
106 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, JUNE 1993

Synthesis of Timed Asynchronous Circuits
Chris J. Myers and Teresa H.-Y. Meng

Abstract—In this paper we present a systematic procedure to
synthesize timed asynchronous circuits using timing constraints
dictated by system integration, thereby facilitating natural in
teraction between synchronous and asynchronous circuits. In
addition, our timed circuits also tend to be more efficient, in both
speed and area, compared with traditional asynchronous circuits.
Our synthesis procedure begins with a cyclic graph specification
to which timing constraints can be added. First, the cyclic graph
is unfolded into an infinite acyclic graph. Then, an analysis of
two finite subgraphs of the infinite acyclic graph detects and
removes redundancy in the original specification based on the
given timing constraints. From this reduced specification, an
implementation that is guaranteed to function correctly under the
timing constraints is systematically synthesized. With practical
circuit examples, we demonstrate that the resulting timed imple
mentation is significantly reduced in complexity compared with
implementations previously derived using other methodologies.

I. In t r o d u c t io n

THE DESIGN OF timed asynchronous circuits has recently
gained much attention because of the increasing need

for asynchronous circuits in mixed synchronous/asynchronous
environments. Inherent in these environments are timing con
straints (gate, wire, and environment delay information) which
circuits must satisfy and can exploit to optimize the implemen
tation. Existing asynchronous design techniques either cannot
handle systems with timing constraints, or do not fully utilize
the information contained in them. This paper presents a
methodology to synthesize asynchronous circuits that utilizes
timing constraints throughout the synthesis procedure. As a
result, our timed circuits retain the same behavior with less
circuit complexity than earlier implementations.

Many methodologies have been proposed for the synthe
sis of speed-independent circuits [1]—[4]. Speed-independent
circuits are very robust since they are guaranteed to work
independent of the delays associated with their gates, but they
can be overly conservative when timing constraints are known.
Timed circuits, on the other hand, are only guaranteed to work
if the delays fall in the range given in the timing constraints of
the specification. Utilizing these timing constraints, we trade
robustness to variations in delays for significant reductions in
circuit complexity.

Speed-independent circuits are restricted to interfaces where
their environment only changes inputs in response to changes
of outputs. Inputs from a synchronous circuit often do not
satisfy this restriction. In order to address this problem,

Manuscript received. This work was supported by an NSF fellowship, ONR
Grant N00014-89-J-3036, and research grants from the Center for Integrated
Systems, Stanford University and the Semiconductor Research Corporation
under Contract 92-DJ-205.

The authors are with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305.

IEEE Log Number 9209313.

fundamental mode synthesis methods have been used [5]—[8],
which assume the environment will wait long enough for the
circuit to stabilize before inputs are changed. Timing analysis
must be performed after synthesis, and appropriate delays may
need to be added to guarantee that this requirement is satisfied.
Since these methods limit the concurrency within a circuit and
do not fully utilize available timing constraints, they may result
in circuits that are larger and slower than necessary.

Methods have been proposed to use timing constraints to
synthesize timed circuits [9], [10]; however, most techniques
apply timing constraints after synthesis only to verify that
hazards do not exist. If hazards are detected, delay elements
are added to avoid them, degrading the performance of the
implementation. It was shown in [4] that the more conservative
speed-independent model while resulting in somewhat larger
circuits actually produces faster circuits compared with the
timed circuits described in [10]. This surprising result can be
attributed to the fact that these timed circuits often need to have
delay elements added to the critical path to remove hazards.

Our synthesis procedure uses the timing constraints at
the outset to enhance performance while minimizing circuit
complexity. In several practical examples, we show that sig
nificant reductions in circuit complexity (measured in terms
of literal count needed for the implementation) as compared
to previous designs can be achieved using very conservative
timing constraints. In particular, in a memory management
unit designed for use with a real asynchronous microprocessor
[11], [12], the circuit complexity is reduced by over 50% over
the speed-independent implementation. Circuit performance is
also enhanced, not only because we have reduced circuit area
and do not use delay elements, but also because we are able
to synthesize a more concurrent specification without adding
state variables. An example of a DRAM controller to be used
with a synchronous processor and DRAM array is presented
to illustrate a design that cannot be done speed-independently.
Circuit complexity is also reduced as compared to previous
fundamental mode designs [13], [7].

This paper contains five sections. Section II describes our
specification language and timing analysis algorithm. Section
III discusses our synthesis procedure. Section IV presents
several practical examples. Section V gives our conclusions.

II. T im in g A n a ly s i s o n T im e d S p e c i f i c a t io n s

A wide variety of methodologies for specification of asyn
chronous circuits have been proposed. They can be roughly
grouped into three classes: language based, such as commu
nicating sequential processes (CSP) [1]; graph based, such as
signal transition graphs (STG) [2]; and finite-state machine
based, such as burst-mode state machines (BSM) [6], At

1063-8210/93J03.00 © 1993 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276286111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

a high-level, CSP provides a very concise representation
for large designs such as the microprocessor described in
[11]. It is well suited for non-deterministic behavior, but
it can be difficult to specify concurrency within a process.
On the other hand, STG provides a good representation of
concurrency within a process, but it is cumbersome to use for
large designs and cannot specify arbitrary non-deterministic
behavior. Neither of these representations are good for spec
ifying asynchronous circuits in a synchronous environment.
BSM has been successfully used for such applications [13],
which was made possible by assuming fundamental mode
as opposed to the other two specifications which use the
speed-independent model. None of these specification methods
incorporates timing constraints.

We chose to use a specification language, the event-rule (ER)
system [14], which is easily derivable from CSP, STG, and
BSM and incorporates timing constraints. It is shown in [14]
that specifications that are not disjunctive or non-deterministic
can be directly transformed into an ER system. A specification
is disjunctive if there exists a transition in the specification that
is specified to occur after either one transition or another, but
it does not have to be preceded by both. A specification is non-
deterministic if the circuit behavior is determined by a choice
made by either the environment or the circuit. Derivation of
ER systems from each specification method described above
(i.e., CSP, STG, and BSM) is illustrated through an example.
While our synthesis procedure does not presently allow non-
deterministic specifications, it is shown, by way of an example,
that some non-deterministic specifications can be transformed
into deterministic specifications which can then be synthesized.

In order to synthesize timed circuits, timing analysis must
be used on the ER system specification to deduce timing
information necessary to detect redundancy in the specification
from the given timing constraints. More specifically, in timed
circuits, the timing information needed is the minimum and
maximum difference in time between any two events (i.e.,
signal transitions) in a circuit specification. Polynomial-time
algorithms have been developed [15], [16] to determine the
difference in time between any two events in an acyclic graph.
Circuit specifications, however, are normally cyclic. Therefore,
to apply these algorithms to circuit synthesis, these results
must be expanded to handle cyclic specifications. Recently, an
algorithm has been proposed that finds these time differences
in cyclic graphs in exponential-time [17]. In this paper, we
propose instead a polynomial-time heuristic algorithm which
is sufficient for our purposes. Our algorithm unfolds the cyclic
graph into an infinite acyclic graph and then examines only
two finite acyclic subgraphs of the infinite graph to determine
a sufficient bound on the time difference between two events.

2.1. Event-Rule System

The ER system was introduced in [14] for performance
analysis of asynchronous circuits. It was modified to incor
porate bounds on the timing constraints and introduced as a
specification language for timed circuits in [18]. An ER system
is composed of a set of atomic actions, events, and the causal
dependencies between them, rules, and it can be compactly
represented using an event-rule (ER) schema.

MYERS AND MENG: TIMED ASYNCHRONOUS CIRCUITS

1) Events: An event is defined as “ . . . an action which one
can choose to regard as indivisible—it either has happened or
has not . . . ” [19]. In circuits, events are transitions of signals
from one value to another. There are two transitions associated
with each signal s in a specification, namely, s | where j
denotes that the signal s is changing from a low to high value,
and s I where J. denotes that the signal s is changing from
a high to low value.

2) Rules A rule is a causal dependency between two
events. Each rule is composed of an enabling event, an enabled
event, and a bounded timing constraint. Informally, a rule
states that the enabled event cannot occur until the enabling
event has occurred. If two rules enable the same event then that
event cannot occur until both enabling events have occurred.
This causality requirement is termed conjunctive.

The bounded timing constraint places a lower and upper
bound on the timing of a rule. A rule is said to be satisfied
if the amount of time which has passed since the enabling
event has exceeded the lower-bound of the rule. A rule is said
to be expired if the amount of time which has passed since
the enabling event has exceeded the upper bound of the rule.
An event cannot occur until all rules enabling it are satisfied.
An event must always occur before every rule enabling it has
expired. Since an event may be enabled by multiple rules, it is
possible that the difference in time between the enabled event
and some enabling events exceeds the upper-bound of their
timing constraints, but not for all enabling events. These timing
constraints are the same as the max constraints described in
[15] and the type 2 arcs described in [16].

