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Abstract— Inverse scattering algorithms for reconstructing the 
physical properties of sea ice from scattered electromagnetic field 
data are presented. The development of these algorithms has 
advanced the theory of remote sensing, particularly in the mi­
crowave region, and has the potential to form the basis for a new 
generation of techniques for recovering sea ice properties, such 
as ice thickness, a parameter of geophysical and climatological 
importance. Moreover, the analysis underlying the algorithms 
has led to significant advances in the mathematical theory of 
inverse problems. In particular, the principal results include the 
following.

1) Inverse algorithms for reconstructing the complex per­
mittivity in the Helmholtz equation in one and higher
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dimensions, based on layer stripping and nonlinear opti­
mization, have been obtained and successfully applied to a 
(lossless) laboratory system. In one dimension, causality has 
been imposed to obtain stability of the solution and layer 
thicknesses can be obtained from the recovered dielectric 
profile, or directly from the reflection data through a 
nonlinear generalization of the Paley-Wiener theorem in 
Fourier analysis.

2) When the wavelength is much larger than the microstruc­
tural scale, the above algorithms reconstruct a profile of the 
effective complex permittivity of the sea ice, a composite of 
pure ice with random brine and air inclusions. A theory 
of inverse homogenization has been developed, which in 
this quasistatic regime, further inverts the reconstructed 
permittivities for microstructural information beyond the 
resolution of the wave. Rigorous bounds on brine volume 
and inclusion separation for a given value of the effective 
complex permittivity have been obtained as well as an 
accurate algorithm for reconstructing the brine volume 
from a set of values.

3) Inverse algorithms designed to recover sea ice 
thickness have been developed. A coupled radiative 
transfer—thermodynamic sea ice inverse model has 
accurately reconstructed the growth of a thin, artificial sea 
ice sheet from time-series electromagnetic scattering data. 
Inversions for sea ice thickness have also been obtained 
through the application of neural networks to an analytic 
wave theory model, a reflectivity inversion scheme, and 
the use of proxy indicators. The role of neural networks 
in sea ice classification is also considered.

It is anticipated that the broad-ranging advances in inverse scat­
tering theory presented here may find application to closely re­
lated problems, such as medical imaging, geophysical exploration, 
and nondestructive testing of materials as well as generating new 
techniques for remotely reconstructing sea ice parameters.

Index Terms— Dielectric materials, electromagnetic scattering 
by random media, electromagnetic scattering inverse problems, 
nonhomogeneous media, remote sensing, sea ice, snow.

I. INTRODUCTION

A. Sea Ice Rem ote Sensing and Electromagnetic  
Inverse Scattering

IN SEA ice rem ote sensing, observations o f electrom agnetic 
fields scattered or em itted by sea ice are used to characterize 

the physical state and dynam ics of the sea ice pack. Large- 
scale inform ation obtained in this way is im portant for our 
understanding o f global clim ate and the w orld ocean system 
and for conducting operations in the polar regions. Realizing 
the potential o f rem ote-sensing techniques depends on the 
developm ent o f theoretical, as well as practical, m ethods of 
inverting observed electrom agnetic data to obtain inform ation
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on sea ice. W hile there is a substantial body o f existing 
w ork on forw ard m odeling o f electrom agnetic scattering and 
propagation in sea ice [107], nevertheless, the application of 
forw ard theory to the inversion o f sea ice param eters has been 
som ewhat em pirical and ad hoc. In the forward, or direct, prob­
lem, the electrom agnetic scattering properties o f a m ultilayer 
random  medium, such as the sea ice system, are calculated 
based on know ledge of its local com plex perm ittivity t(x ) ,  
which takes a wide range of values in the principal constituents 
o f the sea ice system : pure ice, air, brine, and sea water. In the 
corresponding inverse problem , we wish to obtain inform ation 
about e(x) and the sea ice characteristics from  knowledge 
o f the far-field scattering properties. E lectrom agnetic inverse 
scattering theory [13], [22], [48], [54] has been developed 
to address the fundam ental problem  o f reconstructing the 
param eters o f a com plex m edium  from  scattering data.

H ere we report on the first systematic effort to use such ideas 
to develop inverse scattering algorithms for reconstructing sea 
ice physical properties from  data on scattered electrom agnetic 
fields and to com pare the reconstructions with experim ental 
data. This effort has led to significant advances in inverse 
scattering theory itself, as well as the successful recovery in 
some circumstances of im portant sea ice param eters, such as 
ice thickness, brine volume, and geom etry. The recovery o f sea 
ice thickness for the case o f thin ice, as is considered here, is 
particularly significant. H eat transfer in w inter from  the ocean 
to the atm osphere can be one or two orders o f m agnitude 
greater through thin ice cover than through thick m ultiyear 
ice [67]. Thickness inform ation on thin ice is thus essential 
in heat budget calculations for the polar regions, as well as 
in other considerations discussed below. The inverse models 
considered here, which yield such reconstructions, are based 
on the forw ard models presented in [41], and this paper is 
a continuation o f [41]. M ore background on the interaction 
o f electrom agnetic waves with sea ice, rem ote sensing, and 
the Office o f N aval Research Sea Ice Electrom agnetics A c­
celerated Research Initiative (ARI), w hich led to the present 
results, can be found.

As discussed in [41], there is a vast literature on the forward 
electrom agnetic scattering problem  for general inhomogeneous 
m edia extending back to the 1800’s [75], [97]. In contrast, 
w ork on the inverse scattering problem  has only recently 
progressed from  a collection o f ad hoc techniques with little 
rigorous m athem atical basis, to a blossom ing field o f intense 
activity, w ith the beginnings o f a m athem atical foundation 
[22]. M uch o f the early w ork on inverse scattering took place 
in the context o f quantum  mechanics [48], m otivated by Ruthe- 
ford’s efforts [84] to reveal the internal structure o f atoms by 
firing energetic particles at them. This w ork culm inated in the 
discovery o f the atom ic nucleus and prom pted the developm ent 
o f the quantum  theory and Schrodinger’s wave equation. 
Inverse scattering theory for the Schrodinger equation becam e 
a subject o f param ount im portance. Eventually, Born [6] 
showed that if  the scattering interaction was sufficiently weak, 
there was a sim ple relationship between the scattered field 
and the scattering potential. The Born approxim ation was 
able to verify R utherford’s classical solution in the high- 
energy lim it and provided the first linearized solution to

the inverse scattering problem . M ore recently, m uch o f the 
activity has been driven by the central role that electrom agnetic 
and acoustic inverse scattering play in such technologically 
im portant problem s as radar, sonar, geophysical exploration, 
m edical im aging and tomography, nondestructive testing, and 
rem ote sensing [22], [48]. F rom  a theoretical standpoint, 
inverse problem s are difficult because not only are they non­
linear, but they are also “ill-posed.” In 1923, Hadam ard [45] 
introduced the concept o f a well-posed  problem , originating 
from  the philosophy that a m athem atical m odel o f a physical 
problem  should have the properties o f existence, uniqueness, 
and stability o f the solution [54]. If  one o f these properties 
fails to hold, the problem  is said to be ill-posed. W hile the 
forw ard electrom agnetic scattering problem  is well-posed, the 
corresponding inverse problem  is ill-posed, which is a general 
feature o f m any inverse problem s. In particular, given enough 
scattering data, often the existence and uniqueness o f solutions 
to inverse problem s can be forced by enlarging or reducing the 
solution space. However, in the inverse scattering problem, 
large changes in the m edium  can correspond to very small 
changes in the m easured data. Because o f this, reconstruction 
algorithms tend to be unstable, and m uch effort in this field 
revolves around obtaining algorithms that are stable, as we 
shall see below.

The m ain techniques for dealing with inverse problems
[22], [31], [54], [78] include the following: 1) optimization,
2) linearization, and 3) continuation methods, such as layer 
stripping and successive linearization. Optim ization methods, 
in which param eters describing the reconstructed m edium  
are optim ized to m inim ize the error between predicted and 
m easured scattering data, have the advantage o f being robust 
and broadly applicable; their disadvantage is that they tend to 
be com putationally intensive. L inearization is the m ethod of 
choice for a problem  that is “close” in some sense to a known 
one. For example, the w eak scattering, or high-energy situation 
necessary for the Born approxim ation, is “close” to the case 
with no scatterer. Continuation m ethods exhibit different ad­
vantages and disadvantages. Layer-stripping m ethods involve, 
in one way or another, solving for the index o f refraction 
at progressively increasing depths in the reflecting medium. 
In this manner, the m edium  is m athem atically stripped away, 
layer by layer, and the m edium  param eters are found in the 
process. Some forms o f layer stripping are fast but unstable. 
O ther continuation m ethods are m ore stable but tend to be 
com putationally intensive.

An issue in inverse scattering theory that is particularly 
relevant to the reconstruction o f sea ice features is resolution. 
The local com plex perm ittivity e(x) o f the sea ice system 
exhibits variations over m any length scales. For example, e(x) 
varies dram atically on a subm illim eter scale as x  m oves from  
pure ice into a brine inclusion. W hen the wavelength is m uch 
larger than the m icrostructural scale, the wave cannot resolve 
the fine structure and it “sees” an effective, hom ogenized 
medium. In the context o f inverse scattering theory, the 
reconstructed perm ittivity will then be the effective com plex 
perm ittivity e* for sea ice, which is considered at length in 
[41]. This reconstructed effective perm ittivity will itself likely 
vary on a larger scale throughout the ice sheet according to,
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for example, variations in brine volum e w ith depth. In the 
case o f sea ice, it is quite desirable to be able to further 
invert the reconstructed effective com plex perm ittivity data 
to obtain detailed inform ation on the nature o f the brine and 
air m icrostructure. Such characteristics are closely connected 
to the fluid and therm al transport properties o f the sea ice as 
w ell as the distinction between different ice types, such as 
first year and multiyear, or frazil and columnar. In [41], we 
dealt w ith the forw ard hom ogenization problem  o f how  the 
m icrostructure determines e*. Here we develop a theory of 
inverse hom ogenization , in which data on hom ogenized coef­
ficients o f a com posite m edium , such as the effective com plex 
perm ittivity e* o f sea ice, are inverted to obtain inform ation on 
the m icrostructure, or the local com plex perm ittivity t ( x ) .  In 
this way, inverse scattering theory can be used in conjunction 
with inverse hom ogenization theory to recover inform ation on 
fine details well beyond the resolution o f the wave. O ur theory 
applies at present to the quasistatic regim e discussed in detail 
in [41], in which scattering from  individual brine inclusions is 
neglected. The quasistatic assumption, which is certainly not 
valid throughout the m icrowave region, nevertheless provides 
a good approxim ation for the low er frequency part, such as 
at C-band.

B. Summary o f  M ain Results

In [41], we noted that the m ain goals o f the ARI were to 
im prove our understanding of how  the physical properties of 
sea ice determ ine its electrom agnetic behavior and, in turn, to 
use this knowledge to develop and test inverse algorithms for 
recovering sea ice param eters from  observed electrom agnetic 
data. In this paper, we show how  the forw ard scattering 
models considered in [41] have been used to develop such 
inverse algorithms. F rom  an inverse modeling perspective, our 
principal results include the following.

1) Stable inverse algorithms for the Helm holtz equation in 
one dim ension that have accurately reconstructed real 
perm ittivity profiles (neglecting dissipation) from  reflec­
tion data. The algorithms are based on a new, causally 
stabilized layer-stripping technique, arising from  a non­
linear generalization o f the Plancherel equality in Fourier 
analysis, and nonlinear optim ization o f param eters via 
the R ibere-Polack algorithm. Layer thicknesses can be 
deduced either from  the reconstructed perm ittivity p ro­
file or directly from  the reflection data via an analog 
o f the Paley-W iener theorem  in Fourier analysis. A 
layer-stripping algorithm  to recover the com plex per­
m ittivity for the Helm holtz equation in higher dim en­
sions (including dissipation) has also been developed. 
Through a geom etrical optics-based technique, the algo­
rithm  has accurately reconstructed surface permittivity, 
yet at present is unstable for reconstruction at depth.

2) Stable inverse algorithms that have accurately recon­
structed thickness inform ation on thin sea ice from  
scattering data. The algorithms em ploy a variety of 
m ethods: inversion of param eters from  tim e-series scat­
tering data by the Levenberg-M arquardt nonlinear least- 
squares optim ization algorithm  coupled with a radiative

transfer— therm odynam ic sea ice model, neural network 
inversion o f an analytic wave theory model, and reflec­
tivity inversion. The use o f proxy indicators of sea ice 
thickness has also been explored.

3) A rigorous theory of inverse hom ogenization in the 
quasistatic regim e, which has produced an accurate algo­
rithm  for reconstructing the brine volum e o f sea ice from  
m easurem ents o f the effective com plex perm ittivity. The 
algorithm  is based on inversion o f a series o f bounds 
on the com plex perm ittivity o f sea ice, which in turn 
yields bounds on m icrostructural parameters, such as 
brine volum e and inclusion separation.

The paper is organized as follows. In Section II, we present 
rigorous inverse scattering theory for the Helm holtz equa­
tion and the algorithms that reconstruct perm ittivity profiles. 
In Section III, we consider rigorous inverse hom ogenization 
theory that further inverts these reconstructed permittivities 
for m icrostructural inform ation. Inverse algorithms designed 
to recover sea ice thickness are presented in Section IV, and 
in Section V, we consider a sea ice classification algorithm.

The m ain results are sum m arized as follows. In 
Section II-A, we first consider the Helm holtz (2.2) with 
an index o f refraction v i z )  =  \J<-(z) (neglecting dissipation), 
varying only in the vertical or depth variable z, w ith v i z )  
constant for z  >  0 (air). It has long been know n that the 
reflection coefficient R(u>), where u> is angular frequency, 
uniquely determines n (z ) .  However, all previous layer- 
stripping algorithms for continuous or discrete v i z )  rely 
on trace formulas, and (with one m ajor exception [14]) 
these formulas are not stable enough to perm it rigorous 
analysis o f convergence and stability. By basing the technique 
instead on the nonlinear generalization o f the Plancherel 
theorem  discussed in [41], the first m athem atically com plete 
form ulation of a stable layer-stripping algorithm  for a 
continuous m edium  n (z )  has been obtained [94], Indeed, 
both convergence o f the algorithm  and well-posedness o f the 
(forward and) inverse scattering problem  have been proven. 
M oreover, the stability is achieved by imposing causality, at 
every depth, on the estim ate of the depth-varying reflection 
coefficient. The resulting m ethod is surprisingly stable under 
noisy perturbations, with reasonable reconstructions, even 
with significant noise in the data. The deep connection of 
the approach in [94] to Fourier analysis has also led to a 
nonlinear analog o f the Paley-W iener theorem  [110]. This 
classical theorem  relates the growth o f the transform  in the 
com plex frequency dom ain to the w idth o f the support o f the 
function in the real-tim e (or spatial) domain. The nonlinear 
analog o f this theorem, which requires only the modulus, but 
not the phase of the reflection data, yields the thickness of 
the reflecting layer, albeit in a depth coordinate scaled by 
the travel tim e through the layer, so that an estim ate o f the 
effective perm ittivity o f the m edium  is required to obtain 
the actual thickness. In the case of sea ice, even a rough 
guess of the effective perm ittivity provides physical thickness 
estimates with accuracies o f about 10%.

Subsequently, in Section II-B, we consider an optim iza­
tion approach to inverting for v i z )  in the one-dim ensional 
(1-D) Helm holtz equation, neglecting dissipation, developed
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by Borup and Johnson (which is published here for the first 
time). The m edium  is assum ed to consist o f N  layers, and the 
forw ard scattering m odel used for com parison to the scattering 
data is provided by the exact scattering solution for an N  
layer slab [71]. The least-squares functional m easuring the 
error between data calculated from  the m odel for a given 
discrete perm ittivity profile and the actual scattering data is 
m inim ized using the R ibere-Polack algorithm  [81]. Optimal 
perm ittivity param eters describing v i z)  are then obtained. The 
m ethod has been accurately com pared with data taken on a 
layered m edium  consisting o f slabs of drywall and polystyrene 
foam  on top o f sand. The causally stabilized layer-stripping 
algorithm  in Section II-A  has also been applied with apparent 
success to this same data set.

