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Stochastic Mean-Square Performance Analysis of an 
Adaptive Hammerstein Filter
Janez Jeraj, Member, IEEE, and V. John Mathews, Fellow, IEEE

Abstract—This paper presents an almost sure mean-square per­
formance analysis of an adaptive Hammerstein filter for the case 
when the measurement noise in the desired response signal is a 
martingale difference sequence. The system model consists of a se­
ries connection of a memoryless nonlinearity followed by a recur­
sive linear filter. A bound for the long-term time average of the 
squared a posteriori estimation error of the adaptive filter is de­
rived using a basic set of assumptions on the operating environ­
ment. This bound consists of two terms, one of which is propor­
tional to a parameter that depends on the step size sequences of 
the algorithm and the other that is inversely proportional to the 
maximum value of the increment process associated with the coef­
ficients of the underlying system. One consequence of this result is 
that the long-term time average of the squared a posteriori estima­
tion error can be made arbitrarily close to its minimum possible 
value when the underlying system is time-invariant.

Index Terms—Adaptive filters, convergence analysis, Hammer­
stein filter, nonlinear systems.

I. In t r o d u c t io n

r r i  HIS paper describes a theoretical performance evalua-
M tion of an adaptive algorithm employing a Hammerstein 

system model. The system model consists of a series con­
nection of a memoryless polynomial system followed by a 
recursive linear system as shown in Fig. 1. Several researchers 
have described algorithms for identifying cascade nonlinear 
models and/or analyzed their properties. Hunter and Korenberg
[1] described the use of such algorithms in analysis of bio­
logical systems. The behavior of the adaptive gradient search 
algorithms for an LNL nonlinear system (a cascade of a linear 
system, a memoryless nonlinearity and another linear system) 
was investigated in [2] and [3], The work was an extension of 
the work in [4] that considered Wiener systems (a linear system 
followed by a nonlinear system). Wiener systems were also 
considered in [5], whereas [6] and [7] considered both Wiener 
and Hammerstein systems. These works utilized system models 
with finite memory. A nonparametric algorithm to identify 
Hammerstein systems with a finite memory linear component 
was analyzed in [8], A similar model was also used in [9] with 
a different recursive algorithm and a different analysis method. 
In spite of the existence of these and related works, there are
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limited or no convergence and stability analyses for adaptive 
algorithms employing recursive nonlinear system models. In 
particular, the authors are aware of no algorithm that is known 
to converge to the global minimum of the error surface. How­
ever, there are a number of algorithms in linear adaptive HR 
filtering theory for which appropriate convergence and stability 
algorithms are available [10]—[17], and it may be possible to 
extend such results to Hammerstein models. The work in this 
paper is based on the analysis in [13], [14],

The input-output relationship of the adaptive filter is given by

d(n) =  — 5 3  ®i(r0  ' d (n  — i) +  5 3  ĵ ( n ) ' z (n  ~  j )  (1)

where bo(n) =  1, Vn, and z(n)  is the output of the memory­
less polynomial nonlinear system and is given by

L

z ( n )  =  J 2 w l (n>-l (n).  (2)

In the above equations, wi(n),  a,i(n) and bj(n) represent the 
coefficients of the adaptive filter.

A detailed derivation of the algorithm as well as experimental 
performance evaluation can be found in [18], The work in [18] 
used Lyapunov stability criterion to control the step sizes of the 
adaptive filter and to guarantee that the system operated in a 
stable manner. Experimental results presented in the paper also 
indicated that the system may converge to the global minimum 
of the error surface. The analysis of this paper shows under ap­
propriate assumptions that for sufficiently small step sizes and 
stationary operating environments, the long-term time average 
of the excess squared estimation error can be arbitrarily close to 
its minimum possible value.

The rest of this paper is organized as follows. Section II 
provides a summary of the adaptive filter, and presents some 
auxiliary lemmas and assumptions. This section also contains 
discussion of a transformation of the adaptive filter to a func­
tionally equivalent, but structurally different system. The main 
result of the paper is developed in Section III by analyzing 
the transformed system. Simulation results demonstrating the 
validity of the analysis in the paper are provided in Section IV. 
Finally, Section V contains the concluding remarks.

II. O v e r v i e w  o f  t h e  A d a p t i v e  F i l t e r  a n d  
t h e  A n a l y s i s  M o d e l

A. Adaptive Filter Structure

Given the input signal x(n)  and the desired response 
signal d(n ),  the adaptive filter updates its coefficients using
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Fig. 1. Block diagram of the adaptive Hammerstein system.

