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Gram-positive bacterial lipoproteins are a functionally
diverse and important class of peripheral membrane
proteins. Recent advances in molecular biology and
the availability of whole genome sequence data have
overturned many long-held assumptions about the
export and processing of these proteins, most notably
the recent discovery that not all lipoproteins are
exported as unfolded substrates through the general
secretion pathway. Here, we review recent discoveries
concerning the export and processing of these proteins,
their role in virulence in Gram-positive bacteria and their
potential as vaccine candidates or targets for new anti-
microbials.

Bacterial lipoproteins
Lipoproteins in Gram-positive bacteria are cell envelope
proteins anchored into the outer leaflet of the plasma
membrane. Lipid modification is achieved through
covalent addition of a diacylglyceride to an indispensable
cysteine residue in the lipoprotein signal peptide, as origin-
ally described for the prototypical Braun’s lipoprotein of
Escherichia coli [1]. This provides a common anchoring
mechanism for what is now recognized to be an abundant
and functionally diverse class of peripheral membrane
proteins. In Gram-positive bacteria, lipoproteins function
within a subcellular region that is defined at its inner
aspect by the plasma membrane and at its outer aspect
by the peptidoglycan and other layers of the cell wall.
Lipoproteins of Gram-positive bacteria have, thus, been
proposed to be functional equivalents of periplasmic
proteins in Gram-negative bacteria, a comparison that is
most directly sustained by the fact that, in Gram-positive
bacteria, substrate binding proteins (SBPs) of ATP-binding
cassette (ABC) transporters are typically lipoproteins [2,3].
Moreover, cell fractionation experiments and recent
advances in electron microscopy have lent some credibility
to the controversial concept of a Gram-positive ‘periplasm’
[4–6]. Cryoelectron microscopy has also provided evidence
supporting the presence of an outer membrane per-
meability barrier in the mycolic acid-containing actinomy-
cete bacteria Mycobacterium smegmatis, Mycobacterium
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bovis and Corynebacterium glutamicum [7,8]. In addition,
since the last review of Gram-positive lipoproteins 13 years
ago [3] our understanding of the diverse functions of these
proteins has been greatly advanced by the availability of
whole genome sequence data. These advances, along with
important new insights into the lipoprotein biogenesis
pathway, make it timely to revisit this subject.

Crossing the cytoplasmic membrane
Almost all exported proteins are transported across the
cytoplasmic membrane of prokaryotes by one of two dis-
tinct export pathways. The general secretory (Sec) path-
way is the predominant route of protein transport [9]. The
Sec machinery recognizes proteins bearing N-terminal
signal peptides (Figure 1a) and transports them across
the membrane in an unfolded conformation. By contrast,
the more recently discovered Tat (twin arginine protein
transport) system transports folded and even oligomeric
proteins, which often bind redox cofactors [10]. Proteins
are also targeted to the Tat system bymeans of N-terminal
signal peptides, which in this case harbour an almost
invariant and essential twin-arginine motif (Figure 1b).

Exported proteins that are destined to become lipidated
contain a motif in their signal peptides known as a lipobox,
which directs them to the lipoprotein biogenesismachinery
after transport (Figure 1). It had long been assumed, based
primarily on studies in E. coli, that all lipoprotein precur-
sors are synthesized with signal peptides that direct them
to the Sec pathway for translocation across the cytoplasmic
membrane in an unfolded state [1,11]. More recently, it has
also become clear that some putative lipoproteins can be
translocated utilizing the SecA2-dependent accessory Sec
pathway, which is found in some, but not all, Gram-
positive bacteria [12,13]. The first indication that some
lipoprotein precursors could be exported in a fully folded
state through Tat came during an analysis of the dimethyl-
sulphoxide (Dms) reductase in the Gram-negative bacter-
ium Shewenella oneidensis. DmsA was shown to contain a
Tat signal sequence with a lipobox and to be translocated
via Tat in a complex with its partner subunit DmsB [14].
The DmsB subunit lacks a signal sequence and the
proteins must, therefore, fold and form a complex before
export. DmsA is a relatively rare example of an outer
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Figure 1. Type I and type II signal peptides for Sec- and Tat-dependent transport. Both Sec (a) and Tat (b) signal peptides are tripartite in structure with a positively charged

N- (N-terminal) region, an H- (hydrophobic) region and a C- (cleavage) region, which contains the recognition motif for type I (A-X-A, where X is any amino acid) or type II (L-

