
VOLUME 73, NUMBER 7 PHYSICAL REVIEW LETTERS 15 AUGUST 1994 

Statistical Distribution for Generalized Ideal Gas of Fractional-Statistics Particles 

Yong-Shi Wu 
Department of Physics, University of Utah. Salt Lake City, Utah 84 J J 2 

(Recei ved 31 January 1994) 

We derive the occupation-number distribution in a generalized ideal gas of particles obeying fractional 
statistics, including mutual statistics, by adopting a state-counting definition. When there is no mutual 
statistics, the statistical distribution interpolates between bosons and fermions, and respects a fractional 
exclusion principle (except for bosons). Anyons in a strong magnetic field at low temperatures 
constitute such a physical system. Applications to the thermodynamic properties of quasiparticle 
excitations in the Laughlin quantum Hall fluid are discussed. 
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Statistics is the distinctive property of a particle (or 
elementary excitation) that plays a fundamental role in 
determining macroscopic or thermodynamic properties of 
a quantum many-body system. In recent years, it has 
been recognized that particles with "fractional statistics" 
intermediate between bosons and fermions can exist in 
two-dimensional [1] or in one-dimensional [2,3] systems. 
Most of the study has been done in the context of many­
body quantum mechanics. There have been calculations 
of thermodynamic properties of certain systems [2,4-6] 
with the help of exact solutions, but general formulation 
of quantum statistical mechanics (QSM) for ideal gas 
with an occupation-number distribution that interpolates 
between bosons and fermions is still lacking. 

A single-particle quantum state can accommodate an 
arbitrary number of identical bosons, while no two identi­
cal fermions can occupy one and the same quantum state 
(Pauli's exclusion principle). In QSM [7], this difference 
gives rise to different counting of many-body states, or 
different statistical weight W. For bosons or fermions, 
the number of quantum states of N identical particles oc­
cupying a group of G states is, respectively, given by 

(G + N - 1)! G! 
Wb = N! (G _ 1)! or Wf = N! (G _ N)!' (I) 

A simple interpolation implying fractional exclusion is 

W= [G+(N-1)(l-a)]! (2) 
N! [G - aN - (l - a)]! ' 

with a = 0 corresponding to bosons and a = 1 fermions. 
Such an expression can be the starting point of QSM for 
intermediate statistics with 0 < a < 1. Let us first clarify 
its precise meaning in connection with "occupation of 
single-particle states," and justify it as a new definition 
of quantum statistics, illa Haldane [3]. 

Following Ref. [3], we consider the situations in which 
the number G; of independent states of a single particle 
(elementary excitation) of species i, confined to a finite 
region of matter, is finite and extensive, i.e., proportional 
to the size of the matter region in which the particle 
exists. Now let us add more particles with the boundary 

conditions and size of the condensed-matter region fixed. 
The N -particle wave function, when the coordinates 
of N - 1 particles and their species are held fixed, 
can be expanded in a basis of wave functions of the 
remaining particle. The crucial point is that in the 
presence of other particles, the number d; of available 
single-particle states in this basis for a particle of species 
i generally is not a constant, as given by G;; rather it 
may depend on the particle numbers {N;} of all species. 
This happens, for example, when localized particle states 
are nonorthogonal; as a result, the number of available 
single-particle states changes as particles are added at 
fixed size and boundary conditions. Haldane [3] defined 
the statistical interactions aij through the linear relation 

(3) 

where {.:~Nj} is a set of allowed changes of the particle 
numbers. In the same spirit, but more directly to the 
purposes of QSM, we prefer defining the statistics by 
counting [8] the number of many-body states at fixed {N;}, 

[G. + N· - 1 - '. a··(N - 8.)J' n Il L..J IJ J IJ' 
W= . 

; (N)' [G. - 1 - '. a··(N· - 8.)J' I' I L..J IJ J IJ' 

(4) 

The parameters aij must be rational, in order that a 
thermodynamic limit can be achieved through a sequence 
of systems with different sizes and particle numbers. We 
call aij for i *' j mutual statistics. We note that Eq. (4) 
applies to the usual Bose or Fermi ideal gas with i labeling 
single-particle energy levels and aij = a8;j (a = 0,1). 
So with an extension of the meaning of species, this 
definition allows different species indices to refer to 
particles of the same kind but with different quantum 
numbers [9]. Note there is no periodicity in so-defined 
statistics, and it makes sense to consider the cases with 
a > lor 2. 