TABLE I 
The Adaptive Hammerstein Filter

Definitions

9(n)

H(«)
p(n)
x(»)

A (n) 

A (n)

small positive constant 
small positive constant such that 0 <  ft <  1

[ a i(n )  ■ • -ajv(n) 6i(n )  • • • b u in )  w i(n )  • • • w l (n) ]

[ — d(n  — 1) ■ ■ ■ — d(n — N ) z (n  — 1) • ■ • z (n  — M ) x{n) ■ ■ • x L(n) 

[ wi(n) W2(n) ...  WL(n)^jT

, bo(n) = 1
T

[ #(n) #2(n) . .. 
Kronecker product 

-a i(n )  —a 2(n) 
1 0

x  (n )

-ttiv-i(n) —ajv(n) 
0 0

0 0 ... 1
diag [ Ati(ra) ••• _

0
//i(n),... ,AAjv+M+L(n) > 0

Main Loop

e(n)

ip(n)

<t>(n)

= d(n) — HT(n) • 0(n — 1)

-d (n  — 1) • • • — d(n  — N )  z{n  — 1) • • • z (n  — M )  ^  bj (n)x(n — j)  ■ ■ ■ bj (n)xL(n — j)
j =0 j  =0

i>(n) — — 1) • <f>(n — s)

Verify th a t are such th a t ||vec [Q(n +  1)] — vec  [Q(n)] || <  1, where

vec  [Q(n + 1)] = — [AT (n) <g> AT (n) — 1*2] 1 vec[Ik] , and HT(n)A(n)<f>(n) > —5{3. If the conditions are not 

satisfied, reduce elements of A (n) so that they are fulfilled.

Q(n) ~  0 (n  — 1) +  - A (n)<p(n)
6  +  H T (n)A(n)</>(n) 

z(n ) = p T(n) • x (n ) 

d(n) = H T (n) ■ 6 (n)

■e(n)

a stochastic gradient algorithm in an attempt to reduce 
E[(d(n) — d (n ))2] after each iteration. The algorithm for 
adapting these coefficients is given in Table I.

We can rewrite (1) in operator notation as

d(n ) =  (3)

where
A(n,  g_1) =  1 +  a1(n)q~1 + -----h aN(n)q~N (4)
B(n,  g_1) =  1 +  6i(n)g-1 H-------h bM(n)q~M (5)

and q~x represents the unit delay operator. Let 
0(n) =  [ai(n) • • • ajy(n) &i(n) • • • &m(^)

wi(n)  • • • wL(n)]T (6)
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Then, (1) can be rewritten using vector notation as

with bo(n) = 1 and let

d(n) =  0 (n) ■ H(ri). (8)

The following reformulation of the output equation will find 
use later in the analysis. Let us define the vectors 0c(n), H c(n), 
p(n) and x(n) as

0c(n) = o,i (n) a j^ ( n )b i ( n ) p T (n — 1)

2 L

&m(«)PT (« — M )  p T (n) 0 • • • 0

H c(n) =

2L '

p(n) =  [ix>i(n) w 2(n) . . .  w L(n)\ 
and
x(n)  = \x{n) x 2(n) . . .  x L (n)]T

d{n) =  0C (n) ■ H c(n).

0(n) =  0 (n  — 1) +
8 +  H T (n)A(n)<f>(n)

;(n)

e(n) =  d(n) — H T (n)0(n)

=  d{n) — H T(n) < 0{n — 1) +

6

6 +  U T (n)A(n)<j>(n) 

Using (17) in (14) gives us

1

B. Analysis Model

We assume that the adaptive filter is operating in the system 
identification mode and that the system model matches the un­
known system exactly or overmodels it. The input-output rela­
tionship of the plant is given by

=  - J 2  a,i(n) ■ d(n — i) +  ^   ̂bj:(r?,) ■ z (n — j ) (19)

where z(n)  is the output of a memoryless polynomial nonlinear 
system

with

z(ri) =  p  T (n)x(n)

w L(n)}J

(20)

(21)
(9)

(10)

(11)

(12)

and bo(n) =  1. The desired response signal is a noisy version 
of the output of the unknown system, and is given by

d(n) =  d(n) +  v(n)  (22)

as shown in the Fig. 1. In the above equation, v{n)  is an additive 
noise sequence that is uncorrelated with the input signal. We, 
thus, assume the following model for the unknown system:

—rTz (n )

where

respectively. It is straightforward to show that d(n) can be 
equivalently written as

(n,q  x)

which gives us

n, q x) =  1 +  b i(n )q  1 H------- h bM (n)q  M

(13)

The need for additional zeros in the definitions of 0c(n) and 
H c (n) will become clear later in the analysis.

