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Abstract. Today, Antarctica exhibits some of the harshest environmental conditions for
life on Earth. During the last glacial period, Antarctic terrestrial and marine life was challenged
by even more extreme environmental conditions. During the present interglacial period, polar
life in the Southern Ocean is sustained mainly by large-scale primary production. We argue that
during the last glacial period, faunal populations in the Antarctic were limited to very few areas
of local marine productivity (polynyas), because complete, multiannual sea-ice and ice shelf
coverage shut down most of the Southern Ocean productivity within today’s seasonal sea-ice
zone. Both marine sediments containing significant numbers of planktonic and benthic
foraminifera and fossil bird stomach oil deposits in the adjacent Antarctic hinterland provide
indirect evidence for the existence of polynyas during the last glacial period. We advocate that
the existence of productive oases in the form of polynyas during glacial periods was essential for
the survival of marine and most higher-trophic terrestrial fauna. Reduced to such refuges, much
of today’s life in the high Antarctic realm might have hung by a thread during the last glacial
period, because limited resources available to the food web restricted the abundance and
productivity of both Antarctic terrestrial and marine life.
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LIFE IN THE COLD

Life in Earth’s largest freezer, Antarctica, is energet-

ically demanding, and sets limits at any hierarchical,

organizational, and organismic level, ranging from

molecules to everything that an organism does (Clarke

1983, Pörtner 2002). Cold adaptation is the basis of life

in the cold, and many taxa with insufficient physiolog-

ical capability for surviving there are known to have

perished in the course of the evolutionary history of

Antarctica (Aronson and Blake 2001, Thatje et al.

2005a), mainly during the process of Antarctic cooling,

with the last major cooling step occurring at about 14

Ma ago (Clarke 1983, 1993, Zachos et al. 2001,

Shevenell et al. 2004). Organisms had to evolve very

sophisticated life history adaptations to survive the

combined physiological and ecological constraints for

prevailing in the cold environment. Additionally, they

had to cope with the relatively short duration of food

supply during the season of productivity. Photosynthe-

sis-based primary production is the basis for the

abundance of most life seen in Antarctica today, but

mainly depends on the exposure to sunlight, which is

drastically reduced during the winter months. Recently,

a chemotrophic ecosystem was discovered on the

Antarctic shelf in a former sub-ice shelf setting (Domack

et al. 2005), but its wider significance is as yet unclear.

Within the seasonally sea-ice covered zone (SIZ) of the

Southern Ocean, temporary to almost permanent sea-ice

coverage with high interannual variability reduces the

short season of photosynthesis-driven primary produc-

tion (Arrigo et al. 1998). This poses a major challenge to

both higher trophic level life that depends on terrestrial

habitats, such as birds and seals, and marine animals, to

synchronize their life cycles with the period of food

availability (Clarke 1988, Jenouvrier et al. 2005a, b).

Under-ice feeding on ice algae during Antarctic winter

months is well known from the Antarctic krill (Euphau-

sia superba), and primary production occurs both within

and at the periphery of sea ice (e.g., Arrigo et al. 1998,

Edwards et al. 1998). Nevertheless, the summer break-
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up of the winter sea ice causes a large-scale fertilization

event that induces secondary production in the water

column, which in turn fosters the pelagic and benthic

food web (Brierley and Thomas 2002, Arrigo and van
Dijken 2004, Hegseth and Von Quillfeldt 2004). In

consequence, most life within the SIZ has become

dependent on photosynthesis-driven primary productiv-

ity in open ocean conditions, which prevail during the

ice-free spring and summer season, and in polynyas.
Polynyas are large regions of open water, with length

scales on the order of 100 km, that persist with

intermittent openings and closings at the same locality

for up to several months, and exhibit a high interannual

variability in size (Martin 2001). Polynyas, which often
appear in spring and precede the break-up of the winter

sea-ice cover, locally prolong the period of primary

production, and thus raise food availability to higher

trophic levels.

MODERN SOUTHERN OCEAN POLYNYAS AND THEIR

SIGNIFICANCE FOR LIFE

Today, the Southern Ocean is characterized by many

‘‘coastal polynyas’’ (here we refer this term to all

polynyas on the Antarctic continental shelf) and mainly
two ‘‘open-ocean polynyas’’ (here we refer this term to

all polynyas offshore from the shelf break) known from

the Maud Rise and the Cosmonaut Sea (Comiso and

Gordon 1987, Holland 2001, Martin 2001, Zwally et al.

