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Abstract 

The increased frequency and intensity of bleaching episodes has led to wide-scale loss 

of reef corals and raised concerns over the effectiveness of existing conservation and 

management efforts. The 1998 bleaching event was most severe in the western Indian 

Ocean where coral declined by up to 90% in some locations. Using fisheries 

independent data, we assess the long-term impacts of this event in the Seychelles on 

fishery target species, the overall size structure of the fish assemblage and assess the 

effectiveness of two marine protected areas (MPAs) in offering resilience. Fishery 

target species above size at first capture showed little change in biomass between 

1994 and 2005, corroborating studies that suggest fisheries yields are currently not 

affected. Biomass remained higher in protected areas, indicating they are still 

effective in protecting fish stocks. However, the size structure of the fish 

communities, as described with size-spectra, changed in both fished and protected 

areas, with a decline in smaller fish (<30 cm) and an increase in larger fish (>45 cm). 

This is likely to represent a time lag response; with the larger fish that are lost to 

natural mortality and fishing no longer being replaced by juveniles. This effect is 

expected to be even greater in terms of productivity, affect fisheries and, as congruent 

patterns are observed for herbivores, suggests no long term resilience in the MPAs. 

Corallivores and planktivores demonstrate striking declines in numerical abundance 

which are greatest in MPAs, and associated with a similar pattern of decline in their 

preferred corals. There is an urgent need for climate mediated disturbance to be at the 

fore of conservation and management planning for coral reefs, which should include 

MPAs placed in areas of resistance and resilience to bleaching, and a greater emphasis 

on reducing other stressors to the system as a whole. 
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Introduction 

Coral reefs and associated communities are threatened by anthropogenic and natural 

disturbance. Substantial declines in coral cover, fish abundance and changes in 

ecosystem function have been attributed to multiple stressors including 

overharvesting, sedimentation, pollution, disease and warming waters (Hughes et al. 

2003; Bellwood et al. 2004; Jones et al. 2004; Graham et al. 2006; Wilson et al. 

2006). Although multiple stressors often act in synergy, climate driven coral 

bleaching has emerged as one of the greatest threats to coral reef ecosystems (Hoegh-

Guldburg 1999; Hughes et al. 2003; Sheppard 2003). The 1998 bleaching event was 

the largest on record, and in the most heavily impacted region, the western Indian 

Ocean, coral cover declined by up to 90% (Goreau et al. 2000; Sheppard 2003). 

Recovery from such severe disturbances is likely to be slow, particularly for isolated 

systems when brood stocks become severely depleted and replenishment from 

external sources are expected to be rare events (Hughes et al. 2003; Graham et al. 

2006). Disturbance at this scale is expected to have significant, yet little understood, 

ramifications for other reef associated organisms (Walther et al. 2002). 

 The short-term impacts of bleaching on fish are mainly manifest in species 

that specialise on live coral for diet, shelter or as a recruitment habitat (reviewed by 

Wilson et al. 2006) with greater impacts in proportion to the degree of specialisation 

(Munday 2004). In the medium- to long-term, if there is little coral recovery, declines 

in coral feeders can continue, due to reduced fitness associated with unfavourable 

food resources (Pratchett et al. 2006). However, the greatest impacts are realised if the 

physical matrix of the reef collapses, reducing topographic complexity and associated 

refuge space, and in such scenarios species richness of the community falls (Garpe et 

al. 2006; Graham et al. 2006). However the medium to long-term impacts of 
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bleaching on the size structure of fish populations and assemblages, particularly those 

of species that do not specialise on live coral, are unknown (Wilson et al. 2006). 

These impacts are important because they determine the future viability of 

populations and assemblages and thus interact with fisheries management and other 

conservation measures that may have been proposed or implemented prior to any 

bleaching event.  

Assessments of the impacts of mass bleaching on fisheries and associated 

socio-economics are currently limited to fisheries-dependant data and are considered 

small in relation to the direct impacts of fishing (McClanahan et al. 2002; Grandcourt 

& Cesar 2003). However, such assessments have all been made within 5 years of 

bleaching events. Since a loss in structural complexity of the reef framework, which 

can take >5 years (Wilson et al. 2006), is likely to affect small individuals, and since 

these may take some time to recruit to the fishery, a lag effect may exist before the 

full impact of coral bleaching on reef fisheries is realised.  

In order to conserve and manage reefs in the face of unpredictable disturbance, 

scientists and managers are increasingly proposing that no-take marine protected areas 

(MPAs) can increase resilience of the reef ecosystem (Hughes et al. 2003; Bellwood 

et al. 2004). Although it is clear that MPAs cannot prevent the influx of warm water 

that can cause widespread coral mortality, theory predicts that maintenance of greater 

biomass, density and size of herbivorous fishes by MPAs (in regions where 

herbivores are fished) should promote coral recovery, thus providing spatial resilience 

in the form of populations that can re-seed depleted areas (Nystrom & Folke 2001; 

Hughes et al. 2003). There is evidence of an initial build up of fish biomass in MPAs 

even during habitat degradation (Hawkins et al. 2006), however biodiversity may 
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decline (Jones et al. 2004) and it is unclear how the size-structure of the fish 

assemblage may respond.   