The algorithm updates the parameters of the adaptive filter as

d ( n ) = 0 ^ ( n ) - U c(n)

where

0c(n) =  [a\(n) ■ ■ • a x( n)  b i (n)pT (n — 1)

b M (n )p T (n  -

2 L

p (n) 0 • • • 0]
and

(14)

where e(n )  =  d (n)  — 0 (n — l)H (n ) denotes the a 
priori estimation error of the system and A (n) is a di­
agonal matrix with positive step sizes on the diagonal 
A (n) =  diag[/xi(n),/i2(n), • • • Mw+m+l(«)]- The a pos­
teriori estimation error e(n) can be manipulated as

(n — \ n )  0--^0]'

(23)

(24)
(25)

(26)

(27)

(28)

(15)
A(n)<j>(n)e(n) 1 

8 +  H T(n)A(n)^(n) J
(16)

(17)

C. A Transformation of the Adaptive Filter

In order to analyze the algorithm, we transform the equations 
into an equivalent, but different structural form. For this, we first 
add 2L  zeros to the vectors 0{n), 0(n — 1) and 4>{n) in (18) to 
get

0e(n) =  0e(n -  1) +  A e(n)<f>c(n)e(n) (29)

0(n) =  0(n — 1) +  -A(n)4>(n)e(n).  (18)
8

2 L  2 L

where 6C (n) =  [0 (n) (T—~0], =  [ ^ { n )  (T— 0]
and A e(n) is an (7V +M +3-L)x(iV +M +3-JL)-element matrix 
defined as shown in (30) at the bottom of the next page. The 
expanded “step size” matrix A e(n) contains zeroes in the last 
2L  rows, and ( N  +  M  +  L)2L  nonzero terms Pij(n)  in the off 
diagonal entries as shown in (30). The P i yi ( n )  terms are placed
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in the first through ( N + M +L)throws of the ( N + M + L +  l)th 
through ( N  +  M  +  3L)th columns. The new elements Pi,i{n) 
are placed at locations such that when A e(n) is multiplied with 
<j>e{n), the zero entries of <j>e{n) cancel the Pi.iin)’s. Thus, the 
choice of these variables does not affect the update equation.

It is straightforward to show that there exist vectors 0r2( n - l )  
and Hd(n) such that

A e(n)4>e{n)e(n) =  A e{n)0r2( n - l ) + A e(n)YLd(n)e(n) (31)
for any e{n) which also includes e{n) =  0. We only note at this 
time that there are more variables in the two vectors than there 
are equations, and therefore a multitude of solutions exists for 
them. Appendix I contains further discussions on choosing these 
and other parameters employed in the analysis. Employing (31) 
in (29), we get

0e(n) =  0e(n -  1) +  A e(n)0r2(n -  1)
+ A e(n )H d(n)e(n). (32)

Next, we multiply both sides of the (N  +  l)th  through the (N  +  
M )th entries of (32) w ithp(n —1) , . . . ,  p(n  — M ) ,  respectively, 
to obtain

' a\(n)  ' ' a\ (n  — 1) "

 ̂ ai \(n) \ { n  — 1)
&i(n)p(n -  1) &i(n — l)p(n  — 2)

bM (n)p(n -  M )
—

bM (n -  l )p (’« — M  -  1)
p(n) p(n -  1)

0 0

_ 0 . . 0 _

+  0r (n  -  1) +  A c(n )0 r2c(n  -  1)
(33)+  A c(n)H dc(n)e(n) 

where 0r (n — 1) is defined as

0r (n  — 1) =

2L

(34)

and 0r2c(n — 1) and Hdc(n) are vectors that result when we 
multiply the (N  +  l)th  through the ( N  +  M ) th entries of 
0r2(n — 1) and with p (n  — 1) , . . . ,  p (n  — M ), respec­
tively. The (N  +  M L  +  3 • L) x (N  +  M L  +  3 • L)-element 
matrix Ac(n) has a similar interpretation. It is obtained by 
replacing //jv+i(n)  through p,j\r+M(n) with (L  x £)-element 
diagonal matrices n ^ +2(n ) I , . . . ,  ^jv+m (^)I, re­
spectively. Also, each element PN+i,i(n) through PN+M;2L{n) 
of the matrix A e(n) is replaced by an (L x l)-ele- 
ment column vector [pN+i,i{n) ■ ■ ■ PAr+ i:i(n )]T through 
[pN+M.2L(n) ■ ■ ■ PN+M,2L{n)]T , respectively. Recognizing 
that the left-hand side (LHS) of (33) is 0c(n) defined in (9), we 
can write this equation more compactly as

0c(n) =  0c{n  — 1) +  0r (n  — 1)
+ A c(n)0r2c(n -  1) +  A c( n ) h dc(n)e(n). (35)

Recall that the adaptive filter is composed of a polynomial with 
L coefficients and an IIR system with a denominator and numer­
ator having N  and M  taps, respectively. With the above trans­
formation, we expanded (18) from an (TV +  M  +  L) x 1-di­
mensional equation to a vector (35) with ( N  +  M  ■ L  +  3 ■ L) 
dimensions. Let 7 be a positive, finite constant of our choice. It 
can be shown that we can choose the “new” entries of A c(n), 
and the vectors 0r2c(n — 1) and H dc(n) such that the following 
equality is satisfied in addition to the equality in (31):

A c(n)0r2c(n -  1) +  A c(n )H dc(n)e(n)

=  —9r (n — 1) +  7 H c(n)e(n). (36)