Finding timing constraints for a specification is not a trivial
task. Rules can be categorized into environment rules (i.e., the
enabled event is a transition of an input signal) and internal
rules (i.e., the enabled event is a transition of a state variable
or output signal). Timing constraints for environment rules
can be determined from interface specifications or datapath
delay estimates. For internal rules, the problem is much more
difficult since the timing constraints cannot be known until
the circuit is synthesized, but the circuit cannot be synthesized
without given timing constraints. To solve this problem, the
designer should estimate the maximum delay for the gates
in the library to be used and set the upper-bound of the
timing constraint in each internal rule to this value. The lower-
bound of the timing constraint should usually be set to 0
since optimizations could potentially reduce the gate to nothing
more than a wire. After a circuit is generated, it should be
analyzed using a timing analysis tool to verify that the timing
constraints used are correct. If the circuit violates the timing
constraints, it must be resynthesized with more conservative
timing constraints (larger upper bounds in this case). In order
to avoid resynthesis, conservative values should be used for
timing constraints on internal rules at the outset. In the design
of interface circuits and other controllers, inputs often are
from off-chip or from a datapath. In these cases, the lower
bound of the timing constraint on environment rules is large
compared with the upper bound of the timing constraints on
internal rules. Therefore, a conservative estimate for internal
gate delays does not significantly affect the complexity of the
timed implementation.

107

108 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, JUNE 1993

Fig. 1. The cyclic constraint graph for an SCSI protocol controller (courtesy
of [20]).

3) Event-Rule Schema: An ER system can be specified
using an ER schema and initialization information described in
the next subsection. An ER schema defines a cyclic constraint
graph which is a weighted marked graph in which the vertices
are the events, the arcs are the rules, the weights are the
bounded timing constraints, and the initial marking is given by
the value of e. Each rule of the form (e, / , e, r) is represented
in the graph with an arc connecting the enabling event e to the
enabled event f . The arc is weighted with the bounded timing
constraint r . In other words, each rule corresponds to a graph
segment, e^-+f (or e-+>f when the rule is initially marked, i.e.,
e = 1). A cyclic constraint graph is similar to a STG in which
timing constraints have been added to the arcs. The ER schema
is defined more formally as follows:

Definition 2.1: (Event-Rule Schema): An event-rule schema
is a pair (E \ R!) where E ' is a finite set of events, and R! is
a finite set of rules. Each rule is denoted as (e, / , e, t), where
e and / are two events, e is defined to be 1 if the rule has an
initial marking and 0 otherwise, and r = [I. u] where I is the
lower bound and u is the upper bound of the timing constraint
on the rule.

As an example, a SCSI protocol controller, originally speci
fied with a STG [20], is specified by its cyclic constraint graph
as shown in Fig. 1. An example of a rule in this constraint
graph is between the two events q J. and rdy 1, which is of
the form (q j. rdy 1, 0 , [0 ,5]).

Our synthesis procedure requires that each event in an ER
schema is uniquely identified. This led to the restriction in [18]
of only one rising and one falling transition of each signal
per cycle in the specification. To remove this restriction in
this paper, each occurrence of the rising and falling transition
in a cycle is given a unique name. For example, a signal s
specified to rise and fall twice in a cycle, is renamed to for
the first rising and falling transitions and s2 for the second.
These events are treated separately during the timing analysis;
however, they are recombined during synthesis as illustrated
in an example later.

Another requirement is that the cyclic constraint graph is
well-formed. A cyclic constraint graph is well formed if it is
strongly connected, every cycle has the sum of the e values
along the cycle greater than or equal to 1, and for every event

there exists a cycle including the event in which the sum of the
e values is equal to 1 [17]. Many specifications are not well-
formed, but such specifications can often be synthesized by
transforming them into ones which are well-formed as shown
later in an example.

4) Event-Rule System: To construct the ER system, the
cyclic constraint graph is transformed into an infinite acyclic
constraint graph. Each event in the ER schema is mapped onto
an infinite number of event occurrences, each corresponding
to a different occurrence of that event. The rules are similarly
mapped. Thus in the infinite acyclic constraint graph, each
rule occurrence (e, /,* ,£ , r) corresponds to a graph segment,
(e, i). The occurrence-index i is used to denote each
separate occurrence of an event or rule in the ER schema.
The first occurrence has i = 0, and i increments with each
following occurrence. The occurrence-index offset e is the
difference in the occurrence-index of the enabled event / and
the enabling event e. For each rule occurrence, the value of
the occurrence-index offset e is the same as the value of the
initial marking £ for the corresponding rule in the ER schema.

A special reset event is added to the set of events in order
to model the reset of the circuit. For each initially marked
rule (i.e., e = 1) with enabled event / , a reset rule is added
between the reset event and the event / . This rule models
special timing constraints on the initial occurrence of the event
/ . Effectively, the acyclic constraint graph is constructed by
cutting the cyclic constraint graph at the initial marking and
unfolding the graph an infinite number of cycles. The result
is an ER system as defined below:

Definition 2.2: (Event-Rule System): Given the event-rule
schema (E ',R '), define an event-rule system to be a pair
(E , R) where each event occurrence (e, i) in E where i > 0
represents an occurrence of an event e in E', and each rule
occurrence (e ,/ , i , £,r) in R where i > £ is an occurrence
of a rule (e, / , c , t) in R '. The event (reset, 0) is added to
E. For each rule in R ' in which £ = 1, a rule, of the form
(reset, / , 0,0, To) is added to R.

The specified circuit behavior is defined by simulating the
acyclic constraint graph using the timed firing rule given
below:

Definition 2.3: (Timed Firing Rule): Given that t({f , i)) is
the exact time of the event occurrence (/,*), it can take on
any value within the bound defined in terms of the times of
the event occurrences that enable it. The bound can be given
as follows:

/ ,max, DW(e’?: - £» + <«/,*))e , r) G n

< max {t((e,i — £■}) + u}.
{ e ,f , i ,E ,T)e R

A subgraph of the unfolded infinite acyclic constraint graph
for the SCSI protocol controller is shown in Fig. 2. An example
of a rule occurrence in this ER system is between the two
event occurrences (q j, 0) and (rdy 1, 0), which is of the form
(q I . rdy 1,0,0, [0,5]). According to the timed firing rule, the
event occurrence (rdy 1, 0) cannot occur until both the event
occurrences (q 1, 0) and (go T,0) have occurred, and it must
occur before 5 time units have elapsed since both the event
occurrences occurred.

I

2.2. Timing Analysis

In order to transform an ER system specification into a timed
circuit, our synthesis procedure requires a timing analysis
algorithm to determine the minimum and maximum time
difference between any two events. We have developed an ef
ficient polynomial-time timing analysis algorithm to determine
a sufficient estimate of these time differences based on only
two finite subgraphs of the infinite acyclic constraint graph.

1) Worst-Case Time Difference: A time difference is a
bound in the amount of time between two event occurrences
(see Definition 2.4). The worst-case time difference is a bound
on the minimum and maximum difference in time between
two events for any occurrence (see Definition 2.5).

Definition 2.4: (Time Difference): Given two event occur
rences, (it, i — j) and {v, i), and the occurrence-index offset
between them j where j > 0 , the time difference between
these two event occurrences is the strongest bound [Li, E/i]
such that:

Li < t((v, i)) - t((u, i - j)) < Ui

Definition 2.5: (Worst-Case Time Difference): Given two
events, u and v, and the occurrence-index offset between them
j where j > 0 , the worst-case time difference between these
two events, [L, U], is:

L = min{Lj} and U = m axff/j),
i>j

where [Li, Ui] is the time difference for each occurrence of u
and v with offset j (as defined in Definition 2.4).

2) Algorithm to Estimate Worst-Case Time Difference In
our ER systems, a pair of events has an infinite number of
occurrences; however, it is possible to analyze a finite number
of occurrences to find a sufficient estimate o f the worst-case
time difference as defined in Definition 2.6.

Definition 2.6: (Estimate o f the Worst-Case Time Differ
ence): Given the worst-case time difference [L, U] between
two events, an estimate of the worst-case time difference is
any [L', U'} such that L ' < L and U' > U.

Given two events u and v and an occurrence-index offset
between them j . Algorithm 2.3 determines an estimate of the
worst-case time difference between them by constructing two
finite acyclic subgraphs to be analyzed by Algorithm 2.2. The
first subgraph includes only events and rules with indexes i — 1
and i for some arbitrary value of * > 0. A source event is
added to this subgraph, and each rule with e = 1 and with
index i - 1 is replaced with a rule from the source event
to the enabled event with a timing constraint of [0, oo]. This
construction guarantees that no timing assumptions are made
about previous cycles which are not modeled in our finite
graph. For the special case when i = 0, another subgraph is
constructed which includes only events and rules with * = 0 .
We prove later that the analysis of these two subgraphs yields
an estimate of the worst-case time difference.