2002, Arrigo and van Dijken 2003) (for locations see
Fig. 2). Coastal polynyas are the result of southeasterly

and very cold katabatic winds that sweep down the ice

sheets, pushing the pack ice away from the coastline or

the front of the floating fringes of the ice sheets, such as

ice shelves or glacier tongues (Fig. 1; Martin 2001).

Coastal polynyas can only remove relatively small

fractions of the pack-ice extent from early spring to late

autumn. The oceanward driven sea-ice is then replaced

by upwelling water, which immediately freezes when
exposed to air with temperatures below the in situ

freezing point, before the cycle starts again. Thus, a

coastal polynya is typically a location where large

amounts of sea ice are generated (‘‘sea-ice factory’’).

At the sites of recurring coastal polynyas (e.g., in the
Bellingshausen, Amundsen, and Ross Seas [Massom et

al. 1998, Zwally et al. 2002, Arrigo and van Dijken

2003]), only a thin ice cover, compared to the thicker

surrounding pack ice, forms during wintertime, which
allows a much earlier spring melt and an earlier start in

photosynthetic primary productivity that nourishes the

entire food web in the high Antarctic.

Open-ocean polynyas are usually formed by geo-

strophic upwelling of warm, deep water at seamounts or

similar types of submarine elevations (Fig. 1 [Comiso
and Gordon 1987, Holland 2001, Martin 2001]) and can

constitute areas of high productivity within sea-ice

covered regions. A related type of open-ocean polynya

results from eddies (i.e., circular currents of sea water

moving independently from the direction of the main
current), which transport relatively warm water close to

the Antarctic continent when they cross the Polar Front

(PF) and drift southward into the SIZ (Holland 2001).

The life span of such eddies, however, is usually very
short due to the low coriolis force at high latitudes, and

thus only contributes temporarily and locally to any

source of biological productivity.

The numerous polynyas found around Antarctica

today are indeed important hot spots of primary

productivity that favor the entire marine and higher

FIG. 1. Schematic illustration of the major mechanisms forming open-ocean and coastal polynyas in the modern Southern
Ocean (redrawn after Martin [2001]).
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terrestrial fauna by extending the period of food

availability during short summer seasons (Clarke 1988,

Jenouvrier et al. 2005b). Variability of the time of

formation and persistence and size of coastal polynyas

can frequently explain the high variability in species

abundance at higher trophic levels, such as in birds and

mammals (Ainley et al. 2005, 2006; see also Olivier et al.

2005).

BENTHIC ORGANISMS AND ENVIRONMENTAL CONDITIONS IN

ANTARCTICA DURING THE LAST GLACIAL PERIOD

During the last glacial period (in Antarctica ca. 70 to

10 ka) grounded ice masses occupied most of the

Antarctic shelf (e.g., Anderson et al. 2002, Huybrechts

2002, Hodgson et al. 2003), whereas the remaining shelf

was covered with ice shelves (Domack et al. 1998, Shipp

et al. 1999) or subject to heavy seafloor disturbance by

intense iceberg scouring (Beaman and Harris 2003). In

recent years, evidence was published that glaciers did not

override some near-coastal terrestrial locations and

lakes, mainly in East Antarctica, since ca. 30–40 ka

(e.g., Gore et al. 2001, Takada et al. 2003), or even since

the last peak warm time at ca. 125 ka (Hodgson et al.

2006). However, even at those locations, long-lived

terrestrial snow cover, perennial lake ice, and low

relative sea level prevented phototrophic biological

activity throughout the last glacial period (Gore et al.

2001, Hodgson et al. 2006). Additionally, permanent

and thick multiyear sea-ice coverage (Figs. 2 and 3) led

to a shutdown of primary production in much of today’s

FIG. 2. Map of Antarctica and the surrounding Southern Ocean showing the locations of the modern Polar Front (thin black
line), ice shelves (dark-gray shaded), and present summer (light-gray shaded) and winter (dashed line) sea-ice extent (taken from
Gersonde et al. 2005). Reconstructed sea-ice extent during LGM (last glacial maximum) summer (bold black line) and LGM winter
(dotted line) are also given (after Gersonde et al. 2005). The hatched area depicts Dronning Maud Land, where ‘‘mumiyo’’ was
deposited during the last glacial period. Locations of sediment cores mentioned in the text are indicated by black dots (AN9306
indicates core site AN9306-SC1). Sites PS1388 and PS1389 are located very close to site PS1506 (Grobe et al. 1993) and are not
shown. Key to abbreviations: MR, Maud Rise; CS, Cosmonaut Sea; RS, Ross Sea; AS, Amundsen Sea; BS, Bellingshausen Sea;
WS, Weddell Sea.
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SIZ (Hillenbrand and Cortese 2006 and references

therein). Benthic fauna observed under the modern

McMurdo and Amery ice shelves for a distance of up to

100 km from open water is probably mainly nourished

by lateral advection of food particles (Dayton and

Oliver 1977, Bruchhausen et al. 1979, Lipss et al. 1979,

Riddle et al. 2007). The recorded filter-feeding commu-

nities are likely to depend on organic material (plank-

ton) originating from open-marine settings beyond the

ice-shelf front (Dayton and Oliver 1977, Riddle et al.