An outline of the arguments leading to this conclusion is pro­
vided in Appendix I. Even though (36) contains variables that 
are not present in the original algorithm, the components of (36) 
that correspond to the original adaptive filter have not changed 
in any way. Therefore, we can prove the bound on our original 
algorithm, where A (n) is a diagonal matrix with positive step 
sizes on the diagonal, by proving the bound on the algorithm 
obtained by substituting (36) in (35), which is given by

0c{n) =  0c{n — 1) +  0r (n — 1)

- f l r ( r a - l ) + 7H c(n)e(n) (37)
=  0c(n -  1) +  7 H c(n)e(n). (38)

The calculations in Appendix I show that for an algorithm given 
by (18), an algorithm of the form (38) can always be obtained 
such that the equivalent coefficients of both algorithms have

> 1  (n) 0

0 ••• 

0 • ■ •

f iN {n) 0 ••• 

0 fj,N+1(n) 0 

: 0

Pn , i ( ’«)

PN+i,i(n)

0 p,N+M+L{n) Pn +M+L, i(n)

PifiL{n)

PN,2L(n) 

PN + l,2L(n)

■ PN+M + L,2h{n)
■ 0

(30)
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the same evolution. With the equivalent evolution of the corre­
sponding coefficients, the output d(n) is the same whether ob­
tained from (18) or (38). According to the definitions of 9c(n), 
H c( n) and 6{n), H (n), we can then see that the a posteriori 
error e(n) =  d(n) — 6C (« )H c(n) =  d(n) — 6 (n)H (n) is the 
same for both algorithms.

D. Assumptions

To complete our analysis, we need the following definitions 
and assumptions. The definitions are included here for the sake 
of completeness.

Definition 1 (p. 30 [19]): Let {Yn,n  > 1} be a stochastic 
sequence and {!Fn.n  > 1} an increasing1 sequence of a  fields 
with T n C  T  for each n > 1. If Yn is T n measurable for each 
n > 1, the cr fields { T n,ri > 1} are said to be adapted to the 
sequence {Yn,n  > 1} and {Yn, F n,n  > 1} is said to be an 
adapted stochastic sequence.

Definition 2 ([19]): If \Y n,T n,n  > 1} is an adapted sto­
chastic sequence with

| F n- i \  =  0 (a.s.) for each n > 2

— T\ > e] —*■ 0 as n

|ar(n) | < cx , Vn > 0 
\v{n)\ <  c„, Vn > 0.

IlflcWII < ("s

A (n) =  9c(n) — 9c(n — 1)

denote the increment process associated with the un­
known system. There exists a A, where 0 < A < 1, and 
a constant a  such that for all fc,

^ A fc- | |A ( n ) | |2 < a . (46)

A4) Operator A (k ,q  x) is input strictly passive [16], [20]
i.e., there exists a positive constant k0 such that

^ 2 u (k)[A(n, q 1)u(k)] >  kq u2(k) (47)

(39)

{Yn, T n,n  >  1} is called a martingale difference sequence.
Definition 3 (p. 10 [19]): Let {Tn,n  >  1} and T  be random 

variables. Then Tn is said to converge in probability to T  [19] 
if

(40)

for all e > 0. The sequence Tn is said to converge almost surely 
(a.s.) to T  if

(41)

Almost sure convergence is denoted by Tn ~^>T (a.s.).
Let C( .) denote generic, finite, and positive numbers. We now 

enumerate the basic assumptions (A1-A5) employed to make 
this analysis feasible.

A l) Both the persistently exciting input signal x{n)  and the 
noise v{n)  are bounded sequences such that

(42)
(43)

A2) i) The coefficients of the unknown system are bounded 
from above such that

(44)

ii) TV, M ,  the orders of the polynomial A(n,  (/-1 ), and 
B(n,  q- 1 ), respectively, are constant, finite, and 
known.

iii) The unknown system (19) is exponentially BIBO 
stable.

A3) Let

(45)

A sequence x 2, ■ ■ •} for which Xi C Xj if i <  j .  Note that { T n , n >  
1 j  is a sequence of a  fields (i.e., sigma algebra) on fi and for each n, T n is 
generated by {!';,() < * < «  — ! ) .  Then it is true that T n- i  C T n,

for any real sequence { u ( k ) } , k  > 0. This assump­
tion is a time-varying version of the well known strictly 
positive real condition in the case of the time varying 
operators. The parameter ko is independent of the signal 
u(n).  It only depends on the properties of A ( n ,q ~ 1). 

A5) The noise {v{ri)}  is a martingale difference sequence,
i.e., E[u(n +  1) | F„] =  0 almost surely (a.s.), and sat­
isfies

supi? [|i/(n +  l ) |6a |F„] < oo (a.s.) for some#,, > 2 (48)
n

and
^  m

lim — ^ 2  v 2{n) =  a 2 (a.s.). (49)

In addition, {^(n)} is independent of {0(n)} and 
{x(n)} .  In the discussion here, Fn is the a-algebra 
generated by {i'(O), 1̂ (1), ■ • ■, v(n)}.