 Using fisheries independent data, collected across the inner granitic islands of 

the Seychelles, we assess the medium to long-term effects of mass coral bleaching on 

1) target reef fish above size at first capture in the fishery, 2) the overall size structure 

of the assemblage and that of aggregated feeding groups and 3) the effectiveness of 

existing no-take MPAs in offering spatial resilience to the disturbance. 

 

Methods 

Study sites 

The inner granitic islands of the Seychelles lie on the Mahé Plateau, a shallow, 

extensive submarine platform which reaches mean depths of 44-65m. The fringing 

reefs of the islands are typically shallow, the reef slope terminating at 6-13m, and 

consist of a carbonate or granitic rock framework (Jennings et al. 1995, Graham et al. 

2006). The 1998 bleaching event reduced live coral cover from 27 to 3%, an overall 

reduction of approximately 90%. Furthermore, there was no apparent depth refuge; 

coral mortality extended throughout the depth range of the coral reefs in this area 

(Linden et al. 2002; Sheppard 2003). Recovery has been extremely slow, with 

collapse in the physical complexity of the reefs accelerating from 2003 (Engelhardt 

2004) and mean coral cover attaining only 7.5% by 2005 (Graham et al. 2006). 

 Other than climate-mediated bleaching mortality of corals, Seychelles reefs 

have experienced relatively little change in other stressors over the study period 

(Graham et al. 2006). A small crown-of-thorns starfish outbreak in 1996 has not been 

repeated (Linden et al. 2002). Sedimentation is a chronic problem in the wet season 

(December-February) at particular sheltered locations, and sedimentation resulting 
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from land reclamation has been effectively mitigated in recent years (J. R., 

unpublished data). The December 2004 tsunami exerted negligible impacts on 

Seychelles reefs (Abdulla et al. 2006). There has been very little change in relative 

fishing pressure on inshore artisanal fishing grounds (Seychelles Fishing Authority 

technical reports from 1989 to 2004). 

 Reef surveys were conducted in seven areas, around Mahé, Praslin and 

associated islands, which included most of the shallow fringing reef around the inner 

islands (for map of sites see Jennings et al. 1995). Five fished areas were subject to 

similar levels of fishing intensity, while the other two areas were long-standing 

MPAs. Sainte Anne Marine National Park was gazetted by the Government of 

Seychelles in 1973 as it is suitably located for tourist use, whereas Cousin Island 

Special Reserve was established by Birdlife International who bought the island in 

1968 to protect an endangered species of bird (Jennings et al. 1996). Both MPAs are 

within the same geographic area as the other sites and have similar bathymetry and 

habitat types. Spatial studies of MPA effects are expected to reflect the outcome of 

temporal studies (Russ et al. 2005) and in Seychelles previous work has shown 

significant differences in the diversity and biomass of fish between the two MPAs and 

the five fished areas but not within the MPAs or fished areas per se (Jennings et al. 

1995). Studies conducted within other reef systems have also highlighted the 

disproportionate effect of small amounts of fishing on fish communities and the low 

statistical power to detect more subtle additional impacts of further increases in 

fishing pressure (Jennings & Polunin 1997; Hawkins & Roberts 2004). For these 

reasons, we assess the interaction between bleaching impacts and management by 

comparing the two MPAs to the five fished areas, before and after coral bleaching in 

1998. 

Comment [TMD1]: The text 
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Assessment of fish assemblage and benthic community structure 

Twenty one sites, covering over 50,000m2 of coral reef habitat, were surveyed at the 

same time of year in both 1994 and 2005. Three sites were surveyed in each of the 

seven areas of coast described above. One site in each of three statistically different 

habitat types (Jennings et al. 1995); carbonate fringing reefs, granitic rocky reefs with 

coral growth and patch reef habitats on a sand, rubble or rock base, were surveyed. At 

each site 16 replicate 7m radius point counts were completed using underwater visual 

census along the base of the reef slope. This technique maximised area coverage and 

replication, yet allowed for detailed searching for territorial species providing a 

quantitative estimate of fish of varying size and behaviour. Replicates were separated 

by a random number of fin kicks with the proviso that each count was separated by a 

minimum of 15 m; thus ~1/2 km stretch of reef was covered at each site. The 

numerical abundance and size of 134 species of reef-associated, diurnally-active, non-

cryptic fish (>8cm) was estimated within each count area, with the most mobile 

species surveyed first. The time taken to complete a count varied and depended on the 

number and diversity of fish present. Size estimation of fish was to the nearest 

centimetre, validated at each site by estimating the lengths of a random selection of 

PVC pipes. Length estimates were not consistently shorter or longer than actual 

lengths in both 1994 and 2005, with a mean error associated with estimates of 8 to 

35cm pipes of 3.1% and 2.2% respectively. Fish counts in 1994 were conducted by 

S.J. and in 2005 by N.A.J.G. Although small errors can exist among observers 

(Thompson & Mapstone 1997), bias among experienced divers has been shown to be 

the smallest component of variation in fish counts (Williams et al. 2006; McClanahan 

et al. in press). Fish count data was converted to biomass using published length-



 

 8 

weight relationships (Letourneur 1998; Letourneur et al. 1998; Froese & Pauly 2006). 

Species were assigned to feeding groups (herbivores, piscivores and mixed diet 

feeders; those species that consume either animal and plant material or fish and 

invertebrates and can not be easily classified to a distinct feeding group) based on 

regional fish identification guides, dietary literature and Froese and Pauly (2006).  