3-[A/S/T]-2-[G/A]-1-C+1) signal peptidases. The type II cleavage site is referred to as the lipoprotein ‘lipobox’. Tat signal peptides have variable length N-regions and a

conserved SRRXFLK sequence between the N- and H-regions [88] in which the twin arginine (RR) motif is almost absolutely conserved and gives the transport pathway its

name.
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membrane lipoprotein which faces the extracellular
environment and not the periplasm [14]. More recently,
it was reported that the HysA subunit of the (NiFeSe)
hydrogenase of the Gram-negative bacterium Desulfovi-
brio vulgaris is exported through Tat, despite lacking a
signal sequence. In fact, HysA ‘piggybacks’ out through Tat
by virtue of binding to its partner protein, the (NiFeSe)
hydrogenase subunit, HysB, which harbours a canonical
twin arginine signal peptide [15]. After export, HysA is
lipidated and retained in the cytoplasmic membrane,
facing into the periplasm, in complex with HysB [15]. HysA
is remarkable because it does not contain a signal peptide
but can still be targeted to the lipoprotein machinery by its
first four amino acids (Met-Ser-Gly-Cys), which constitute
a lipobox (Figure 1). After lipidation of the cysteine residue,
the first three amino acids are cleaved by lipoprotein signal
peptidase (Lsp) [15].

In the high Guanine+Cytosine branch of Gram-positive
bacteria known as actinomycetes, Tat is also apparently
required for the translocation of lipoproteins, including the
BlaC b-lactamase putative lipoprotein of Mycobacterium
tuberculosis when it is expressed inM. smegmatis [16] and
four putative lipoproteins in the model actinomycete,
Streptomyces coelicolor [17]. Bioinformatic analysis
indicates that Tat translocation of lipoproteins is wide-
spread in the genus Streptomyces with up to 20% of
putative lipoproteins being exported via Tat in the four
currently sequenced Streptomyces species (M.I.H and
I.C.S, unpublished). In comparison, �10%–15% of the
putative lipoproteins of M. tuberculosis [18] are predicted
to be Tat substrates, whereas only two of the 41 putative
lipoproteins in the actinomycete Leifsonia xyli [19] are
predicted to be Tat substrates (I.C. S, unpublished). Inter-
estingly, no reports exist of Tat-dependent lipoproteins in
the low Guanine+Cytosine (Firmicute) branch of Gram-
positive bacteria and, in fact, the model organism Bacillus
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subtilis exports very few of its proteins via Tat. Moreover,
some Firmicute genomes (notably those of several strep-
tococci) apparently lack a Tat pathway [20]. Finally, in the
archaeon Haloferax volcanii, which exports most of its
proteins through Tat, it has been demonstrated that some
of these Tat exported proteins are lipid modified [21].
Archaeal lipoprotein signal sequences have typical lipo-
boxes but their genomes do not encode homologues of the
bacterial lipoprotein processing enzymes [21]. These recent
publications have overturned the assumption that only
linear polypeptides can be lipid modified after export from
the cell by the Sec pathway. Consequently, it seems likely
that Tat export of lipoprotein precursors will be wide-
spread in some bacterial and archaeal lineages and this
must lead to a paradigm shift in our understanding of the
export and processing of these cell envelope proteins.

Lipoprotein biogenesis
The pathway for bacterial lipoprotein biogenesis was
established in E. coli by the pioneering work of Wu and
co-workers [1]. After export through Sec (or Tat), a con-
served motif (the ‘lipobox’) in their Type II signal peptides
directs these proteins to the lipoprotein biogenesismachin-
ery. This lipoboxmotif is typically L-3-[A/S/T]-2-[G/A]--1-C+1

with the +1 cysteine absolutely conserved in all bacterial
lipoproteins (Figure 1). The thiol chemistry of the cysteine
is crucial to this step as the diacylglycerol lipid anchor is
added in a thioether linkage [1]. In Gram-negative bac-
teria, lipoprotein biogenesis is a three step pathway that
apparently proceeds in strict order: (i) Prolipoprotein dia-
cylglyceryl transferase (Lgt) uses membrane lipid sub-
strates and catalyses the transfer of a diacylglyceryl
moiety onto the conserved lipobox cysteine via a thioether
linkage. (ii) The signal peptide is then cleaved by a dedi-
cated Type II Lsp at the conserved cleavage site in
the lipobox, leaving the lipid-modified cysteine at the



