 

patients infected with cagA (+) vacA s1m1 and cagA(-) vacA s2m2 strains of H. pylori 

and quantitation in corresponding graph. Arrows indicate increased p62 staining in the 

gastric epithelial cells. Statistical analysis was performed using a Student’s T-test. * 

indicates P value = 0.0453 

 

Figure 4: VacA increases production of reactive oxygen species. 

AGS cells were incubated with activated VacA pure toxin or inactive toxin for 4h. Where 

indicated, the anti-oxidant NAC (5mM) was utilized alone, or with pure toxin. Cells 

incubated with H2O2 (200µM, 30min) served as a positive control. Panel A shows ROS 

production measured by using a redox-sensitive dye (CM-H2DCFDA) on live cells, 

followed by flow cytometry analysis. Overlaid curves indicate fluorescence curve for 

condition stated (green) versus control curve (red) with corresponding numbers 

representing the percentage of ROS + cells assessed within the gated region. In Panel B, 

the graph shows quantification of ROS experiments. Fold increase is expressed as ratio of 

the %ROS+ cells in each condition/control. Columns, means; bars, SE; *, P < 0.05, **, 

P< 0.01, using one-way ANOVA (n=3). The overall P value = 0.001. 

 

 

Figure 5: Disrupting autophagy during infection with VacA+ H. pylori enhances 

intracellular survival:  
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Panel A, B: The graphs show the quantitation of the intracellular survival of Shigella 

ΔiscB or VacA+ H. pylori in wildtype or Atg5-/-  MEFs. Cells were infected with 

Shigella ΔiscB or VacA+ H. pylori under gentamicin assay conditions (see Materials and 

Methods). At the indicated invasion times, intracellular bacteria were retrieved from cells 

utilizing 1% saponin in PBS buffer and plated on Brucella agar (H. pylori) or LB agar 

(Shigella) for enumeration of colony formation units (CFU). Data is expressed as percent 

of bacteria quantitated at specificied time point compared to initial CFU of invasive 

bacteria detected at  6hrs for VacA+ H. pylori and 2hrs for Shigella ΔiscB . *P<0.001 

Panel C shows wildtype and Atg5-/- MEF’s transfected with LC3-GFP and infected with 

wild type VacA+ H. pylori. Cells were fixed and observed under a spinning disk confocal 

microscope. Scale bars = 10μm. 

 

Figure 6: Autophagy response is diminished in PBMC’s from individuals harboring 

the Crohn’s disease variant (T300A) of ATG16L1: 

Panel A shows a representative western blot image using PBMC lysates. Lysates were 

run on an SDS-PAGE gel and Western blotting performed using anti-LC3 antibody. The 

blot shows the formation of LC3 II in PBMC lysates from individuals with the WT and 

CD allele in response to VacA+ CCMS. β-actin was used as loading control in both 

experiments. In Panel B, graphs depict densitometric analysis of LC3 II:LC3 I/actin ratio 

from PBMCs obtained from volunteers with either the WT or CD variant of ATG16L1. 

Cells were either untreated (C) or treated with CCMS for 24 hrs and with bafilomycin (B) 

added during the last 4 hrs of treatment.  The ratios are normalized to the control or 

CCMS plus bafilomycin treated wild type control, respectively. Statistical analysis was 
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performed using a one way ANOVA with a post test to compare each column to its 

control, * in Panel B indicates P value<0.0001. 

Panel C shows the model depicting the effect of acute and chronic infection with H. 

pylori on the autophagy pathway in hosts with either wild type ATG16L1 or the CD risk 

allele. 
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