2007). It has also been shown that advection through

tide cracks can support substantial under-ice fish

populations (Knox et al. 1996).

Today, assemblages of sea-ice algae occur in brine

channels of interannual sea ice (e.g., Thomas et al.

1998), which is penetrated by lower spectral sunlight,

but biological productivity both within and below sea

ice is up to several orders of magnitude lower than at the

sea-ice edge or in open-water settings (e.g., Boyd et al.

1995, Savidge et al. 1995, Smith et al. 1996, Arrigo et al.

1998, Edwards et al. 1998). The biological production of

sea-ice algae in today’s SIZ during glacial periods is

probably negligible, because of thicker and compressed

multiannual sea ice (e.g., Hillenbrand and Cortese 2006

and references therein) and the likely coverage of the

permanent sea ice with snow. Furthermore, without the

summer breakup of sea ice, release events of substantial

diatom and bacteria biomass into the glacial Southern

Ocean were unlikely, although under-ice grazing might

have been possible for some taxa. Consequently, both

pelagic and benthic marine life had to cope with the

shutdown of primary production that must have

severely affected the entire marine and terrestrial food

web. Furthermore, most of the benthic organisms

inhabiting today’s Antarctic shelf and slope, and

especially sessile filter-feeding communities, were erased

when grounded ice masses advanced to the shelf break

and the slope was subject to recurrent mass wasting

events and turbidity current flows (i.e., sediment-laden

currents of water, which move rapidly downslope and

often erode the seabed) (Thatje et al. 2005b). Marine and

terrestrial geological data (Anderson et al. 2002, Wagner

FIG. 3. CaCO3 contents and d18O ratios (PDB ¼ Pee Dee Belemnite standard) in planktonic (Neogloboquadrina pachyderma
sinistral) and benthic (Epistominella exigua, Oridorsalis umbonatus, Cibicides cf. wuellerstorfi) foraminifera in cores PS1506 (Grobe
et al. 1993, Mackensen et al. 1994) and PS2547 from the Amundsen Sea (Hillenbrand 2000, Hillenbrand et al. 2002). Open bars with
numbers mark interglacial marine isotope stages (MIS), and gray bars mark glacial MIS (ages of MIS boundaries according to
Lisiecki and Raymo [2005]).

March 2008 685ANTARCTIC FAUNA IN GLACIAL PERIODS

C
O
N
C
E
P
T
S
&
S
Y
N
T
H
E
S
I
S



et al. 2004) and modelling approaches (Huybrechts

2002) indicate a diachronous (i.e., time transgressive)

advance and retreat of grounded ice masses around

Antarctica and across the shelf during the last glacial

period. If the maximum extent of grounded ice

happened diachronously as well, this might have led to

shallow-water shelters for seafloor communities on the

continental shelf. However, most life in such shelters

should have starved to death because of the coverage

with permanent sea ice or floating ice shelves. Recon-

structions of sea-ice limits during the last glacial

maximum (LGM, ca. 19.5–16 ka [Gersonde et al.

2005]) suggest that the distance between open water

and shelf sites, which may have been covered with

floating ice only, exceeded 250 km even during the

summer months (Fig. 2). Thus food supply to these sites

via lateral advection should have been insignificant.

Nevertheless, modern sub-ice shelf habitats, e.g., in the

Ross Sea, to some extent might resemble glacial shelter

conditions. Today’s sub-ice shelf benthic communities

are characterized by very low species abundances, e.g.,

of filter feeders that can live on the finest food particles

provided by lateral oceanic advection (Dayton and

Oliver 1977). Here, we address the question of how

marine benthic animals and secondary consumers that

use terrestrial habitats for breeding or mating (such as

birds and seals) survived the scarcity of food during the

last glacial period.