After a fish count was complete the benthic composition and structural 

complexity of the count area was assessed. Percent cover of benthic categories (live 

branching, plating, massive, corymbose and encrusting coral, soft coral, macroalgae, 

rock, rubble, sand and dead branching coral) was estimated visually and found to be 

accurate when compared with results obtained from the line-intercept method (no 

significant difference, MANOVA F6,35 = 0.56, P = 0.76) (Wilson et al. 2007). 

Structural complexity of the benthos was assessed using a 6 point visual scale and 

assessed for accuracy using the linear verses contour chain method; the two methods 

being highly correlated (significantly correlated, linear regression r = 0.85 P < 

0.001)(Wilson et al. 2007). 

 

Establishment of fishery target species and size of first capture 

Fish species that are targeted by the local artisanal fishery were assigned to three 

groups: primary targets, important targets and occasional targets (Grandcourt 1999). 

To assess the impact of the bleaching event on the fish that were likely to be 

accessible to capture fisheries, data were filtered by size to exclude fish too small to 

be caught by the dominant inshore trap fishery. There is a strong relationship between 

body depth of retained fish and the maximum width of trap meshes (Munro et al. 

2003). In Seychelles minimum legal trap hexagonal mesh diameter is 4cm, but fishers 

often use trap meshes larger than this size and fish are able to squeeze through meshes 
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smaller than their specific body depth (Robichaud et al. 1999). We calculated size at 

first capture from length frequency data of 5651 trap-caught fish between January 

1992 and June 1994 (SFA, unpublished data). Ninety five percent of fish in the 

sample had a body depth of over 6.0 cm. Target fish species data from both the 1994 

and 2005 reef surveys were therefore filtered to exclude individuals with a body depth 

of less than 6 cm for species level and aggregated feeding group analyses. 

 

Data analysis 

Since structural complexity may affect the availability of refuges for small individuals 

and species, we assessed changes in structural complexity between 1994 and 2005. 

Furthermore, live corals were categorised into two groups, 1) complex; branching, 

plating and corymbose functional forms which offer the most structure for other 

organisms to live in (Bellwood et al. 2004; Jones et al. 2004) and are generally the 

favoured corals for diet and habitat specialists (Munday 2004; Pratchett 2005; Wilson 

et al. 2006) and 2) non-complex; massive and encrusting functional forms which offer 

limited structure for other organisms to live in (Jones et al. 2004). Three-way crossed 

fixed-effects orthogonal analysis of variances (ANOVAs) were used to assess 

differences between years, habitat types and management status (fished versus 

protected) of structural complexity and the two coral cover categories. Homogeniety 

of variances were assessed using Levene’s test and normality of the data was assessed 

with histograms and normal probability plots of the residuals. Due to the very low 

cover of complex corals in 2005, data had to be square root transformed to meet 

assumptions. Tukeys post-hoc test was used to identify where differences occurred 

among habitats when significant. 
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 Changes in the biomass of individual species and aggregated feeding groups 

of fishery targets above size at first capture were also assessed using the same three-

way crossed fixed-effects orthogonal ANOVA design. At the species level, log 

transformation was necessary to meet the assumption of homogeneity of variances for 

a number of species and ten species that still failed to meet assumptions could not be 

analysed. Details of species requiring transformation are given in the footnote of 

Table S1. 

 The overall size structure of the assemblage (including size below first 

capture) was described with size spectra; slopes of abundance-size relationships of the 

whole assemblage (Dulvy et al. 2004; Graham et al. 2005). Slopes of the size-spectra 

were calculated from linear regressions of log10 (x + 1) numbers per size class (5 cm) 

on the rescaled log10 mid-point of each length class. Centering the independent 

variable gives values of mid-point height that are comparable among spectra (Daan et 

al. 2005). A steepening of the slope can be the result of a decrease in the number of 

large fish, an increase in the number of small fish, or both. Mid-point height is a 

measure of community abundance. Change in the slope and mid-point height of the 

size spectra were also assessed using the three-way crossed fixed-effects orthogonal 

ANOVA design. All assumptions of the analysis were met. 

 To assess what was driving the trends in size spectra slope, changes in the 

numerical abundance of fishes in individual size bins of 5cm between 1994 and 2005 

were assessed (1) for the assemblage as a whole and (2) for 5 key feeding groups: 

mixed diet feeders, piscivores, herbivores, corallivores and planktivores. To partition 

any effects of marine protection and habitat type, data were plotted separately by 

management status and within this by habitat type.  
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Results 

Structural complexity declined significantly between years (F1,30 = 19.94, P < 0.001) 

and did not vary with habitat or protection (Fig. 1a). The cover of live complex corals 

fell by over 95% (Fig. 1b)(F1,30 = 100.22, P < 0.001), with the greatest reductions on 

carbonate habitats (significant interaction: F2,30 = 3.71, P < 0.05) and greater 

reductions on reefs within protected than fished areas (F1,30 = 7.30, P < 0.05). The 

greater impact in MPAs resulted from a higher initial cover of complex corals within 

MPAs in 1994, which declined to a similar base level (<1%) in 2005 as in fished sites. 

Cover of non-complex corals remained relatively stable between 1994 and 2005, with 

no significant factors in the model (Fig. 1c). 