A layer-stripping algorithm  that reconstructs the com plex 
perm ittivity e(x) =  er / e0 +  ia/(u>e0), where er is the (real) 
perm ittivity, e0 is the perm ittivity o f free space, and a  is 
the conductivity in a perturbed dissipative half space [16], is 
presented in Section II-C. The algorithm  involves two steps, 
first finding the m edium  param eters on the surface and then 
synthesizing the data on a subsurface. A method, based on 
geom etrical optics, which reconstructs the surface parameters 
by taking into account the change in pulse shape when the 
pulse is reflected from  a dissipative medium, is developed. 
In particular, geom etrical optics predicts that an incident 
delta function will reflect as a delta function plus a series 
o f terms with increasing smoothness. The coefficient o f the 
second-order term  can be used to obtain the conductivity. To 
synthesize subsurface data, the scattering data can be used 
to obtain the Dirichlet-to-Neum ann map, and then this m ap 
can be used to obtain a R iccati equation for the subsurface 
data, which is then solved iteratively, beginning with the 
surface param eters constructed first. The reconstruction of 
surface param eters gives good results on sim ulated stepped- 
frequency radar data, but the layer-stripping algorithm  is at 
present unstable.

In Section III, the question o f how  to recover the m i­
crostructure o f a com posite material, such as sea ice, from  
measurem ents o f its effective com plex perm ittivity e* in 
the quasistatic regim e is rigorously addressed. In [41], we 
presented a series o f forward bounds on e*, which grow 
tighter as m ore m icrostructural inform ation is known [36], 
[39], [85]. These bounds are based on a  Stieltjes integral 
representation for e* involving a spectral m easure //, which 
depends only on the geom etry o f the m icrostructure. A the­
orem  is presented which establishes that, if  the values of 
e* are know n along some arc in the com plex plane, which 
could be a small interval along the real axis, the m easure 
/j, can be uniquely recovered [18]. Knowing /j, yields all 
the statistical properties o f the m icrostructure, and from  the 
point o f view of effective properties, com pletely determines 
the m icrostructure. However, as m ay be expected from  our 
discussion o f inverse problem s, this problem  is ill-posed and 
requires regularization for stability o f the solution. N ever­
theless, for a single-known value o f e*, the forward bounds 
can be inverted to obtain rigorous bounds on m icrostructural 
parameters, such as brine volum e [19] and inclusion separation 
[77], which is related to connectedness o f the brine phase.

For m any known values o f e*, these inverse bounds yield an 
accurate algorithm  for recovering m icrostructural parameters. 
This algorithm  has been applied to C-band m easurem ents of 
the effective com plex perm ittivity of laboratory grown sea 
ice, and it has accurately reconstructed brine volum e data. 
Inform ation on brine volum e and connectedness is im portant 
in understanding the transport properties o f sea ice, which 
undergo a fundam ental transition at the critical brine volume 
fraction p c ~  5% for percolation [40]. This transition in the 
transport properties plays a significant role in a num ber of 
processes in the geophysics [1], [62] and biology [33] o f sea 
ice, particularly in the Antarctic. Inversion for such detailed 
m icrostructural inform ation offers the prospect o f rem otely 
m onitoring these processes.

The thickness distribution of sea ice plays a key role in the 
geophysics o f the polar regions [102]. Together with the ice 
extent, it defines the response o f sea ice to clim atic changes, 
and together with ice velocity, it defines the mass flux of 
sea ice. By itself, the thickness distribution is a quantity 
o f central im portance in ocean-atm osphere heat exchange. 
It is particularly im portant to understand the details o f the 
distribution for thin ice, such as in leads, which perm it 
large heat fluxes. N et heat flux through thin ice occupying 
a relatively small aereal fraction is significantly larger than 
through thick, m ultiyear ice [67], [68]. W hile recovery o f the 
sea ice thickness distribution is o f clear significance, obtaining 
such inform ation on a large scale has rem ained a challenging 
problem . Submarine sonar profiling has provided an accurate 
characterization o f the thickness distribution over some areas 
o f the Arctic basin, yet this m ethod has serious lim itations 
o f spatial coverage and tem poral resolution [102]. Rem ote 
sensing can overcom e these limitations, but the success o f 
this approach has been som ewhat lim ited. Analysis o f active 
and passive m icrowave signatures o f sea ice, and how  they 
depend on thickness, has shed some light on this problem  
[43], [46], [102], [108]. However, the basic question of how 
to directly reconstruct the thickness of a complex, dynam ic 
medium, such as sea ice, from  electrom agnetic scattering data 
has rem ained, from  an inverse theoretic point of view, largely 
unaddressed. In Section IV, we present inverse scattering 
algorithms that can reconstruct sea ice thickness for the 
im portant thin ice case. Along with the m ethods discussed in 
Section II, nam ely, the nonlinear Paley-W iener theorem  and 
recovery from  the dielectric profile, these algorithms provide 
the first concerted effort a t directly attacking the thickness 
reconstruction problem.

First, in Section IV-A, an algorithm, based on radiative 
transfer theory, to invert for ice thickness from  time-series 
scattering data, is presented [86], [87]. The algorithm  uses a 
param etric estim ation approach in which the radiative transfer 
equation is used as the direct scattering m odel to calculate 
the backscattering signatures from  the sea ice. The Lev- 
enberg-M arquardt m ethod [65] is em ployed to retrieve ice 
thickness iteratively. A dditional inform ation provided by the 
saline ice therm odynam ics is used to constrain the electro­
m agnetic inverse problem  to achieve a reasonably accurate 
reconstruction. The algorithm  is applied to reconstruct the 
growth o f a sheet o f thin saline ice by using C-band (with

Authorized licensed use lim ited to: The University of Utah. Downloaded on Septem ber 24, 2009 at 11:58 from  IEEE Xplore. Restrictions apply.



GOLDEN et al.: INVERSE ELECTROMAGNETIC SCATTERING MODELS FOR SEA ICE 1679

center frequency 5 GHz) polarim etric radar measurem ents 
taken sequentially in time, during the U nited States Cold 
Regions Research and Engineering Laboratory, Hanover, NH, 
1993 Experim ent (CRRELEX ’93). A greem ent with the data 
is obtained.

In Section IV-B, the use o f neural networks to invert for the 
thickness o f young sea ice with m ultifrequency polarim etric 
m icrowave data is dem onstrated. The approach is to retrieve 
the ice thickness by using the analytic wave theory m odel [41],
[72] to train the neural network to m atch m easured data in the 
selection of the ice thickness. The m ultilayer random  m edium  
m odel used allows for the inclusion o f surface and volume 
scattering, contributions from  a slush layer, and roughness at 
the interfaces. There are several types o f neural networks, 
but here, the m ultilayer perceptron is used, w ith a m odified 
backpropagation algorithm  to improve the convergence rate 
and accuracy [49]. Interrelations am ong physical parameters 
governed by sea ice physics under typical Arctic w inter 
environm ental conditions are utilized to restrict the solution 
space to avoid extraneous solutions and shorten the required 
com putation time. The algorithm  accurately retrieves thin ice 
thicknesses from  polarim etric synthetic aperture radar (SAR) 
data taken in the Beaufort Sea, Antarctica.

In Section IV-C, the relations between ice thickness and 
both the coherent and incoherent reflectivity properties o f a 
layer o f saline ice over saline w ater are considered. It is shown 
that a new  incoherent reflectivity along with the standard 
coherent reflectivity are needed to explain reflectivity m easure­
m ents. For thicker ice, the coherency between the transm itted 
and reflected field is lost and the reflectivities o f VV- and 
HH-polarizations becom e incoherent. The transition to this 
type o f behavior takes place when the ice thickness is between 
one and two wavelengths, and it is found that thickness can 
be inverted directly from  reflectivity m easurem ents when the 
thickness is over one wavelength.

Proxy indicators o f ice thickness are discussed in 
Section IV-D. A rem otely sensed proxy indicator is a 
characteristic, physical property, suite of physical properties 
that is tied to ice thickness, or some other characteristic, 
and that has a m easurable electrom agnetic signature. In this 
section, the use of surface roughness, dielectric properties, 
and surface tem perature are explored as proxy indicators 
for sea ice thickness.

Finally, in Section V, we consider a  classification scheme 
for sea ice types based on a special neural network known 
as the fast-learning neural netw ork [28], [63]. The scheme is 
illustrated with a specific exam ple using passive radiom etric 
data from  the spaceborne SSM /I platform. After the original 
im age is classified using an unsupervised m ethod and the 
identity o f each class is known, the final classified im age can 
be used as pseudoground truth for a supervised neural network 
classification scheme. Representative data from  each class and 
an associated class identification tag are dum ped to a file and 
used to train the neural network. The trained network classifier 
can then be used for batch processing satellite or aircraft data. 
Eventually, it is hoped that such practical m ethods can be 
com bined with the rather theoretical results and algorithms 
presented earlier in this paper, to systematize the inversion of

im portant sea ice param eters o f geophysical, climatological, 
and operational significance.

II. Inverse Scattering  Theory  
for  the Helm holtz  E quation

In this section, we form ulate the inverse scattering problem  
for the inhom ogeneous Helm holtz equation with local com plex 
perm ittivity e(x) and present algorithms that reconstruct e(x), 
or partial inform ation about e(x), such as layer thicknesses 
or surface permittivities, from  far-field scattering data. This 
section is a continuation o f [41, Section II]. For com pleteness, 
we include here the basic setup and definitions.

The sea ice inverse scattering problem  can be m odeled 
as a half-space problem  in R '7, where m easurem ents are 
m ade in the upper half-space, which is hom ogeneous and 
nondissipative, while the low er half-space is inhomogeneous 
and dissipative. We consider an electrom agnetic wave o f a par­
ticular frequency in such a m edium  (assum ed nonmagnetic), 
whose tim e-harm onic electric field is given by E (x ,  t)  =  
E ( x ) e _ *“ t , x  e  R d, x  =  ( x i , x 2 , x 3) in d  =  3, t  £  R , with 
to =  27r /  and /  the frequency in hertz. The relative com plex 
perm ittivity e(x) o f the medium, assum ed locally isotropic, 
is given by t  =  er / e 0 +  ia /( to t 0), as above. In the upper 
half space occupied by air t  =  1, with zero im aginary part. 
In the low er half space occupied by sea ice, snow, and sea 
water, e(x) takes a wide range o f values in the constituents. 
The electric field E (x , t)  satisfies M axw ell’s equations, or the 
vector wave equation derived from  them. For simplicity, we 
assum e that the m edium  is unchanging in the x 2 direction, and 
we consider the transverse electric (TE) polarization case with 
E  =  (0 , E 2 , 0) in the x 2 direction. U nder the tim e-harm onic 
assumption, u  =  E 2 satisfies the Helm holtz equation with 
spatially varying com plex perm ittivity

V 2it(x )  +  A;2e(x )it(x )  =  0 (2.1)

where k  is the free-space w avenum ber k  =  u>^//i0t 0 =  uj/c, 
/i0 is the m agnetic perm eability o f free space, c is the velocity 
o f light in free space, and the Laplacian V 2 is two-dim ensional 
(2-D) in the x± and x 3 variables. It will be useful in (2.1) to 
w rite k 2e =  k 2n 2 +  ik m ,  where n  =  y j er /eo is the index of 
refraction and m  =  a y V o /to -

The inverse scattering problem  for (2.1) consists o f deter­
m ining e(x) from  the far-field pattern u.:x_, or, m ore precisely, 
from  know ledge o f the scattering operator that maps incident 
fields to scattered fields. Existence and uniqueness o f solutions 
to the inverse scattering problem  for (2 .1) in various settings 
are discussed in [11], [12], [16], [21], [22], [54], [56], and 
[64]. D ue to the often layered nature of the sea ice system, 
we are particularly interested in (2.1) in the 1-D case with 
depth variable z  =  x 3. The inverse scattering problem  in 
this case, including dissipation, with e =  n 2 +  im /k ,  has 
been studied by a num ber o f authors. In particular, the papers 
[11], [12], [56], and [64] show that tim e-dom ain backscattered 
data from  a single incident plane wave is not enough data to 
determ ine both n 2 and m  if  n 2 and m  are smooth. In this 
case, both reflected and transm itted data are needed. If, on 
the other hand, n 2 and m  have a jum p discontinuity at the
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bottom , backscattered data do suffice to determ ine both. This is 
because the reflected data from  the discontinuity at the bottom  
provides inform ation that is sim ilar to transm ission data. In the 
following section, we consider a new  type o f layer-stripping 
algorithm  for solving the inverse scattering problem  for the 
Helm holtz equation in one dimension.

A. Inversion by Causally Stabilized Layer 
Stripping in One D imension

The term  layer stripping applies to a  variety o f inverse 
scattering m ethods that involve the use o f reflection data to 
solve for the index o f refraction at increasing depths in the 
reflecting m edium  (i.e., at progressively greater distances from  
the level at which the observations are made). A “reflection 
coefficient” at each depth is com puted, which in physical 
terms, is that reflection coefficient that would exist if  we were 
to replace all o f the m aterial above that depth with m aterial 
having a constant refractive index equal in value to that of 
the actual refractive index value at that depth. If we take into 
account no physics other than that inherent in the Helm holtz 
equation, errors in refractive index estimates at shallow depths 
lead to unphysical estimates o f the reflection coefficient and 
refractive index deeper in the medium.

The essential elem ent in causally stabilized layer stripping 
is that we require, at every depth the estim ate o f the depth- 
varying reflection coefficient correspond to a causal impulse 
response for the rem aining reflecting material. It turns out 
that a sim ple enforcem ent for frequency-dom ain reflection 
coefficients is sufficient to guarantee stability of our inverse 
solution in the presence o f noise in the data. M oreover, 
w ork to establish the m ethod has lead to two theorems 
that generalize theorems in standard Fourier analysis to the 
nonlinear inverse problem , that is, to the situation in which 
m ultiple reflections in the reflecting m edium  are significant. 
O ne o f these theorems turns out to be useful in its own 
right as means o f estimating the travel tim e thickness o f a 
reflecting layer (and, if  appropriate ancillary inform ation about 
the perm ittivity is available, the physical thickness o f the layer 
as well). These results have been established rigorously for 
the case of wave propagation in a system  governed by the 
Helm holtz equation w ithout loss and w ithout discontinuities in 
dielectric properties. Com putational evidence shows, however, 
that sim ple modifications o f the same results provide usefully 
approxim ate solutions in problem s, including both dielectric 
jum ps and loss typical o f sea ice.

In the following, we first briefly recall the forw ard scattering 
problem  from  [41] and our analog, for the reflection problem, 
o f the Plancherel equality in linear Fourier analysis. We 
then outline our causally stabilized layer-stripping algorithm, 
follow ed by our analog o f the classical Paley-W iener theorem, 
which relates the travel-tim e thickness o f a reflecting layer 
with finite physical thickness to a Fourier transform  of a 
nonlinear function o f the reflection data. We dem onstrate the 
utility o f these results using laboratory data from  a system 
som ewhat sim pler than sea ice.