MARINE GEOLOGICAL INDICATIONS FOR POLYNYAS

DURING THE LAST GLACIAL PERIOD

Based on the finding that bottom waters in the world

ocean were saltier during the LGM, Paillard and

Parrenin (2004) postulated that coastal polynyas were

widespread on the Antarctic shelf at the beginning of the

last glacial period. According to their hypothesis,

intensive sea-ice formation in these polynyas caused

brine rejection (i.e., the release of highly saline water

caused by sea-ice formation), and these salty water

masses filled the deep ocean basins, leading to stratifi-

cation and thus locking up CO2 in the deep oceans. The

authors suggested that sea-ice formation in polynyas

was drastically reduced when grounded ice masses

covered the Antarctic shelf completely at the end of

the glacial period, which resulted in weakening of the

stratification in the global deep oceans and in CO2-

release into the shallow oceans and subsequently into

the atmosphere, triggering global deglaciation. This

hypothesis, however, is in conflict with the observations

of a diachronous advance and retreat of grounded ice

masses across the shelf around Antarctica during the last

glacial period (references in Thatje et al. 2005b).

Mackensen et al. (1996) pointed out that disregarding

the overall change in the formation of Antarctic bottom-

water (AABW) during the last glacial period (increase,

decrease, or no change in AABW production compared

to the present interglacial situation), the contribution of

saline water formed in polynyas was of the same

magnitude as at present or even larger. Brine rejection

probably took place within the glacial-age SIZ (Mack-

ensen et al. 2001). These conclusions, however, are only

indirect measures for the existence of polynyas during

the last glacial period.

Sea-ice diatom data for the LGM are not available for

the whole circum-Antarctic region because of the

problem of opal dissolution and terrigenous dilution

close to the Antarctic continent (Fig. 2; Gersonde et al.

2005). Two sediment cores (ANTA91-2 and ANTA91-8)

recovered from the continental rise in the western Ross

Sea off Cape Adare (Fig. 2) bear an interval enriched in

planktonic and benthic foraminifera, which was depos-

ited during the LGM as indicated by radiocarbon dating

(Brambati et al. 2002). The high biogenic content in this

interval suggests significant biological productivity in

the surface waters of the western Ross Sea during the

LGM. However, an alternative chronology for one of

the cores (ANTA91-8), which was inferred from

thorium radioisotope (230Thex) measurements, indicates

that the foraminifera-bearing interval may span not only

the LGM, but also the previous relatively cool

interglacial period (Marine Isotope Stage 3, ca. 57–39

ka) (Ceccaroni et al. 1998). Moreover, proxies for

biological productivity (accumulation rates of biogenic

opal, organic carbon, biogenic barium) analyzed on the

foraminifera-bearing interval show that during the

corresponding time period export production was

almost negligible (Ceccaroni et al. 1998). Even if there

was significant biological production in the western Ross

Sea during the LGM, the necessary open-ocean condi-

tions might have been a consequence of a relatively

southern limit of the LGM summer sea-ice coverage in

that area rather than a consequence of polynyas. This is

suggested by the LGM summer sea-ice limit farther to

the west, which was located relatively close to the shelf

break (Fig. 2) (Gersonde et al. 2005).

Continuous deposition of calcareous planktonic and

benthic foraminifera throughout the last 800 kyr is

evident from site PS2547 located at 728 S in the

Amundsen Sea (Fig. 2). The down-core oxygen isotopic

composition of a planktonic foraminifera species (Neo-

globoquadrina pachyderma sinistral) and a benthic

foraminifera species (Cibicides cf. wuellerstorfi) exhibits

fluctuations typical for the late Quaternary glacial–

interglacial cycles (Hillenbrand 2000, Hillenbrand et al.

2002), and therefore documents that the foraminifera in

the glacial-age sediments lived during glacial periods and

were not reworked from older interglacial sediments

(Fig. 3). At site PS2547 the calcite content reflects the

concentration of calcareous foraminifera, but shows no

consistent glacial–interglacial pattern (Fig. 3). This may

be explained by nonsystematic shifts in the depth of the

calcite compensation depth (CCD; i.e., the water depth

below which the rate of supply of calcite equals the rate

of dissolution, such that no calcite is preserved) from an

interglacial period to a glacial period and between

glacials and interglacials, respectively, in response to
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variations in productivity and the related flux of organic

matter to the seafloor. Because site PS2547 is located

near the summit of a seamount, the location is likely to

have triggered upwelling of relatively warm Circumpolar

Deep Water (CDW), which may have formed a seasonal

open-ocean polynya above the seamount during glacial

periods. However, we cannot exclude the possibility that

the summer sea-ice limit during the LGM was located

south of 728 S in the Amundsen Sea, because the

reconstruction of the LGM summer sea-ice extent in the

Pacific sector of the Southern Ocean is still incomplete

(Fig. 2; Gersonde et al. 2005).