These two subgraphs are acyclic and finite so the algorithms
described in [15] and [16] can be used to find the time
difference between any two event occurrences (u, i — j)
and (v,i) in these graphs. The function MaxDiff (defined
recursively in Algorithm 2.1 [16]) is used to find the upper-

MYERS AND MENG: TIMED ASYNCHRONOUS CIRCUITS

bound of the time difference Ui. MaxDiff is also used to
find the minimum time difference Li since MinDiff((u,i -
J>i(wi*)) = (-1) * MaxDiff({v,i),(u, i - j)) [15], [16].
The estimate of the worst-case time difference returned by
Algorithm 2.3 is the minimum of the lower-bounds and the
maximum of the upper bounds of the time differences for the
ith and 0th occurrence. In our synthesis procedure, only time
differences with values of j = 0 or j = 1 are of interest, so this
algorithm does not produce a tight bound for j > 1. Also, since
the worst-case time difference is only defined over values of
i where i > j , the 0th occurrence only needs to be considered
if j = 0. Finally, since this algorithm is called repeatedly in
the synthesis procedure, the graphs are created only once for
a given circuit, and once a time difference is calculated for a
particular pair of event occurrences, it is stored in a table such
that it need not be recalculated.

Algorithm 2.1 (Find Max Time Difference in an Acyclic
Graph):

int MaxDiff(acyclic graph G; event occurrences (u , i — j) ,
(v,i)) {
I f there is no path from (v, i) to (u, i - j) then

maxdiff - max {MaxDiff (G, (u, i - j) ,

(c, i £)) -|- Ueu})
Else

maxdiff = min {MaxDiff (G, (e , i — j - e),
(e , u , i - j , £ , r , ») 6 f i

{v, i)) -|- /eu},
Retum(maxdiff);

}
Algorithm 2.2 (Find Time Difference in an Acyclic Graph)

bound TimeDiff(acyclic graph G; event occurrences
(u , i - j) , (v,i)) {

Li = (-1) * MaxDiff{G, {v, i), {u, i - j));
Ui = MaxDiff{G, (it, i - j) , {v, *)),-
Retum([Li, Ui]);

}

Algorithm 2.3:
(Find Estimate o f the Worst-Case Time Difference in a Cyclic

Graph):

bound WCTimeDiffiER system (E , R); events u, v;
occurrence-index offset j) {

I f (j > 1) then Retum([-oc, oo]);
Else {

Construct subgraph G from (E , R) using only
events and rules with indices i — 1 and i
for an arbitrary i > 0 and exclude rules with
enabling event (reset, 0);

Add event (source, i — 1) to graph G;
For each rule o f the form {e,f , i — 1,1,r) in graph G ,

replace it with (source,f ,i — 1,0, [0 , oo]);
[Li, Ui] = TimeDiff(G, (it, * - j) , (v , i));
I f (j == 1) then Retum([Li, Ui]);
Else{

Construct subgraph G' from {E , R) using only
events and rules with index i = 0 ;

109

- --------- I

no IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, JUNE 1993

({reset, 0)) foi,0)) (<goi,0>)

*■ / '[20.501 ^

«l*A (<rdyt,Q)) (<rrfy-l,0)) ((gT0))

1 ay*' N»w ̂ \ N y ^
(<reg-l.,0)) (<goT,0))

i2om
U O fiJ ((reqi,!)')

Fig. 2. A subgraph of the infinite acyclic constraint graph for the SCSI
protocol controller.

[L0,U0] = TimeDiffiG', (u, 0), (v,0))\
L ' = min(Li, L q);
U' = max(Ui, Uo)]
Retum([L', (/']);

}}}
For the example shown in Fig. 2, the estimate of the worst-

case time difference found by Algorithm 2.3 between the two
events rdy | and q | with occurrence-index offset j = 0 is
the bound [15,55], This means that rdy j always occurs at
least 15 units of time after q [, but no more than 55 units of
time after q j.

Proof o f Correctness: Theorem 2.1 shows that the bound
for the ith occurrence, [Li, Ui], found in Algorithm 2.3 is an
estimate for all * > 0. Therefore, combining this with the
actual time difference for i = 0 results in an estimate of the
worst-case time difference.

Theorem 2.1: Algorithm 2.3 determines an estimate of the
worst-case time difference between two events.

Proof: In order to show that Algorithm 2.3 returns an
estimate of the worst-case time difference, we must show
that the following inequalities hold: L' < L and U' > U
(from Definition 2.6). If j > 1 then Algorithm 2.3 returns
[L',U'\ = [—00, 00] which trivially satisfies Definition 2.6.
If j = 1 then it returns [L',U'] = [L,, (/;]. If j — 0
then Algorithm 2.3 returns V = min(L0, Li) and U' =
max(t/o, Ui). Since [L0, Uo] is an actual time difference for
the 0th occurrence, we only need to show that [Li, Ui] always
yields an estimate for * > 0. A maximum time difference
is calculated recursively in terms of other maximum time
differences (see Algorithm 2.1). Therefore, when calculating
Ui using subgraph G, one of two cases may occur. Its value
may be independent of maxdiff values for events not in graph
G (i.e., events with indices less than i - 1). If this is the case,
then Ui = min,>i {t/j}. On the other hand, if it depends on
time differences of earlier events not in graph G, then just
before MaxDijf falls off the end of the graph, it will call either
MaxDiff(G, (source,i —I), (/ , i —1))(1) or MaxDiff(G, (f , i —
1),(source,i - 1)) (2). Since the rule between (/ , i - 1)
and (source,i — 1) has timing constraint [0 , 00], (1) will
return 00, and (2) will return 0. If graph G were extended
to include another cycle, the rule between (source, i — 1)
and {/, i — 1,) would be replaced with a rule of the form
(e, / , i - 1 ,1 ,t) . Now, MaxDiff(G, (e , i - 2) , (f , i — 1)) would
be called which would return a value less than or equal to
00, or MaxDiff(G, (f, i — 1), (e, i — 2)) would be called which
would return a value less than or equal to 0 (note this second
case is never positive because from the ordering defined by the

rule, we know that e always occurs before /) . This relationship
continues to hold if the graph is extended an infinite number
of cycles. Since the value found for case (1) and for case (2)
is greater than that found if graph G is extended back further,
and since the maximum time difference is calculated by adding
these values to values found on the rest of the graph, we know
that the value calculated for Ui using graph G will be less than
or equal to the actual value of Ui for i > 1. Therefore, U' > U,
and we can similarly show that L' < L. Thus, Algorithm 2.3
gives an estimate of the worst-case time difference. □

4) Complexity o f the Algorithm: Calculating the time
difference of each pair of events using the MaxDijf algorithm
has complexity 0 (v ■ e) where v is the number of vertices
and e is the number of arcs in the graph [15]. Let \E'\ and
I#*| be the number of events and rules, respectively, in the
cyclic constraint graph representation. The largest graph which
Algorithm 2.3 analyzes has 2\E'\ vertices and 2|i?'| arcs.
Therefore, using Algorithm 2.3 to calculate estimates for all
time differences has complexity 0 (1^1 •

5) Extensions to Find a Better Estimate: If either the bound
is not tight enough or there is interest in finding worst-case
time differences of events across more than one cycle (i.e.,
j > 1), the algorithm can be extended by increasing the size
of the subgraphs which Algorithm 2.3 analyzes. Assuming
subgraph G is enlarged to contain c cycles (c = 2 in Algorithm
2.3), the algorithm is modified in the following ways:

1. Construct subgraph G using only events and rules with
indexes i — (c — 1) , . . . , i where i > (c - 2).

2. Construct subgraph G' using only events and rules with
indices i < (c - 2).

3- If j < (c — 2) then using graph G', find [Lj, Uj], . , . ,
[L(c-2), U{c_ 2)].