The Helm holtz equation governing the tim e-harm onic wave 
field u  in one dimension, assuming sources only at infinity

and neglecting dissipation, is

d u  , ,  ,  . .
— 5- +  k  n  ( z )u  =  0 . 
d z z

(2 .2)

We assume that n  differs from  one only on the interval 
( - o o , 0 ), and that is square-integrable on that interval. 
The auxiliary equation for the wave field v (x )  =  u ( z ( x )) as 
a function o f the depth variable x ( z )  =  f(' n ( r )  d i is

v "  +  a v ' +  k 2v  =  0 (2.3)

and "/(x) =  n ( z (x ) ) .  For a; >  0, v (x ,  k) 
m ay be written in the form
where a (x )  =  1

Ah x  1 (2.4)

which uniquely defines the reflection coefficient R (k ) .  The 
additional requirem ents that the tim e-dom ain im pulse response 
o f the reflecting m edium  be real and causal, i.e., that there 
can be no response prior to excitation, force R ( —k ) =  R (k ) ,  
for k  on the real axis, where the overbar denotes com plex 
conjugation and R (k )  to extend analytically to the upper half 
o f the com plex A;-plane. Equation (2.4) represents the wave 
field above the reflecting m edium  in terms of reflected and 
incident plane waves. Inside the reflecting medium, we define 
a  “depth-dependent reflection coefficient”

/ k) =  1 ~  y ( x ,k )  
’ 1 +  r](x, k)

(2.5)

where r\ =  2 ikv(x \ ) ’ so ^ at and r  has the
physical m eaning o f a reflection coefficient [in the sense of
(2.4)] anywhere that a  =  0. The nonlinear Plancherel equality 
relating the “energies” o f R (k )  and a ( x )  [41], [93], [94] is 
given by

2) d k  = \a (x ) \2 dx . (2 .6)

D irect com putation using (2.3) and (2.5) leads to a Riccati 
equation for the depth-dependent reflection coefficient

(x ,k )] (2.7)

with the boundary condition x^ oor { x ,k )  =  0. Using an 
integrating factor to form ally solve (2.7) yields an integral 
equation for r

2ikx±

2ik(x-i —y )  a \ -[1 - r 2 ( y ,k ) ] d y .
(2 .8)

We solve the inverse problem  via the following observation. 
If  we do not require that causality be satisfied, any choice 
o f r ( x o ,k )  and a ( x )  w ill produce an r ( x i , k ) .  If we insist 
that causality be satisfied, the previous statem ent still holds 
provided x± > x 0, i.e., when x± lies above x 0. However, when
x i  is beneath x 0, i.e., x± < x 0, there is only one possible 
choice o f a ( x )  that can com bine with a causal r ( x 0 , k )  to 
produce a  causal r ( x  1, k). That is, when noncausal results are
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excluded, one input (a causal r ( x 0 ,k ) )  can only produce a 
unique pair o f outputs ( a ( x ) , r ( x i , k ) )  for x \  < x 0 [94],

W hile previous layer-stripping m ethods deduced a ( x )  via 
an additional trace form ula  (which always relied on data in 
the high-frequency limit), we deduce a ( x )  by simply requiring 
that rl.r. k ) correspond to a causal im pulse response (as any 
true physical solution must). To accom plish this, we first 
define a pair o f projection operators that, when applied to a 
frequency-dom ain function, project out its causal and acausal 
parts.

Define Fourier transform ation of a function o f z  to /.'-space
by

f { z )  dz (2.9)

and the corresponding inverse Fourier transform ation by

(2 .10)

Define H ^a<z<bj to be the characteristic function of the 
interval (a , b), i.e., that function that is one between a and 
b and zero elsewhere. From  these components, construct the 
operator

P(a,b ) (2 .11)

where p (k)  is ju s t a test function. The idea here is to take 
a function o f k, com pute its (travel) tim e-dom ain counterpart 
[the innerm ost operation in (2 .11)], select out only that part of 
the travel-tim e response in the interval (a, 6), and then return 
that edited response to the frequency domain.

Thus, P(-oo,x) selects that part o f a  function that could 
be caused by events (in our case, reflections) below depth 
x .  (Note that by our choice o f coordinates, a: is a scaled- 
depth coordinate rather than a physical tim e— it is negative 
and decreasing w ith increasing depth in, or tim e lag until the 
corresponding tem poral response of, the reflecting medium.) 
Correspondingly, P (Xt00) selects that part o f the function due 
to events above x; because the refractive index is constant 
above x  =  0, P(Xt00) =  P(x,o) in our problem . Clearly then, 
any causal r (x ,  k)  m ust satisfy

and

P(-oo,x)r(x,  k)  =  r ( x ,  k)  

P(x,oy(x, k) = 0.

(2 .12)

(2.13)

From  (2.8) then, we m ust have

e2iKx1- y ) ^ W ^ _ r2 ^  ky dy

(2.14)

and

0 = p

(2.15)

Equations (2.14) and (2.15) form  a pair o f equations that we 
can solve iteratively at each depth step to estim ate the unique 
causal pair a ( x ) , r ( x i , k ) .

Our iterative solution proceeds as follows. We approxim ate 
the r 2 terms in the integrands o f (2.14) and (2.15) by the 
product r ( x 0, k ) r ( x i , k ) ,  thus obtaining a set of (approximate) 
equations for r  a t the discrete depths x 0 and x±. We im plem ent 
the projection operators in terms o f H ilbert transforms by using 
a num erical algorithm  given by [105]. Finally, we choose a 
sufficiently small depth step to allow approxim ation o f a (x )  
by a constant (which is unknown a priori); we estim ate the 
constant initially from  r ( x 0 ,k )  alone, plug the estimate into 
the system  of equations to produce an estim ate o f r ( x i , k )  and 
a refined estim ate o f the constant, and so on until we obtain 
a pair a ( x ) , r ( x i , k )  that satisfy the (discretized) causality- 
enforcing equations to within a  satisfactory tolerance. We then 
use r ( x i , k )  as the new  “data” for the next depth step into 
the m edium . We proceed into the m edium  until the energy 
o f r (x ,  k)  declines to a negligible fraction o f its value ju st 
above the reflecting m edium . A  rigorous, detailed proof o f the 
convergence of this algorithm  to the true solution is contained 
in a forthcoming paper [93]. A third paper explaining our 
num erical m ethods, results, and the physical insight available 
from  those results is in preparation [109].

N ote that all o f the results and m ethods discussed so 
far are established rigorously only for the case o f a real, 
square-integrable profile o f a , i.e., for a reflecting m edium  
that does not absorb (as sea ice and m any other natural 
m edia certainly do) and in which there are no abrupt jum ps 
in dielectric properties (as there are, for example, at the 
upper and, probably, low er surfaces of sea ice). However, 
the propagation regim e in m any lossy geophysical media, 
including in particular sea ice, is nonetheless predom inantly 
a  propagating regim e— losses are not so high that the intuitive 
picture o f phase and energy transport in electrom agnetic waves 
in sea ice breaks down, and although the boundaries o f sea ice 
are sharp on the length scales o f the centim eter-wavelength 
radiation typically used to probe them, for any data of finite 
bandwidth, we m ay approxim ate the boundaries as rapid but 
continuous variations in refractive index. Thus, there are at 
least heuristic reasons to believe that application of our m eth ­
ods to bandlim ited sea ice data can yield usefully approxim ate 
results. A quantitative investigation o f these ideas will appear 
in a forthcoming publication. For now, we sim ply note that 
lim ited com putational and experim ental experience supports 
some optim ism. We substantiate this claim  briefly below.

1) A nalog to the Classical Paley-W iener Theorem: The 
P aley-W iener theorem  in classical Fourier analysis relates the 
growth o f the Fourier transform  in the frequency dom ain to the 
size of the region on which its (inverse) Fourier transform  is 
nonzero. O ur analog of this theorem  for the reflection problem  
provides the depth range, in the scaled-coordinate x , over 
which a ( x )  is nonzero (i.e., the range o f x  over which the 
refractive index varies), as a Fourier transform  of a sim ple 
nonlinear function o f the reflection data [93]. (This result arose 
m ore or less as a byproduct o f our investigation leading to the 
preceding results.) Specifically, the width o f the region on the
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x-axis over which the function

(2.16)

takes nonzero values is equal to the thickness o f the depth 
range, in x ,  over which the refractive index varies.

Thus, a relatively sim ple operation, perform ed directly on 
data, suffices to determ ine the scaled thickness o f a  reflecting 
layer— a rem arkable simplification if  we do not require a 
full estim ate o f the refractivity profile. The price for this 
sim plicity is that the layer-thickness estim ate is given only in 
scaled depth; conversion to actual physical depth still requires 
inform ation on the refractive index within the layer.

There are m any physical situations, though, in which a 
priori know ledge o f the range of possible refractive index 
profiles suffices to produce an acceptably accurate estimate 
o f physical layer thickness. Suppose that the profile o f relative 
perm ittivity, i.e., the square of the refractive index, is known 
on physical grounds not to vary over a range larger than, say,
C . Then the average relative perm ittivity within the layer is 
between one and C , and the accuracy o f conversion from  
scaled to physical layer thickness depends only the square root 
o f this average. Thus, our analog to the classical Paley-W iener 
theorem  appears to constitute a useful practical result in its 
own right.

2) Analysis o f  Experim ental Data: The series of CR- 
RELEX experiments conducted during the ARI has produced 
at least two sets o f wideband, vertical incidence reflectivity 
measurem ents of sim ulated gray (sea) ice, in addition to indoor 
laboratory m easurem ents o f a layered dielectric system  with 
low er losses and sm aller dielectric jum ps than those typical 
o f sea ice [42]. Both sets o f m easurem ents o f sim ulated sea 
ice are o f high quality, but those by Gogineni and Jezek [42] 
involve ice o f only one, rather large thickness and evidently 
do not contain frequencies low enough to probe the entire ice 
thickness, while independent m easurem ents by Onstott [42] 
for a range o f thicknesses lack reflection phase information. 
We therefore present here a sam ple application o f our methods 
to the indoor laboratory data from  a sim plified system  that 
have been gathered by Borup and Johnson (see Section II-B).

Briefly, the laboratory system  consisted o f a pair o f horn 
antennas suspended over an artificial-layered system. The an­
tennas were arranged to m easure vertically polarized reflection 
at a reflection angle near 10o. The layered system  consisted of 
two planar layers over a basement. The layers w ere com posed 
o f com m on gypsum  wallboard and styrofoam, measuring 2.54 
and 5.59 cm, respectively. The deep (presumably, effectively 
infinite) basem ent consisted of sand. Independent, contact- 
m ethod m easurem ents o f the perm ittivities o f the system 
constituents were not reported to us. M easurem ents o f the com ­
plex reflection coefficient o f the system  at frequencies from  
roughly 1 to 18 GHz w ere obtained from  stepped-frequency 
observations. The geom etry o f the system  is represented in 
Fig. 1. We used these observations directly in a num erical 
im plem entation of our inverse m ethod (neglecting for now  the 
slight variation from  vertical incidence in the experim ental 
data), w ith the results shown in Figs. 2 -4 .

Fig. 1. Geometry of the drywall-polystyrene foam-sand dielectric profile that 
was scanned from 1 to 18 GHz at an incident angle of 11.5° in the laboratory 
by Borup and Johnson.

Fig. 2 shows our retrieval o f a  (solid line) as a function 
o f travel-tim e (in nanoseconds). Peaks at the boundaries of 
the w allboard and sand interfaces are the dom inant features. 
For com parison, we also show (dashed line) a retrieval of 
a  produced in exactly the same way as the first, but based 
on data intentionally m ade noisier. Specifically, we corrupted 
Borup and Johnson’s data by m ultiplying each o f the real and 
im aginary parts by one plus a norm ally distributed random  
variable having a standard deviation, for given data value, o f 
70% of that value. Our retrieval o f a  is clearly stable and 
robust in the presence o f such noise.

Fig. 3 shows our estim ate o f the profile o f refractive index 
versus physical depth (in centim eters, based on the data as 
received from  Borup and Johnson). Because the observed 
magnitudes o f reflections at the upper edge of the frequency 
range do approach zero and we have not “tapered” the input 
data, a m odest am ount o f “ringing” is also apparent in our 
result. The finite bandwidth of the data causes the transitions 
between layers in our result to be smoothed. We estim ate a per­
m ittivity and thickness o f the gypsum  layer at approxim ately 
2.3 and 2.7 cm, respectively, w ith the latter figure in particular 
dependent on a particular interpretation o f where our smoothly 
varying results indicate layer boundaries to lie. Although 
styrofoam  is typically assum ed to have a perm ittivity o f very 
nearly one at m icrowave frequencies, our inversion suggests a 
figure closer to 1.1, w ith a thickness o f approxim ately 4.5 cm, 
the precise figure again depending on the interpretation o f our 
result. We estim ate perm ittivity o f the sand near the styro­
foam /sand interface to be two. For com parison, we also plot 
in Fig. 3 (solid line) the first set o f layer perm ittivity estimates 
we received from  the experim enters— 2.3 for the wallboard, 
one for the styrofoam, and two for the sand. Those estimates 
resulted from  an early application o f an alternative reflection 
inversion m ethod that they had developed. The experimenters 
later revised their estimates to 2.1 for the wallboard and 
2.2 for the sand. A precise test o f inversion methods awaits 
independent inform ation on the true perm ittivities (and any 
dispersion) in the layered system.

Finally, Fig. 4 shows an application o f our nonlinear analog 
to the Paley-W iener theorem  to the uncorrupted data (solid
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Fig. 2. Causally stabilized layer-stripping reconstruction of the profile of as a function of travel time in nanoseconds, based on wideband, near-vertical 
incidence reflectivity data for the layered system of Borup and Johnson (solid line) and on the same data intentionally corrupted with multiplicative 
noise (dashed line, 70% standard deviation).

Fig. 3. Causally stabilized layer-stripping reconstruction (dotted) of the depth profile of the (real) relative permittivity computed from the data of 
Borup and Johnson for a layered system.
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Fig. 4. Application of the nonlinear Paley-Wiener theorem to the reflection data of Borup and Johnson, showing W (x) and a(x) as a function of 
travel time in nanoseconds.

line). The function W { x )  defined above falls essentially to 
zero at a travel-tim e thickness o f 0.32 ns, which agrees with 
a travel tim e thickness indicated in Fig. 2 o f approxim ately
0.32 ns.

B. Inversion by M ultilayer Param eter 
Optimization in One D im ension

In this section, a m ethod for the inversion of 1-D  dielectric 
profiles from  electrom agnetic scattering data, developed by 
Borup and Johnson, is presented. The m ethod is based on the 
m inim ization o f an L 2 least-squares error functional by non­
linear optim ization. The forw ard scattering m odel em ployed 
is derived from  the exact scattering solution for an N  layer 
slab [71]. The accuracy o f the m ethod is then dem onstrated 
by successfully applying it to laboratory scattering data taken 
by Borup and Johnson.

We consider the 1-D Helm holtz (2.2) w ith real perm ittivity 
t ( z )  =  n 2(z) and the exact solution for a layered m edium  
that will be used in the inversion. A ssum e that the m edium  
has layers j  =  0 , 1 , . . . ,  N  +  1, w ith indexes o f refraction // ,, 
and that layer 0 is a hom ogeneous half space z  >  0 o f air 
w ith n 0 =  1 and layer N  +  1 is a hom ogeneous half space 
extending lo =  - o o  with index o f refraction u n + i-  Each 
o f the N  finite layers is assum ed to have uniform  thickness
h. As described above, we consider a TE wave with an angle 
o f incidence 9, which we assume for now is 9 =  0. The 
wave field u  represents E 2 in E =  (0 .E>A)). In each layer, 
the solution Uj(z)  is the sum  of a forw ard and a backw ard

propagating plane wave

(2.17)

where k  is the free-space w avenum ber and j  =  1 , . . .  , N .  At 
each interface ,? =  —jh ,  continuity o f E> and the m agnetic 
field H i  in H =  (H i A ) .0) yields a recursion relation for
a.; =  ( a j ,b j )  o f the form

=  K 3a i + i (2 .18)

where the coefficients o f the matrix K ,  involve j , h , r i j ,  and 
r ij+1. Using a0 =  1 and bN + i  =  0  allows us to solve for 
the reflection coefficient R(k )  =  b0 . This recursive scheme 
requires only O ( N )  arithm etic operations, as opposed to 
0 ( N 3), required to solve via the m om ent m ethod the 1-D 
scattering integral equation

. k rNh ■ /
u { z ) = u l{ z ) ------: e ~ lk ẑ ~ z ^ { z ' ) u { z l) d z l (2.19)

2* Jo

where

7 (z) =  e{z) -  1 =  n 2 (z) -  1 (2 .20)

and Ui is the incident field. We note that for an incidence 
angle different than zero, we replace k  with k  cos 9 and n 2 
with n 2 — sin2 9.

Now, given a vector 7  =  (71. , ,  7 .v) o f dielectric param e­
ters and an incidence angle 9, the above solution can be used to 
exactly calculate the com plex reflection coefficient Rgalc(k, 7 )
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for the given N  layer slab. The idea of the inversion scheme 
is to find a 7  that minim izes the m ean square (L 2) error 
between the m easured scattering data and that calculated from  
the forw ard m odel above. The scattering data is defined as the 
rescaled com plex reflection coefficient

• -  2' COS<S o t ) .  (2-21)^  , k '
Then the reconstruction o f the dielectric profile consists of 
applying nonlinear m inim ization to the functional

k,e
n alc{k, 7) - n n' (2 .22)

k r°° — 2i k  cos Oz

k
2 i cos 9

(2.24)

(2 .25)

algorithm , this realness condition can be enforced by simply 
zeroing the im aginary part of the gradient (2.23) each tim e it 
is computed.