In the eastern Atlantic sector of the Southern Ocean,

sea-ice diatoms suggest that the summer sea-ice limit

during the LGM was located at ;538–608 S (Fig. 2;

Gersonde et al. 2005). However, sediment cores located

farther to the south, on the continental margin in the

southeastern Weddell Sea (PS1388, PS1389, PS1506,

AN9306-SC1; Fig. 2), bear continuously calcareous

planktonic and benthic foraminifera throughout the

late Quaternary glacial and interglacial periods (Fig. 3

[Mackensen et al. 1989, 1994, Grobe and Mackensen

1992, Forsberg et al. 2003]). Furthermore, in these cores

oxygen isotopic variations of the planktonic foraminif-

era species N. pachyderma sinistral and of the two

benthic species Epistominella exigua and Oridorsalis

umbonatus document that foraminifera lived during the

glacial periods (Fig. 3). The calcite content at site

PS1506 reveals that during the last 800 ka, calcareous

foraminifera were abundant during moderate intergla-

cial and glacial periods and less abundant or nearly

absent during peak warm times. Grobe and Mackensen

(1992) and Grobe et al. (1993) attributed this pattern to

systematic CCD shifts throughout a glacial–interglacial

cycle caused by changes in biological production.

During glacial periods the benthic foraminifera assem-

blages reported from the cores off Dronning Maud

Land (DML) are dominated by the opportunistic phyto-

detritus feeding species E. exigua (Mackensen et al.

1989, 1994). According to the authors, the dominance of

E. exigua may indicate the presence of large polynyas

with at least seasonally significant primary production.

It is noteworthy that all core sites are located on a

regional terrace on the continental slope (Mackensen et

al. 1989, 1994), which is likely to favor upwelling of deep

water and thus formation of open-ocean polynyas. We

conclude that during the last glacial period, large open-

ocean polynyas beyond the shelf edge existed in the

Weddell Sea and likely around major parts of the

Antarctic continent.

PALAEOBIOLOGICAL EVIDENCE FOR GLACIAL POLYNYAS

Radiocarbon ages of subfossil stomach oil deposits

(‘‘mumiyo’’) from breeding colonies of Snow Petrels

(Pagodroma nivea) and Antarctic Petrels (Thalassoica

antarctica) in DML (Fig. 2) give evidence that some

colonies existed at least from 36 ka to the late Holocene

(Hiller et al. 1988, 1995, Wand and Hermichen 2005).

The breeding success of P. nivea is negatively correlated

with sea-ice extent (Barbraud et al. 2000, Olivier et al.
2005). This implies that a few polynyas must have

existed in the southeastern Weddell Sea during the last
glacial period, because the distance between subfossil

breeding sites in DML and the northern summer sea-ice
limit was .2000 km (Fig. 2; Gersonde et al. 2005), and
the maximum foraging range of adults is known not to

exceed 440 km from the breeding site in Snow Petrels,
due to their energetic thresholds (Goldsworthy and

Thomson 2000). The finding of mumiyo deposits of
glacial age in DML agrees with the evidence for

continuous biological productivity at site PS1506 and
nearby core locations (;300 km away from the mumiyo

sites in DML) throughout the last glacial period, which
provides strong evidence for the presence of open-ocean

polynyas offshore from the shelf break.
The glacial East Antarctic Ice Sheet (EAIS) in DML

must have thinned before 36 ka and may have exposed
increased numbers of nunataks, which could be colo-

nized by Snow and Antarctic Petrels since that time. A
relatively early ice sheet thinning in DML during the last

glacial period is consistent with the early retreat of
grounded ice from the shelf in the southeastern Weddell

Sea around 25 ka reported by Elverhøi (1981) and
Anderson et al. (2002). Early deglaciation of this part of
the EAIS provides a useful tool for testing the reliability

of glaciological models simulating the EAIS during the
last glacial period. We consider that after ca. 25 ka

coastal polynyas may have existed on the shelf off DML.
This scenario of a diachronous retreat of grounded ice

from the shelf around Antarctica supports the hypoth-
esis by Thatje et al. (2005b) that some marine benthic

taxa with adapted life cycles may have survived glacial
periods by moving from one continental shelf shelter to

another.