4. L' = m in (L i,L j,. . . ,L (c_2)) and U' = max(Ui,Uj,
■■■, U(c- 2)).

In the modified algorithm, estimates of worst-case time
differences with j < (c - 1) can now be found. Theorem 2.1
can easily be extended to show that the modified algorithm
returns an estimate of the worst-case time difference. It is also
easy to show that the complexity of the modified algorithm is
0(c\E '\ • c |# |) . _

6) Termination o f the Algorithm: In order to avoid unnec
essary calculations, the algorithm can be modified to check if
extending the size of the subgraphs analyzed (i.e., increasing
c) is helpful. To do this, the algorithm is modified to return
a best-case estimate, [Lbe3t, Ubest], in addition to the worst-
case estimate, [L',U'], where Lbest = m in(L j,. . . , i (c_2))
and Ubest = m ax(f/j,. . . , C/(c_2)). Given the actual worst-case
time difference is [L, U], it is easily shown that these estimates
satisfy the inequalities: L' < L < Lbest and Ubest < U < U'.
If tightening the bound to [Lbest, Ubest] would not result in
less circuitry than [L1, U'], then it is not worth increasing c. In
fact, if Lbest = L' and Ubest = U', then the actual worst-case
time difference [L, U] has been found. In general, increasing
c does not guarantee that the exact bound [L, U] can always
be found, but in all the circuit examples that we synthesized,
Algorithm 2.3 (i.e., c = 2) either found the exact bound or at
least a sufficiently tight bound to detect all redundancies.

MYERS AND MENG: TIMED ASYNCHRONOUS CIRCUITS 111

in. S y n th e s is P r o c e d u r e

Given an ER system specification, we apply our timing
analysis algorithm to derive an optimized timed circuit im
plementation. The synthesis procedure has three steps. The
first step is to detect and remove redundant rules from the
specification. The second step is to construct a reduced state
graph. The third step is to derive a circuit implementation
from the reduced state graph.

3.1. Removing Redundant Rules

The first step in the synthesis procedure is to detect and
remove redundant rules in the timed specification. Since each
internal rule results in a literal in the implementation in order
to ensure the behavior specified by the rule, if it is determined
that this behavior is guaranteed without the rule (i.e., the
rule is redundant) then the literal can be removed from the
implementation resulting in a smaller circuit.

1) Redundant Rules: A rule is redundant in the timed spec
ification if its omission does not change the behavior specified
by the timed firing rule. This is defined more formally as
follows:

Definition 3.1 (Redundant Rule): A rule (e, / , i ,e ,r) is re
dundant for all i > e if the bound on the time of the event
occurrence {/, i) with the rule removed as defined below:

(e,f,x,€,-r)eRNR
, ma* {t ({e , i -e)) + u}

where R ^ r = R — {(e, / , i, e, r)\i > e} is the same as the bound
specified in the timed firing rule (see Definition 2.3).

2) Algorithm fo r Detecting Redundant Rules: If there are
multiple rules enabling an event, then it is possible that some
of them are redundant. Algorithm 3.1 checks each rule by
using Algorithm 2.3 to find an estimate of the worst-case time
difference between the enabled and enabling event. We prove
later that if the lower-bound of this estimate is larger than the
upper-bound of the timing constraint on the rule, then the rule
is redundant.

Algorithm 3.1 (Find Redundant Rules)

set FindRed(ER system (E , R)) {
Rnr ~ R’,
For each rule o f the form (e,f,i, e,r) where r = [I, u] {

[V, U')=WCTimeDiff((E, R), e, f , e);
I f (I! > u) then R Nr = R Nr - {(e, f , i , e , r) \ i > e};

}
Retum(RsR);

}

The SCSI protocol controller example depicted in Fig. 2 has
four events that are enabled by multiple rules: req j , rdy J.,
req and q T- For the rule, (q J., rdy J., i, 0, [0,5]), Algorithm
2.3 estimates the worst-case time difference between the two
events rdy I and q J. to be the bound [15,55]. Since the
lower-bound of this time difference, 15, is greater than the
upper-bound of the timing constraint on the rule, 5, the rule

is found to be redundant. In other words, the rule between the
events q j and rdy J. can be removed without changing the
specified behavior. Further analysis finds this to be the only
redundant rule.

3) Proof o f Correctness: Definition3.1 defined a redundant
rule as a rule which could be removed from the ER system
without changing the behavior specified by the timed firing
rule. By applying transformations to the timed firing rule,
Theorem 3.1 proves that Algorithm 3.1 finds redundant rules.

Theorem 3.1 Algorithm 3.1 finds redundant rules.
Proof: (by contradiction) Given a rule (e, / , i, e, r) sat

isfies the condition set forth in Algorithm 3.1 to be redundant
(i.e., L' > u), assume that it is not redundant. In that case,
there exists a value of i such that one of the following is true:

t((e, i - e)) + l < t ((f , i)) or t ((f , *)) < t((e, i - <•)) + u.

(from Definitions 2.3 and 3.1). Now, subtract t((e, i — e)) from
each element:

I < t ((f , i)) - t((e, i - e)) or t ((f , i)) - t((e, i - e)) < u.

These are instances of a worst-case time difference, so they
are bounded by [L, U],

L < I < t ({ f , i)) - t ((e,i — e)) < U
or L < t ((f , i)) - t((e, i - e)) < u < U.

(from Definition 2.5). Since L' returned by Algorithm 2.3 is
an estimate of the worst-case time difference (from Theorem
2.1), L' < L (from Definition 2.6). Also, V > u (from
Algorithm 3.1) and u > I (from Definition 2.2), so the
following inequalities hold:

l < u < L ' < L < l or u < L' < L < u.

Thus, we have a contradiction in each case. □

3.2. Finding the Reduced State Graph

In order to generate a circuit implementation, many method
ologies transform a higher level specification into a state graph
so that Boolean minimization techniques can be applied [2],
[3]. Essentially, a state graph is a graph in which the vertices
are bitvectors and the arcs are signal transitions. Each bitvector
specifies the binary value of every signal in the system when
the system is in that state. In our method, timing analysis is
utilized to generate a reduced state graph which often has
significantly fewer states than a state graph generated without
considering timing constraints. Since the size of the state graph
and the complexity of the circuitry are strongly correlated, our
method often results in simpler circuitry compared with other
methods that do not fully utilize timing constraints.

1) Reduced State Graph Typically, a state graph is speci
fied as a set of states and a set of transitions between states
[2], [3]. Algorithm 2.3 can be utilized to detect states that can
never be reached, resulting in a reduced state graph. These
unreachable states are removed from the set of states, and
the transitions leading to them are removed from the set of

T

112 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, JUNE 1993

transitions. It is not always possible to infer from the reduced
state graph all enabled transitions, since a transition can be
enabled in a particular state without an arc leading from it to a
state where that transition has occurred. Although the transition
cannot occur in the next state, the fact that it has been enabled
is needed during synthesis. To solve this problem, a reduced
state graph is fully characterized by a set of states that contain
information on enabled transitions as described in Definition
3.2. Each such state is a vertex in the reduced state graph, and
these vertices are connected by arcs as described in Definition
3.3.

Definition 3.2 (State): Each state 5 is of the form 5 =
«ii • • • i Sk-, ■ ■ ■, sn, where n is the number of signals in the
specification. Each state bit Sk has the value: 0 if the signal
Sk is low, R if the signal sk is low but enabled to rise, 1
if the signal Sk is high, and F if the signal Sk is high but
enabled to fall. The function VAL[sfc] = 0 if s* = 0 or R and
VAL[sfc] = 1 if Sk = 1 or F.

Definition 3.3: (Reduced State Graph): A reduced state
graph is a graph in which its vertices are states and the arcs
are allowed transitions between states. There exists an arc
from state 5 to state S ' if there exists a signal Sk, such that
for all I ^ k, VAL[sJ] = VAL[si], and either Sk = R and
VAL[s'fe] = 1, or Sk = F and VAL[s'fc] = 0.

2) Constrained Token Flow: The reduced state graph is de
rived using constrained token flow described in Algorithm 3.3.
This is similar to token flow which is used for finding state
graphs as described in [3] [2]. The algorithm begins with the
initial marking of the constraint graph which is defined as
the set of rules enabled by reset. The function FindState is
then used to find the state as defined in Definition 3.2 for the
marking. Given a marking, an event is enabled if all rules
which enable that event are in the marking. If in a marking
more than one event is enabled, all possible event sequences
need to be generated. With timing constraints, it may be
possible that one of the enabled events is always preceded
by another, in which case the function Slow, implemented in
Algorithm 3.2, is used to check if an enabled event is slower
than some other enabled event. If so, the occurrence of the
slower event is postponed. The result is that some states are
no longer reachable, yielding a reduced state graph. Note that
if the function Slow is changed to always return FALSE then
the resulting state graph is the same as generated using regular
token flow.

Algorithm 3.2: (Check I f Event Is Slow)

boolean Slow(ER system (E , R); event occurrence (u, k);
marking M) {

For each event (v, I) that is enabled in M where u / v,
I f (I > k) then {

[L \ U']=WCIimeDiffl(E, R) , u , v , l - k);
I f (V < 0) then Retum(TRUE)

else Retum(FALSE);
} Else {

[L1, [/']= WCTimeDiff((E, R) , v , u , k — I);
I f (L ' > 0) then Retum(TRUE)

else Retum(FALSE);
}}

Fig. 3. (a) State graph for the SCSI protocol controller, (b) Reduced state
graph for the SCSI protocol controller.