III. M a in  R e s u l t  

We start by rewriting (38) as

9c(n -  1) =  9c{n)  -  7 H c(n)e(n). (50)

Subtracting 9c(n — 1) from both sides, we get

0c(n -  1) -  0c(n -  1)
=  9c(n) -  9c(n) +  9c(n) -  9c(n -  1) -  7H c(n)c(n) (51)

giving

9c(n — 1) =  ffc(n) +  A  (n) — 7 H  c(n)e(n) (52)

where A (n) was defined in (45) and

0c(n) =  9c(n) -  9c(n). (53)

Premultiplying both sides of (52) with their respective trans­
poses gives

+ 27#c ( n ) i l c(n)e(n) -  A (n) -  7H c(n) • e(n) . (54)

Since ||A (n) — 7H c(n) • e(n) ||2 is nonnegative, we can drop 
this term from the right-hand side (RHS) of (54) to get

||?c(n)||2 <| | f l c( n - l ) | | 2 - 2^ ( n ) A ( n )

+ 279C (n)H c(r?,)e(r?,). (55)
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Let e(n) =  s(n)-\-v(n). Substituting this for e(n) and replacing
20C (n)A(n)  with 2||0c(n) | | | |A(n) | |  in (55) gives

|0c(n)||2 < II0c(n - ■2||0c(ra)||||A(7

It is shown in Appendix II that [13]

9C (n) • H c(n) =  - A ( n , q~1)s(n).  (57)

Substituting the above result in (56) gives

- 2 j s ( n )  [A(n, g- 1)s(rt)] +  2'yOc (n )H c(n)iy(n). (58)

Let T (n) be an (N  +  M  ■ L  +  ; 
matrix defined as

0
0

0 
0

-02Lxi

0

p(n - 1) 
0

0

p(n — 2) 0

+  M  +  L) -element

0 p ( n  —
. . .  0

Direct multiplications will show that

0c(n) =  T  (n)ff(n),  

H c(n) =  Y(n)H(n)

0
I  L x L  
02Lxl -1

(59)

(60)

(61)

and that

H r ( n )  =  H ^ ( n ) t ( n ) . (62)

Premultiplying both sides of (14) with T  (n) and simplifying 
using (60) and the definition of 0r (n — 1) from (34) results in

# , ( . )  =  # , ( .  - 1 )  +  « , . ( » - 1 )  +  4 « L t (» ) .
8 +  U T (n)A(n)<j>(n)

(63)

Subtracting 6c(n) from both sides of (63) gives

ffc(n) =  0c(n — 1) +  9r (n — 1) — A  (n)

T ( n ) A ( n ) 0 ( n )
e(n). (64)

S +  U T (n)A(n)(t>(n) 

Next we use (64) in (58) to get

+  0Tr (n -  1)) • H c(n)v(n)

H j f  ( n ) T ( r ? , ) A ( n ) 0 ( n )
■27 -

8 +  H T {n)A(n)<j>(n)
e(n)v{ri).  (65)

Using (62), we can write

i l T (n)A(n)(f>(n) =  H j(ri)T ('« )A (n )^(n ). (66) 

Using (66) in (65) we get

\\9c( n ) r  ^
<||flc(n-l)||2 + 2||flc(n)||||AHII^

+  9r (n  — 1)^ • H c(n )v (n ) — 2 7 A T ( n ) H c (n )i^ (n )  

H T (n)A(?7,)i^(?7,)
27

8 +  H T ( n ) A ( n ) ^ ( n )
e(n)v(n). (67)

Let us now present the Martingale limit theorem [19].
Theorem 1 (Martingale Limit Theorem [19]): Let assump­

tion A5 hold, and let f ( n  — 1) b e a n F „ _ i  measurable sequence. 
Then

X ] f ( n ~ l )v (n)

53  f 2( n  ~  X) I + 1 (a.s.) (68)
1=1

where the symbols o( •) and 0 ( 0  denote the “order of the 
magnitude.”

For f ( n  — 1) to be Fn- 1 measurable, we require that f ( n  — 1) 
canbeonly a function of i'(fc), where fc < n. In more lax words, 
Fn- 1 measurability implies that f ( n  — 1) is a nonanticipative 
function of a signal is(n).

Let g be a positive function. The concepts of /  =  o (g) and 
/ = O(ff) are defined as follows [21],

Definition 4: Function /  is said to be of lower order than g 
in the neighborhood of x  =  xq if

(69)

We use the notation f  =  °(g) to represent this relationship. The 
statement /  =  o(l) is equivalent to /  —*■ 0.