Figure 2. The lipoprotein biogenesis pathway. In Gram-negative bacteria (a) unfolded (red straight line) or folded (red filled circle) lipoproteins are directed to and

translocated across the cytoplasmic membrane by the Sec or Tat pathways by their signal sequences (shown in blue) (i). A lipid group (angled black line) is covalently

attached to the sulphydryl group of the lipobox cysteine by Lgt (prolipoprotein diacylglycerol transferase) (ii), and the signal peptide is cleaved by Lsp (lipoprotein or type II

signal peptidase) (iii). A second lipid group (black line) is then attached to the amino group of the lipobox cysteine by Lnt (lipoprotein N-acyl transferase) (iv). This occurs in

strict order and they are either retained in the cytoplasmic membrane (v) or transported to the outer membrane by the Lol (lipoprotein localisation) pathway (vi). In Gram-

positive bacteria (b) the pathway is conserved but does not necessarily occur in strict order. There is some evidence of N-acylation in the low-GC Gram-positive bacteria B.

subtlilis and S. aureus [39,40] despite an absence of Lnt homologues. Conversely, some high-GC Gram-positive bacteria encode Lnt homologues but there is, as yet, no

evidence of lipoprotein N-acylation.
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N-terminus of the mature lipoprotein. (iii) Lipoprotein N-
acyl transferase (Lnt) adds a third fatty acid in an amide
linkage to the free amino group of the lipidated cysteine.
This step is essential for the release of lipoproteins from
the plasma membrane and their transport via the Lol
(lipoprotein localisation) pathway to the outer membrane
(Figure 2a). Depletion of Lnt results in an accumulation of
lipoproteins in the plasma membrane, which is lethal to
the cell [22]. Retention of lipoproteins in the plasma mem-
brane of Gram-negative bacteria (‘Lol avoidance’) is sig-
nalled by aspartate at position +2 in E. coli or lysine and
serine at positions +3 and +4 in Pseudomonas [23–25].
However, these sorting signals do not interfere with N-
acylation because plasma membrane retained lipoproteins
are also N-acylated [26]. In Borrelia burgdorferi there is no
Lol avoidance signal and lipoproteins are trafficked to the
outer membrane by default [27]. The first two steps of this
pathway are well conserved in prokaryotes, and lipopro-
tein biosynthesis in Gram-positive bacteria follows essen-
tially the same path (Figure 2b). However, a recent study
reported that Lsp can cleave unlipidated substrates in
Listeria monocytogenes, indicating that the pathway does
not always occur in strict sequence [28]. Likewise, cleavage
of the ScaA lipoprotein precursor at the Lsp cleavage site in
a Streptococcus agalactiae lgt mutant [29] also indicates
that Lsp could have activity towards non-lipidated pre-
cursors, at least in some Gram-positive bacteria.

Lgt is an essential enzyme in Gram-negative bacteria,
possibly because of the essential nature of murein lipopro-
tein and other outer membrane lipoproteins such as YfiO
[30], but is dispensable for growth in vitro of all Gram-
positive bacteria tested to date (see later). Intriguingly,
although lgt is present as a single gene in most bacterial
genomes, there are two putative lgt paralogues encoded in
the genomes of a limited selection of Gram-negative (e.g.
Coxiella burnetti) and Gram-positive bacteria (e.g.Bacillus
cereus ATCC10987, Clostridium perfringens and S. coeli-
color). A full list is accessible via the Pfam database entry
for Lgt at http://pfam.sanger.ac.uk/family?acc=PF01790.
The roles of these lgt paralogues remains unclear, although
paralogous Lgt enzymes might be dedicated to the proces-
sing of specific lipoproteins in a manner analogous to the
processing of specific wall-anchored proteins by substrate-
specific sortase enzymes [31]. For example, the second lgt
of B. cereus, ATCC 10987 (BCE_A0191), is notable for
being encoded on the pBc10987 plasmid and is part of a
locus including several putative lipoproteins (BCE_A0184
Lmb, BCE_A0186 ArsR and BCE_A0188).

After lipidation by Lgt, the signal peptide is cleaved
from the prolipoproteins by Lsp leaving the lipobox
cysteine at position +1. As with Lgt, Lsp is essential in
Gram-negative bacteria and dispensable for growth of
Gram-positive bacteria in vitro (see later). Likewise, most
organisms seem to only possess a single lsp, although in
some cases (e.g. L. monocytogenes, Staphylococcus epider-
midis,Nocardia farcinica) a second Lsp paralogue seems to
be present. Some separate functionality is suggested for
these Lsp paralogues: in the case of N. farcinica, the Lsp
paralogue is plasmid encoded, whereas in L. monocyto-
genes inactivation of LspA (lmo1844) did not seem to be
compensated for by the presence of the lmo1101 paralogue
[32].

One reason underlying the viability ofmutants defective
in lipoprotein biosynthetic enzymes in Gram-positive bac-
teria could be that some lipoprotein precursors retain
functionality: the PrsA lipoprotein is an essential protein
in B. subtilis and yet both lgt and lsp mutants of this
organism are viable [33,34]. Likewise, the lipoproteins
PrtM and OppA of Lactococcus lactis are needed for growth
of this organism in milk and yet an L. lactis lspmutant can
grow in milk [35].