THE IMPLICATIONS OF POLYNYAS FOR THE MARINE FOOD

WEB DURING THE LAST GLACIAL PERIOD

Effects on the pelagic food web

The multiannual sea-ice coverage during the last

glacial period caused a broadscale shutdown of primary
production in the southern part of the Southern Ocean

(Fig. 2). This should have affected the pelagic food web
and hampered any secondary productivity. Moreover,

multiannual sea ice and likely snow cover should not
have allowed for much under-ice algal growth as it is

found in today’s annual sea ice. These conclusions are in
accordance with findings that biological productivity in

the southern part of the Southern Ocean during the last
glacial period was insignificant (Hillenbrand and Cor-

tese 2006 and references therein). Within the oceanic
regions covered by multiannual sea ice, most of the

primary productivity driving the pelagic food web could
only have taken place in open-ocean polynyas (Arrigo
and van Dijken 2003), but given their likely scarcity they

could have enabled benthic life only very locally.
Furthermore, due to the isolated geographic location
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of open-ocean polynyas during the last glacial period, it

is unlikely that these polynyas served as biogeographic

‘‘stepping stones’’ sustaining migratory pelagic taxa,

including whales, seals, and penguins.

Effects on the benthos

During the last glacial period, seafloor communities

encountered unfavorable environmental conditions on

the continental shelf and slope of Antarctica. The

shallow-water fauna was displaced from the continental

shelf by the circum-Antarctic advance of the grounded

ice, and mass wasting and turbidity currents severely

affected survival of fauna on the continental slope

around Antarctica (Huybrechts 2002, Thatje et al.

2005b). For most benthic taxa, survival was possible in

the circum-Antarctic deep sea, but given the shutdown

of primary productivity under multiannual sea ice,

communities should have suffered from starvation.

Today, low abundances and patchiness of filter feeders

(sponges, actinarians, and bivalves) found underneath

the multiannual sea-ice cover of the Ross Sea illustrate

the effects of low food supply on benthic systems

(Dayton and Oliver 1977). Studies of seafloor commu-

nities under today’s ice shelves have shown that they

largely depend on lateral advection of food particles,

which can nourish low abundances of seafloor organ-

isms up to 100 km away from the ice edge (Dayton and

Oliver 1977, Riddle et al. 2007). At locations where

advection processes can be ruled out, benthos and fish

were only recorded under ice thinner than 5 m or under

5–20 m thick ice that is criss-crossed by crevasses. The

occurrence of fauna at such sites was attributed to local

under-ice primary production (Littlepage and Pearse

1962, Lipps et al. 1979, Cromer et al. 2005, Riddle et al.

2007).

During the last glacial period some oceanic regions

located close to the Antarctic continent should have

been nourished by pelago-benthic organic fluxes result-

ing from production in open-ocean polynyas. These

polynyas might thus have played an important role in

locally maintaining the chronically starved deep-sea

communities in glacial Antarctica. Glacial food limita-

tion to seafloor communities might indeed explain why

many species inhabiting the seafloor today can survive

long periods of starvation, and why many filter feeders,

such as sponges and gorgonian fan corals, have evolved

feeding mechanisms to prey upon very fine-grained food

particles (Gili and Coma 1998).

Effects on Southern Ocean top predators

Although the southern elephant seal (Mirounga

leonina) is mainly an open-ocean species in the Southern

Ocean, with today’s major breeding sites being on

subantarctic islands, its biogeography and life history

patterns, such as foraging distances and breeding/mat-

ing sites, are closely related to cold-water masses and

food availability within the SIZ of the Southern Ocean.

Consequently, the species is known to be affected by

changes in sea ice extent (Testa et al. 1991, Bornemann

et al. 2000, Carlini et al. 2005, McMahon and Burton

2005). Today, tracking data show that elephant seals do

forage in the SIZ, and travel large distances, .1000 km,

from their breeding to their feeding sites (Bornemann et

al. 2000, McMahon and Burton 2005).

Historically, southern elephant seals have occurred far

beyond their present predominantly subantarctic and

Antarctic distribution range, with evidently common

breeding stocks at Juan Fernández Islands (Chile) and

the coast of northwestern Tasmania, and a migratory

behavior and moulting grounds reaching subtropical

latitudes under cold-water influence, such as the

Humboldt Current (Lewis et al. 2006). The species was

near to extinction following hunting in the 19th century,

which continued until 1964 at South Georgia. Southern

elephant seals exhibited a comeback in numbers since

the protection of the species, but without regaining their

former geographic distribution range (McMahon et al.

2003, Lewis et al. 2006). However, with respect to the

exploitation history of elephant seals and considering

present distribution patterns, major breeding and

mating sites of the species seem to have existed mainly

at Penı́nsula Valdés (Argentina), South Georgia, and the

northern tip of the Antarctic Peninsula (Lewis et al.

2006). The loss of principal mating and breeding sites

along the Antarctic Peninsula and feeding grounds in

Antarctica during glacial periods should have forced the

species to migrate to lower latitudes. This explains the

historically wide latitudinal distribution of southern

elephant seals, although the present-day concentration

of major parts of the population around Antarctica,

following some recovery from over-exploitation, proves

that modern environmental conditions of the Southern

Ocean are particularly suitable for elephant seal

populations. One such important environmental factor

may be the Southern Ocean’s richness in food availabil-

ity, e.g., of squid and nothothenioid fish that form a

major source of prey to elephant seals (Carlini et al.