 Fish target species above size at first capture showed variable trends in 

biomass between years, with some species increasing, some decreasing, and over 70% 

showing no significant change (Table S1). Combined, target species above size at first 

capture showed significantly greater biomass in MPAs than in fished areas for the 

whole assemblage and mixed diet feeders (F1,30 = 28.29, P < 0.001 and F1,30 = 14.44, P 

= 0.001 respectively), but no significant trends between years or among habitat types 

(Fig. 2a, b). Piscivore biomass did not differ among habitats, but responded 

significantly to year (F1,30 = 4.69, P < 0.05) and protection (F1,30 = 16.65, P < 0.001). 

The significant year-protection interaction term (F1,30 = 5.49, P < 0.05) showed that 

the main change between years is associated with a decreased biomass in MPAs (Fig. 

2c). Herbivore biomass was greater in 2005 (F1,30 = 4.67, P < 0.05) and in MPAs (F1,30 

= 11.65, P = 0.002) with no interaction and no habitat effect (Fig. 2d). These results 

indicate that although there were some small changes between years for certain 

groups, MPAs continued to support a higher biomass of targeted reef fish than fished 

areas (Fig. 2). 
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 The slope of the size spectra became less steep from 1994 to 2005 in all but 

one, fished, granite site (Fig. 3a). This significant trend between years (F1,30 = 18.90, 

P < 0.001) did not vary among habitats and was not affected by management status 

(Fig. 3b). The height of the size spectra did not differ between years or among 

habitats, however there was a significant effect of management status (F1,30 = 17.53, P 

< 0.001), highlighting the greater abundance of fish within the MPAs. 

 The decreasing steepness of the size spectra slope was a result of a relative 

decline in smaller fish (<30 cm) and increase in larger fish (>45 cm) in the 

assemblage. This trend was consistent for both fished areas and MPAs (Fig. 4a). 

Different size classes in the mixed diet feeding group showed various trends with no 

common patterns apparent (Fig. 4b). The piscivores also showed a variable response, 

however there was a fairly consistent decline in medium size classes (20-50cm), 

which was most apparent in MPAs (Fig. 4c). The herbivores showed a decline in 

smaller size classes (<30 cm) and an increase in larger size classes (>40 cm) in both 

fished areas and MPAs (Fig. 4d). Corallivores and planktivores showed a consistent 

and marked decline, which was greatest in MPAs (Fig. 4e, f). Although there was 

some variation, particularly for the mixed diet feeders and piscivores, the trends were 

generally similar among habitat types. 

 

Discussion 

We demonstrate an impending recruitment failure to fishery size classes in the 

Seychelles following a major bleaching event. The decline in juveniles (<30 cm) in 

the assemblage can be expected to extend into adult stocks and cause overall declines, 

as is frequently shown in fisheries (XXXX 19XX). Although our data predict this 

effect will happen, the lack of time series data prevent us from projecting the likely 
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time-span over which this effect will start to impact larger size classes and reduce the 

overall biomass of the fishery target assemblage. Our data also highlight a lack of 

resilience within MPAs, as the decline in smaller size classes, including herbivores, is 

also apparent in these management areas. We support the proposal that MPAs should 

increasingly be placed in areas of resistance and resilience to climate mediated coral 

bleaching events. 

There were minor changes in the biomass of target species available to the 

Seychelles artisanal trap fishery following the 1998 mass bleaching event. However, 

this belies apparent system-wide failures of recruitment to the fished size-classes 

which are expected to have long-term impacts on the viability of populations, 

assemblages and the fishery. Our results suggest that the current biomass and reef 

fishery are maintained primarily by the growth of fishes that had already recruited to 

the reefs at the time of the bleaching event, and/ or before topographic structure was 

reduced, and have now grown sufficiently to reach fishable size. The results lend 

support to studies in the Seychelles and elsewhere using fishery catch data that 

suggest no short-term change in yield associated with mass bleaching (McClanahan et 

al. 2002; Grandcourt & Cesar 2003). However, our results also suggest that the short-

term maintenance of yield cannot be assumed to reflect medium and long-term 

expectations, and a decline in yield is likely if the reefs fail to recover.  

 The surveyed MPAs still supported a higher biomass of target species above 

size of first capture than fished areas. However, the reduction in slopes of the size 

spectra was consistent across all but one site and similar for fished and protected 

locations. The greater size-spectra height in the Seychelles protected areas is 

consistent with the expected effects of reduced fishing mortality on abundance 

(McClanahan & Graham, 2005), but the shallowing of the slope in both the fished 
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areas and MPAs suggests the same drivers are affecting the size distribution of fish in 

these areas and are unrelated to fishing pressure. 

 Plotting each individual size class bin by its change in numerical abundance 

highlights that the change in the slope of the size spectra was driven by both an 

increase in large individuals (>45 cm) and a decrease in smaller individuals (<30 cm). 

As fishing pressure has not changed, the most likely drivers for the increase in larger-

bodied fish are increased growth and/or survivorship related to increases in dietary 

resources associated with the change in benthic composition. The decline in smaller-

bodied individuals could be driven by various processes. We consider consistently 

high mortality of small and juvenile fish in the years since the bleaching event to be 

the most likely explanation, based on the expectation that the larger fishes have 

retained their abundance and have good feeding conditions, that successful spawning 

is unlikely to be affected by changes in the reef habitat and that many smaller species 

and individuals are most dependent on refuge availability and live coral (Munday & 

Jones 1998; Dulvy et al. 2004; Munday 2004; Pratchett 2005; Graham et al. 2006). 