Studies with lgt and lsp mutants have also revealed
alternative pathways for lipoprotein processing. Mutation
of lgt or lsp would be predicted to result in a build-up of
15
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precursor lipoproteins with either uncleaved but non-lipid
modified signal peptides (lgt mutants) or uncleaved, lipid
modified signal peptides (lsp mutants). Although these
phenotypes can be observed, in many cases the typical
effects of lgt or lsp mutation seem to be lipoprotein mis-
localisation and/or aberrant processing (Table S1 in the
supplementary material). Often subsets of lipoproteins
have been observed to be processed to yield ‘mature-like’
forms that can remain cell-associated or are released to the
culture supernatants (Table S1 in the supplementary
material). Indeed, several studies have now used immuno-
blotting to reveal different effects on the processing of
specific lipoproteins in the same mutant background.
The identification of the ‘mature-like’ lipoprotein forms
indicates that the build-up of lipoprotein precursors in
the membranes of lgt and lsp mutant strains could result
in alternative processing by other peptidases such as the
recently recognized Eep peptidase [36], Lsp (in Lgt mutant
backgrounds) [28,29] or type 1 signal peptidases. The
release of ‘mature-like’ forms from some lipoprotein pre-
cursors in lgt or lsp deletion mutants has been termed
‘shaving’, whereas the release of either lipoprotein precur-
sors or mature, lipidated lipoproteins can be considered as
‘shedding’ [37]. Shavingmost likely reflects protein-specific
proteolytic cleavage events becauseN-terminal sequencing
of released lipoprotein products, from both mutant and
wild-type backgrounds, shows differing cleavage positions
with respect to the N-terminal cysteine [2,29,37,38].

Finally, it should be emphasized that the accurate and
efficient processing of lipoproteins in wild-type strains is
likely to depend upon a close interaction between Lgt, Lsp
and the protein translocation machinery. In this respect, it
is relevant to note that lipoprotein processing in E. coli
requires both the Sec translocase and the YidC membrane
insertase [11]. How the lipoprotein biogenesis pathway
operates as a terminal branch of the protein translocation
path is an important area for future study (Box 1), particu-
larly because it has now been shown that lipoproteins can
translocate through both Sec and Tat. This raises the
possibility that Lgt either interacts closely with both Sec
and Tat or, alternatively, that lipoprotein signal peptides
transiently anchor preprolipoproteins (after their release
from either translocase) until they can interact with the
membrane-located lipoprotein biosynthetic enzymes.

N-acylation in Gram-positive bacteria
Chemical analyses of Braun’s lipoprotein expressed in B.
subtilis and lipoprotein preparations from Staphylococcus
Box 1. Outstanding questions

� Are Gram-positive bacterial lipoproteins cell surface or ‘periplas-

mic’ proteins (or both)?

� Is the lipoprotein biosynthesis pathway coupled to the secretion

apparatus?

� Why are there multiple Lgt enzymes in some Gram-positive

bacteria?

� What is the role of Lnt homologues in Gram-positive actinomy-

cetes?

� Which, if any, enzyme catalyses N-acylation in the absence of Lnt?

� Is the lipoprotein biosynthetic pathway a valid target for novel

antimicrobials?
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aureus are consistent with at least some N-acylation of
lipoproteins in these organisms [39,40]. However, BLAST
searches for Lnt homologues in Firmicute genomes have
failed to yield convincing candidates. Lnt homologues are
present in the sequenced genomes of actinomycetes but the
functions of these enzymes are unclear. Although the S.
coelicolor lnt (SCO1336) gene failed to rescue an E. coli lnt
depletion strain [41] there are several possible expla-
nations: the expressed protein could be inactive; it could
be unable to recognize and modify E. coli substrates or the
gene product could have an unrelated function. In fact,
there are two Lnt homologues in S. coelicolor, SCO1014
and SCO1336. SCO1014 also shows homology to a domain
associated with mycobacterial polyprenol monophospho-
mannose (PPM) synthases [42]. Notably M. tuberculosis
Ppm is a two-domain protein (Rv2051c) in which the N-
terminus is similar to Lnt and the C-terminus has PPM
synthase activity [42]. PPM is an alkali-stable sugar donor
used in the formation of the cell envelope glycolipids
lipomannan (LM) and lipoarabinomannan (LAM) in M.
tuberculosis [42]. The function of these mycobacterial
Lnt homologues might instead relate to their belonging
to the CN hydrolase enzyme superfamily rather than their
being directly orthologous to E. coli Lnt.