Definition 5: We say that /  is of the order of g on a set S  if 
there is a positive number cb such that

9{x)
<  cb if x  € S. (70)

This is denoted by /  =  0 ( g ) .  Stating “/  =  0 (1 )  011 S ” is 
the same as saying that “/  is bounded on S.” Clearly, /  =  o(g) 
implies, and is stronger than /  =  Q(g )  [21],

Since the step size sequence satisfies the Lyapunov con­
ditions for stability of the system [18], 9(n) and d(n) are 
bounded sequences. Bounded d(n) implies that H (n) is 
also bounded. Let c~ and c^ denote the upper bounds of

9c(n)|| =  y  9C (n)9c(n), and ||Hc(rt)||, respectively, i.e.,

IlffcWII < cr9 (71) 

||H c(rO|| < ch . (72)
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Theorem 2: Let assumptions A1-A5 hold. Then

lim sup — (d(n) — d{n) — u(n))2
m  —► oo 777, '

n —0

2 , 2 ' 
H  c(n)= °  ( ^ E  I i f ^ a ~  ^  +  0r( 'n -  1

=  o(m) (a.s.)

where we have used the Cauchy-Schwartz inequality 

(j' (%(n -  1) +  0 r ( n ~  1)) H c(n)

< [0C (n — 1) +  0r (n — 1)) • H c(n) (76)

H c( n) are finite, and because A ( n —l , q  1) is guaranteed to be 
stable by our algorithm. By Assumption A5, A (n )  is indepen­
dent of v{n).  It follows that A T(n )H c(«) is Fn_i measurable, 
and by application of Theorem 1 to this sequence gives

Cr 1
< a —-— |- c,\— a  (a.s.) (73)

7K0 K0

where kq is a parameter from Assumption A4, while a  was 
introduced in Assumption A3 and c \  is a bound such that 
|(H r (n)A (n)$(n))/(6  +  f l T (n)A(n)<j>(n))\ <  c \ .  Algo­
rithm requires that —6ft < t l T (n)A(n)<f>(n), where 6 is a 
small positive constant and 0 < (3 < 1.

Proof: Summing both sides of (67) from n =  1 to rri, it 
follows that

A T (n)H c(n)z/(?7,

C
m

£  (A T(n)Hc(n))‘J +

(  m n 2= ° E aTm HcW (a.s.). (77)

Note that by Assumption A3, || A (n)|| is finite for all n >  0. 
Since ||H c(rt)|| is bounded, (77) yields

|0c(to) ||2 +  27 s(n )[A (n , q 1).s(n)]

m m
/-~-T

+  2 £  | |flc(n)| | | |A(n)| |  +  27 J ]  (°c (n ~  1)

m
+ 0 r (n -  1)) H c(n)i>(n) -  2-f ^  A r (n )H c(n)^(n)

(74)

=  o(m) (a.s.). (78)

Similar calculations on the last term of (74) gives the following 
result:

H t  (n)A(n)<l>(n)

^ ,1 S +  H T (n)A(n)4»(n)

Note that (0C ( n —l)  +  6r (n — l ) )H c(n) is independent of v(n)  
and Fn- \  measurable. Then from Theorem 1 we have

m
(®C (n ~ 1 )  +  0r(n -  ! ) )  H c ( n ) i / ( n )

/  rn

= ° ( E + - !)) 0C(

E H T (ri)A(n)&(n)
S +  H T (n)A(n)^>(n^

H t  (n)A(n)<f>(n)

('ft)^(r

- H j ( n ) 0 c(n -  1)) //(n)

(n) +  ^(n)

H T(n)A(n)<^(n)
d(n)v{i

+ E H T(rt)A(n)0(rt)

m

-E

is(n)v(n)

H r (n)A (n)^(n) , ~ T

m

< ca X ]  ,y2(n ) +  °(w ) (a.s.).

H j (n)0c(n -  1)) v(n)  

(79)

(75)
Note that A(n), which is directly related to 7 as 
aforementioned, is chosen at time instant n, but inde­
pendently of the value of v(n).  We obtained the result 
in (79) applying similar procedures as used to obtain 
(75) and (78). We only comment here on the term 
E r = i ( H r ('''0A ('™)^('™))/(^ +  i i T {n)A(n)4>(n))v{n)v(n).
It is obvious that

E
and the fact that ||(0C (n — 1) +  0r (n — 1))|| and ||H c(n)|| are 
bounded for all n >  0. This is true since 9c(n — 1), 6r (n — 1),

i l T (n)A(n)<j>(n)

^  t) +  H T(n)A(n)</>(n
rn

s _ E

■v(n)i>(n)

H T(n)A (rt)0 (rt)
6 +  H T(n) A (n)<j>(n)

v 2(n).  (80)
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Since the algorithm requires that H T (n)A(n)<^(n) > —6/3, and 
H T(n), A( n) and <j>(n) are all finite due to the algorithm, we 
can introduce a positive bound c \  such that

H T(n)A (n)0(n)
6 + t i T (n)A(n)<j>(n) 

Using (81) we have

H T(n)A (n)0(n)

(81)