Analysis o f the Born approxim ation and num erical experi­
m ents in the real dielectric constant case has shown that the 
bandw idth requirem ent for a single, norm ally incident plane
wave is

>  N h , (2 .26)

where 7  is the vector of unknown dielectric parameters. The 
m inim ization o f ^ ( 7 ) is carried out using the R ibere-Polack 
algorithm  [81]. This algorithm  is a variant o f the conjugate 
gradient algorithm  for the m inim ization of a nonquadratic 
functional. It requires a subroutine for com puting the gradient 
o f the functional, as opposed to N ew ton 's m ethod, which 
requires the Hessian.

The num ber o f com putations needed to com pute the re­
flection coefficient for one incident angle at one frequency is 
O (N ) .  For K  wavenum bers (or frequencies) and © angles 
o f incidence, the com putation is 0 ( Q K N ) .  To m inim ize the 
functional (2.22) via the R ibere-Polack algorithm, we need to 
com pute its gradient

where J  is the Jacobian o f the m odel equations and r  is a unit 
vector in the direction in 7 -space o f greatest increase in F(~;). 
I t turns out that a recursive algorithm  for this calculation can 
be derived from  the 1-D layered slab solution for a given r  and 
7 . Thus, explicit com putation and storage o f the Jacobian is 
not needed, and the resulting gradient calculation algorithm  is 
also O (Q K N ) .  Thus, a  single iteration of the R ibere-Polack 
m inim ization algorithm  requires only 0 ( Q K N )  com putations. 
The m em ory storage requirem ent is 0 ( 0 K ) .

We note that the rescaling o f the scattering data in (2.21) is 
suggested by the Born approxim ation, which gives

i.e., the m axim um  w avelength in the m edium  should be one- 
half the thickness o f the problem  and the spatial sample 
increm ent o f the reconstruction should be set a t one-quarter the 
m inim um  wavelength. In terms o f frequency, and for m ultiple 
view angles, we require

/ m i n  < 2 T  cos 9„ 2 h  cos 9„ <fn (2.27)

where T  =  N h  is the depth (thickness) o f the layered slab,
csiab is a phase speed in the slab, and #min, 9U are the

where 7  denotes the Fourier transform  o f 7 . Thus, for real 
scattering potentials ('y(z) =  t ( z )  -  1) and for one angle of 
incidence at 9 =  0°, the rescaling in (2.21) gives a linear, 
unitary (Fourier transform ) equation

Thus, for real scattering potentials satisfying the Born approxi­
m ation, the R ibere-Polack algorithm  will converge in one step 
[because (2.25) is unitary] if  the frequency content o f the data 
(bandwidth) is sufficient. N ote that (2.25) cannot be inverted 
for a frequency-independent, com plex 7 (z)  because the data 
determ ine only the positive spatial frequencies in the Fourier 
domain. For the real dielectric constant case, (2.25) can be 
inverted since 7 (—k) =  7 (k)  for real 7 . In the R ibere-Polack

m inim um  and m axim um  incident angles in the data set.
Results: Fig. 1 shows the geom etry o f a 1-D real dielectric 

profile, which was constructed in the laboratory. The profile 
consists o f a 1" slab o f construction drywall and a 2" slab 
o f polystyrene foam  placed on top of a 15.5" deep layer of 
sand. The reflection coefficient of the profile was m easured 
a t an incident angle of 11.5° using two 1-18-GHz, ridged 
horn antennas and a netw ork analyzer. Calibration for the 
antenna transfer functions was achieved by first collecting the 
reflection data for a 1/8" sheet o f alum inum  placed on top of 
the drywall. The data w ithout the m etal plate was then divided 
by the m etal plate data and m ultiplied by - 1  (the plane wave 
reflection coefficient o f a  perfectly conducting plane is - 1). 
This procedure calibrates the frequency-dom ain data to match 
plane wave theory.

The exact solution for a three-layer m odel was then com ­
puted, and the three dielectric param eters e(drywall), e(foam), 
t(sand), and the two thicknesses, T (d ryw all) and T (foam ), 
w ere optim ized for by trial and error, com paring the resulting 
tim e-dom ain signal visually with that for the collected data. 
The best visual fit to the data was found to be e(drywall) =  
2.1, e(foam) =  1.1, e(sand) =  2.2, T (dryw all) =  1", and 
T (foam ) =  2.1". An excellent m atch between the theory 
and the data in the tim e domain was achieved, indicating a 
successful calibration of the 1-D scattering experiment.

The data were then inverted using a  40-elem ent, h =  3 mm, 
num erical m odel o f the dielectric profile. The R ibere-Polack 
algorithm  was able to m atch the data to within 14% rms 
error. The algorithm  would reduce the error no further and 
the norm alized gradient m agnitude was < 0 .001, indicating 
that the rem aining 14% m ism atch consists o f data components 
outside o f the range o f the forward m odel. Fig. 5 com pares the 
inverted solution with the true solution (based on the visually 
optim ized param eters discussed above).

Thus, a 1-D dielectric profile inversion m ethod based on 
the exact scattering solution for an N  layer slab has been de­
veloped and verified for laboratory data. The m ethod requires 
a wide bandwidth o f data— the m inim um  frequency should 
be such that the unknown thickness to be inverted is less
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To describe the inverse scattering algorithm  for the sea 
ice system, it is useful to briefly consider the impedance 
im aging problem  [88] for a  body with local conductivity 
<t (x ) occupying a region ft c R '7. d =  2 or 3, w ith a 
smooth boundary dft. The electric potential //>(x) satisfies 
V  • uV(/> =  0 in ft  and ai),,//> =  j  on Oil, where <)„ denotes 
the exterior norm al derivative at the boundary and j  is the 
current density applied to the boundary. We assum e that we 
can apply any current density j  to the boundary and m easure 
the corresponding voltage tp a t every point on the boundary. 
In other words, we know the resistive m ap

’an (2.28)

Fig. 5. Multilayer parameter optimization reconstruction (dotted) of the 
depth profile of the (real) relative permittivity e(c) — 1 computed from the 
data of Borup and Johnson for a layered system.

than or equal to one-half the m axim um  wavelength, and the 
resolution o f the inversion is given by one half the m inim um  
wavelength (2 .26). Present efforts are aim ed at the inversion of 
lossy media. In particular, data from  partially water-saturated 
foam  rubber has been collected. Thus far, the authors have 
been unable to accurately match this data to theory. A ttempts 
to invert sim ulated data from  lossy m edia have been made, and 
it has been found that this problem  is considerably less well- 
posed than the case of a lossless dielectric. Efforts to constrain 
the dispersion o f the dielectric to be causal, i.e., by enforcing 
the satisfaction o f the K ram ers-K ronig relations [74], are being 
investigated as a possible solution to this ill-posedness.

C. Inversion by Layer Stripping in H igher D imensions

The problem  of reconstructing the com plex perm ittivity e(x) 
o f a com plicated medium, such as the sea ice system, from  
electrom agnetic scattering data, has a m athem atical structure 
sim ilar to the im pedance im aging problem  o f reconstruct­
ing the local conductivity <r(x) o f an object from  boundary 
measurem ents o f the potential induced by an applied current 
density. D ue to the im portance o f im pedance imaging to 
such areas as nondestructive m aterials testing, geophysical 
prospecting, process control, and m edical imaging, there has 
been substantial w ork on this problem  both from  the theoretical 
as well as com putational and practical points o f view (see 
[88] for numerous references). For example, the lungs can 
be m onitored through im pedance images o f the conductivity 
profile of the chest obtained from  data provided by electrodes 
on the skin [50]. In [88], a direct m ethod was developed to 
find the conductivity inside a body. The algorithm  proceeds 
via two steps. First, the conductivity near the surface o f the 
body is found, and then the boundary data on an interior 
surface are synthesized using a  R iccati equation. The process is 
repeated, and an estim ate o f the interior conductivity is found, 
layer by layer. In [16], such an approach has been developed 
for the electrom agnetic inverse scattering problem  for the sea 
ice system, treated as a  perturbed, dissipative half space. The 
forw ard scattering theory necessary for this developm ent was 
presented in [16] and [41].

which is a linear operator on sufficiently smooth functions on 
the boundary, in particular, 1Z. : H s (d ft)  i— H s+ 1 (d ft) ,  where 
H H(<)il) is the L 2 based Sobolev space on Oil w ith smoothness 
index s. For the im pedance im aging problem , working with 
7Z is m ore stable than working with its inverse A, called the 
Dirichlet-to-Neum ann map

A Ian J■ (2 .29)

(The D irichlet data o f a function on f t  is its set o f boundary 
values, and the N eum ann data it the set o f boundary values 
o f its norm al derivative.) The inverse boundary value problem  
is to reconstruct < r ( x )  from  partial know ledge of the resistive 
operator 7Z on Oil. Such m aps have been used a great deal 
recently in the study o f inverse problem s, e.g., [16], [88], and 
[92]. The layer-stripping algorithm  for im pedance imaging is 
based on first reconstructing a ( x )  on the boundary from  1Z and 
then synthesizing R  o n  a subsurface infinitesim ally close to the 
boundary. This continuation can be accom plished because 7Z. 
satisfies a (nonlinear) differential equation, o f Riccati type. The 
m ethod accounts fully for the nonlinear nature o f the inverse 
problem .

We now turn our attention back to inverse scattering theory 
for (2 .1) with dissipation

V 2u  +  (k 2n 2 + (2 .30)

where u  =  E 2 for a TE wave. We assum e n  =  l , m  =  0 
for .)■;> > 0 , while in the low er half-space x 3 < 0 . n  differs 
from  a positive constant n _  only in a region o f com pact 
support and m  differs from  a positive constant m _  only in 
this region as well [16]. To apply the layer-stripping approach 
developed for the im pedance imaging problem , we m ust first 
obtain the scattering operator S  m apping incident to scattered 
fields, which plays the role of R  or A above. Then the inverse 
scattering problem  is to reconstruct n  and m  from  partial 
know ledge o f S .

To define the sca tte rin g  o p e ra to r  S ,  we consider the wave 
field u  in the upper half space. Then S  is the m ap from  
the down-going part o f the wave field to the up-going part. 
We construct an explicit representation S  o f this m ap in the 
Fourier transform  domain. In particular, we use the fact that 
the m edium  parameters are known and constant in the upper 
half space. For x 3 positive, we can therefore Fourier transform  
(2 .30) in the x \  and x 2 coordinates. The result is an ordinary
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differential equation whose general solution for x 3 >  0 is

u (k , x 3) =  A ( K)e ~ ix+ X3 +  B ( K)e ix+X3 (2.31)

dx! (2.32)

A d,IS ̂ 1̂ 3—0 (2.33)

(2.34)

(2.35)

This m ap then satisfies the following R iccati equation: 

dA
i  = -A2- ( C + ^ ) - ^ 2 (2.36)

with e =  n 2 +  i m / k .  This equation is obtained by differ­
entiating (2.35) with respect to z, using (2.30) to elim inate
d  u / d z  and (2.35) to elim inate dz. A sim ilar equation

where A+ =  ^ J k 2 — \k \2 and the hat denotes the 2-D Fourier 
transform

with x ' denoting ( x i , x 2). W hen A+ is zero, the general 
solution corresponding to (2.31) is simply linear function of 
x 3. W hen |« | <  k, the A  term  in (2.31) is a down-going 
wave, whereas the B  term  is up-going. The coefficient A  thus 
determines an incident wave. This incident wave, together w ith 
continuity o f u  and its norm al derivative at the interface x 3 =  0 
and a radiation condition in the lower half-space, uniquely 
defines the scattered wave, which determines B .  Consequently, 
we can define S  as the m ap from  A(i;) to B ( k ).

The inverse algorithm  for the im pedance imaging problem  
is based on a  R icatti equation for the resistive m ap associated 
with the inverse boundary value problem . Application of 
this approach to the inverse scattering problem  relies on 
an equivalent form ulation of the scattering problem  as a 
b o u n d ary  value  p rob lem , defined by (2.30) for x 3 <  0 with 
the boundary condition -it|a;3=o =  f ( x i , x 2), together with an 
out-going radiation condition in the low er half space. If /  is in 
the Sobolev space H l / 1  and m  >  0, the L ax-M ilgram  theorem  
can be used to show that this boundary value problem  has a 
unique H 1 solution in the lower half space. Thus, the norm al 
derivative d vu  on the surface x 3 =  0 is uniquely determined. 
The mapping

can be obtained for S .
The layer-stripping algorithm  proceeds by first finding the 

m edium  param eters on the surface and then using (2.36) to 
continue the recovery process into the interior. To find the 
m edium  param eters on the surface, we use the following time- 
dom ain approach. This will be discussed again, in m ore detail, 
below. The tim e-dom ain version o f (2.30), in the variable 
t  =  ct, is

72 — n 2d 2 — mct- (2.37)

The plan is to obtain a progressing w ave expansion [24] for 
(2.37). We are interested in the small-tim e behavior o f U  in 
the neighborhood o f an interface at x 3 =  0. For x 3 >  0, 
where n  =  1, we expect that U  is com posed o f an incident 
plane wave U'1 =  <5(s*(x) -  r )  plus a  reflected wave, which 
we expand in the form

W r ( s r ( x )  -  r )  =  A 70 ( x ) ^ ( s r ( x )  -  t )

+  A 71 ( x ) H ( s r (x )  -  t )  +  ■ ■ (2.38)

Here s* and s r are the incident and reflected phases, S denotes 
the D irac delta function, and H  denotes the Heaviside function 
that is one for positive arguments and zero for negative 
arguments. We take U l to be a plane w ave propagating in 
direction e  =  ( e i , e 2, e 3), which implies that s 1 =  e  • x . 
Because we take this wave to be propagating in the downward 
direction, e3 is negative. Just below the interface, for a short 
time, we expect U  to take the form  o f a transm itted wave, 
which we also expand as

from  i f 1/ 2 to H  1 ! 2 is the Dirichlet-to-Neum ann m ap for this 
problem . The inverse boundary value problem  is to determine 
n 2 and m  from  know ledge o f A. This boundary value form u­
lation with A is related to the scattering form ulation with S  as 
follows. Define A via A /  =  A / .  Then it can be shown that

W V f c )  -  r )  =  A t0(x )^ (s t (x ) -  t )

+  A \ ( x ) H ( s t (x )  -  t ) + (2.39)

which holds as an operator equation in an appropriate function 
space [16]. This relation can be used to find S  in terms o f A, 
or vice versa.

1) Layer-Stripping Algorithm : Now, the idea o f the m ethod 
to solve the inverse scattering problem  for (2.30) is to use the 
m easured data to find the m edium  param eters on the boundary 
x 3 =  0 , then to use that inform ation to synthesize data on a 
nearby inner subsurface. The process is then repeated, and the 
m edium  param eters are found layer by layer. To synthesize 
the subsurface data, we obtain a differential equation for A in 
the depth variable. This requires that we extend the definition 
o f the D irichlet-to-Neum ann m ap to any z  < 0

Here again s* denotes the phase o f the transm itted wave.
On the interface x 3 =  0, U  and its first x 3 derivative are 

continuous. Using these conditions at the interface and forcing 
U  to satisfy (2.37) results in expressions for the coefficients 
in (2.38) and (2.39) [16]. The expressions for Ag and A*0 at 
x 3 =  0 involve e  and n, while the expression for A \  involves 
e , to , n  and the derivatives o f - 1,', and Aq.

To obtain the m edium  param eters n 2 and to  at a point x 0 on 
the surface from  scattering data, we send in an incident wave 
that is planar in a  neighborhood o f x 0. We then m easure the 
scattered field at all points on a plane x 3 =  constant. From  
this inform ation, the short-time scattered field can be inferred 
in a neighborhood o f x °  and thus the value o f A r0 at x 0, which 
tells us the value of n 2 a t x 0. In this m anner, we obtain n 2 for 
every point on the surface; this allows us to com pute, at every 
point, not only Aq, but also the derivatives in the expression 
for A \ ,  w hich can then be used to obtain to  as well.

Having found the m edium  param eters on the surface, the 
algorithm  can proceed. L et us consider the layer-stripping 
algorithm  in the case when a com plete set o f incident fields are 
used and m easurem ents o f the corresponding scattered fields 
are m ade on a plane. We assume m easurem ents are m ade at 
N  frequencies. For experiments with stepped-frequency radar,
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for example, N  can range from  5 1  to 8 0 1 .  The algorithm  
proceeds as follows.