Role of Lgt and Lsp in virulence of Gram-positive
pathogens
The Lgt and Lsp enzymes of the lipoprotein biosynthetic
pathway are apparently unique to prokaryotes and are
potentially attractive candidates for the development of
novel antibacterials because perturbation of this pathway
should affect numerous, functionally unrelated lipopro-
teins. Unsurprisingly, given the variety of functions
attributable to lipoproteins, lgt or lsp mutations have
pleiotropic effects. For example, lgt mutants of B. subtilis
exhibit defects in cytochrome caa3 activity [43], protein
secretion [33], germination and sporulation [44–46] that
can be correlated to impaired functions of specific lipopro-
teins.

The apparent indispensability of Lgt and Lsp in Gram-
negative bacteria has precluded the study of virulence of
lipoprotein-processing mutants of Gram-negative patho-
gens. However, several studies have now addressed the
virulence of Gram-positive pathogens (Table 1). In many,
but not all cases, loss of Lgt or Lsp has led to attenuation of
immune activation or virulence either in vitro or in vivo
(animal models). Clearly, interpretation of the data on the
attenuation or virulence of Lgt or Lsp mutants needs to
take into account species and strain variation and also the
validity of the animal model(s) employed. However, two
surprising observations can be made. First, the only stu-
dies that have been carried out on virulence in the natural
host (i.e. Streptococcus equi in Welsh mountain ponies [47]
and Streptococcus suis in pigs [48]) have failed to show
attenuation of lgt or lsp mutants, respectively. The former
study [47] is particularly notable as the lgt mutant was
attenuated in amouse infectionmodel. Second, lgtmutants
of S. agalactiae [29] and Staphylococcus aureus [49] exhibit
hypervirulent phenotypes in mouse models of infection.
These phenotypes most likely reflect the failure of non-
lipidated lipoprotein precursors to elicit protective



Table 1. Phenotypes exhibited by pathogenic Gram-positive bacteria mutated in the lipoprotein biosynthetic pathway

Organism Mutated

gene

Observed phenotypesa Model Refs

Listeria

monocytogenes

lgt � Slightly lower growth rates in minimal medium � In vitro [28,53]

� Impaired intracellular growth in human epithelial

(Caco-2) and mouse fibroblast (3T3) cell lines

� In vitro

� Impaired TLR2 mediated immune activation

� Attenuation in a mouse infection model

lsp � Reduced growth and phagosomal escape within

macrophages

� In vitro [32]

� Similar intragastric growth � Mouse intragastric

� Moderately attenuated virulence � Mouse intravenous.

Mycobacterium

tuberculosis

lsp � Reduced growth in macrophages � In vitro [85]

� Attenuated virulence � Mouse aerosol and intranasal

Staphylococcus

aureus

lgt � Growth attenuation in whole human blood and in

presence of activated macrophages

� In vitro [49]

� Hypervirulent � Mouse intravenous

� Failure of Lgt mutant to activate innate immune

responses

� In vitro

lgt � Growth attenuation in nutrient limited media � In vitro [50]

� Failure of Lgt mutant to activate inflammatory

immune responses

� In vitro

lsp � Attenuated virulence � Mouse intravenous [49,86,87]

� Attenuated virulence � Signature tagged mutagenesis, multiple

mouse models

Streptococcus

agalactiae

lgt � Growth attenuation in minimal media � In vitro [29]

� Hypervirulent in mice (low dose only) � Mouse subcutaneous

� Failure of Lgt mutant to activate immune

responses via released Lpp interaction with TLR2

� In vitro

lsp � Growth attenuation in minimal media � In vitro [29]

� Failure of Lsp mutant to activate immune

responses via TLR2

� In vitro

Streptococcus equi lgt � Normal colonisation of horse organ cultures � In vitro [47]

� Attenuated virulence in mice � Mouse intranasal

� Virulence not significantly attenuated in ponies � Pony intranasal infection (natural host)

Streptococcus

pneumoniae

lgt � 5-log attenuation in survival � Mouse intranasal [88]

lsp � Attenuated virulence � Mouse co-infection models of

septicaemia (intraperitoneal) and

pneumonia (intranasal)

[89]

� Reduced survival in human blood � In vitro

� Increased sensitivity to oxidative stress � In vitro

Streptococcus suis lsp � Minor colonisation defect in tonsil but virulence

not attenuated

� Porcine intranasal co-infection (natural

host)

[48]