Furthermore, the diversity and numerical abundance of fish 10-30cm in length was 

correlated with structural complexity in 2005 (Wilson et al. 2007), and showed 

marked decline between 1994 and 2005 following a loss in structure. While the 

existence of several years of high larval supply prior to the bleaching event and 

several years of poor larval supply post-bleaching could also account for the patterns 

we observed, the latter possibly as a result of reduced live coral as a settlement cue, 

we consider this unlikely when the effects are manifest for all species and at a large 

spatial scale. Based on the size-based analyses, we predict a time lag effect whereby 

the full effects of the bleaching on the fringing reef fishery species and the fish 

Comment [TMD2]: Most 
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assemblage as a whole are yet to be realised, as declines in smaller sized fish suggest 

impending recruitment failure to larger size classes.  

Because the trends in relative abundance of large and small fishes are similar 

in both fished and protected areas, MPAs seem to be offering no long-term resilience 

to the populations and assemblages. Although the MPAs may meet short-term 

conservation objectives by reducing fishing mortality on larger fish, future 

replacement by small fish may be insufficient to maintain abundance in the longer-

term. The collapse of the physical structure of Seychelles reefs accelerated as recently 

as 2003 (Engelhardt 2004) and so the longer-term consequences of this process are 

yet to manifest in larger size classes. The lag effect of reduced replenishment will 

likely be longer in MPAs than in fished areas since mortality rates are likely to be 

lower and the age structure of the populations therefore extended. Greater predator 

biomass inside the MPAs (Jennings et al. 1995) could also result in higher rates of 

predation mortality on smaller individuals (Graham et al. 2003; Mumby et al. 2006), 

further reducing the number of recruits and severity of the lag impact.  

 The effects on assemblage productivity and hence on fishery yield are 

expected to be even more substantial than the effects on biomass because the 

production to biomass (P/B) ratios of smaller individuals and species are higher and 

therefore a community of a given biomass that is dominated by larger species will be 

relatively less productive (Kerr & Dickie 2001). The observed changes in the size-

spectra therefore suggest that total production will fall faster than biomass, owing to a 

decline in abundance of smaller fish and smaller size classes. 

When changes in size composition are broken down by feeding groups it is 

possible to assess the causes for these changes with more certainty. Both mixed diet 

feeders and piscivores displayed variable responses among size classes between 1994 

Comment [TMD3]: Fishing 
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and 2005. Some of the families that make up these groups, for example lethrinids and 

lutjanids, are quite generalist in their juvenile habitat use and often associate with soft 

bottom habitats (Dorenbosch et al. 2005). Therefore, they may not be so reliant on the 

physical structure of the reef to evade predators. Within the piscivores there was a 

decline in numbers for medium size classes (20-50 cm) which was most pronounced 

for the protected areas. Although there may be various reasons for such a decline, the 

consistent nature of the decline among habitats suggests it is a deterministic driver. As 

piscivores on coral reefs tend to select prey according to their gape size (Mumby et al. 

2006), and reef fish predator-prey dynamics are highly size structured (Dulvy et al. 

2004), it is likely that the substantial decline in smaller size classes of the assemblage, 

which is most evident for the protected areas, may have reduced prey availability for 

medium sized piscivores, causing an indirect decline in their numbers. 

 Of the indirect effects of bleaching that we have identified, the most 

significant for the reef ecosystem is likely to be the substantial decline in smaller size 

classes of the herbivorous fish assemblage in both fished and protected areas. This 

assemblage consists mainly of surgeonfishes (Acanthuridae) and parrotfishes 

(Scaridae), but also some rabbitfishes (Siganidae) and two species of damselfishes 

(Pomacentridae). When the changes in numerical abundance of acanthurids, scarids or 

species which span a large number of size classes are examined separately, the same 

patterns of reduction in small size classes (<30 cm) are prevalent. Many of these 

species use the reef for habitat as juveniles (Bellwood & Choat 1989; Dorenbosch et 

al. 2005) and as the trend is consistent among habitats and management strategies, it 

is likely that habitat degradation, leading to greater competition and predation, is the 

cause of decline. Many species of acanthurids have longevities of over 25 years and 

scarids 5-20 years (Choat & Robertson 2002), so many of the individuals currently 

Comment [TMD4]: What kind 
of drivers aren’t ‘deterministic’? 

Comment [TMD5]: Could cite 
Edwin’s 13-29 year old Scarids to 
show they get old in Seychelles 
(grandcourt 2002) 



 

 17 

contributing to the increase in numerical abundance of large size classes likely 

recruited prior to the 1998 bleaching event, and certainly prior to the collapse of the 

reef framework in 2003 (Engelhardt 2004). Previous studies have indicated that 

herbivores may increase in abundance following disturbance due to the increased 

algal resources that become available (Wilson et al. 2006). When disturbances are 

extensive and occur over large spatial scales, increased abundance of large herbivores 

is a result of both faster growth rates (Hart & Russ 1996) and of potentially higher 

survivorship associated with greater food abundance. However, fewer fish in smaller 

size classes are surviving to replace adults and a subsequent decline in overall 

biomass of herbivores seems likely. Herbivores are common targets of the trap fishery 

in the Seychelles (Grandcourt 1999) and yields have remained stable through the 

bleaching event (Grandcourt et al. 2003) despite the increase in larger fish we identify 

here. This is consistent because the decline in small-sized fish extends up to 30 cm, 

resulting in no substantial increase in biomass above size at first capture.  