£ (n) < cA ^  v 2{n). (82)

By Assumption A3, 
(71)], we have

IV. S im u l a t io n  R e s u l t s

In this section, we present the results of a simulation exper­
iment conducted to demonstrate the global convergence capa­
bilities of the adaptive filter analyzed in this paper. The adaptive 
filter was employed in the system identification mode in the sim­
ulations. An unknown Hammerstein system composed of the 
memoryless nonlinearity with an input-output relationship

z(n) =  0.1 x(n) -  0.075.T2(n) +  0.05.T3(n) (87) 

and a linear component with the transfer function

||A(ri)|| < a.  Since ||0c(n)|| < cr [see 0.25
1 -  OAz 0.2z

(88)

£ iî w i | A(r < CYC~rn.

Using (75), (78), (79), and (83), (74) simplifies to 

||0c(m

(83)

,q )s(n) < \\6C+ 27 E  s(n)
1

m
+ 2acjjm +  2'jc\  ^  v 2(n) +  0(777,). (84)

Using Assumption A4, (84) becomes

was identified using the adaptive filter. The parameters of both 
the linear and the nonlinear part were time-invariant in this sim­
ulation example. The linear system H{z)  is a strictly positive 
real (SPR) [20], [22] and satisfies the constraint (47) with k0 =  
0.7. The desired response signal d{n) of the adaptive filter was 
obtained by corrupting the output of the unknown system with 
additive white noise with zero mean value and variance 0.0166, 
such that output SNR was 20 dB. The input signal x(n)  of the 
adaptive filter was generated by filtering a Gaussian signal with 
zero mean value and unit variance with the filter

(89)

||0C(m )||2 +  2 7 K0 $2(n)  <  ||0C(O) | | 2 +  2acjjrri

m
+  2jca ^  p2{n) +  o (m). (85)

Dividing the entire (85) by 27/torn and taking the limit as m  
goes toward infinity, we have

1 m j  „ \ 2
lim sup — yd(n) — d(n) — v{n ) j

Cr- 1
<  a — — + cA — ct2 (a.s.). (86) 

7 K0 Ko

This proves Theorem 2.
ca depends on A(n) and can be made arbitrarily small. 

Assuming that the underlying system is time-invariant (i.e., 
a =  0), Theorem 2 implies that the long-term time average of 
the square of the a posteriori excess estimation error can be 
arbitrarily close to zero. That is, the system can approach the 
global minimum of the performance surface with arbitrarily 
small error. As one would expect the long-term average of the 
squared error contributed by the variations of the parameters of 
the underlying time-varying system depends on the strength of 
coefficient increment process (a), and is inversely proportional 
to the step sizes in A (rt).

The adaptive filter was implemented with the time-varying step 
size of the recursive component of the linear subsystem to be 
the maximum of fi =  10~3 or the bound suggested by the 
condition in ||vec[Q(n +  1)] — vec[Q(n)]|| < 1, and the step 
sizes for the coefficients of the first, second and third order 
terms of the polynomial subsystem were constant and equal to 
10-3 , 5 • 10-4 and 10-4 , respectively. The step-sizes corre­
sponding to the linear part were time-varying so that the sta­
bility of the HR filter was assured according to the condition 
||vec[Q(n +  1)] — vec[[Q(n)]|| < 1. The step-sizes corre­
sponding to the nonlinear part can be time-varying as well as 
long as they are small enough to ensure stability. However, un­
like the recursive part of the linear subsystem, stability of the 
adaptation process does not require a time varying step size. 
Because of this, we chose to use a fixed step size for all com­
ponents other than the step sizes associated with the feedback 
coefficients of the linear subsystem. The parameter 6 was set to 
10-3 and ft to 0.99. The system was initialized with poles of 
the linear subsystem at the origin, and the initial values of poly­
nomial coefficients at zero. The coefficient bo(n) was set to 1 
and was not changed throughout the simulation. This ensured 
the uniqueness of the solution. Two hundred independent ex­
periments using 50 000 data samples each were conducted. The 
results presented are average values over these 200 experiments.

Fig. 2 shows the evolution of the excess mean-square error 
(MSE) in the simulations. Our algorithm operates in a stable 
manner as predicted by the theoretical derivations. We can see
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Fig. 2. Excess MSE of the adaptive filter employed in simulations.

from these results that the algorithm works reasonably well in 
this set of experiments.

It is difficult to obtain a tight bound for the LHS of (81) for 
small step sizes. Consequently we do not attempt to provide a 
comparison of the theoretical bound in (73) with simulation re­
sults. However the simulation results provide additional demon­
stration of the global convergence result implied by the theorem. 
To see this, we evaluated the long-term time average excess 
squared a posteriori error for each run over the last 15 000 sam­
ples. By only computing the averages over the last 15 000 sam­
ples, we eliminated the effect of the initial excess errors from 
the calculations. This would be also the case if we averaged 
over an arbitrarily large number of samples. The mean value of 
these 200 time averages was 8.75 • 10“ 5. The largest value of the 
time averaged a posteriori excess squared error was 1.26 • 10-4 . 
These results indicate that the adaptive filter converged to loca­
tions that are close to the global minimum of the error surface 
in each of the runs, again validating the theoretical derivations 
in the paper.