Algorithm 3.3: (Find Reduced State Graph)

set FindRSG(ER system (E, R)) {
initial-marking = {rules in R o f the form

(reset, f , 0,0 , t0)};
setjofjnarkings = {initial-marking};
presentstate = FindState((E, R), initial .marking);
set jofstates = {present state};
While (setjofjnarkings ^ 0) {

7lake marking from setjofjnarkings (i.e.,
setjofjnarkings = setjofjnarkings—{marking});

For each enabled event (f, i) in marking {
I f not (Slow((j?, R), (/ , i), marking)) then {

newjnarking = marking— { rules in marking
o f the form (e, f , i , e , r) }
+ {rules in R o f the form (/ , g ,i + e, e' , t ')};

presentstate = FindState((E, R), new .marking);
I f (presentstate & set j>fstates) then {

set jo f states set jofstates
+{ presentstate };

set jof-markings = setjofjnarkings
+{ newjnarking };

}}}}
R etum (setJ)fstates);

}
Using this algorithm on the SCSI protocol controller with

the function Slow replaced with FALSE (i.e., ignoring the
timing constraints), the state graph obtained contains 20 states
as shown in Fig. 3(a). If the timing constraints are considered,
a reduced state graph is derived which contains 16 states as
shown in Fig. 3(b).

3.3. Derivation o f a Circuit Implementation
Several methods exist which transform a state graph into

a circuit implementation such as those described in [2]-[4],
We present a method similar to guard strengthening described
in [21] but derive the circuit implementation from a state
graph. A guard is a conjunction of signals and their negations.
When this conjunction evaluates to true, the transition it is
guarding can occur. The reason this method is called guard

I

strengthening is that it starts with weak guards (i.e., the guard
may evaluate to true in states in which the transition it is
guarding should not occur) to which signals are added to
strengthen them.

1) Finding the Enabled State: The first step is to determine
the enabled state for the transitions on each signal. The enabled
state for a transition is the value of each signal in all states
in which that transition is enabled to occur. This provides
information on which signals are stable during a particular
transition, and thus, can be used to strengthen the guard for
that transition. This is defined more formally in Definition 3.4.
Algorithm 3.4 shows how the enabled state for each transition
can be found from the reduced state graph.

Definition 3.4: (Enabled State): For each transition s k | ,
the enabled state is of the form QkT = gfcTii , . . . ,qk\A, . . . , qkr,n,
where n is the number of signals in the specification. Each
Qk],i is determined as follows: if in all states where s k = R,
VAL[sj] = 0 then q ^ ti = 0; if in all states where sk = R,
VAL[s;] = 1 then qk^i = 1; otherwise, qk],i = X . The
enabled state for the transition s t J. is similarly defined.

Algorithm 3.4: (Find Enabled State)
array FindES(ER system (E, R); set setjofstates) {

For each signal sk, Qk}= Q*4 = undefined, . . . , undefined;
For each state and each signal s k in each state

If (Sk = = R) then
For each signal s/

I f (rIk\,i = = undefined) then qk],i = VAL[si};
Else if(qku # VAL[si\) then qkU = X ;

Else i f (sk = = F) then
For each signal si

—— undefined) then q ^u = VAL[si\;
Else if (qki,i ^ VAL[si]) then qkUi = X ;

Retum(Q);
}

In the SCSI protocol controller, the enabled state for the
transition req f is 0X 000, since there are two states 0FR.0Q
and 00/200 where the transition req } is enabled to occur.
In this case, both the state graph and the reduced state graph
give the same enabled state. However, for the transition rdy f ,
if the state graph is used, the enabled state is X 0001, but if
the reduced state graph is used, the enabled state is 10001.
Therefore, using timing constraints, the enabled state can
contain less uncertainty.

2) Detecting and Resolving Conflicts: The next step is to
check for conflicts in each state. A conflict occurs when the
weak guard evaluates to true in a particular state, but in that
state the signal is enabled to change or has changed to the
opposite value. This either results in interference, where a
signal is being both pulled high and low at the same time,
or it can result in a misfiring, where a transition occurs in
a state in which the signal should remain stable. Both cases
represent circuit hazards and must be prevented.

The non-redundant rules are used to construct the weak
guards for each transition. To prevent a conflict, context signals
are added to a weak guard to guarantee that the transition being
guarded cannot occur in the particular problem state. A signal
can be used as a context signal if it is stable in the enabled state
for the transition, and its value in the enabled state is different

MYERS AND MENG: TIMED ASYNCHRONOUS CIRCUITS

from that in the problem state. For each transition, a table is
constructed where the columns are the conflict problem states,
and the rows are the signals which can be chosen to solve
each problem. An outline of the basic procedure is described
in Algorithm 3.5. The function Problem determines if a set of
rules is sufficient to prevent a given transition from occurring
in a particular state. The function Solution checks if a signal or
its negation can be used to prevent a transition from occurring
in a given state.

Algorithm 3.5: (Find Conflicts):
array FindConffER system (E, R n r): set setj)fstates;

array Q) {
For each state S and each signal sk in S

I f{{sk = = F or sk = = 0) and (Problem(S, sk t,
{rules in R n r o f the form (e,sk |,z ,e ,r)}))) then

For each signal si,
I f (Solution(S, qk^i)) then Ck\ S] = TRUE;

Else I f (Problem(S, sk j , {rules in R n r o f the form
(e,sk |,* ,e ,r)})) then
For each signal si,

I f (Solution(S, qki,i)) then Cfcj[s;,5] = TRUE;
Retum(C);

}
In the SCSI protocol controller, the transition req | has

the weak guard -tack A ->rdy. Using this guard and the state
graph shown in Fig. 3(a), there is a conflict with the state
000i?l. This problem state is compared with the enabled state
for req | , 0X000, as determined earlier. The only signal which
can be chosen to solve this problem is -iq. Using the reduced
state graph in Fig. 3(b), the state 000RI is not reachable, so
there is no conflict. Thus, the guard is not strengthened with
-iq, and the timing constraints have again helped reduce the
complexity of the implementation.

3) Finding an Optimal Cover: Determining which context
signals to use to optimally solve all conflicts constitutes a
covering problem, which is solved by treating the table of
conflict problems and possible solutions as a prime implicant
table [22], Thus for each transition, a prime implicant table
is solved using the procedure outlined in Algorithm 3.6. The
function Choose-essential sows determines if a problem has
only one possible solution. If so, the signal associated with
that solution is added to the guard and all problems solved
by this signal are removed from the table. The function
RmAominating-columns detects if solving a problem implies
another will be solved, and if so, removes the second problem.
The function RmAominatedjrows checks if one solution solves
all the same problems that another solution does and more, and
if so, removes the second solution. If there is only one remain
ing problem to solve, the function Solvejessentialjcolumns
solves it, and, if possible, does so by selecting a signal which
provides symmetry between guards for the rising and falling
transition.

This procedure is repeated until all problems are solved, or
the number of problems solved is no longer decreasing. At the
end of the procedure, all problems may not be resolved if the
table is cyclic, in which case the remaining problems can be
solved by inspection or a branching method [22] implemented
in the function Solve .remaining .problems.

113

114 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, JUNE 1993

TABLE I
C o n t e x t S ig n a l T a b l e f o r t h e T r a n s i t io n

r d y t f ro m t h e S C S I P r o t o c o l C o n t r o l l e r

Context Signal Ifcble for rd y \
Problems
Solutioos

010F0 FFOOO 0FR00 FOOOO ooroo

ack J l / V
-go V J •s
->rdy V
4 V ■J •J V V v '

- i ack-
- ,rdy-

-i ack a - i rdy a -* q -> req"\
ack a <7 —»reqi

y-Mg)-

Algorithm 3.6: (Find Optimal Cover):
set FindCover(ER system (E , R n r): array C) {

R c 0.
For eac/i transition t {

While ((NumProb(Ct) > 0) and (NumProb(Ct)
is decreasing)) do {

R c = R c + ChoosejessentiaLrows(Ct);
Rm-dominating ̂ columns (Ct);
Rm-dominatedj'ows(Ct) ;
R c — R c+

Solvejessentialjcolumns((E, R n r + Rc): Ct);
}
I f (NumProb(Ct) > 0) then R c = R c

+ Solve-remaining-problems((E, R n r + Rc) , Ct);
}
Retum(R c);

}
Returning to our example, in the reduced state graph, there

are still conflicts associated with the transition rdy A table
of problems and possible solutions is shown in Table I. In this
table, there is an essential row since the fifth column can only
be solved by choosing q. Strengthening the guard with this
signal solves all the problems.