As usual in QSM, we start with the ideal situations in 
which total energy (eigenvalue) is always a simple sum, 

(5) 
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with ei identified as the energy of a particle of species 
i. We call such a system a generalized [10] ideal gas 
if Eq. (4) also applies. Postponing the discussions about 
when Eqs. (4) and (5) are obeyed, let us first apply 
them to study QSM of generalized ideal gas. Following 
the standard procedure [7], one may consider a grand 
canonical ensemble at temperature T and with chemical 
potential /Li for species i. According to the fundamental 
principles of QSM, the grand partition function is given 
by (with k the Boltzmann constant) 

Z = L W ({Ni})exp {LNi (/Li - ei) /kT}. (6) 
{N,l i 

As usual, we expect that for very large G i and N i , the 
summand has a very sharp peak around the set of most 
probable (or mean) particle numbers {Ni }. Using the 
Stirling formula In N! = N In (N / e), and introducing the 
average "occupation number" defined by ni == NdGi, we 
express In W as (with f3ij == aijGj/Gi) 

~ G, { -n, In n, - (I -pun} (I -~"'jn,) + [I + ~ (B'j - f3,j)n}{ + ~ (BU - ilu)nj]} 

The most probable distribution of ni is determined by 

a~i [In W + ~ Gini (/Li - ei) /kT ] = O. (8) 

It follows that 

(9) 

(10) 

Therefore the most probable average occupation num­
bers ni (i = 1,2, ... ) can be obtained by solving 

L (8 ij wj + (3ij) nj = I, 
j 

(II) 

with Wi determined by the functional equations (10). The 
thermodynamic potential n = - kT In Z is given by 

n == -PV = -kTLGln l + ni - Lj{3ijnj (12) 
i I I - Lj {3ijn j , 

and the entropy, S = (E - Li f.LiNi - n)/T, is 

S , { ei - f.Li 1 + ni - L {3i jnj } 
- = L. Gi ni + In J. 
k i kT I - L {3ijnj 

J (13) 

Other thermodynamic functions follow straightforwardly. 
As usual, one can easily verify that the fluctuations, 
(N/ - Ni

2 )/Nj
2

, of the occupation numbers are negligi­
ble, which justifies the validity of the above approach. 

The simplest example is the ideal gas, i.e., identical 
particles with no mutual statistics, for which we set ajj = 

a8ij and f.Li = /L. Then the average occupation number 

(7) 

nj satisfies 

and we have the statistical distribution 

I 
ni = , 

w(e(e, - JL)/kT) + a 
(IS) 

where the function we?) satisfies the functional equation 

w(?)"[1 + w(?)]l-" = ? == e(e-JL)/kT. (16) 

Note that we?) = ? - I for a = 0, and we?) = ? for 
a = l. Thus, Eq. (IS) recovers the familiar Bose and 
Fermi distributions, respectively, with a = 0 and a = l. 
For semions with a = 1/2, Eq. (14) becomes a quadratic 
equation, which can be easily solved to give 

I 
nj = . (17) 

.JI/4 + exp [2 (ei - f.L) /kT] 

For intermediate statistics 0 < a < I, it is not hard to se­
lect the solution w(?) ofEq. (16) that interpolates between 
bosonic and fermionic distributions. In particular, when? 
is very large, we have we?) = ? and, neglecting a com­
pared to wen, we recover the Boltzmann distribution 

(18) 

at sufficiently low densities for any statistics. 
Furthermore, we note that? is always non-negative, so 

is w; it follows from Eq. (IS) that 

ni:S I/a. (I9) 

This expresses the generalized exclusion principle for 
fractional statistics. In particular, at absolute zero, ? = 0 
if ei < /L, and? = +00 if ei > /L. From Eq. (16), we 
have w = 0 and oc, respectively. Thus, we see that at T = 

0, for statistics a * 0, the average occupation numbers 
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for single-particle states with continuous energy spectrum 
obey a step distribution like fermions: 

{
O, if ei > E F , (20) 

ni = l/a, if ei < E F • 

The Fermi surface e = EF is determined by the require­
ment L.e'<£f G, = aN. Below the Fermi surface, the av­
erage occupation number is 1/ a for each single-particle 
state, in agreement with fractional exclusion. 