1) From  the m easurem ents at wavenumbers k0, k i , . . . ,  k \ ,  
construct an approxim ation to each scattering operator
S(k„) .  v  =  0 .1 .........A’ (the integer index n  here should
not be confused with the index o f refraction n ). In 
practice, we would represent S( kn) by its matrix with 
respect to some basis. Such a basis could perhaps be 
constructed from  antenna beam  patterns for a large 
num ber o f incident angles. The operator S  o f (2.34), for 
example, is the representation o f S  in a Fourier basis.

2) For each o f at least two incident directions e j ,  j  =  
1, 2 , . . . , J ,  choose an incident field that looks like 
ex p ( ik n e j  ■ x )  in the neighborhood o f some point x 0 
on the surface. Apply S ( k n ) to these incident fields to 
obtain the scattered field msc(/c„ ,x ).
Fourier transform  into the tim e dom ain to obtain 
U r ( r , x ) . In practice, we can do this by first synthesizing 
an approxim ate delta function in the form

3)

S(t )

U r ( t , x ) PS ^ ~2 u sc(kn ,x ) w n elh

m m
a; in  /  |t/r ( r , x 0) -  A g (x 0,< 

o J 0

ikn

j) and A \{ i ) for j  =  1 , 2 ,
TO and d T, n 2 ). If  J

Although the above algorithm  m ay seem  ready to im ple­
ment, it cannot be used in its present form  because it is 
unstable. This is partly because o f the m ultiplication by \k \2 
in the Riccati equation for S  [16] or, equivalently, because 
o f the x i  and :/'2 derivatives appearing on the right side of
(2.36). This is sim ilar to the situation in [111]; this type of 
instability can be overcom e to some extent by sm oothing in 
the x \  and x 2 directions, as discussed in [15]. Even when the 
problem  is independent o f x \  and x 2, however, we expect the 
m ethods to be unstable, due to the fact that only a little o f the 
energy put into the system  on the top can propagate to great 
depths. Thus, we expect the boundary data and scattering data 
to contain little inform ation about the deeper regions.

2) Recovery o f  Surface Parameters: We return to the algo­
rithm  for reconstructing the m edium  param eters n 2 and to  
on the surface, and we consider the im portant special case in 
w hich the m edium  is hom ogeneous near the surface. R efer to 
[17] for the details. In the case of near surface homogeneity, 
we have simply

(2.40)
1 — n  
1 +  n  ’

(to  +  dz n)
(2.44)

where the w n are, for example, Ham m ing weights [76]. 
Then the field

n (1 + n)2
In dealing with data from  a stepped-frequency radar, we 
have m easurem ents from  only a finite num ber of frequencies 
fcb, fci , . . . , fcjv.  For the reflection coefficient we use

(2.41) E - (2.45)

is locally the response to the incident approxim ate delta 
function (2.40), where u sc is the scattered field.

4) Extract the coefficients A g(x0, e , j  and - i [ ( x (l. e , ). This 
can be done, for example, by the least-squares m in i­
m ization

(■T

— r ) |  d r  (2.42)

where for U r one uses (2.41), for s r one uses s r =  
e i x i  +  e2x 2 — e3x 3, for 6 one uses (2.40), and for the 
H eaviside function H  one uses

(2.43)

■ ■ ■ , J ,
> 2

5) From  A70(x 0, 
determ ine n 2( 
so that the system  is overdeterm ined, we can use least 
squares to find the best fit.

6) Repeat steps 2 )-5 ) for a large num ber o f points x 0 on 
the surface.

7) For each synthesize the subsurface data either from  
a Riccati equation for S ( k n ) or use (2.34) to convert 
S ( k n ) to A (kn ), use the Riccati (2.36), and convert back 
to S ( k n ) w ith (2.34). Again, in practice, the operators 
S ( k n ) and A (kn ) w ould be represented as m atrices with 
respect to some basis, and (2.34) and (2.36) would be 
approxim ated as m atrix equations.

8) Repeat, starting with step 2).

W ith k„ =  /m, +  n ^ ,  where B  is the bandwidth (again, 
the integer index n  is not be confused with the index of 
refraction n), each term  o f (2.45) contains a factor e~ lh°T, 
and we consider / ( r )  =  e*fc°TK ( r ) .  In place o f the delta and 
Heaviside functions in the progressing wave expansion, we 
use appropriate (factored) versions j>(t) and I i ( t )  of (2.40) 
and (2.43), respectively. It can be shown [17] that

f { r )  =  A 0p ( t )  +  A ih ( r )  +  r ( r )  (2.46)

where r  denotes a rem ainder term  that is continuous and zero at 
the origin. The left side o f (2.46) is known from  measurem ents; 
from  it we w ant to extract A 0 and A±. To do this, we minim ize 
the least-squares error

D ifferentiating with respect to A 0 and A± leads to a system 
o f equations for A  =  (AojAi)* (the superscript t  denotes 
transpose)

M A  +  Q  =  F (2.48)

where Q  is a rem ainder term  assum ed small (when T  is small). 
It can be shown that F  and the entries o f the m atrix M  are 
given by

F  =  R e ^ 2  w n w m R m yn
n , m = 0

n , m = 0

Wni UKe > w n —— H
ik„

(2.49)
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Mu = E WnWmyn—m
i = 0 i = 0

kn.hr,

Mi2 = M2i= R e  V  wnTj^-yn-
ikrr

~yn—m

(2.50)

(2.51)

where

if n  =  0

TB/N  ,
b / n  ’ if  n  7  ̂ 0 .

(2.52)

In summary, the m ethod to reconstruct the surface param e­
ters is as follows. M easure the reflection coefficient R n ,n  =  
0 , . . . ,  N  for the available (equally spaced) frequencies. Use 
(2.49) and (2.52) to construct F .  Solve the equation M A  =  F , 
where M  is given by (2.50) and (2.51), to obtain A  =  
(A 0, Ai ) .  Solve (2.44) for n  and m , assuming that dz n (z )  =  0.

To determ ine the possible utility o f the bandlim ited geom et­
rical optics m ethod, it has been tested on synthetic data. To 
generate the data, we used the well-known formula [55] for 
the reflection coefficient from  a tw o-layer m edium , consisting 
o f a slab of thickness T  w ith m edium  parameters n  and m , 
overlying a half space with parameters n _  and m _ . This 
two-layer m edium  lies underneath a half space o f air w ith 
param eters n + =  1 and m + =  0. A fter com puting the 
two-layer reflection coefficient, we added random  noise, with 
m agnitude a , to the real and imaginary parts. We then used the 
bandlim ited geom etrical optics m ethod above to reconstruct 
n 2 and a. In each case, we used the same values o f n 2 and 
m  to com pute the data, nam ely, n 2 =  3.37 and a  =  0.017. 
We considered two different frequency bands, nam ely, 1 -4  and 
26 .5-40  GHz. Because the longer wavelength waves penetrate 
deeper into the m edium , we also considered m edia o f different 
depths. We chose the T  in (2.47) and (2.52) to be ty /(2 B ) .  
The results are discussed in detail in [17]. In general, for thick 
enough samples, agreem ent was obtained for both n 2 and a.

We have also m ade some prelim inary tests o f this m ethod on 
experim ental data. The data were collected using an HP8510 
network analyzer. The data were com posed o f N  =  801 
m easurem ents o f the reflection coefficient, for equally spaced 
frequencies between 26.5 and 40 GHz. To use these data, 
we first did some processing to correct for the system  re ­
sponse. W hen we then used the bandlim ited geom etrical optics 
method, we obtained a value o f n 2 =  2.42 for a  lucite sample 
versus n 2 =  2.48, as com puted by the “bounce” m ethod of 
[61], [82], The m ethod did not return a reasonable value for m .

III. In verse  H omogenization  a nd  the 
Recovery  of M icrostru ctu ral  Pa ram eters

A. Forward and Inverse H om ogenization  
fo r  Composite M aterials

In the previous section, we considered inverse algorithms 
designed to reconstruct the com plex perm ittivity profiles of 
inhom ogeneous media. Ideally, given scattering data over all 
frequencies, these algorithms can com pletely reconstruct the

local com plex perm ittivity e ( x ) ,  from  which the details o f the 
m icrostructure w ould becom e apparent. In the sea ice system, 
such m icrostructural details could include the following: brine 
and air volum e fractions, brine and air inclusion size and 
connectedness properties, sea ice grain size and texture, snow 
grain size and texture, volum e fraction and connectedness of 
liquid brine in snow or slush, anisotropy and brine m icrostruc­
ture orientation, and crack size and orientation distributions. In 
practice, however, often we only have available inform ation in 
a particular frequency band, which m ay be relatively narrow. 
In the m icrowave regim e, it is frequently the case that the 
wavelengths involved are m uch larger than the scale o f some 
o f the features listed  above, such as at C -band (with a center 
frequency o f 5.3 GHz). W ith a free-space wavelength of 
5.7 cm, the brine m icrostructure, w ith variations on a sub­
m illim eter scale, cannot be resolved and the wave propagates 
prim arily according to effective electrom agnetic parameters. 
In this case, the reconstructed com plex perm ittivity will be 
an effective com plex perm ittivity e*, which itself m ay vary 
on larger scales resolvable by the wave, due to variations 
in the average m icrostructural properties that determ ine e*. 
For example, a 1-D reconstruction at C -band o f the com plex 
perm ittivity profile e*(z, k ) o f a slab of sea ice, over a range 
o f wavenumbers k, would vary prim arily due to the depth 
(z)  variation of the brine volume. If we desire m icrostructural 
inform ation about the sea ice, such as the brine volume, it has 
to be further extracted from  the reconstructed profile e*(z, k). 
A general theory of how to obtain m icrostructural properties 
from  known values o f effective electrom agnetic characteristics 
is o f clear im portance for inversion o f sea ice parameters. 
Furtherm ore, such techniques would likely have application 
to other areas where inverse scattering has been useful, such 
as m edical imaging, nondestructive testing o f m aterials, and 
geophysical exploration. For example, recovery of brine vol­
um e inform ation from  m easurem ents o f t* is sim ilar to the 
problem  o f m onitoring fluid volum e fraction in the lungs from  
bulk electrical m easurem ents. Recovery o f brine inclusion 
connectedness is sim ilar to m onitoring the porosity o f bones or 
oil bearing rocks as well as to testing the quality o f a tenuous 
conducting m atrix in some smart com posites o f an insulating 
host w ith conducting inclusions [38].

Here we develop a rigorous theory of inverse homogeniza- 
tion for com posite m aterials in the quasistatic regim e, in which 
m icrostructural inform ation about the com posite is inverted 
from  m easurem ents o f effective electrom agnetic properties, 
such as the com plex perm ittivity e*. Our approach is based 
on the Stieltjes integral representation for e* and its spectral 
m easure /j, associated with the com posite geom etry, presented 
in [36] and [41] and the resulting forw ard bounds on e* 
incorporating given inform ation on the m icrostructure. First, 
we present a theorem, giving the conditions under which 
H and the statistical properties o f the m icrostructure can be 
uniquely reconstructed [18]. Then, we analytically invert the 
com plex elem entary and H ashin-Shtrikm an bounds R \  and 
_R2, considered in [41, Section III], to obtain inverse bounds on 
the brine volum e o f sea ice (or the relative volum e fractions of 
any tw o com ponent com posite), for given com plex perm ittivity 
data [19]. We obtain both rigorous bounds on the possible
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range o f volum e fractions given a single value o f the observed 
com plex perm ittivity, valid in the quasistatic regim e, and an 
accurate algorithm  for predicting the brine volum e associated 
with a given data set o f perm ittivity values. The algorithm  is 
dem onstrated on a representative data set at C-band from  [2], 
w ith excellent results. We have also inverted the tighter matrix- 
particle bounds i i " 11’ and R™p for separation inform ation about 
the brine inclusions, which indicates the connectedness o f the 
brine phase [77].

For com pleteness, we briefly review  the forw ard homoge- 
nization problem  [41], Consider a two-phase random  m edium  
in all o f R d, with an isotropic local com plex perm ittivity 
e ( x , /?), taking values ei and t>, the perm ittivities o f brine 
and ice, respectively, w ith t ( x ,  (3) a stationary random  field in 
x  e R 1' and (3 e - where is the set o f all realizations o f the 
random  m edium . We write e(x , (3) =  e i Xi ( x ,  (3) + e2X 2 ^ ,  /?), 
where x i  is the characteristic function o f m edium  1 and 
X 2 =  1 -  Xi- L et E (x . rl) and D (x . rl) be the stationary 
random  electric and displacem ent fields, related by D  =  tE , 
satisfying V  ■ D  =  0 and V  x E  =  0, where (E (x , (3)) =  e r  
e ,  is a unit vector in the ;(h direction, for some j  =  1 , d, 
and (•) means ensem ble average over S7 or spatial average 
over all o f R ' \  The effective com plex perm ittivity tensor < * 
is defined as (D ) =  e*(E). For simplicity, we focus on one 
diagonal coefficient t* =  <*j y  The key result is an integral 
representation [4], [37] for e* exploiting its Stieltjes properties 
as an analytic function o f < i/<2

F (a )  =  l - -  =  ^ — —  (3.1)

where /i is a positive m easure on [0 , 1], determ ined exclusively 
from  the geom etry x i -  In particular, // is the spectral m easure 
o f the self-adjoint operator T x i ,  where 1 =  V ( —A ) _ 1V-, 
A  =  V 2. Statistical assumptions about the geom etry are 
incorporated into fi through its moments

M - M(-) ( ) {x  [( X ) i] j )  ( )

w ith /j,0 =  p i  if  the volum e fractions p i  and P2 =  1 -  Pi 
are known and h i  =  pu>2 / d  if  the m aterial is statistically 
isotropic. In general, know ledge o f the (n + l) -p o in t  correlation 
function o f the m edium  allows calculation o f //,, (in principle).

Bounds on e*, or regions in the com plex e* -plane in which 
the values o f the effective com plex perm ittivity m ust lie, are 
constructed from  (3.1) by assuming partial know ledge o f the 
mom ents of /i. For example, the region R x (the com plex 
elem entary bound) is obtained by assuming knowledge o f only 
Mo =  P i, while the region R 2 (the com plex H ashin-Shtrikm an 
bound) is obtained by assuming know ledge o f H i  =  p ip > /d  
as well. The deep relationship between the connectedness 
properties o f a particular phase in the com posite and the 
support o f )j, (where it is nonzero), in particular, the existence 
o f a  spectral gap around the endpoints zero and one, has been 
explored in [7], [39], and [41]. The spectral gap that exists 
for m atrix-particle com posites (a host m aterial containing 
separated inclusions), like sea ice, which is cold enough, has

been exploited to derive tighter versions and i?™p o f the 
com plex bounds above. These bounds depend on a param eter 
q that m easures the separation o f the brine inclusions, and 
they are com pared with C-band com plex perm ittivity data [2] 
in [41, Fig. 2].

We now  present a  theorem  that tells us when we can be 
assured that the m icrostructure, as characterized by /x, can 
be uniquely recovered [18]. This result can be viewed as 
a type o f existence and uniqueness theorem  for the inverse 
hom ogenization problem .

Theorem (Existence and Uniqueness fo r  M icrostructural R e­
covery): The m easure n  in the integral representation (3.1) 
for the effective com plex perm ittivity e* can be uniquely 
reconstructed if  the values o f t* are known along an arc in 
the com plex s-plane.

For example, we m ay have a m edium , such as sea ice, where 
the com plex perm ittivity o f at least one o f the constituents, in 
particular, the brine, is dispersive. Then, as the frequency is 
varied, an arc is traced out in the com plex s-plane (which 
could be a segm ent o f the real axis). If m easurem ents o f e* 
are m ade all along this arc, the theorem  tells us that /i can be 
uniquely reconstructed. However, this is an ill-posed problem  
that requires regularization to obtain a stable solution. The use 
o f Tikhonov regularization [54] in the reconstruction o f /i has 
been explored, yet it would also be interesting to exam ine the 
potential o f applying causality, through the K ram ers-K ronig 
relations, to stabilize the procedure.