4) A Complex Gate Implementation: For each output sig
nal s the trigger signals (i.e., those given in the rules) and the
context signals (i.e., those added to solve conflicts) for s |
are implemented in series in a pullup network, and similarly,
the signals needed for s J, are implemented in series in a
pulldown network. The resulting circuit is a state-holding
element called a generalized C-element [1], The complex gate
implementations for both the speed-independent and the timed
versions of the signal req from the SCSI protocol controller are
shown in Fig. 4, with the guards that are being implemented.
If a signal appears only in the pullup, but not in the pulldown,
then it is annotated with a If a signal appears only in
the pulldown then it is annotated with a Otherwise, the
signal has no annotation. A static CMOS implementation for
each element is also shown in Fig. 4. Since signal ->q was not
needed in the guard for req | for the timed implementation, the
resulting circuitry needs two less transistors. Similarly, since
the rule (q I, rdy [0 ,5]) is found to be redundant, the
signal -iq is not used in the guard for the transition rdy J,, and
two transistors are saved there as well.

3.4. Exceptions
Throughout the synthesis procedure, there are various ex

ception conditions which can occur if the procedure finds that
it has a specification for which it cannot derive an implemen
tation. Each is briefly described here with suggestions on how

(b)

Fig. 4. (a)Speed independent implementation of req . (b) Timed implemen
tation of req .

to modify the specification to solve the problem, but a general
solution for timed circuits is still an open area of research.

1) Complete State Coding Violation: A timed specification
violates the complete state coding property if in the reduced
state graph, two states have the same binary value, but different
transitions on non-input signals are enabled in each state (see
Definition 3.5). To solve this problem, state variables are
usually added to the specification.

Definition 3.5: (Complete State Coding Property): A re
duced state graph has the complete state coding property if
for any two states S and S ' either there exists a signal s*
such that VAL[sfc] ^ VAL[s'fe], or for all non-input signals s*,
Sfc = *fc-

2) Persistency Violation: After the enabled state is found,
the synthesis procedure verifies that the timed specification
is persistent [2], [3] as defined below. While in general
the persistence property is not a necessary requirement for
synthesis [4], it is required to use the enabled state approach.
Persistence problems can be solved by either adding state
variables or persistence rules [2], [3].

Definition 3.6:(Persistence) For each rule of the form
(e, / , i, e, t) in the set of non-redundant rules R n r , if event e
is a rising transition on the signal Sk and the enabled state Q /
of event / has q j ^ = 1, then event e is persistent. If event
e is a falling transition on the signal Sk and the enabled state
has q j tk = 0, then event e is persistent.

3) Unresolvable Conflicts: Finally, it is possible that there
may be no available context signal to resolve a conflict. This
problem may be caused by a potential context signal which is
non-persistent [4]. To solve this problem, state variables are
again added.

3.5. Putting It All Together
The entire synthesis procedure neglecting exceptions can

be given as follows:
Algorithm 3.7 (Automated Timed Asynchronous Circuit Syn

thesis)

circuit ATACS(ER system (E , R)) {
R Nr = FirtdRed({E,R));
R SG = FindRSG({E, R));
Q = FindES({E, R), RSG);

MYERS AND MENG: TIMED ASYNCHRONOUS CIRCUITS

Fig. 5. Block diagram for part of the MMU controller.

C = FindConff (E, R n r) , R SG , Q);
R c = FindCover({E, R n r), C);
Circuit = FindCircuit({E, R n r + Rc)):
Retum(Circuit);

}

IV. E x a m p le s

This section describes two practical examples: a memory
management unit (MMU) and a DRAM controller. The MMU
is derived from a CSP specification, and it is used to illustrate
the complexity reduction of timed circuits compared to speed-
independent circuits. The DRAM controller is derived from a
BSM specification, and it is used to demonstrate how timed
circuits can be used in a synchronous environment.

4.1. Memory Management Unit
The first example is a MMU designed for use with a 16-bit

asynchronous microprocessor [11]. The original implementa
tion was derived using Martin’s synthesis method [12]. The
basic operation of the MMU is to convert a 16-bit memory
address to a 24-bit real address. There are six possible cycles
that the MMU controller can enter, depending on data from
the environment. For simplicity, the design of only one cycle
is discussed: memory data load. A simplified block diagram is
shown in Fig. 5 in which only signals involved in this cycle
are depicted.

1) From CSP to a Timed Specification: The high-level CSP
specification for the memory data load cycle is: *[MDl —►
(RA || B); MSI; MDl] (see [12]). This specification
is initially transformed into the following handshaking
expansion:

[[m dli A - i r a i] ; r a o "f;[-i6i];6o t ; [rai A bi A -im s/];m sZoT;

[m sli]; m dlo f ; ra o J.; bo j ; [-■ m d li\ ; m slo [; m d lo J,],

which is then converted to the constraint graph shown in Fig. 6 .
The transformation from CSP to a handshaking expansion

is not unique. A more concurrent constraint graph shown in
Fig. 7 also satisfies the high-level CSP specification. This
specification is simply a reshuffling [1] of the earlier one.
This reshuffling is not considered in [12] because it results
in a complete state coding violation [2], This means that the
more concurrent specification cannot be implemented without
adding state variables. Adding state variables not only changes
the specification, but can also add extra circuitry and/or delay

115

Fig. 6. The cyclic constraint graph specificationn for the unoptimized MMU.

Fig. 7. The cyclic constraint graph specification for the optimized MMU.

Fig. 8. The cyclic constraint graph specification for the persistent MMU.

to the implementation. This cost often outweights the benefit
of the higher degree of concurrency. This particular problem
can also be solved by adding persistence rules, but this can
reduce the concurrency in the specification. If conservative
timing constraints are also added, the reduced state graph
of the more concurrent specification shown in Fig. 7 does
not have a complete state coding violation, and thus, it can
be implemented without adding state variables or persistence
rules. To make the specification in Fig. 7 persistent, three arcs
are added to the constraint graph as shown in Fig. 8; the
specification can now be implemented speed-independently.
As shown later, the speed-independent implementation is still
more complex than the original implementation derived from
the specification in Fig. 6 .

2) Speed-Independent versus Timed Implementation: A
speed-independent and a timed implementation of the specifi-

116 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, JUNE 1993

TABLE II
C o m par iso n o f t h e G u ar ds f o r t h e S pe ed - I n ed e pen d e n t

a n d T im ed Im plem enta tion s o f t h e MMU

mdli_
msli-

Speed* Iodepeadeat G Birds SiapUfed t W d tiu rd t
mslo A mtli >— mdlo | mdli A nu/t mdlo t

-'mslo A -mdli mdlo | -Ttndli)_» mdlo I
-'mdlo A -'ttw/o A -ra i A mdli rao t -•mdlo A -'mslo A mdli rao t ,4© t

mslo »-* rao | mslo rao i ,4o i
mdlo A -'mslo A -Jn A mdli M

mtlo >-> M
rao Abo A ->msli A rai A bi mslo t raiAbi >-> mslo t

~<rao A A mdlo •- mslo 1 mdlo •- mslo I

rai

<€9 |

ibi

f e -

(a) (b)

cation shown in Fig. 8 are compared. For the timed implemen
tation, the timing constraints used are depicted in Fig. 8. The
lower-bound of the timing constraint on m dli | states that the
processor does not issue memory requests faster than every
30 ns. The lower bound of the timing constraint on m sli |
states that the DRAM access time takes at least 30 ns. Both
of their upper-bounds are infinite since the processor could
choose never to do a load, or the interface could choose never
to process the request. The reseting of the acknowledgement
(i.e., mdli J. and m sli j) is assumed to be somewhat faster,
and must occur within 5 to 30 ns of the reset of the request.
The other numbers were obtained from SPICE simulations
of the datapath circuitry for a 0.8/zm CMOS process. The
comparator, denoted bi, has a delay of between 2.5 to 13
ns, and the registers, denoted rai, have a delay of between
2 to 9 ns depending on temperature, voltage, and processing
variations. All output signals have a delay of 0 to 1 ns where
1 ns was found to be the maximum delay of the gates in the
library used.

In the MMU specification, there are five events with multi
ple rules enabling them: rao | , bo t, m slo | , m slo j , and
mdlo [. Timing analysis determines that at least one rule
associated with each event is redundant. In all, 6 of the 15 rules
on output signals in the original specification are redundant.
This includes the 3 persistence rules. To determine which
context signals must be added, the first step is to determine
the reduced state graph and the enabled state for each signal
using the timing constraints. A state graph generated without
any timing constraints results in 92 states while the reduced
state graph only has 22 states. Using the reduced state graph,
the timed implementation needs 5 context signals as opposed
to 7 needed for the speed-independent implementation.