We have evaluated the algorithm of this paper in a large 
number of synthetic scenarios, including those employing 
random initialization of the coefficients. The method provided 
good performance in terms of stable operation and global con­
vergence in each case as predicted by the theoretical derivations.

V. C o n c l u d in g  R e m a r k s

A theoretical treatment of a recursive nonlinear adaptive filter 
developed in [18] was given in this paper. The convergence be­
havior of this algorithm was studied in a stochastic framework in 
a nonstationary environment, and in the presence of a possibly 
colored and nonstationary measurement noise that is a martin­
gale difference sequence. Using the martingale limit theorem, 
we showed that the global minimum on the error surface of our 
adaptive Hammerstein filter can be achieved with arbitrary pre­
cision when the rate of change of the parameters of the under­
lying plant is zero. The adaptive system analyzed in this paper 
does not account for the Gram-Schmidt orthogonalization of the 
input signal as done in [18]. Extension of the analysis to this case 
is straightforward [23].

A p p e n d ix  I 
P r o o f  o f  (31) a n d  (36)

Proof: We will choose the variables p i j  (n) in such a way 
that Ac(n)^r2c(^ — 1) =  —0r (n — 1) and Ac(n)H^c(n) =  
7 H c(n). The proof consists of two parts.

1) In the first part we show that there are at least as many 
variables Pi j(n)  as there are equations that we need to 
solve to establish (36).

2) In the second part, we show how (31) and (36) are 
satisfied by appropriate selection of the vector H^(n), 
and appropriate choice of the variables pi j (n) .

The calculations described below are not done in the implemen­
tation of the algorithm, but rather serve as a proof that for any 
algorithm (18) there exists an algorithm (38). Since equivalent 
coefficients of (18) and (38) evolve in an identical manner, the 
a posteriori errors of the two algorithms also evolve in the same 
way, implying that analyzing (38) is equivalent to analyzing 
(IB).

The dimension of the step size matrix A (n) is (N  +  M  +  
L ) x (N  +  M  +  L), and therefore has (N  +  M  +  L) nonzero 
step sizes Hi(n). On the other hand, A c(n) is an ( N  +  M L  +  
3L) x (N  +  M L  +  3L)-element matrix which has the same 
(N  +  M  +  L) step size entries fii(n) along the diagonal and 
an additional 2 • L • {N  +  M  +  L) variables Pi j(n)  that are 
off-diagonal. Having 2 • L • (N  +  M  +  L) variables pi j (n) ,  
and the total number of 2 • (AT/2 +  M  • L +  3 • L) equations, 
the latter can be satisfied as long as L > 3, since for this case
2 • L • {N  +  M  +  L) > 2 • (TV/ 2 +  M  • L +  3 • L ) . We can make 
this proof valid for L > 1 by adding another L l column(s) 
to matrix Ac(n) so that (TV +  M  +  L) • (2L +  L l ), the new 
number of unknown variables Pi j(n)  is larger than the number 
of equations that must be satisfied.

In the second part, we show how (31) may be satisfied. Even 
though we do not know e(n), choosing the vectors 0r2(n — 1) 
andH  d(n) in (31) is always possible. One approach is to choose 
the first N  entries of H^(n) to be identical to the first N  entries 
of 4>e(n). This makes the first N  elements of vector 0r2(n — 1) 
zero. For the rest of the elements of the vector H^(n), we only 
need to maintain H d(n) /  <f>e(n) implying that the rest of the 
elements of 0r2 (n — 1) are not zero. In particular, it is important 
that the last 2L elements of H^(n) and 0r2(n — 1) are not zero.

Finally, since we have more free variables Pi j(n)  than there 
are equations, we can simultaneously solve for Pij (n)  in the 
equations A c(n)^r2c(^—1) =  — 0r (n— 1) and Ac(n)H^c(n) =  
7H c(n) to satisfy (36). This completes the proof. ■

A p p e n d ix  II 
P r o o f  o f  (57)

Proof: Note that e(n) = s(n) +  u(n) =  d(n) — 
H t  (n)0(n) and

n, q  )s(n) = (n,q  )^  re(n) -  v(n)\

d(n) — d(n) — vin)  

_1M (n)

— A(n,q  1)^ (n ) . (90)
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By using (20), (22), and (23), we have

+  A(n,  (/- 1 )/y(n). (91)

Combining (24), (90), and (91) gives

A(n, q~1)s(n)
-1

=  0jT(n)Hc(n) — d(n)

=  e ^ ( n ) U c ( 7i ) - f c ( n ) I l c ( n )

= -0 C (n)Hc(n). (92)
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