2005). Considering that the recolonization of major

breeding sites of this species along the northernmost

islands off the Antarctic Peninsula only took place a few

decades ago (McMahon et al. 2003, Lewis et al. 2006),

the example of elephant seals underlines the importance

of ice-free terrestrial habitats in Antarctica. Given that

most subantarctic islands were surrounded by sea ice for

most of the year during the last glacial period (Fig. 2),

the breeding sites of elephant seals were probably

displaced far to the north, e.g., to South America. Even

if elephant seals are capable of traveling long distances

to their feeding sites, this displacement should have

limited the species’ access to the food-rich SIZ during

the last glacial period.

Ainley et al. (2006) studied stable isotope variations of

d13C in mumiyo lipids of P. nivea from East Antarctica

and in the plankton-derived organic matter of marine

sediments recovered from the East Antarctic continental

margin. The authors concluded that throughout the last
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10 000 years, changes in d13C values reflect a shift in

foraging of petrels from 13C-enriched neritic prey during

warm phases to normally 13C-depleted pelagic prey

during cold phases. The record was interpreted as a

move to foraging at distal productive pack-ice edges

during cooler periods, a pattern that could well be

applicable for the harsher sea-ice conditions that many

birds and seals encountered in the last glacial period.

Considering the shutdown of primary production

within vast areas of multiannual sea ice around

Antarctica during the last glacial period, feeding

grounds for crabeater seals (Lobodon carcinophagus)

and Weddell seals (Leptonychotes weddellii), as well as

summer feeding grounds for many whale species, were

restricted to the seasonally sea-ice-free regions (Fig. 2).

Many of the subantarctic islands, which theoretically

might have provided terrestrial breeding and moulting

grounds for warm-blooded life during the last glacial

period, were glaciated and/or located in the region with

multiannual sea-ice coverage (Fig. 2), and could not

serve as refuges for displaced seal (in particular elephant

seal) and penguin populations (Hall 2004).

Where did all the penguins go?

During the last glacial period, Antarctic penguins lost

their terrestrial, ice-free nesting sites as well as their

traditional Southern Ocean feeding grounds (Fig. 2;

Ainley 2002). The global sea level dropped by ;120 m

during the LGM, but it is very unlikely that this sea-level

fall generated new terrestrial habitats directly around

Antarctica, because of the over-deepening of the

Antarctic shelf, with an average water depth of ;400

m today. Shallow banks, as they are known from the

Ross Sea (water depth is between 200 and 300 m), were

overridden by grounded ice during the last glacial period

(e.g., Shipp et al. 1999). Additionally, the Antarctic ice

sheet had thickened during the LGM and therefore

depressed the continent isostatically, so that the average

water depth of the Antarctic shelf during the LGM was

probably deeper than 280 m. This is confirmed by the

numerous occurrences of raised beaches along the

present Antarctic coast, which date back to the time of

post-LGM ice retreat and have raised by isostatic uplift

in response to ice sheet thinning (e.g., Conway et al.

1999, Takada et al. 2003, Bentley et al. 2005).

Consequently, penguins had to move to subantarctic

regions in order to breed successfully (Ainley 2002),

which should have implied competition with modern

subantarctic penguin species occupying very similar

ecological niches (Kooyman 2002). Due to the sea-level

drop during the last glacial period, ideal alternative

breeding grounds for Antarctic penguins might have

been the Patagonian shelf, which unfortunately remains

submerged today and is thus difficult to sample for

radiocarbon dating of potential LGM penguin colonies.

Species competition, limited food sources, and com-

petition for nesting sites should have challenged

Antarctic penguins during the last glacial period, and

it is unlikely that populations of penguins as large as

those found today existed during that time. The

Emperor Penguin (Aptenodytes forsteri) is the only

Antarctic penguin that should have been able to

maintain breeding colonies in Antarctica during the last

glacial period. Because Emperor Penguins incubate their

egg on their feet and cover it with an abdominal fold of

skin to protect it from the cold of the ice (Lemaho 1977),

it is the only penguin species that does not require ice-

free breeding grounds in Antarctica. Due to the lack of

coastal polynyas in the last glacial period, we postulate

that most Emperor Penguins had to move breeding

colonies farther north within energetic migration thresh-

olds of the sea-ice edge during the last glacial period.