In the above theorem, it is the m easure n  that is uniquely 
reconstructed, yet it is the actual m icrostructure and its p rop­
erties in w hich we are m ost interested. There arises the 
question o f w hether // uniquely determines the m icrostructure 
or the stationary random  field e(x). Strictly speaking, the 
answer is no. For example, the expressions for e*, given 
in the H ashin-Shtrikm an bounds in [41, Section III], can 
be attained by either a coated sphere geom etry or a type 
o f lam inate geom etry. Nevertheless, from  an effective prop­
erty point o f view, these two “different” geom etries are 
the same, in that they have the same effective property 
function <*{<-\l<-2). In particular, all the statistical properties 
o f the two com posites, such as volum e fractions, isotropy, 
and all higher order correlation functions o f the geom etry, as 
m easured by the mom ents o f //, are the same. Thus, the above 
theorem  reconstructs the m icrostructure uniquely, up to the 
identification o f com posite geom etries w ith the same effective 
com plex perm ittivity functions, in the above way.

B. Inverse Bounds on M icrostructural Param eters

We now describe how to invert the com plex bounds R i  and 
R 2 on e* to obtain rigorous bounds on the brine volum e in sea 
ice from  m easurem ents o f e*. The idea o f the inversion is very 
simple, as follows. Given an observed com plex perm ittivity 
value t* (n )  from  a set o f N  data points n  =  1 , . . . , 7 V  
inside the bound R±, as in [41, Fig. 2], we increase the brine 
volum e fraction p i  in the bound until one of the circular 
arcs on the boundary of R± touches this point, which defines 
the upper bound Q i(n )  on the possible range o f volume 
fractions associated with the data point. Similarly, we decrease
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Pi until the other arc touches the data point, giving a lower 
bound .P i(n ) on the possible range o f brine volum e fractions. 
Applying the same procedure to the isotropic com plex bound 
i ?2 yields even tighter low er P 2 (n )  and upper Q 2 (n)  bounds 
on the brine volum e fraction p i.  G iven a set o f data points, 
we carry out the inversion for each point and then take the 
m axim um  over n  o f the 1 \  (n j and the m inim um  over n  of 
the Q i(n ) ,  and sim ilarly for P 2 (n )  and Q 2 (n ), which yield 
rather tight, accurate estimates of the brine volum e associated 
with the given data set. It should be rem arked that a sim ilar 
idea was used previously, a t least to first order for R i ,  and 
applied to m ultifrequency data for thin silver films [70]. Also, 
first-order analytical inverse bounds were derived in [20] and 
applied to geophysical m ixtures in [95]. O ther approaches 
to the inversion of m icrostructural inform ation have been 
considered in [69] and [70].

We now m ake explicit the above outlined procedure. First 
recall that one arc o f the region R± can be param etrized in 
the F -p lane  by

Pi
S 7 ^

0 < z  < p 2. (3.3)

(3.4)

Im  ( (n )s)
(3.5)

Again assuming that the corresponding data point J ( n )  lies 
on this arc, we obtain

(3.8)

To obtain even tighter bounds on p i  under the assum ption 
that the m icrostructure is statistically isotropic, we apply the 
same inversion procedure to the com plex bound R 2. Recalling 
that one arc of R 2 is given in the i  ’-plane by

Pi ( g  ~  z) 0 < z < ( d - (3.9)

This arc gives an upper bound Q 2(n ) on p i  defined by the 
corresponding analogue of (3.4)

(■n))/d).
(3.10)

The given, m easured value of the com plex perm ittivity e*(n) 
determines a  corresponding value F (n )  =  1 — e * (n ) /e 2. A s­
suming that the given value F ( n ) lies on the low er boundary 
o f the region R±, by solving (3.3) for p i,  we obtain for the 
low er bound P i  (n ) on the brine volum e fraction

Separating real and im aginary parts yields coupled, nonlinear 
equations for Q 2 (n) and z (n ) .  The resulting expressions are 
rather com plicated and are omitted. We obtain the low er bound 
P 2 (n )  on p i  by applying the same procedure to the analogue 
o f (3.9) in the J-p lane , as above.

Finally, for a  set o f data points e*(n) ,  n  =  1 , . . .  ,7V, we 
find that the intersection over n  o f the intervals P i  (n ) < p i <  
Q i{n )  for general m edia [20], given by

It should be rem arked that if  the different m easurem ents over 
n  are m ade at different frequencies, then in general the value 
o f s  w ill also depend on n . Separating real and im aginary 
parts, we can im m ediately obtain

m ax  P i in )  <  p i  <  m in  Q i in ) (3.11)

provides a good practical bound on the volum e fraction p i.  
For isotropic media, the intersection over n  o f the intervals
P 2 (n ) < p i  < Q 2 (n ), given by

m a x P 2 (n) <  p i  <  m in Q 2 (n) (3.12)

where the bar denotes com plex conjugation. N ote that our 
com plex-valued data point F (n )  allows us to solve not only 
for the real brine volum e fraction, but also for the real spectral 
param eter z (n ) ,  which is associated with other details o f the 
geom etry, such as inclusion separation, and presum ably forms 
a bound on the possible spectrum.

To obtain the upper bound Q i(n )  on the brine volume, it 
is useful to turn to another auxiliary function [5] associated 
with the interchanged material, where and e2 (as well as 
Pi and p 2) are switched

1 — s
(3.6)

The advantage to using this function as opposed to E (s )  is that 
the spectrum  [or support o f fi in (3.1)] is trivially transform ed 
via — 1 — 5, so that spectral bounds obtained for J  are 
easily translated over to F , which is not the case for E . In the 
J-p lane , the corresponding arc becomes

P 2 0 <  z  < p i . (3.7)

provides a very tight practical bound on the volum e fraction 
P i. In Fig. 6 , we dem onstrate our inverse bounds on the 
brine volum e for a set o f nine data points with frequency 
4.75 GHz taken from  [2], The actual brine volum e p i  for 
the data is p i  =  0.02. Com plex perm ittivities o f the ice 
and brine are calculated as described in [41, Section III]. 
The solid lines represent the intervals P i(n )  < p i  < Q i(n )  
and P 2 (n ) < p i  < Q 2 (n ). The dotted lines represent the 
very tight prediction given by the inverse algorithm  (3.12) for 
isotropic m icrostructures, which is in excellent agreem ent with 
the actual brine volum e p i =  0 .02 .

Finally, we consider inversion of the m atrix-particle bounds 
i?inp and R™p to obtain inverse bounds on the m icrostructural 
param eter q, 0 <  q < 1, measuring the separation o f the 
brine inclusions [77]. We consider a horizontal slice o f sea 
ice (for the vertically incident waves of [2]) and assum e that 
the brine is contained in separated, circular discs. Such an 
assum ption allows us to use the exact calculations in [7] of 
the size of the spectral gap in the support o f /j,. In particular, 
we consider discs o f brine o f radius r h, which hold random  
positions in a host o f ice, in such a way that each disc o f brine 
is surrounded by a “corona” o f ice, with outer radius r*. Then
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Solving for p  as an im plicit function o f q gives

—oo <  z  <  oo (3.13)

Im (w 2 — g4)][e*(u; +  q2) — e2(w  — q2)

Im ^[e*(u; +  q2)][t*(w +  q2) — t 2 (w  — q2

(3.15)

Fig. 6. Inverse bounds on the brine volume pi of sea ice derived from 
measured values of the complex permittivity at
4.75 GHz. The solid lines represent the intervals Pi (n) < pi < Qi(rc) 
for general media and P-i(n) < pi < Q-i(n) for isotropic media. The 
dotted lines represent the very tight prediction given by the inverse algorithm 
(3.12) for isotropic media, which is in agreement with the actual brine 
volume . For the data, the temperature , the salinity

ppt, and and .

the m inim al separation of brine inclusions is then 2 (r, — o j .  
Such a m edium  is called a g-material, where q =  n / r i .  For 
such a material, the m atrix-particle bounds ii'"1’’ and i?™p [39], 
[41] assum e the following form. The com plex perm ittivity e* 
lies in the intersection of two circular discs, the boundaries of 
which are images of the real line R  under different fractional 
linear transformations. W ith p  =  p i ,  these circles have the 
form

where the param eters o f interest p  and q enter the fractional 
linear transform ation through the coefficients a (p ,q ) , b (p ,q), 
c (p ,q ), and d(p ,q ).

F or observed com plex perm ittivities, these forward bounds 
are inverted, yielding curves in (p, g)-param eter space. Such 
a curve is the locus o f points (p, q) for which an observed 
e* lies on the circle F p ^ (R ) .  Each observed value gives a 
different boundary curve. The resulting family o f curves m ay 
be thought o f as being param eterized by the observed com plex 
perm ittivity. In all situations encountered for the forward 
bounds, the functional form  of the coefficients «(p. q), b(p , g), 
c(p ,q ),  and d (p ,q )  are polynom ials in the two variables p  
and q. A general theorem  is proved [77], stating that for such 
cases the inverse bound is a real algebraic curve f ( p , q) =  0 . 
This avoids having to solve coupled nonlinear equations that 
involve the spectral param eter appearing in the argum ent of 
FPtq(z).  As an example, under the assum ption that the sea ice 
is a  matrix particle composite, but w ithout the assum ption of 
statistical isotropy, the following polynom ial is obtained:

f i P , q) =  2<Z2 I m j [ 2 e*(>  +  q2)p +  (e* -  e2) (w 2 -  g4)]

x[e*(u> +  q2) — e2{w — (?2) ] | .  (3.14)

The bar denotes com plex conjugation, and w  is a constant, 
depending only on the com plex perm ittivities o f brine and pure 
ice w  =  (e2 +  e i ) / ( e 2 — ei)- The region o f adm issible (p, q) 
values is bounded by the real algebraic curve / ( p ,  q) =  0 .

Num erical calculation o f the forw ard bounds using pairs 
o f (p, q) -param eter values that lie in the acceptable region 
determ ined by the inversion algorithm  yields consistent results. 
The essentially distinct algorithms used for com puting forward 
and inverse bounds agree. W ork on accurately reconstructing 
(p, q) pairs for actual data sets is ongoing.

IV. Inverse  Scattering  Algorithm s  for  
the r eco v er y  of Sea  Ice Thickness

In this section, we consider a variety o f m ethods for 
inverting electrom agnetic scattering data for sea ice thickness. 
The recovery o f thickness inform ation is one o f the central 
challenges o f sea rem ote sensing. The algorithms presented 
below, along with the m ethods o f Section II, provide a foun­
dation for meeting this challenge.

A. Radiative Transfer— Thermodynamic Inverse M odel fo r  
Thickness Retrieval from  Time-Series Scattering Data

Sea ice thickness is an im portant factor in understanding 
the dynamics o f sea ice cover as well as the air-ocean 
heat exchange. A lthough spaceborne SAR images have been 
successfully applied in mapping the extent and identifying 
the types o f sea ice [59], the direct use o f sim ple em pirical 
models, based on the SAR measurem ents, for sea ice thickness 
retrieval is still lim ited because o f the com plex interactions 
o f electrom agnetic waves with the dynam ically varying sea 
ice medium. Also, it becomes too difficult to derive ana­
lytic inverse solutions from  direct scattering models o f sea 
ice [25], [34], [72], [97], [98], [107] for the ice thickness. 
To utilize such developed scattering models, the param etric 
estim ation m ethod can offer a greater flexibility in the choice 
o f forward models, the param eters to be inverted, and the 
data to be em ployed [52]. However, such an approach usually 
has associated problem s of nonunique solutions and inversion 
stability with noisy data. A lthough it m ight be possible to 
reduce the effects o f these uncertainties by using diversified 
multifrequency, multiangle, and polarim etric data, the cost o f 
such extensive m easurem ents may be prohibitive for satellite 
rem ote sensing o f sea ice. o n  the other hand, orbiting satellites 
repeat their passes at a  fixed tim e interval; it is natural for them  
to m ake tim ely sequential observations. W ith these time-series 
measurem ents, more data becom e available, which is helpful in 
resolving the nonuniqueness and stability problem s and useful 
for the geophysical param eter reconstruction.

Recently, ice-thickness reconstruction algorithms based on 
the com bined use o f sea ice electrom agnetic scattering models, 
tim e-series rem ote-sensing data, and a param etric estimation 
technique have been developed [52], [86], [87], [99], [100]. 
Veysoglu et al. [99], [100] have developed an inversion 
algorithm  using passive m icrowave m easurem ents o f sea ice. 
They have shown that, by incorporating a Stefan’s growth
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d t p L  ± +  A' e Ki
S i — S i0 d s h (4.2)

(4.3)

electrom agnetic m easurem ents m ade in a  tim e series, it is 
helpful to use these correlations to im prove the retrieval o f 
relevant physical parameters.

The radiative transfer scattering m odel o f sea ice [25], [86], 
[87] described in [41, Section V] is used in this algorithm  
to provide a relationship betw een the expected backscatter 
m easurem ents to the radar param eters and the saline ice 
characteristics. This relationship can be expressed as

, x) + ei (4.4)

Fig. 7. Block diagram of the radiative transfer—thermodynamic inversion 
algorithm using time-series measured data. The dynamic electromagnetic 
scattering model, which includes the electromagnetic scattering model and 
the ice growth model, is enclosed by a dashed rectangle.

m odel [9 ] into the sea ice inverse scattering problem , the 
thickness estim ation can be constrained sufficiently to p re­
dict m ore accurately the evolution of sea ice growth. The 
inversion scheme is based on nonlinear optim ization using 
the Levenberg-M arquardt m ethod [65]. Shih et al. [86], [87], 
from  the experim ental observations and the therm ophysics of 
ice growth, developed a retrieval algorithm  for ice thickness 
based on a dynam ic electrom agnetic scattering m odel o f saline 
ice and tim e-series active rem ote-sensing data. This inversion 
algorithm  using active radar m easurem ents is sum m arized in 
Fig. 7.

In this algorithm, the growth m odel for saline ice consists 
o f the following set o f equations:

dh  1 T m -  T a ^

where <x, is the m easurem ent data vector whose elements 
consist o f backscattering coefficients, k '( t , . z .  x j  is the model 
response, and e, represents the discrepancy between the obser­
vation and the m odel result. The index i is used to denote the 
m easurem ent tim e at t , . The array z denotes the set o f known 
radar parameters, such as the frequency / ,  polarization, and 
looking direction. The vector x  contains the pertinent model 
param eters o f saline ice

? ds . <2q . g s . e] (4.5)

The estim ation o f the growth of ice thickness is given by (4.1), 
which is a heat and m ass balance equation [53], [104], where 
h  is the ice thickness, 'j]j is the growth rate, T„ is the air 
temperature, and T„, is the ice melting temperature, where all 
temperatures are in °C. The therm al conductivity of saline ice 
in W /m /°C  is L  is the latent heat o f freezing in J/kg, the 
quantity e is the heat transfer coefficient between ice and air, 
which accounts for contributions from  both convection and 
radiation, and p is the density o f the ice. The growth of sea 
ice also accom panies the desalination process [26], and (4.2) 
approxim ates the reduction o f the bulk salinity, .S', in ° / 0o, 
o f thin saline ice by a m onotonic decreasing function o f ice 
layer thickness h  and a desalination factor d„. Equation (4.3) 
describes the change o f brine inclusion size a w ith the ice 
thickness h  and a size expansion factor ge. This assum ption 
has been tested by com paring the theoretical m odel results 
w ith the experim ental data on radar backscatter signatures 
[73], [86], [87]. F rom  these equations, the state o f the ice at 
a certain stage can be estim ated from  previous states. With

where h 0 =  h ( t0) is the ice layer thickness at tim e t 0 at 
w hich the reference tim e for the first set o f data is taken. The 
other param eters ds, a0, gs , and e have been defined in
(4.1)-(4.3). (The notation x  and e , should not be confused 
w ith the different m eanings used above.)