Streptococcus uberis lsp � Normal growth in milk � In vitro growth model relevant to

mastitis

[36]

aAbbreviations: Lpp, lipoprotein;TLR2, toll-like receptor 2.
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immune responses [49–51] possibly because of their
inability to activate Toll-like receptor 2-mediated signal-
ling [29]. By contrast, an lgt mutant of Listeria monocyto-
genes was attenuated in a mouse infection model even
though the mutant failed to activate Toll-like receptor 2-
mediated immune responses [52]. Thus, in lgt mutants
there might be a strain specific balance between effects on
immune activation and the functional compromisation
because of the loss of lipoprotein lipidation. Individual
lipoproteins could represent better prophylactic (vaccine)
or therapeutic (drug) targets than the underlying pathway
for lipoprotein biogenesis. In this respect, it is notable that
whereas the S. equi lgt mutant was still virulent in Welsh
mountain ponies, a mutant lacking the specific lipoprotein
PrtM was significantly attenuated in the same infection
model [47].

Bioinformatic prediction of lipoproteins in Gram-
positive bacteria
The sequence features that direct lipoprotein translocation
and lipidation (i.e. type II signal peptides) are highly
amenable to bioinformatic analyses, through the identifi-
cation of the well conserved cysteine-containing lipobox
[53–55]. Whole genome sequences can be searched for
matches to either the Prosite profile PS51257 or the taxon
restricted G+LPP sequence pattern (Box 2), which exhibits
improved specificity for the identification of lipoproteins
from Gram-positive bacteria [54,55]. These sequences can
be validated using a range of online tools for lipoprotein
identification. Using well-defined datasets of experimen-
tally verified lipoproteins and decoy false-positives, it was
recently demonstrated that LipoP [56] (http://
www.cbs.dtu.dk/services/LipoP/) is the best performing
single tool [55]. However, the most accurate way to analyse
putative lipoprotein sequences (either individually or
those recovered from whole genome screening) is to use
a combination of LipoP with tools that allow recognition of
their general signal peptide features (notably SignalP and
Phobius). Ambiguous sequences can be further investi-
gated using other online tools for lipoprotein identification
[55] and predictors of membrane spanning domains. These
predictors of membrane spanning domains can be useful in
17
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Box 2. Signal peptide features of Gram-positive bacterial

lipoproteins

Signal peptide features can be described using ‘pattern expressions’

written in Prosite syntax as shown in Table I. These patterns can be

used for the bioinformatic identification of bacterial lipoproteins. ‘<’

indicates the pattern is restricted to the N-terminus of the protein

and at each position thereafter the amino acids shown are either

permitted (square brackets) or prohibited (curly brackets). X is any

amino acid. Where stretches of amino acids can vary in length, the

range is indicated in parentheses. The original G+LPP pattern was

described by analysis of the signal peptide features of 33

experimentally verified lipoproteins [54]. An extended dataset of

90 experimentally verified lipoprotein signal peptides was used to

revise this pattern (G+LPPv2; [55]). The essential cysteine is

considered the +1 position and, along with amino acids at positions

�3 to �1, constitutes the ‘lipobox’. The Prosite profile P51257

(originally pattern PS00013) is based on the analysis of signal

peptides from Gram-negative and other bacteria [53] and is notably

more relaxed in the �2 and �3 positions.

Table I. Lipoprotein sequence patterns

Pattern Pattern expression

G+LPP <[MV]-X(0,13)-[RK]-{DERKQ}(6,20)-

[LIVMFESTAG]-[LVIAM]-[IVMSTAFaG]-[AG]-C

G+LPPv2 <[MV]-X(0,13)-[RK]-{DERK}(6,20)-

[LIVMFESTAGPC]-[LVIAMFTG]-[IVMSTAGCP]-[AGS]-C

PS51257b {DERK}(6)-[LIVMFWSTAG](2)-[LIVMFYSTAGCQ]-[AGS]-C
aF was incorrectly included as a permissible residue in the -2 position when the

original pattern was described [54].
bAdditional rules apply, i.e. that there must be a K or R in the first seven amino

acids and that the cysteine must appear between amino acids 15 and 35.
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defining the location of the lipobox cysteine in relation to
the putative signal peptide hydrophobic region (Figure 1).

Lipoprotein functions in Gram-positive bacteria
Bioinformatic analyses (as described earlier) have indi-
cated that lipoproteins are a relatively abundant family
of proteins, typically representing 2% or more of a Gram-
positive bacterial proteome [18,19,43,54,57]. Functional
analyses have revealed several recognisable functional
groupings of Gram-positive bacterial lipoproteins [3], with
these functions reflecting the localisation of lipoproteins
within the cell envelope and more specifically at the inter-
face between the membrane and the cell wall (Box 3). It is
beyond the scope of this article to review these in detail, but
key new observations are highlighted later.