After adding context signals to our original specification, 22
literals (note that we define a literal to be a signal in a guard)
are required for a speed-independent implementation as shown
in Table II. The timing constraints reduce the circuit to only
10 literals. Thus, our circuit complexity is reduced by over
50 percent using conservative timing constraints. A complex
gate implementation for both is shown in Fig. 9. Note that this
reduction is possible not only because of removing redundant
literals, but also because the gate needed for implementing rao
and bo can be shared after the optimizations.

4.2. DRAM Controller
Our next example is a DRAM controller which is an

interface between a microprocessor and a DRAM array. This
example is interesting for two reasons. It is an asynchronous
design in a synchronous environment, and it is an example
which includes non-deterministic behavior (i.e., input choice)

Fig. 9. (a) Speed-independent implementation of the MMU controller, (b)
Timed implementation of the MMU controller.

Refresh Addr Counter

Fig. 10. Block diagram of the DRAM controller (courtesy of [13]).

-g tfe tc T

roa-l

asri \̂ ddsi

' dtackl^—̂ cast
w elK lca t x lcal

r r ___-
rasT

cast dtack t

rasi

a? 6 t

ry-°L*r\
^ dtackJ N - '

selcat

bi c ^ b - jcasi roaT
cast dtack T

selcai

Fig. 11. Burst-mode specification for the D R A M controller (courtesy
of [13].

which can be synthesized by transforming it into a determin
istic specification. The DRAM controller has three possible
modes of operation: read, write, and refresh. A block diagram
for the entire DRAM controller is shown in Fig. 10. The design
of the refresh cycle is discussed in detail in the next subsection
to illustrate how synchronous inputs can be incorporated into
an asynchronous design. The three cycles are combined to
illustrate synthesis of a specification with non-determinism and
multiple occurrences of events in a single cycle.

1) From Burst Mode to Timed Specification: Our specifica
tion is derived from a burst-mode specification shown in
Fig. 11 [13]. The specification of the refresh cycle is converted
to the constraint graph shown in Fig. 12. Notice that this
constraint graph is not well-formed (i.e., it is not strongly
connected), so our timing analysis procedure cannot be applied
directly. To solve this problem, the dashed arcs in Fig. 13 are
added to the constraint graph. For this example, these new
ordering rules are chosen to make the specification satisfy
the fundamental mode assumption (i.e., outputs must occur
before inputs can change). For example, the transition r f i p |

MYERS AND MENG: TIMED ASYNCHRONOUS CIRCUITS 117

Refresh r

Fig. 12. Constraint graph specification for the refresh cycle of the DRAM
controller.

*~^flefresh \— Write Read

Fig. 14. Removal of data dependence from the DRAM controller speci
fication.

All unmarked solid rules have timing constraint [0,2],
All dashed rules have timing constraint [0,0].

Fig. 13. Well-formed constraint graph specification for the refresh cycle of
the DRAM controller. Unmarked solid rules have timing constraint [0,2].
Dashed rules have timing constraint [0,0],

must occur before c J., so a rules is added between them. The
timing constraints for these rules are [0 , 0] which means that
only the ordering of the two events is important and not the
time difference between them.

In general, an ordering rule can be added between two
events if the enabling event is guaranteed by the timing
constraints to always precede the enabled event by at least
the amount of time given in the upper bound of the ordering
rule. In other words, the rule must be declared redundant
using the timing analysis, since it is not actually enforced with
circuitry. If this is the case, the implementation synthesized is
valid; otherwise different ordering rules need to be chosen.
If no ordering rules can be found to make the graph well
formed, then our procedure cannot derive an implementation
which can satisfy the given timing constraints. Currently, these
ordering rules must be added before the synthesis procedure
can be applied, but future research will incorporate finding
appropriate ordering rules into the procedure.

2) Burst Mode versus Timed Implementation: The imple
mentation of a timed version of the DRAM controller is
compared with implementations from two burst-mode design
styles [13], [7]. For our timed implementation, the timing
constraints used for the refresh cycle are depicted in Fig.
13 [23], These timing constraints are derived assuming the
environment is as depicted in Fig. 10, and the controller is
being used with a 68020/30 running at 16-20 MHz.

The implementation of the refresh cycle is considered first.
As before, the first step is to determine which rules in the
specification are redundant. All 7 of the ordering rules added
to make the graph well formed are found to be redundant. In
addition, the rules from a J. to ras | and r f i p j are also
redundant. Next, the synthesis procedure derives a reduced
state graph with 16 states. Using this reduced state graph

Fig. 15. Timed implementation of the DRAM controller.

and the non-redundant rules, one context signal is needed
for the implementation. In all, 7 literals are needed for the
implementation of the two output signals in the refresh cycle,
r f i p and ras.

The implementation of the complete DRAM controller is
non-deterministic; i.e., the environment can choose to do a
refresh cycle, a write cycle, or a read cycle. Our timing analysis
algorithm cannot analyze specifications with non-determinism
directly. To solve this problem, the specification is converted
to a long cycle going through a refresh, a write, and a read
cycle sequentially as illustrated in Fig. 14. In this example,
since each cycle always returns to the same state before the
next cycle is chosen, all possible behaviors are modeled.

The resulting cyclic constraint graph has multiple occur
rences of the same event in a cycle. For example, the transition
ras j now occurs three times in a single cycle. Each event
which occurs multiple times is given a unique name for
each occurrence, and these events are noted to be on the
same signal. For example, the three occurrences of ras | are
replaced with ras i f, ras2 T, and ra.s3 These events will be
treated separately during timing analysis, but together during
synthesis.

The same procedure described earlier is used to find re
dundant rules and the reduced state graph. When determining
the enabled state, the multiple occurrences of an event are
considered together. For example, when determining the en
abled state for the transition we | , there is a state where
dtacki = F and dtack2 = 1, and another state where
dtacki — 0 and dtack2 = 1. Therefore, in the enabled state for
we I, both dtacki and dtack2 are set to X . To find conflicts,
the individual occurrences of the same event are used, but to
determine context signals, only the merged value is available.
For example, ras can only be used as a context signal if ras 1,
ras2, and ras:i all qualify as context signals.

This procedure leads to the implementation of the DRAM
controller shown in Fig. 15. Note that although some of the
gates are shown with multiple levels, they are all actually

118 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 1, NO. 2, JUNE 1993

TABLE 111
C o m p a r is o n s b e t w e e n S p e e d - I n d e p e n d e n t a n d T im e d Im p l e m e n t a t io n s o f S e v e r a l E x a m p l e s .

“SV” U n d e r C o n t e x t R u l e s I n d ic a t e s t h a t a S t a t e V a r ia b l e is N e e d e d f o r S y n t h e s is

Examples Optimizied Using Timing Constraints

Speed-Independent Timed

Example Trigger
Signals

States Context
Signals

Total Literals Trigger
Signals

States Context
Signals

Total Literals

SCSI Protocol Controller
[20]

10 20 2 12 9 16 1 10

Pipeline Handshake [3],
[18]

8 16 0 8 6 12 0 6

MMU unoptimized 13 56 3 16 9 33 3 10

MMU optimized 12 174 sv n/a 7 22 3 10

MMU persistent 15 92 7 22 7 22 3 35

DRAM controller [13] n/a n/a n/a n/a 24 96 11 35

Microprocessor [11], [14]
Fetch

8 32 sv n/a 7 14 3 10

PCAdd 10 49 sv n/a 7 18 3 10

Exec 42 354 sv n/a 17 76 sv n/a

ALU 26 123 sv n/a 17 44 3 20

Fig. 16. Complex-gate implementation of the DRAM controller.

implemented as single complex gates. For example, a dynamic
gate implementing cos is shown in Fig. 16. Our final imple
mentation has 35 literals (41 literals if the gate for dtack and
selca are not shared). A locally clocked implementation as
reported in [13] used 62 literals and 1 state variable. A 3-D
implementation as reported in [7] used 46 literals and 1 state
variable. Our implementation did not need a state variable.

4.3. Other Results
The synthesis procedure described in this paper has been

fully automated in a CAD tool which transforms a well-formed
ER system specification into a complex gate implementation.
All results reported in this paper were compiled using this
program, and they appear tabulated in Table III.

Additional examples in this table are parts of an asyn
chronous microprocessor described in [11], and their spec
ifications are taken from [14]. All of the microprocessor
specifications need state variables for a speed-independent im
plementation; however, three of the four can be implemented
without state variables if conservative timing constraints are
added.

The timed implementation for the MMU controller and the
refresh cycle of the DRAM controller have been verified using
Burch’s timed circuit verifier [24], [25] to be hazard free
under the given timing constraints. Here, hazard-freedom is

defined to mean that no transition once enabled to occur can
be disabled without it occurring.