Herbivores are reported to be key to the resilience of coral reefs, controlling 

algae and promoting coral recovery (Bellwood et al. 2004; Mumby et al. 2006). Our 

results suggest that mass bleaching and the loss in structural complexity may 

ultimately lead to a reduction in the abundance of herbivores, including larger size 

classes, and as such, recovery rates may decline in the long-term. As the trend is also 

apparent in the sampled MPAs, our data suggest the MPAs offer no long-term 

resilience to bleaching. 

 What are the consequences for reef fisheries? In Seychelles, 50-60% of trap 

fishing effort occurs close to the shore and within the depth range of the UVC data 

collected in this study (T.D., unpublished data, A. Christophe, personal 

communication), suggesting that any future decline in biomass of target species will 
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impact the trap fisheries. However, given that a substantial portion of trap fishing 

grounds lie beyond the fringing reefs, on the deeper shoals and submerged reefs of the 

Mahé Plateau, there is potential for a degree of spatial mobility in the fishery if 

declines in target species biomass are restricted to the shallow fringing reefs. As the 

majority of reef fisheries are multi-species, our results suggest that if other locations 

suffer coral mortality and collapse on the scale of the Seychelles, target species 

assemblages will likely respond in the same way. In locations where the topography 

does not allow for a diversity of demersal fishery habitats and depths, and the entire 

demersal fishery is restricted to the inshore reef (e.g. Fiji, Jennings & Polunin 1997), 

the long-term impacts of bleaching on fishers could be more substantial. 

 The corallivores and planktivores demonstrated very large and consistent 

declines between years. Corallivores are well known to suffer declines and even local 

extinctions as a result of mass mortality of corals (Graham et al. 2006; Wilson et al. 

2006; Pratchett et al. 2006). The planktivores in our study were principally coral 

dwelling damselfish, which suffer large declines through coral mortality (Wilson et al. 

2006). Furthermore, both groups have small body size, suggesting they are more 

reliant on the reef matrix to avoid predation pressures (Munday & Jones 1998). 

Interestingly, the decline in both cases was greatest for the protected areas. 

Corallivores declined in numbers from a mean of 31.7 to 5.3 per site in fished areas 

and from 74.5 to 2.7 in protected areas. Similarly, planktivores declined in numbers 

from a mean of 90.3 to 44.4 per site in fished areas and 279.8 to 11.2 per site in 

protected areas. This is associated with the greater cover of the complex coral 

category in the protected areas prior to the bleaching event, which is the preferred 

habitat of many specialist fish (Munday 2004; Pratchett 2005) and offers greater 

structure to the assemblage as a whole (Bellwood et al. 2004; Jones et al. 2004). The 

Comment [TMD6]: I don’t 
understand why the multi-species 
nature of fisheries is relevant here. 

Comment [TMD7]: We don’t 
yet know if it is substantial in the 
seychelles 
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result is a subsequent homogenisation of the MPAs and fished areas in terms of both 

benthic cover and composition and the numerical abundance of small specialised fish 

species post bleaching.  

 In recent decades conservation of marine resources on coral reefs has focussed 

on the use of protected areas, such that most modern management strategies 

incorporate MPAs. Previous studies have highlighted that reef fish diversity can be 

compromised in MPAs following coral mortality (Jones et al. 2004), and here we 

provide evidence that the size structure of fish assemblages in MPAs are subject to the 

same long term lag effects as those in fished areas following coral bleaching and that 

these effects will likely compromise the ability of the ecosystem to recover. As future 

bleaching events seem inevitable (Sheppard 2003), the implementation of methods to 

ameliorate climate mediated disturbance should be treated as a priority in 

conservation and management plans for coral reefs. We recognise that some areas are 

less susceptible to climate induced disturbance and some show greater recovery, and 

therefore support the notion that MPAs should increasingly be sited in areas of 

resistance or resilience to bleaching to build up spatial resilience in the system (West 

& Salm 2003). In Seychelles the reefs north of Praslin and south of Mahé, and the 

granitic habitats in general, are currently displaying the most recovery and the most 

stable fish populations (Graham et al. 2006) and would be suitable locations to site 

future MPAs. MPAs are not the only management tool available, however, and it is 

important to manage areas outside MPAs to minimise other stressors, such as 

overfishing and nutrient enrichment, to create conditions where a recovery may be 

possible if brood stocks are available. 
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Figure 1. Change in (a) Structural complexity, (b) Complex corals and (c) Non-

complex corals between 1994 and 2005, for three different habitat types and two 

different management scenarios. 

 

Figure 2. Change in biomass of fishery target species above size at first capture 

between 1994 and 2005 for (a) Whole fishery target species assemblage, (b) Mixed 
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diet feeders, (c) Piscivores, and (d) Herbivores. Each plotted by three different habitat 

types and two different types of management. 

 

Figure 3. (a) Change in the slope of size-spectra for individual sites. Sites falling 

above the 1:1 trend line had a lower slope value in 2005. (b) Mean change in size-

spectra slope by habitat type and management status. 