Numerically, the most abundant functional grouping of
lipoproteins is the SBPs of ABC importer systems, which
typically represent �40% of the putative lipoproteins in
Gram-positive bacteria. Although ABC transport systems
Box 3. Lipoprotein functions

Although functionally diverse, it is clear that the Gram-positive

bacterial lipoproteins can be classified into functional groups, often

reflecting the functions of periplasmic proteins in Gram-negative

bacteria [3]. They have important roles in:

� Substrate binding for ABC transporters.

� Adhesion.

� Antibiotic, lantibiotic and bacterioicin resistance and phage

superinfection exclusion.

� Cell envelope homeostasis.

� Protein secretion, folding and localisation.

� Redox processes.

� Sensory processes, including signalling in sporulation and

germination.
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are found in all forms of cellular life, importers are only
found in bacteria and archaea and these are dependent on
an SBP to provide high affinity substrate binding and
delivery to the cognate membrane permease components
[58,59]. Thus, SBPs are vital to the specificity and direc-
tionality of ABC import systems. SBPs have been classified
into at least nine subfamilies, reflecting the broad range of
substrates transported [60–62] and make a vital contri-
bution to the ability of prokaryotes to acquire diverse
substrates from their environments. These include sugars,
siderophores, divalent metal ions, anions (such as phos-
phate and sulphate), amino acids, oligopeptides and
nucleosides. These are taken up primarily for nutrient
acquisition but the substrates transported (notably in
the case of peptide substrates) might also be important
signals for environmental sensing, for example in the
regulation of processes such as competence, quorum sen-
sing and sporulation [3,63–66]. In an intriguing interplay
between sensor and signal, it has been observed that the
oligopeptide pheremone signals of enterococci are gener-
ated from proteolytic processing of lipoprotein signal pep-
tides and taken up by lipoprotein-dependent olipopeptide
ABC permeases [66,67]. These oligopeptides are released
from the lipoprotein signal peptide by intramembrane
proteases such as Eep, most likely following the cleavage
of the signal peptide from the lipoprotein precursor by the
action of Lsp [68].

In addition to the sensing of peptides described earlier,
lipoproteins have roles in cell envelope sensing processes,
including the modulation of two-component signal trans-
duction systems [44,69,70] and the Bacillus germinant
receptors GerAC, GerBC, GerD and GerKC [46,71]. More-
over, genome analyses have consistently identified
putative lipoproteins predicted to have important roles
in cell envelope stability and cell wall cross-linking or
remodelling such as penicillin binding proteins and pepti-
doglycan hydrolases [18,54]. For example, ErfK domain
(PFAM PF03734) L,D transpeptidases were recently dis-
covered to have roles in the alternative 3–3 cross-linking of
peptidoglycan in Enterococcus faecium andM. tuberculosis
[72,73], perhaps as a way of recycling or remodelling the
peptidoglycan. Many bacterial genomes encode several
representatives of this family, a subset of which are pre-
dicted to be lipoproteins. For example, two of the four ErfK
domain proteins in the M. tuberculosis H37Rv genome are
predicted to be lipoproteins [18], as are all six encoded in
the S. coelicolor genome. Two ErfK proteins in E. coli have
also been demonstrated to cross-link Braun’s lipoprotein to
the peptidoglycan [74] and so an additional possibility is
that some members of this family are responsible for cell
wall anchoring of proteins in a manner analogous to sor-
tases [31].

Lipoproteins are also involved in the post-transloca-
tional steps in the processing of exported proteins. Several
Gram-positive members of the membrane insertase YidC
family [75] are putative lipoproteins and there are numer-
ous peptidyl-prolyl isomerase (PPIase; also termed foldase
or maturase) lipoproteins in Gram-positive bacteria in-
cluding the essential PrsA in B. subtilis [76] and FkbA
in Streptomyces anulatus (formerly Streptomyces chryso-
mallus) [77] that most likely accelerate protein folding
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outside the cell. It is notable that several of these, including
PrsA, belong to the parvulin subfamily of PPIases. How-
ever, because of sequence divergence, some representa-
tives of this subfamily might not exhibit appreciable
PPIase activity, in contrast to lipoprotein representatives
of the cyclophilin family of PPIases [77,78]. These lipopro-
tein PPIases are presumably well placed to interact with
unfolded substrates emerging from the Sec translocon and
could, thus, be important in processing virulence factors of
Gram-positive pathogens. Streptococcus pneumoniae
requires the SlrA PPIase for efficient murine colonisation
[78] whereas a putative maturase lipoprotein mutant of S.
equiwas attenuated in both a mouse model and in a native
equine host [47]. Finally, in staphylococci, the DsbA lipo-
protein is a thiol-disulphide oxidoreductase apparently
involved in disulphide bond formation in unidentified
secreted protein substrates [79].