V. C onclusions and Fu tu re R esearch

We have proposed a new methodology for the specifica
tion of timed asynchronous circuits, the event-rule system,
and developed a timing analysis algorithm to deduce timing
information sufficient for the synthesis of timed circuits. A
synthesis procedure based on our timing analysis algorithm
has been constructed to detect and remove redundancy in the
specification and to produce a reduced state graph. From the
reduced state graph, our procedure systematically derives a
complex gate implementation. Our results indicate that by
using conservative timing constraints, our synthesis procedure
can significantly reduce a circuit’s complexity. While reducing
circuit area, we also increase circuit performance, not only
because smaller circuits switch faster but also because we
are able to synthesize more concurrent specifications than
can often be considered practical using other design styles.
Finally, we have applied our technique to the synthesis of
asynchronous circuits in a mixed synchronous/asynchronous
environment.

At present, our synthesis procedure requires a well-formed,
deterministic ER system specification. While we have shown
through an example how these restrictions can be relaxed,
a systematic method has not yet been incorporated into our
synthesis procedure. In the future, we plan to incorporate
transformations to make a specification well-formed into the
synthesis procedure. We also plan to generalize our timing
analysis algorithm to handle non-deterministic behavior. The
third direction for future work is develop a procedure for
adding state variables to a timed specification to resolve excep
tions: complete state coding violations, persistency violations,
and unresolvable conflicts. This problem is not as straightfor
ward as it sounds because adding state variables changes the
specification, and thus may invalidate earlier timing analysis.
Therefore, techniques used for adding state variables in other

MYERS AND MENG: TIMED ASYNCHRONOUS CIRCUITS 119

methodologies may not be directly applicable. Also, while we
are able to verify our designs to be hazard free, verifying
that they satisfy a specification has not yet been completed
and will be addressed in the future. Finally, we intend to
apply our technique to larger examples, and implement the
IC design of interesting timed circuits to better assess the area
and performance gain.

A c k n o w l e d g m e n t

The authors would especially like to thank Prof. David Dill
of Stanford University who dedicated considerable amount
of time in assisting us in formalizing our work. We would
also like to thank Peter Beerel of Stanford University for his
invaluable comments on numerous versions of this manuscript.
Their thanks also go to Dr. Jerry Burch of Stanford University
for verifying several of our designs. The authors would also
like to thank Profs. Steve Bums and Gaetano Borriello of the
University of Washington and their students for many valuable
discussions on timing analysis and the synthesis of timed
circuits. Finally, they would like to express our appreciation
of the work done in Professor Alain Martin’s group at the
California Institute of Technology, for their insight in the
design of asynchronous circuits— their assistance in deriving
the specification and speed-independent implementation of the
MMU example is also gratefully acknowledged.

R e f e r e n c e s

[1] Alain J. Martin, “Programming in VLSI: From communicating processes
to delay-insensitive VLSI circuits,” in UT Year o f Programming Insti
tute on Concurrent Programming, C.A.R. Hoare, Ed. Reading, MA:
Addison-Wesley, 1990.

[2] Tam-Anh Chu, “Synthesis of self-timed VLSI circuits from graph-
theoretic specifications,” Ph.D. dissertation, Massachusetts Inst, of Tech
nology, Cambridge, 1987.

[3] Teresa H.-Y. Meng, Robert W. Brodersen, and David G. Messershmitt,
“Automatic synthesis of asynchronous circuits from high-level specifi
cations,” IEEE Trans. Computer-Aided Design, vol. 8, pp. 1185-1205,
Nov. 1989.

[4] Peter A. Beerel and Teresa H. Y. Meng, “Automatic gate-level sythesis
of speed-independent circuits,” in Proc. IEEE 1992ICCAD Dig. Papers,
pp. 581-586, 1992.

[5] S. H. Unger, Asynchronous Sequential Switching Circuits. New York:
Wiley-Interscience, 1969. (re-issued by Robert E. Krieger, Malabar,
1983).

[6] Steven M. Nowick and David L. Dill, “Synthesis of asynchronous state
machines using a local clock,” presented at the IEEE Int. Conf. on
Computer Design, ICCD-1991, 1991.

[7] K. Y. Yun, D. L. Dill, and S. M. Nowick, “Synthesis of 3D asynchronous
state machines,” presented at the IEEE Int. Conf. on Computer Design,
ICCD-1992, 1992.

[8] Al Davis, Bill Coates, and Ken Stevens, “The Post Office Experience:
Designing a large asynchronous chip,” in Proc. Twenty-Sixth Ann.
Hawaii Int. Conf. on System Sciences, pages 409-418. IEEE Computer
Science Press, 1993.

[9] Gaetano Borriello and Randy H. Katz, "Synthesis and Optimization of
Interface Transducer Logic,” in Proc. IEEE 1987 ICCAD Dig. Papers,
pp. 274-277, 1987.

[10] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli, “Algorithms
for synthesis of hazard-free asynchronous circuits,” in Proc. 28th
ACM/IEEE Design Automation Conf, 1991.

[11] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewindus,
“The design of an asynchronous microprocessor,” in Decennial Caltech
Conf. on VLSI, pp. 226-234, 1989.

[12] Chris J. Myers and Alain J. Martin, “The design of an asynchronous
memory management unit,” Tech. Rep. CS-TR-92-25, California Inst,
of Technology, 1992.

[13] S. M. Nowick, K. Y. Yun, and D. L. Dill. “Practical asynchronous
controller design,” presented at the IEEE Int. Conf. on Computer Design,
ICCD-1992, 1992.

[14] Steve Bums, “ Performance analysis and optimization of asynchronous
circuits,” Ph.D. dissertation, California Inst, of Technology, Pasadena,
1991.

[15] Kenneth McMillan and David L. Dill, “Algorithms for interface timing
verification,” presented at the IEEE Int. Conference on Computer
Design, ICCD-1992, 1992.

[16] P. Vanbekbergen, G. Goossens, and H. De Man, “Specification and
analysis of timing constraints in signal transition graphs,” in Proc.
European Design Automation Conf, 1992.

[17] T. Amon, H. Hulgaard, G. Borriello, and S. Bums, ‘Timing analysis
of concurrent systems,” Tech. Rep. UW-CS-TR-92-11-01, Univ. of
Washington, Seattle, 1992.

[18] Chris Myers and Teresa H.-Y. Meng. “Synthesis of timed asynchronous
circuits,” presented at the IEEE Int. Conf. on Computer Design, ICCD-
1992, 1992.

[19] Glynn Winskel, “An introduction to event structures,” in Linear Time,
Branching Time and Partial Order in Logics and Models for Concur
rency. Norway: Noordwijkerhout, 1988.

[20] Tam-Anh Chu, Private communication, July 1991.
[21] Alain J. Martin. “Formal program transformations for vlsi circuit syn

thesis,” in UT Year of Programming Institute on Formal Developments
of Programs and Proofs, E. W. Dijkstra, Ed. Reading, MA: Addison-
Wesley, 1989.

[22] Edward J. McCluskey, Logic Design Principles with Emphasis on
Testable Semicustom Circuits. Englewood Cliffs, NJ: Prentice-Hall,
1986.

[23] Ken Yun, Private communication, 1992.
[24] Jerry R. Burch. “Modeling timing assumptions with trace theory,” in

1989 Int. Conf. on Computer Design: VLSI in Computers and Processors,
pp. 208-211, 1989.

[25] Jerry R. Burch, “ Trace algebra for automatic verification of real
time concurrent systems,” Ph.D. dissertation, Carnegie Mellon Univ.,
Pittsburgh, PA, 1992.

■
 Chris J. Myers received the B.S. degree in elec

trical engineering and Chinese history in 1991 and
the M.S.E.E. degree in 1993 from the California
Institute of Technology, Pasadena. Currently he is
working toward the Ph.D. degree at the same uni
versity.

His current research include asynchronous logic
synthesis, algorithms for analysis of real-time con
current systems, CAD for VLSI systems, computer
architecture.

Mr. Myers has received the Caltech Carnation
Merit Award in 1990, the Rodman W. Paul History Prize in 1991, and a
National Science Foundation Fellowship in 1991.Teresa H.-Y. Meng received the B.S. degree from

National Taiwan University in 1983, and the M.S.
and Ph.D. degrees from the University of California
at Berkeley, in 1984 and 1988, respectively.

Since 1988 she has been with the Department
of Electrical Engineering, Stanford University as as
assistant professor. Her current research activities
include wireless data communication, asynchronous
logic synthesis, and low-power design of real-time
DSP applications.

Dr. Meng has received the IEEE Signal Process
ing Society’s Best paper Award in 1988, the 1989 NSF Presidential Young
Investigator Award, the 1989 ONR Young Investigator Award, a 1989 IBM
Faculty Development Award, and the 1988 Eli Jury Award at U.C. Berkeley
for recognition of excellence in systems research.