Because Emperor Penguins do mainly forage in coastal

polynyas today (Kirkwood and Robertson 1997, Mas-

som et al. 1998), their geographic displacement to the

outer pack-ice edge would have required a change in

foraging behavior in this species.

Nevertheless, Emperor Penguins might indeed have

been favored by environmental conditions during the

last glacial period. Because of their ecology they should

have out-competed other species; a fact that is still

evident today; they are the only penguin species next to

the Adélie Penguin that is able to thrive and successfully

breed in high Antarctic conditions of the Weddell and

Ross Seas (Lemaho 1977, Ainley 2002). If open ocean

polynyas were permanent sites of productivity in the last

glacial period, Emperor Penguins might have shared the

fate of Snow and Antarctic Petrels, being the only warm-

blooded species that maintained permanent breeding

populations in the high Antarctic (Hiller et al. 1988,

1995, Steele and Hiller 1997). The unique DNA

structure found in Ross Sea Adélie Penguins today

(Ainley 2002 and references therein) was interpreted to

indicate the survival of an isolated Ross Sea Adélie

population during the last glacial period. Cape Adare,

which may not have been glaciated during the last

glacial period, was suggested as the possible site of a

colony for this population. An open-ocean polynya

offshore from Cape Adare could have formed the basis

for nourishing such an isolated population within the

multiannual sea-ice belt around Antarctica during the

LGM. However, Emslie et al. (2007) did not find any

evidence for the persistence of penguin colonies in the

Ross Sea between 27 ka and 13 ka, and showed that the

penguin colonization at Cape Adare did not start until

ca. 2.2 ka. The analysis of ancient DNA in Adélie

Penguins points to a Pleistocene origin and Holocene

expansion of two distinct Adélie Penguin lineages in

Antarctica (Ritchie et al. 2004). Given the low haplotype

diversity within the Antarctic Adélie Penguins (Lambert

et al. 2002), one could indeed suggest that a few glacial

refuge populations that radiated during interglacial

periods might explain the low haplotype diversity

pattern in this species, a hypothesis that will require

much closer investigation.
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CONCLUSIONS

1) There is evidence from the marine-geological and

scarce terrestrial fossil record in Antarctica (‘‘mumiyo’’)

that polynyas existed during the last glacial period and

that most high-Antarctic life both on land and in the sea

depended on such local ‘‘hot spots’’ of primary

production around Antarctica.

2) We provide evidence that open-ocean polynyas

occurred during the last glacial period (e.g., in the

southeastern Weddell Sea off Dronning Maud Land),

whereas the coastal polynyas that typically drive the

high Antarctic trophic web today did not exist because

of ice coverage of the Antarctic continental shelf.

3) During the last glacial period, open-ocean polynyas

might have been survival ‘‘hot spots’’ for shelf-inhabit-

ing communities, which were displaced from the

continental shelf to the continental slope and the deep

sea by the advancing grounded ice and associated mass

wasting processes on the continental slope.

4) The scenario of diachronous ice advance and

retreat across the Antarctic shelf during the last glacial

period supports the hypothesis that some marine benthic

organisms with adaptive life cycles could have survived

by moving from one shelf shelter to another, with

polynyas playing an important role for these shelters.

5) The drastic reduction of primary production during

glacial periods by thick and multiannual sea ice affecting

large areas of the Southern Ocean is likely to have

fostered the evolution of feeding mechanisms and life

forms able to live from the very fine-grained food

particles available. This factor might have been the

evolutionary key to the flourishing of filter and

suspension feeders typical of today’s continental shelf

and slope seafloor communities of Antarctica.

6) We suggest that most large marine top predators,

such as whales and seals, were displaced from their

interglacial feeding and breeding grounds.

7) During glacial periods Emperor Penguins had to

move with the expanding sea-ice belt, whereas all other

penguin species must have been displaced from Antarc-

tica due to the complete loss of nesting grounds.

8) Fossil mumiyo records (e.g., in DML) indicate that

Snow Petrels (Pagodroma nivea) and Antarctic Petrels

(Thalassoica antarctica) were the only warm-blooded

species that maintained small breeding colonies in

glacial Antarctica, limited to only a few ice-free

locations within physiologically feasible range of open-

ocean polynyas. Today’s occurrence of Snow Petrels in

small breeding colonies scattered around Antarctica

may still reflect this survival strategy of a species that

challenges extremes like no other.

9) Due to the scarcity of fossil records in Antarctica, it

remains unclear whether species became extinct as a

consequence of selective conditions during the last

glacial period. Future molecular studies, however,

should allow unravelling of genetic diversity (i.e.,

haplotype diversity) at the population level, which might

point to population sizes that survived the last glacial

period.
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