The role of DsbA illustrates that lipoproteins are also
well placed to participate in electron transfer (redox) pro-
cesses at the membrane surface. Indeed, several Gram-
positive cytochrome c oxidase subunit II (CtaC) proteins
have been experimentally validated as lipoproteins [43], as
has the QoxA menaquinol oxidase [37]. These proteins
have additional membrane spanning domains and the role
of their lipid modification might be to appropriately orien-
tate the N-terminus. Other small cytochromes in Bacillus
(e.g. cytochrome c551) and other Gram-positive bacteria
(e.g. Heliobacterium gestii cytochrome c553) are also lipo-
proteins [54]. In addition to these structural proteins, the
B. subtilis Sco1 (YpmQ) accessory protein involved in
cytochrome c oxidase assembly is also a lipoprotein [80].
Moreover, genomic analyses have revealed several intri-
guing instances in which thioredoxin-like lipoproteins are
found in conjunction with DsbD/CcdA family proteins.
DsbD/CcdA proteins are integral membrane proteins with
roles in transferring electrons from the cytoplasm to the
outer face of the plasma membrane, typically to allow the
reduction of periplasmic or extracytoplasmic disulphide
bonds [81]. One example of this is the system II pathway
of cytochrome c maturation, which involves a DsbD/CcdA
family protein and an associated thioredoxin-like protein
(ResA inB. subtilis): these components perform an electron
relay that enables the periplasmic or extracytoplasmic
reduction of the apocytochrome c such that the prosthetic
haem group can be inserted [82]. Several cytochrome c
maturation loci have been identified in actinomycete gen-
omes wherein the ResA homologue is a putative thiore-
doxin-like lipoprotein [19]. A second example of a
potentially important electron relay is in the maintenance
of secretedmethionine sulfoxide reductase activity: several
streptococcal genomes contain an operon encoding a
secreted methionine sulfoxide reductase, a DsbD-family
protein and thioredoxin-like lipoprotein [54]. As an elec-
tron donor is needed to maintain the catalytic activity of
methionine sulfoxide reductase [83], it can be hypothesized
that the DsbD-family proteins transfer electrons across the
membrane and the thioredoxin-like lipoprotein relays the
electrons to reduce the secreted methionine sulfoxide
reductase. This pathway for electron transfer has received
experimental support from elegant studies of the periplas-
mic PilB methionine sulfoxide reductase of Neisseria
gonorrhoeae, which has a fused thioredoxin lipoprotein
domain at its N-terminus and is likewise maintained by
a cognate DsbD family protein [84]. Cumulatively, these
examples illustrate that lipoproteins are appropriately
localized to participate in cytoplasmic membrane redox
processes.

Putative lipoproteins perform a wide variety of other
predicted functions, including a diversity of enzymatic
activities. Moreover, genomic analyses reveal a consider-
able proportion (typically �30%) are conserved hypotheti-
cal proteins or hypothetical proteins of unknown function.
An important challenge of the post-genomic era will be to
assign functions to these proteins. Structural and bio-
chemical analysis of the functions of these proteins will
undoubtedly lead to a better understanding of bacterial cell
envelope physiology and, most likely, the processing of
exported proteins.

Concluding remarks and future perspectives
Our understanding of lipoprotein biogenesis has increased
greatly since the pioneering work of Wu and colleagues [1].
Studies with Gram-positive bacteria have revealed that
the basic enzymology of Lgt and Lsp are both necessary
and sufficient for correct localization of lipoproteins,
whereas the extent and significance of N-terminal acyla-
tion remains less clear. The advent of whole genome
sequencing and our increasing knowledge of bacterial cell
biology have changed the way we think about both the
Gram-positive bacterial cell envelope and about protein
export and localisation. The application of bioinformatic
tools to the analysis ofmicrobial genomes has revealed that
putative lipoproteins not only represent a notable pro-
portion (�2%) of the typical Gram-positive bacterial pro-
teome but also are notable as cell envelope proteins that
interact with membrane associated or exported proteins.
Key areas for future study (Box 1) will include the inves-
tigation of the lipoprotein biogenesis machinery as a term-
inal branch of the protein translocation pathway,
characterisation of N-acylation and the Lnt homologues
in the low and high-GC Gram-positive bacteria, respect-
ively, and the identification of essential lipoproteins as
novel drug targets in Gram-positive bacteria. It is clear
from recent discoveries, such as the translocation of lipo-
proteins through Tat, that we still have a lot to learn about
lipoprotein biogenesis and the post-translational modifi-
cation of proteins outside the bacterial cell.
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