 

Figure 4. Change in log abundance of individual size classes for (a) Whole 

assemblage, (b) Mixed diet feeders, (c) Piscivores, (d) Herbivores, (e) Corallivores 

and (f) Planktivores. Habitat type is plotted separately. Plots in left hand column are 

fished sites, plots on right hand column are protected sites. Size of first capture range 

indicated on plot a for fishery target species. Maximum size detected indicated with 

vertical dashed line on plots e and f. 
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Supplementary Material 

 

Table S1. Change in biomass and results of univariate three-factor crossed analysis of 

variance for primary, important and occasional target species above size at first 

capture. Values given for year, habitat and protection are F ratios (probability results 

given in brackets). *** p < 0.001; ** p < 0.01; * p < 0.05; ns = not significant.  

 

Species 

Size at 

first 

capture 

Biomass 

(g) 1994 

Biomass 

(g) 2005 ∆ 

Year 

(1,30 df) 

Habitat 

(2,30 df) 

Protection 

(1,30 df) 

        

Primary Targets        

Aprion virescens 25.5cm 4141 3497 - 0.75 (ns) 2.01 (ns) 11.30 (***) 

Cephalopholis leopardus a 20.1cm 100 0 - 2.10 (ns) 0.65 (ns) 0.17 (ns) 

Chlorurus sordidus  19.2cm 7073 7369 + 0.11 (ns) 0.75 (ns) 0.03 (ns) 

Lutjanus bohar a 18.9cm 966 1308 + 1.63 (ns) 1.74 (ns) 1.83 (ns) 

Scarus ghobban 16.7cm 1137 2708 + 4.79 (*) 2.73 (ns) 6.93 (*) 

Scarus rubroviolaceus a 18.7cm 871 5079 + 4.16 (*) 0.35 (ns) 0.32 (ns) 

Siganus sutor a 15.4cm 338 0 - 2.79 (ns) 1.12 (ns) 0.56 (ns) 

        

Important targets        

Acanthurus tennentii a 15.3cm 332 2307 + 1.06 (ns) 0.34 (ns) 0.08 (ns) 

Anyperodon leucogrammicus a 24.2cm 287 37 - 3.64 (ns) 0.27 (ns) 0.09 (ns) 

Calotomus carolinus a 16.0cm 79 1211 + 3.78 (ns) 0.03 (ns) 2.67 (ns) 

Cephalopholis argus a 20.9cm 3063 988 - 9.44 (**) 0.32 (ns) 1.32 (ns) 

Cephalopholis miniata 21.4cm 75 259 + 2.50 (ns) 1.39 (ns) 0.03 (ns) 

Cetoscarus bicolour a 17.3cm 410 0 - 15.45 (***) 0.20 (ns) 4.14 (ns) 

Cheilinus fasciatus a 19.0cm 219 66 - 4.95 (*) 0.13 (ns) 0.05 (ns) 

Cheilinus trilobatus 17.7cm 1963 1281 - 1.67 (ns) 0.55 (ns) 2.91 (ns) 
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Chlorurus gibbus 17.5cm 1282 1138 - 0.07 (ns) 2.59 (ns) 0.96 (ns) 

Ctenochaetus striatus 13.8cm 3703 1035 - 6.57 (*) 0.25 (ns) 5.24 (*) 

Epinephelus fasciatus 22.3cm 59 159 + 1.46 (ns) 0.18 (ns) 0.07 (ns) 

Epinephelus merra a 22.1cm 58 32 - 0.27 (ns) 2.36 (ns) 2.00 (ns) 

Leptoscarus vaigiensis 21.8cm 77 478 + 1.45 (ns) 4.01 (*) 0.70 (ns) 

Lethrinus enigmaticus 16.7cm 13 52 + 0.52 (ns) 0.96 (ns) 0.36 (ns) 

Lethrinus harak 18.4cm 2594 2659 + 0.03 (ns) 0.67 (ns) 2.90 (ns) 

Lethrinus lentjan e 16.7cm 27 93 + 3.03 (ns) 
b 3.36 (*) 7.61 (**) 

Lethrinus mahsena 15.9cm 119 68 - 0.70 (ns) 0.18 (ns) 0.02 (ns) 

Lethrinus nebulosus a 17.2cm 139 734 + 8.43 (**) 1.62 (ns) 3.52 (ns) 

Lethrinus obsoletus a 18.3cm 1381 421 - 4.20 (*) 0.08 (ns) 12.71 (***) 

Lethrinus olivaceus a 20.8cm 70 254 + 0.92 (ns) 0.11 (ns) 1.64 (ns) 

Lutjanus fulviflamma a 20.2cm 1206 692 - 1.31 (ns) 3.19 (ns) 5.45 (*) 

Lutjanus gibbus a 16.2cm 1257 684 - 0.28 (ns) 1.07 (ns) 0.31 (ns) 

Lutjanus kasmira 18.5cm 29 9 - 0.02 (ns) 1.07 (ns) 0.02 (ns) 

Lutjanus rivulatus 16.1cm 133 51 - 0.00 (ns) 0.31 (ns) 0.00 (ns) 

Macolor niger f 16.6cm 478 158 - 3.93 (ns) 
b 4.02 (*) 0.09 (ns) 

Monotaxis grandoculis 15.7cm 325 723 + 0.93 (ns) 0.43 (ns) 0.07 (ns) 