In the retrieval analysis, the m odel param eters x  are to 
be reconstructed from  the scattering data. The approach is 
to m easure the data a  and invert the relation (4.4), i.e., to 
express the param eter Xj in terms o f a . The m inim ization of 
the sum  o f squares o f the difference between the m easured 
data and the m odel response is perform ed by using the Leven- 
berg-M arquardt algorithm  [65]. [This m ethod is a hybrid o f the 
steepest descent (SD) m ethod and the inverse Hessian method. 
W hen initial param eters give a solution far from  a minimum, 
the SD m ethod is used to get close to the m inim um , the 
problem  is assum ed to becom e quadratically convergent, and 
the inverse Hessian m ethod is em ployed to further converge 
to the solution w ithin the specified accuracy. During the 
param eter adjusting process the Levenberg-M arquardt m ethod 
blends or varies smoothly betw een these two methods.] A t the 
j - th  iterative step in Fig. 7, the vector o f estim ated parameters 
x ^  consists o f ice parameters at a specific time, including 
the initial ice thickness, initial salinity, initial brine pocket 
size, desalination factor, brine size growth factor, and the 
heat transfer coefficient. (In this figure, a , b, and c denote 
the dimensions o f the brine inclusions in the three principal 
directions, f v denotes the volum e fractions o f the inclusions, 
and f „ denotes the perm ittivity o f the sea ice.) The subsequent 
thicknesses, salinity, and brine pocket sizes at different growth 
stages are calculated according to the saline ice growth m odel 
described in (4 .1)-(4.3) and the elapsed tim e between each 
m easurem ent. This set o f ice param eters is then substituted 
into the electrom agnetic scattering m odel, which solves the 
radiative transfer equation and generates a sim ulated time 
series o f backscattering coefficients that is com pared with the 
vector o f m easurem ent data. Thus, the object function contains 
the whole tim e-series m easured and m odel data, in contrast to
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TABLE I
Initial Guesses, Constraints, and Inverted Model Parameters

FOR THE RADIATIVE-TRANSFER THERMODYNAMIC INVERSE MODEL

model initial lower upper final value
parameters guess limit limit 25° C

O
O

O

h0 (cm) 1.00 1.00 8.00 2.87 3.58
a0 (cm) 0.0120 0.0120 0.0150 0.0128 0.0121

9s 0.00200 0.00150 0.00200 0.00169 0.00163
Si0 (u/oo) 20.0 15.0 20.0 15.6 15.1

ds (u/oo/cm) 0.50 0.50 0.80 0.50 0.54
e{W /m 2/°C) 10.0 8.0 12.0 8.0 8.0

Fig. 8. Thickness retrieval without time-series information. The circles show 
possible combinations of thickness, brine pocket size, and brine volume, which 
may give similar backscattering coefficients at a specific time. Filled triangles 
represent inversion results without time-series information. The ground truth 
of ice thickness is represented in cross.

the data at one specific time. If  the m odel data do not agree 
with the m easured data, the m odel param eters are adjusted. To 
m inim ize the least-squares object function, the entire series 
o f sim ulation and experim ental results must be matched. In 
this way, the range of possible retrieved thicknesses from  an 
initial trial thickness can be reduced and the retrieval may 
be robust to the discrepancy between model responses and 
m easurem ents. The procedure is then repeated until the error 
threshold is reached. The inverted initial thickness is finally ap­
p lied back to (4.1) to reconstruct the ice thickness for the entire 
growth stage. This inversion algorithm  was applied to retrieve 
the growth o f a sheet o f thin saline ice by using the set of 
C -band polarim etric radar sequential measurem ents from  the 
C RRELEX ’93 experiment. The experim ent is detailed in [73].

We first consider the thickness retrieval w ithout incorpo­
rating the tim e-series inform ation. For this case, each 25° 
incident angle data set [73], [86], [87] at a specific tim e 
is inverted separately. The open circles shown in Fig. 8 
indicate the possible solutions of thickness corresponding to 
the backscatter at that specific time, while the cross symbols 
represent the m easured thickness. This am biguity in the thick­
ness retrieval is to be expected since different combinations 
o f thickness, brine volume, and brine pocket size may give 
a sim ilar backscattering coefficient, i.e., the electrom agnetic 
scattering model alone does not provide sufficient inform ation 
to reconstruct the ice thickness uniquely. We further reduce 
the num ber o f unknowns to let the thickness be the only 
unknown model parameter, the same set o f backscatter data 
at 25° incident angle is applied to invert ice thickness. The 
retrieved thickness, as denoted by the filled triangles in Fig. 8 , 
still shows large fluctuations from  the m easured ground truth, 
which is caused by some m easurem ent uncertainties and the 
inaccuracy o f sim plified saline ice scattering model. This 
exam ple dem onstrates an unsuccessful inversion even with 
only thickness being the unknown parameter.

To avoid the nonuniqueness and noise problem s, the inver­
sion with tim e-series m easured data is considered next. The 
initial thickness is the pertinent param eter to be inverted. Since

Fig. 9. Thickness retrieval with polarimetric time-series data. The boxes 
represent the measured ice thicknesses. The solid curve indicates the evolution 
of reconstructed ice thickness using measured time-series data at 25° incident 
angle.

the growth rate o f ice is not a priori inform ation, the heat 
transfer coefficient e is also included as an unknown model 
parameter. The unknown model param eters are constrained 
within appropriate physical ranges instead o f letting all pa­
ram eters vary freely, which will cause the inversion algorithm  
inefficient as well as susceptible to some local minimum 
attractions or divergences. Table I gives the initial guesses, 
constraints, and the inverted values o f model param eters for 
this inversion. The constraints on m odel param eters S ,(l- ds , 
and e are determ ined by referencing the m easured ground 
truth and the findings in published literature. O n the other 
hand, the m odel param eters a0 and gs are determ ined based 
on the forward m odel sim ulations and allowed a ±15%  
variation range. The reconstructed ice thicknesses are shown 
in Figs. 9 and 10 for two different incident angles 25 and 30°, 
respectively. It is noted that the retrieved ice thickness obtained 
by using this tim e-series inversion algorithm  agrees very well 
with the m easured ice growth. The retrieved thickness for the 
25° data set appears better than the one for 30°, which may 
be due to the larger deviation between model sim ulation and 
m easured data in cross polarization at the 30° incident angle
[73], [86], [87].

In summary, an accurate inversion algorithm  for the thick­
ness o f thin saline ice has been developed based on the 
electrom agnetic scattering model, ice growth physics, and 
param etric estim ation method. Time-series m easured data were
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Fig. 10. Thickness retrieval with polarimetric time-series data. The boxes 
represent the measured ice thicknesses. The solid curve indicates the evolution 
of reconstructed ice thickness using measured time-series data at 30° incident 
angle.

used instead o f m ultifrequency or m ultiangle data to re­
duce the effects o f uncertainty and noise. The saline ice 
growth m odel provides m ore inform ation to constrain the 
param etric estim ation method. As a result, a  better retrieval 
o f thickness is achieved by utilizing these tim e-series m ea­
surements in this method. The dem onstrated accuracy of 
the thickness retrieval suggests the potential use o f this al­
gorithm  for retrieving geophysical param eters from  time- 
series satellite rem ote-sensing data. The inversion algorithm  
is recently applied to the case of ice growth under diurnal 
variations. Com parisons w ith experim ent for such cases will 
be reported shortly.

B. N eural Netw ork Inversion fo r  Sea Ice Thickness

In general, the inversion o f geophysical param eters is com ­
plex because o f the m ultidim ensionality, the interrelationship, 
the dynam ics, and the physical interactions under different 
environm ental conditions. In this respect, neural networks are 
particularly suitable because of their ability to adapt to the 
geophysical m ultidim ensionality and their robustness to noise 
in realistic rem ote sensors. N eural networks have been studied 
intensively [60] and have found rem ote-sensing applications in 
snow param eter retrieval w ith passive m icrowave data [96] and 
particle size determ ination with optical data [51] for instance.

In this section, we dem onstrate the use o f neural networks 
to invert for thickness of young sea ice with m ultifrequency 
polarim etric m icrowave data. The approach is to retrieve the 
ice thickness by using the analytic w ave theory m odel [72] 
described in [41] to train the neural network to m atch m easured 
data in the selection o f the ice thickness. There are several 
types of networks, such as the Hopfield net, the Hamm ing net, 
and the Kohonen self-organizing feature m apping. Here, we 
use the m ultilayer perceptron with a modified backpropagation 
algorithm  to im prove the convergence rate and accuracy [49]. 
Interrelations o f physical parameters governed by sea ice 
physics under typical A rctic winter environm ental conditions 
are utilized to restrict the solution space to avoid extraneous 
solutions and shorten the required com putation time.

The C -band and L-band polarim etric SA R  data used in this 
study were collected in M arch 1988 by the Jet Propulsion 
Laboratory, Pasadena, CA, SAR onboard the N A SA /D C-8 
aircraft during the Beaufort Sea Flight Campaign [10] over 
a sea ice experim ental area, located near 75° N  latitude and 
spanned 140-145° W  longitude. Each frequency channel has 
the capability o f simultaneously collecting linear like-polarized 
(HH  and V V ) and cross-polarized (H V  and VH) backscatter 
data. The transm itter alternately drives the HH- and VV- 
polarized antennas, while dual receivers sim ultaneously record 
the like-polarized and cross-polarized echoes. In this manner, 
the scattering m atrix of every resolution elem ent in an image 
is measured. The spatial resolution o f the four-look SAR data 
used here is approxim ately 6.6 and 11 m  in the slant range 
and azim uth directions, respectively. The range of look angles 
is between 20 and 70°.

In the Beaufort Sea experim ent region, ice conditions com ­
prised a  m ixture o f first-year and m ultiyear ice forms in this 
region o f transition between the polar pack and younger near 
shore ice [30]. H igh ice drift speeds experienced during the 
experim ent [106] create new ly opened and refrozen leads and 
offer the opportunity to acquire airborne radar data for young 
ice over a large range o f incident angles. N ote that surface- 
based data o f young thin ice are scarce due to its inaccessibility 
and fragility in the natural environm ent. A lthough we do not 
have direct surface m easurem ents of the thickness, the evi­
dence o f the thickness range o f the ice is given by the weather 
and ice conditions acquired by the Applied Physics Laboratory 
Ice Station (APLIS), U niversity o f W ashington, Seattle, in 
the experim ental area [106] and the alm ost contemporaneous 
high-resolution passive m icrowave observations. The passive 
m icrowave observations were acquired by the N aval Research 
Laboratory (previously NORDA), W ashington, DC, Ka-band 
scanning radiom eter system  (KRM S) [32]. Ice properties, 
including salinity, temperature, brine inclusions, and surface 
roughness, have been presented [58].

The neural network as a  nonlinear estim ator is used for 
retrieving the m ean thickness for the young ice. The scattering 
m odel [58] is used to generate the polarim etric scattering 
coefficients o f sea ice with a range of thickness between
0 and 15 cm  at the C- and L-band. The five polarim etric 
coefficients used here are c th h , o h v , ^ v v , R e ( o 'h h w ) ,  and 
Im (iJhhw ). This data set provides the input-output pairs to 
“train” the neural network such that the resultant network 
w ould provide an estim ate o f the thickness when presented 
w ith a set o f polarim etric scattering coefficients. The neural 
netw ork em ployed in this study consists o f an input layer, 
an output layer, and two hidden layers with the nodes in 
each layer connected to each other. The num ber o f input 
nodes for the input layer equals the num ber o f input elements. 
In this case, the inputs are the five polarim etric backscatter 
coefficients. The num ber o f nodes in the second and third layer 
are 10 and 30, respectively. There is only one output node 
since the average ice properties are functions o f ice thickness, 
w hich provides an estim ate of the thickness o f the ice given 
the polarim etric observations.

Fig. 11 shows the overall thickness results o f young sea ice 
in the refrozen new  leads over the incident angle range, where
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for both the ice layer and the water below it. It is known that 
the field reflection coefficient for such a layer is given by

■ JR2e _2(" +i/3)d
R c{0 ,d )  = Ri______________

1 + R1R2e-2(a+i!3)d (4.6)

where a  =  Re[zfc(er — s in 2 0) 1//2]; fi =  Im[zfc(er — s in 2 0) 1//2]; 
R i , R 2 are the Fresnel reflection coefficients at the a ir-ice  and 
ice-w ater interfaces, respectively; 9 is the incident angle, and 
d  is the thickness o f the ice layer. The coherent reflectivity 
is given by

Incident Angle (degree)

Fig. 11. Comparison of theoretical predictions of ice thickness from neural 
network inversion with data taken in the Beaufort Sea.

data are available. The near range incidence angles (less than 
35°) are not shown here because some o f the radar data are 
saturated in this range and saturated the network. A t both C- 
and L-bands, the estim ated average thickness of the lead ice is 
between 6 and 9  cm , which shows consistency in the process. 
Fig. 11 also shows errors caused by ± l-d B  uncertainty in the 
radar m easurem ents or m odel calculations in the incident angle 
range com m on to C- and L-bands. This w ork has illustrated 
the use o f neural network in retrieving sea ice thickness from  
polarim etric m icrowave SAR data with noise.

C. Reflectivity Inversion fo r  Sea Ice Thickness

In m ost o f the studies in the past on the use o f active 
measurem ents [35], [58], [86], backscattering coefficients have 
been used for retrieving thin saline ice thickness. It is known 
that there are a few decibels o f fluctuation in these types 
o f data, and hence, statistical methods, such as the neural 
networks, have been used for retrieval. Fluctuations are re ­
solved by the use o f m ultiple inputs in terms of frequency, 
polarization, and/or the incident angle and their know n relative 
values. Clearly, a  data set w ith m uch less fluctuations will 
provide even better results in identifying ice thickness and 
m ay allow a sim ple and m ore direct retrieval in som e cases.

In this section, we consider the relations between ice thick­
ness and both the coherent and incoherent reflectivity proper­
ties o f a layer o f saline ice over saline water. It is shown that 
a new  incoherent reflectivity along with the standard coherent 
reflectivity are needed to explain reflectivity m easurem ents. 
Physically, it is clear that when the ice is less than or 
com parable to the incident wavelength, the transm itted and 
reflected fields w ithin the ice interfere coherently. This is 
true when the ice thickness is about a w avelength or less 
in ice. W hen the ice gets thicker, the low er interface gets 
rougher and loss gets higher, the coherency between the 
transm itted and reflected field is lost and the reflectivities of 
VV- and HH-polarizations becom e incoherent. The transition 
takes place between one and two wavelengths. M easurem ents 
o f reflectivity taken over two wavelengths in ice follow 
incoherent reflectivity behavior quite well.

For a continuous incident wave, the im pedance seen by it 
a t the a ir-ice  boundary is the total field im pedance accounting

r c = |i?.c(M )|2 (4.7)

An incoherent reflectivity was given by U laby et al. [98] as

r ( 0 ,) r x + r 2(i -  2r1)e~4adsece
1 i ( M )  - ------ 1 _ r i r 2e - 4«c/Sece------ • (4.8)

However, it is found that an expression that fits the m easure­
m ent better is

Tin =  \R i(9 ,d )\2

where

R i(0 ,d )  =
R \  R 2c- 2 c z d d

(4.9)

(4.10)
1 +  R \ R 2e~ 2a sec ed '

1) Surface Backscattering M odel Approach: A surface 
backscattering m odel was used in [35] to explain backscat- 
tering from  the saline ice layer. It was found that surface 
scattering was responding to the total effective perm ittivity o f 
the ice layer and the w ater beneath it. It is clear that, when the 
w ater below  is not seen by the radar, only the perm ittivity of 
ice will be in effect. O therwise, an effective total perm ittivity 
for the com bination o f the ice layer and w ater is sensed. It 
is this property that allows the ice thickness to be calculated 
a t a given wavelength. N ote that the conventional idea o f a 
perfectly plane layer in which we can expect two echoes from  
the top and bottom  ice interfaces is not applicable here because 
the ice-w ater interface m ay be rough and the echo m ay be 
diffused and difficult to detect. In the next subsection, we shall 
see that this idea is supported by reflectivity m easurem ents.

It is know n that when the ice surface is random ly rough, 
m any samples are required to reach the statistical average. 
Thus, generally, there is some fluctuation in the data. In 
Fig. 12, we show a com parison between backscattering calcu­
lations at 5.3 GHz and data plotted versus ice layer thickness 
at 25 and 40° incidence using the integral equation surface 
scattering m odel [34]. The coherent reflection coefficient due 
to a layer is used for ice thickness up to 2 cm, beyond which 
we use the effective perm ittivity inverted from  the incoherent 
reflectivity to calculate backscattering. The perm ittivity o f the 
saline ice is taken to be 3.4-i0.2. The perm ittivity o f the 
saline w ater is com puted based on the form ula given in [98] 
a t - 5  °C. The correlation function o f the surface is taken 
to be exponential, and its rms height and correlation length 
are taken to be 0.08 and 0.8 cm, respectively. W hile there is 
an overall agreement, a deviation o f a few  decibels between 
m odel predictions and data are evident. S im ilar deviations 
between m odel predictions and data are also evident in [58] 
and [86].
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(a)

thickness

(b)
Fig. 12. Comparisons between surface-scattering model and data for VV- and HH-polarizations at 5.3 GHz (a) 25° and (b) 40°, respectively, where c 
denotes coherent scattering, denotes data, and denotes incoherent scattering.
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Fig. 13. Comparison between model and data using measured permittivity as input at 5.3 GHz for VV- and HH-polarization and incidence angle of 
(a) 25 and (b) 40 , respectively.
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Fig. 14. Comparisons of coherent and incoherent reflectivity model results with measurements at incidence angles of (a) 25° and (b) 40°. C' denotes coherent 
reflectivity, I? denotes incoherent reflectivity in (4.9), and G denotes the reflectivity in (4.8).