One may be tempted to consider, in parallel to the usual 
Bose and Fermi ideal gas, the case with 

!i 2k; G. = V(ak)2 
ei = 2m' , (21T)2' (21) 

say in two dimensions with V the area. Then treating 
momentum as continuous, one has the Fermi momentum 

k~ = (41Ta)N/V. (22) 

Moreover, at finite temperatures, by using (15) and (16), 
the sum L.i G;n; = N can be performed to give 

!!:-. = a
21Tfi2 '!.- + In[1 - exp (_21T!i

2
N)J. (23) 

kT mkT V mkT V 

Using the identity derived by integration by parts, 

f x 1 - ani fOC 
de; In ( ) = de;e;ni' 

o 1 + 1 - a ni 0 
(24) 

we have the statistics-independent relation PV = E. 
In the Boltzmann limit [exp(Jl/kT)« 1], we?) = 

? + a - I, 

PV = NkT [1 + (2a - I)N,.\2 /4V ] ' (25) 

where ,.\ = J21T!i2 / mkT. So the "statistical interactions" 
are attractive or repulsive depending on whether a < 1/2 
or a > 1/2. 

Whether a given system satisfies the seemingly harm­
less conditions (5) or (21) together with (4) is highly 
nontrivial. It turns out [11] that statistical transmuta­
tion happens in 1 D Bethe-ansatz solvable gas, so that 
both of these conditions apply if particles of different 
pseudomomenta can be viewed as belonging to differ­
ent species. On the other hand, while it was claimed [3] 
that the definition (4) for fractional statistics does not ap­
ply to free anyons, i.e., Newtonian particles carrying flux 
tubes [12,13] in two spatial dimensions, anyons in a mag­
netic field are known to satisfy both (4) and (5) if all 
anyons are in the lowest Landau level (LLL) [14], as is 
the case at very low temperatures. The Jastrow-type pref­
actor na<b(Za - Zb)O/7T, with ° $: 0 < 21T, in the anyon 
wave function has the effect of increasing the flux through 
the system by (O/1T)(N - 1). Thus, with fixed size and 
number of flux, the dimension of the effective boson 
Fock space [15,16] is given by d = Nq, - (O/1T)(N - 1), 
where Nq, = qBV /hc == V /Vo, with q the anyon charge. 
Equation (2) applies with the single-anyon degeneracy 
G = Nq, and the statistics a = O/1T. Applying Eqs. (15) 
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and (16) with only one energy e = !iwcl2, we have 

N P 
n == - ==-

G Po 
(26) 

where we?) is the positive solution of Eq. (16). Here P == 
N /V is the areal density, and Po == I/Vo. Equation (26), 
together with (16), determines the chemical potential Jl in 
terms of P / Po and T. Thermodynamic quantities can also 
be expressed as functions of the ratio P / Po. In particular, 
the thermodynamic potential is 

V 1 + w n = -kT-In--
V 1 + (1 - a) n 

-kT-ln . 
Vo w Vo 1 - an 

(27) 
The equation of state is 

PV = (!!.-)-l In 1 + (1 - a)p/po . 
NkT Po I - a(p/po) 

(28) 

The pressure P is linear in T for fixed p. It diverges 
at the critical density Pc = (1/ a )Po, which corresponds 
to the complete filling of the LLL. The emergence 
of an incompressible state at filling fraction 1/ a is a 
consequence of the generalized exclusion principle (20) 
[17]. The magnetization per unit area is 

~A 2JlO 1 + (1 - a)p/po 
.J'~ = - /-toP + - In , 

,.\2 l-a(p/po) 
(29) 

where Jlo = q!i/2mc is the Bohr magneton. Note the 
first (de Haas-van Alphen) term is statistics independent. 
At low temperatures, kT «!iwc, the second term can be 
neglected except for p very close to (l/a)po, where it 
gives rise to a nonvanishing, a-dependent susceptibility 

X = kT-q- (-~) p/Po 
21T!iC B (1 - ap/ po)[1 + (1 - a) p/ Po] . 