Mulloidichthys flavolineatus a 25.5cm 366 31 - 1.82 (ns) 0.26 (ns) 3.43 (ns) 

Parupeneus barberinus a 21.9cm 1200 529 - 0.64 (ns) 1.05 (ns) 1.57 (ns) 

Parupeneus ciliatus a 21.8cm 1006 797 - 0.37 (ns) 0.43 (ns) 0.11 (ns) 

Parupeneus cyclostomus a 22.7cm 196 50 - 1.69 (ns) 1.13 (ns) 0.00 (ns) 

Parupeneus macronemus 21.4cm 410 139 - 2.46 (ns) 1.52 (ns) 0.10 (ns 

Parupeneus rubescens a 20.2cm 17 25 + 0.24 (ns) 0.40 (ns) 1.57 (ns) 

Plectorhinchus orientalis 20.8cm 823 610 - 0.70 (ns) 1.21 (ns) 1.44 (ns) 

Plectorhinchus schotaf a 18.7cm 397 721 + 0.14 (ns) 0.06 (ns) 0.14 (ns) 

Scarus caudofasciatus 17.2cm 117 642 + 1.92 (ns) 1.07 (ns) 0.19 (ns) 

Scarus falcipinnis a 17.4cm 200 291 + 0.01 (ns) 0.49 (ns) 0.50 (ns) 

Scarus frenatus g 19.1cm 1882 660 - 15.66 (***) 1.17 (ns) 13.57 (***) 

Scarus globiceps 18.3cm 189 667 + 0.74 (ns) 0.34 (ns) 0.07 (ns) 

Scarus niger h, i 17.6cm 3692 5583 + 3.67 (ns) 2.45 (ns) 3.16 (ns) 
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Scarus prasiognathos 17.8cm 1080 4357 + 5.43 (*) 2.54 (ns) 0.46 (ns) 

Scarus psittacus 19.4cm 574 840 + 0.42 (ns) 0.75 (ns) 3.72 (ns) 

Scarus scaber a 19.4cm 784 192 - 4.92 (*) 
c 4.90 (**) 0.02 (ns) 

Scarus tricolour 20.5cm 570 338 - 0.47 (ns) 0.70 (ns) 4.50 (*) 

Scarus viridifucatus 17.5cm 48 42 - 0.00 (ns) 0.15 (ns) 1.10 (ns) 

Siganus argenteus a 18.1cm 1482 3238 + 2.63 (ns) 0.33 (ns) 3.46 (ns) 

Siganus puelloides a, g 16.4cm 2114 922 - 17.93 (***) 0.84 (ns) 1.78 (ns) 

Siganus stellatus j 14.9cm 477 589 + 0.09 (ns) 4.33 (*) 9.82 (**) 

        

Occasional targets        

Acanthurus leucosternon 12.1cm 886 393 - 0.45 (ns) 1.96 (ns) 0.43 (ns) 

Acanthurus lineatus a 14.1cm 247 278 + 0.28 (ns) d 3.43 (*) 1.69 (ns) 

Acanthurus nigrofuscus 15.1cm 511 484 - 0.06 (ns) 0.43 (ns) 0.02 (ns) 

Aethaloperca rogaa a 17.3cm 210 784 + 0.61 (ns) 0.35 (ns) 4.68 (*) 

Chlorurus atrilunula a 18.4cm 731 2187 + 4.01 (ns) 1.37 (ns) 1.40 (ns) 

Ctenochaetus binotatus 13.2cm 20 42 + 0.40 (ns) 0.24 (ns) 0.72 (ns) 

Ctenochaetus strigosus a 12.8cm 1045 382 - 7.51 (**) 1.41 (ns) 3.01 (ns) 

Epinephelus 

caeruleopunctatus 

23.2cm 

110 227 + 2.51 (ns) 1.60 (ns) 2.07 (ns) 

Hipposcarus harid a 18.9cm 3621 3160 - 2.91 (ns) 0.31 (ns) 2.38 (ns) 

Scolopsis frenatus a, g 20.7cm 2922 2303 - 7.70 (**) 1.22 (ns) 0.76 (ns) 

 

a Log10 transformation necessary, b Tukey’s output: Co>Gr, c Tukey’s output: (Co=Gr)>Pa, d Tukey’s 

output:Gr>(Co=Pa), e Significant year*habitat interaction due to higher biomass in carbonate reefs in 2005, 

but lower biomass in granite and patch reefs, f Significant year*habitat interaction due to a greater biomass in 

granite reefs than carbonate and patch reefs in 1994, but similar in 2005. g Significant year*protection 

interaction due to a greater decline in biomass in protected than fished areas between years, h Significant 

three-way interaction due to greater changes in carbonate reefs than granite and patch reefs for both year and 

protection, i Levene’s test could only be passed at 0.036, and so the significance was set at 0.03 for this 

species.  j Significnat three-way interaction due to a greater biomass in granite and patch reefs than carbonate 

reefs in protected areas, particularly in 2005. Cephalopholis urodeta, Diagramma pictum, Epinephelus 
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hexagonatus, E. spilotoceps, E. tukula, Lethrinus rubrioperculatus, L. argentimaculatus, Lutjanus 

monostigma, Oxycheilinus diagrammus and Paracanthurus hepatus were not analysed as assumptions could 

not be met due to too many zero’s in counts. 

 