If  instead o f theoretical estimates of reflectivity we use the 
perm ittivity inverted from  m easured reflectivity in the surface 
scattering model, we obtain better agreem ent at 25° incidence 
but no significant im provem ent at 40° incidence, as shown in 
Fig. 13. For this reason, a  direct retrieval o f ice thickness is 
not feasible. A  statistical method, such as a neural network, 
could be used [58].

2) Ice Thickness Retrieval: Reflectivity measurem ents 
were carried out over saline ice at 25 and 40° incidence 
and 5.3 GHz. In Fig. 14, com parisons are shown between 
m easured data and the coherent and incoherent reflectivities 
given by (4 .7)-(4.9) as a function o f ice layer thickness. Of 
the two incoherent reflectivity models, it is seen that (4.9) 
gives a better fit to the data than (4.8). M ore importantly,

Authorized licensed use lim ited to: The University of Utah. Downloaded on Septem ber 24, 2009 at 11:58 from  IEEE Xplore. Restrictions apply.



1698 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 36, NO. 5, SEPTEMBER 1998

there is very little data fluctuation after the ice thickness is 
larger than 4 cm. It appears that, when the ice thickness is 
less than or around one wavelength, the wave transm itted 
into the ice interferes coherently with the field reflected from  
the ice-w ater interface. Thus, we can only interpret the data 
using a coherent reflectivity m odel given by (4.7). A fter about 
4  cm  (which is about two wavelength in thickness), the waves 
becom e incoherent and a specific trend appears, as shown in 
Fig. 14. This specific data trend is m uch clearer and m ore 
stable than w hat can be obtained from  the backscattering 
m easurem ents shown in the previous subsection. It appears 
that ice thickness can be inverted directly from  reflectivity 
m easurem ents when the thickness is over one wavelength.

D. Proxy Indicators o f  Sea Ice Thickness

Faced with the difficulties o f determ ining sea ice thickness 
through electrom agnetic means, people have developed alter­
natives to direct thickness measurem ents, one of these being 
the use o f proxy indicators. A rem otely sensed proxy indicator 
o f sea ice thickness is a characteristic, physical property, or 
suite o f physical properties that is tied to ice thickness and 
has a  m easurable electrom agnetic signature. To date, the m ost 
successful general proxy indicator o f ice thickness that can 
be determ ined through rem ote sensing has been ice type or 
age [8], [57], [59], [103] F irst-year ice (ice that is less than 
a year old) is in general thinner than m ultiyear ice (ice that 
has survived one or m ore m elt seasons). The age of sea ice 
is m anifested by a suite o f physical properties, such as brine 
pocket size and brine distribution, that affect scattering and 
em ission o f radiation. A separation between first-year and 
m ultiyear ice, however, only gives rough inform ation about 
ice thickness.

For thin sea ice, proxy indicators other than ice type have 
recently been investigated. In the microwave, experiments and 
models have indicated that electrom agnetic signatures o f new 
sea ice are tied to surface roughness and dielectric properties 
[3], [29], [89], [91], [101]. Through m odeling, Zabel et al. 
[113] looked into the com petition between the influence of 
near-surface dielectric changes and surface roughness changes 
on the m icrowave backscatter o f young, growing sea ice. 
They found that surface roughness changes tend to dominate 
over dielectric changes after the initial 10 cm  o f ice growth. 
Unfortunately, surface roughness is not a reliable proxy in ­
dicator o f ice thickness because it can change rapidly due to 
events, such as snowfall and ridging. A m ore reliable, though 
transient, event m ay be the growth o f frost flowers, which 
typically happens while the ice is about 5 -20  cm  thick and 
results in strong m icrowave backscatter. Zabel et al. [113] 
also hypothesized that the surface dielectric constant o f sea 
ice m ay serve as a proxy indicator for young sea ice thickness 
when using m icrowave sensors operating at an incidence 
angle of about 12°. A t this angle, experiments showed that 
the m icrowave backscatter is largely insensitive to surface 
roughness.

A nother proxy indicator for thin sea ice thickness is ice sur­
face temperature. The basic idea is that the surface tem perature 
o f thin ice tends to be higher than that o f thick ice. This ten­

dency is observed in infrared im agery [44], [66], [112]. Using 
therm al infrared im agery and a therm odynam ic m odel for ice 
growth, Yu and Rothrock [112] have dem onstrated calculations 
o f thin sea ice thickness distributions largely to w ithin 2 % of 
sonar-based distributions (sonar is considered the m ost reliable 
rem ote-sensing tool for m easuring ice thickness). The largest 
difference between the two distributions (20%) occurs for very 
thin ice. For ice thickness itself, they report an uncertainty 
in their m ethod of roughly half the ice thickness. Infrared 
m ethods suffer by com parison to m icrowave m ethods in that 
infrared sensors are lim ited by cloud cover. Nevertheless, ice 
surface tem perature appears to be a  useful proxy indicator for 
sea ice thickness.

V. NEURAL NETWORK CLASSIFICATION OF SEA ICE TYPE

The purpose of this section is to introduce a classification 
scheme for sea ice types based on a special neural network 
known as the fast-learning neural network [63], [28]. Learning 
in a  neural network can be viewed as m inim izing the sum 
of the squared errors between the desired outputs and the 
com puted network outputs by adjusting the weights inside the 
network. O ne problem  with the conventional backpropagation 
neural network learning m ethod is that the resultant error is 
highly dependent on the initial weights [83] and m ay not 
find the global m inim um  o f the error function. The fast- 
learning algorithm  has been shown to be m uch less sensitive to 
this problem  [27]. The Fast-learning m ethod differs from  the 
backpropagation in that the output o f the fast-learning neural 
netw ork is expressed as a linear function o f the output weights, 
and linear equations can be solved exactly to m inim ize the 
training error. The basis functions o f these linear equations are 
the sigm oid activations com m only found in neural networks. 
The advantages of the fast-learning neural netw ork over the 
backpropagation neural network for a sea ice classification 
problem  are dem onstrated in this section.

W hen considering training data for neural networks to 
perform  classification, it is necessary that the training data 
fully represent all o f the dom ain o f the input set rather than 
prim arily the means, as in a  A;-means classification. This is 
due to the fact that the neural network needs to know  where 
to position the discrim ination planes in n-dim ensional space. 
The perform ance of a neural netw ork in classification problems 
is m ore dependent on having representative training samples, 
whereas the statistical classifiers need to have an appropriate 
distribution m odel for each class. This is an im portant differ­
ence between the neural network and conventional statistical 
classification.

A large am ount o f data currently available to the remote- 
sensing com m unity originate from  aircraft and satellite-based 
platforms. These data usually have little or no ground-truth 
inform ation that would allow them  to serve as training data, 
as required in a supervised classification scheme. Although 
the unsupervised classifiers or clustering algorithms can group 
data into logical sets that have sim ilar features, these classifiers 
do not identify w hat specific ice type each cluster represents. 
A possible m ethod to identify the ice type associated with a 
cluster is to com pare it w ith clusters from  known ice types,
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TABLE II
Summary of Radiometric Averages for the Eight Classes Considered. All Values Given Are in Kelvin

Channel Open Frazil Ice 
Water

Thin Ice FY 2nd Year Inter.
(mix)

MY Old M

19V 197.6 241.5 252.6 246.7 239.7 234 231.6 223.7
22V 206.1 241.8 251 244.2 236.3 229.6 226.4 217.7
37V 214.5 241.4 247.4 235.8 223.7 216.2 206.7 195.9
85V 240.9 244 237.1 218.7 210.8 208.7 195.1 193.1
19H 136.5 208.6 233.6 228.7 220.7 214.5 214.4 206.4
37H 160.3 215.5 232.5 221.4 208.8 199.4 194.3 183.7
85H 203.6 226.7 225.9 207.9 199.8 197.2 185.6 183.5

Fig. 15. Identification of unsupervised classification cluster centroids using an emission model from [34].

which serve as ground truth. If  only the m ean radiom etric 
values of ice types are available, another m ethod is to use 
a validated scattering or em ission m odel. The m odel should 
produce the m ean value, when the m odel param eters take 
on their m ean values for a given ice type. Variations of the 
m odel param eters about their m ean values should allow the 
m odel to generate the cluster. Thus, a physical em ission model 
calibrated by a data set from  a know n ice type m ay be used 
to identify a cluster o f the same ice type. To illustrate the 
classification m ethod with a fast-learning neural network, we 
shall consider a specific exam ple using radiom etric data from  
the spaceborne SSM /I platform.

1) Classification Example: The SSM /I is a seven-channel, 
four-frequency, linearly polarized, passive m icrowave ra ­
diom eter system  [47], [80]. The instrum ent measures surface 
brightness temperatures at 19.3, 22.2, 37.9, and 85.5 GHz. 
A ll data are at 53° from  nadir. D ata from  M arch 1-15, 1988, 
are processed to rem ove outliers. The data are then clustered

into eight classes using an unsupervised ISODATA algorithm  
[79] These eight classes o f ice can be identified with either 
clusters o f radiom etric m easurem ents from  know n ice types 
acquired from  radiom etric images [27] or using a calibrated 
em ission model. An em ission m odel can be calibrated with any 
em ission data representative o f known ice types. A sufficient 
num ber o f such data sets are difficult to find. To illustrate this 
approach, an em ission m odel based on the radiative transfer 
m ethod [34] is used to fit centroids already established by
[23]. The centroids of the ice categories used are given in 
Table II. An exam ple o f m odel calibration is shown in Fig. 15 
for open water, frazil ice, first-year ice, and m ultiyear ice. 
O nce the calibration process is complete, we can apply this 
calibrated m odel to determ ine the ice types represented by the 
eight clusters found using unsupervised clustering.

A fter the original im age is classified using the unsupervised 
m ethod and the identity o f each class is known, the final 
classified im age can be used as pseudoground truth for a
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Fig. 16. Comparison of training classification error as a function of iteration 
for the five cases listed. The training set contained 30512 patterns. All 
networks used the same fully connected 7-15-8-8 topology.

supervised neural netw ork classification scheme. Representa­
tive data from  each of these eight classes and an associated 
class identification tag are dum ped to a file and used to 
train a neural network. The trained neural network classifier 
can then be used for batch processing satellite or aircraft 
data. For the exam ple considered, the neural netw ork will 
need to have seven inputs (one for each radiom etric channel) 
and eight outputs (one binary output for each class). From  
experience with sim ilar data, two hidden layers with 15 
and 8 units, respectively, are used in the neural network. 
This four-layer network is com m only denoted by 7-15-8-8. 
A  conventional backpropagation learning algorithm  and the 
fast-learning algorithm  are used to train the neural network. 
The prim ary difference betw een the fast-learning m ethod and 
the backpropagation m ethod is that the fast-learning m ethod 
finds the global m inim um  o f the error function with respect 
to output weights, not w ith respect to all weights within 
the netw ork as the backpropagation m ethod does. The fast- 
learning m ethod is optim izing the output weights rather than 
all hidden weights as required by the backpropagation al­
gorithm. In addition to these two m ethods, a third hybrid 
m ethod com bining fast-learning and backpropagation is also 
used (fast-learning +  backpropagation). A fter solving for the 
output weights as perform ed by the fast-learning method, 
the com bined fast-learning +  backpropagation m ethod uses 
backpropagation to correct the hidden weights.

Results: A ll three algorithms (backpropagation, fast- 
learning, and fast-learning +  backpropagation) were tested 
on the same training file using the same 7-15-8-8 fully 
interconnected topology. The training set consisted o f 30512  
training patterns. Three separate attem pts to train the network 
using backpropagation were m ade; each with different learning 
rates and m om entum  factors [83]. The tim e required for 
training the network, the final classification error, and the 
num ber of iterations required are given in Table III. The 
classification error during training for all m ethods is plotted 
as a function o f epoch in Fig. 16.

From  Table III, we see that the backpropagation training 
algorithm  did very poorly in com parison to the fast-learning 
algorithms. N ote that even in cases in which backpropagation

TABLE III
Comparison of Training Time, Iterations, Error 
Using 7-15-8-8 Topology—(There Were 30 512 
Patterns in the Classification Training File)

Job Name Time Required Iterations Avg Time(sec) 
/Iteration

Min Error%

BP-18522 19558.8 500 39.12 16.76
BP-18513 19526.9 500 39.05 14.86
BP-18494 19521.07 500 39.04 34.51
FL 4478.3 150 29.85 3.805
FL+BP 6736.9 150 44.91 3.382

was allow ed to run three times as long as fast-learning, the 
backpropagation training error is a full m agnitude greater. 
A lthough the com bined fast-learning +  backpropagation did 
slightly better than fast-learning alone, the additional training 
tim e required m ay not be justified. Thus, the fast-learning is 
the m ethod o f choice for this problem . The fast-learning +  
backpropagation classified im age is shown in Fig. 17(b) along 
with the results o f the N ASA Team Algorithm  (NTA) [90] in 
Fig. 17(a). This figure provides a  qualitative com parison of 
m ultiyear concentration from  NTA with the ice ages estim ated 
using the fast-learning +  backpropagation approach described 
here. N ote the general agreem ent in shape, especially in the 
F ram  Strait (north o f Svalbard) labeled “p1” and the region 
ju s t north o f Ellesm ere Island (labeled “p2”).

In summary, a  validated em ission m odel can be com bined 
with other techniques, such as the fast-learning +  backpropa- 
gation neural network, to effectively perform  classification for 
com plex problem s, such as sea ice. In this example, we used 
a clustering algorithm  that is better suited for data w ithout 
ground truth and then applied an em ission m odel to determ ine 
class identity. This approach allows us to use the results o f the 
clustering algorithm  to train a neural netw ork that can then be 
used to process data in large volumes.

VI. Conclusion

Techniques o f electrom agnetic inverse scattering theory 
have been applied to the problem  o f sea ice rem ote sensing. 
Inverse algorithms designed to reconstruct com plex perm ittiv­
ity profiles and thickness inform ation on sea ice have been 
developed and tested in settings ranging from  a foam/dry 
wall slab system  in the laboratory to laboratory grown saline 
ice and A rctic sea ice. The w ork presented here represents 
the first concerted, interdisciplinary effort aim ed specifically 
at the problem  o f reconstructing sea ice physical parameters 
from  scattered electrom agnetic field data. For example, sea ice 
thickness has been a long sought after parameter. The present 
work establishes a foundation upon which practical methods 
o f large-scale inversion for sea ice thickness, at least for the 
im portant case o f thin ice, m ay well be based, as well as 
directions for further inquiry.

One of the byproducts o f a focused effort on such a tech­
nologically challenging problem  as rem otely reconstructing 
the physical characteristics o f a com plex random  medium, is 
advances in the m athem atical theories underlying the problem. 
Our w ork on the sea ice inverse problem  has led to fundam en­
tal advances in the application o f layer-stripping techniques
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Fig. 17. Qualitative comparison of (a) multiyear ice concentrations with (b) ice age classification results from fast-learning +  backpropagation neural 
network. Based on seven radiometric channels from SSM/I for March 1-15, 1988.

to inverse scattering problem s. A new  causality m ethod of 
stabilizing solutions, which is a principal challenge in inverse 
problem s, has been developed. This type o f approach has led 
to a surprising nonlinear generalization of Fourier analysis, 
which is quite significant m athem atically in its own right. 
Furtherm ore, rigorously addressing the com posite nature o f sea 
ice in this context has led to new  developments in the theory of 
effective param eters o f com posite m edia and, in particular, to 
a theory o f inverse hom ogenization for recovering m icrostruc­
tural features from  bulk electrom agnetic m easurem ents.

Finally, it should be noted that there still rem ains m uch w ork 
in refining the algorithms and theoretical results developed 
here into practical, accurate techniques for reconstructing sea 
param eters from  satellite data. Nevertheless, the present w ork 
does take a step in that direction, and we hope that others will 
be m otivated to build upon it.
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