(30) 

The entropy per particle is also a dependent: 

~ = k (1 - a + :0) In [1 + (1 - a) :0 ] 
- k In :0 - k (:0 - a ) In (1 - a :0)' 

(31 ) 

Equations (27), (28), and (29) have been derived in 
Ref. [6] from the known exact many-any on solutions in 
the LLL. 

Vortexlike quasiparticle excitations in Laughlin's in­
compressible 1/ m fluid (m being odd) [18] are known to 
be fractionally charged anyons [18-21], and their wave 
functions are as if they are in the LLL (with electrons act­
ing as quantized sources of "flux") [15]. The existence 
of two species of excitations, quasiholes (labeled by -) 
and quasielectrons (labeled by +), dictates nontrivial mu­
tual statistics. In this case, fixing the boundary conditions 
means fixing the total magnetic flux N q, passing through 
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the system. The latter is related to the electron number 
Ne and the excitation numbers N ± by 

N", = eBV Ihc = mNe + N_ - N+. (32) 

The Hilbert-space dimension d± for both quasielectrons 
and quasiholes is Ne + 1 [15]. It follows that 

a __ = -a+_ = a_+ = 11m, a++ = 2 - 11m (33) 

(appropriate for hard-core quasielectrons [16,22]). The 
single excitation degeneracy in the thermodynamic limit is 
G + = G - = (1 Im)N ",. Ignoring the interaction energies 
and assuming the system is pure, we apply the formulas 
(10)-(13) to this case with the values (33) for aij' The 
densities p± of the excitations are given by 

P± w+ + a=+=+ - O'±+ n ...... = - = , 
- Po (w+ + a++)(w_ + a __ ) - a+-a-+ 

(34) 
where Po = G±IV; w± satisfy the functional equations 

w±a=, (1 + w±)l-a== C :+w+r+= = e(e,-p-")/kT. (35) 

Here e± is the creation energy of a single excitation. At 
T = 0 or very close to it, thermal activation is negligi­
ble; there is only one species of excitations behaving like 
anyons in the LLL. If, say, N", < mN" then there are 
only quasielectrons: n- = 0, n+ = (mNe - N",)/G+ = 

I/(w+ + a++). One can apply the above Eqs. (26)­
(31). At higher temperatures, thermal activation of quasi­
particle pairs, satisfying j,t+ + j,t_ = 0, becomes impor­
tant and the effects of mutual statistics become manifest 
with increasing density of activated pairs. The thermo­
dynamic properties at different sides of electron filling 
v = NeIN", = 11m are not symmetric due to asymme­
try in quasielectrons (a + + = 2 - 1 1m) and quasiholes 
(a-_ = 11m). The general equation of state is 

p _ 'I 1 + p;/ Po - 2...j aij(pjl po) 
- - Po Ln. (36) 
kT i=+.- 1 - Lj aij(pjl Po) 

When the excitation densities satisfy 

L aijpj = Po, (37) 
j=+.-

the pressure diverges and a new incompressible state is 
formed, as a result of the generalized exclusion princi­
ple obeyed by the excitations upon completely filling the 
LLL. At T = 0, e.g., for i = + (quasiparticles) the limit 
(37) is reached when electron filling is v = 2/(2m - 1), 
giving rise to the well-known hierarchical state [15,16,23]. 
At finite T, it may happen at somewhat different fill­
ing, because of the additional quasihole contribution in 
Eq. (37). Moreover, the magnetization per unit area is 

( 
ekT In Po + Pi - Lj aijpj), 

:M = ',. -j,tiPi + L. mhc Po - Lj aijpj 

(38) 

with j,t± = ae±laB. A detailed analysis of the properties 
of thermally activated quasiparticles at finite temperatures 
will be given elsewhere [24]. 

To conclude, we have formulated the QSM of general­
ized ideal gas (with no interaction energies) for particles 
of fractional (mutual) statistics, in Haldane's sense. For 
identical particles with no mutual statistics, the statisti­
cal distribution interpolates between bosons and fermions, 
exhibiting fractional exclusion, which makes the particles 
(except bosons) more or less like fermions. Theoreti­
cal examples of generalized ideal gas include 1 D Bethe­
ansatz solvable gases and 2D anyons in the LLL. For 
real physics, our formalism applies to thermodynamics of 
quasiparticle excitations in pure Laughlin liquids, and may 
shed new light on 1 D quantum systems. 
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