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A Stable Adaptive Hammerstein Filter Employing 
Partial Orthogonalization of the Input Signals

Janez Jeraj, Member, IEEE, and V. John Mathews, Fellow, IEEE

Abstract—This paper presents an algorithm that adapts the 
parameters of a Hammerstein system model. Hammerstein sys­
tems are nonlinear systems that contain a static nonlinearity 
cascaded with a linear system. In this paper, the static nonlinearity 
is modeled using a polynomial system, and the linear filter that 
follows the nonlinearity is an infinite-impulse response (IIR) 
system. The adaptation of the nonlinear components is improved 
by orthogonalizing the inputs to the coefficients of the polynomial 
system. The step sizes associated with the recursive components 
are constrained in such a way as to guarantee bounded-input 
bounded-output (BIBO) stability of the overall system. This paper 
also presents experimental results that show that the algorithm 
performs well in a variety of operating environments, exhibiting 
stability and global convergence of the algorithm.

Index Terms—Adaptive Hammerstein filter, nonlinear systems, 
polynomial signal processing, stability analysis.

I. In t r o d u c t io n

r 1 i  HIS paper describes the derivation and experimental per- 
1  formance evaluation of an adaptive algorithm employing a 

Hammerstein system model. Hammerstein systems are cascade 
nonlinear systems comprising of a memoryless nonlinearity fol­
lowed by a linear system as shown in Fig. 1. In our work, the 
nonlinearity is a memoryless polynomial model and the linear 
system has infinite-impulse response (IIR). There are many ap­
plications in which cascade nonlinear models are appropriate. 
Examples include modeling satellite communication systems
[1], biological systems [2], distillation columns [3], electrical 
drives [4], and amplifiers [5].

A number of nonparametric procedures have been considered 
for Hammerstein system identification [6], [7]. Among para­
metric methods we mention an approach where the polyno­
mial and the dynamic linear subsystems are iteratively estimated
[2]. A stochastic gradient method was employed in [8] to de­
rive an adaptive algorithm. An online identification method for 
the Hammerstein model, based on the Kalman filter design was 
described in [9]. It was assumed in [9] that the parameters of 
the nonlinear model were constant. Some work in the stability 
and convergence analysis has been done for Hammerstein filters 
with finite-impulseresponse (FIR) [10], [11]; however, there are
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Fig. 1. Block diagram of a Hammerstein system.

limited or no stability and convergence analyzes for the algo­
rithms with IIR.

Let the input-output relationship of the adaptive filter be 
given by

N  M

d(n) =  — ai(n) • d(n — i) +  bj(n) • z (n — j ) (1) 

where

is the output of a memoryless polynomial nonlinear system and 
x(n)  is the input to the adaptive filter. In the above equations, 
pi (n ), ai (n ), and bj (n) represent the coefficients of the adaptive 
filter at time n. Setting bo(n) =  1 for all n so as to ensure a 
unique solution during identification, (1) can be rewritten as

d(n) =  z (n)

M

N

£ ai(n) • d(n ■ z { n -  j )

(n ) x \ n ) — o-i(n ) ' d(n — i)

The above representation is nonlinear in the data, but linear 
in the parameters, and is therefore quite useful for identifying 
Hammerstein systems. Such representations have been em­
ployed to derive iterative techniques for system identification 
of Hammerstein systems [12]. We also note that uniqueness 
can be ensured by fixing any one coefficient in the system.

The objective of the adaptive filter presented in this paper is to 
update the coefficients of the nonlinear model using a stochastic 
gradient procedure so as to reduce the instantaneous squared es­
timation error during each iteration. We orthogonalize the input 
signal to the polynomial subsystem. This improves the overall 
convergence behavior of the method, especially when the static 
nonlinearity is of relatively high order. For high orders of nonlin­
earity, the autocorrelation matrix of the vector of nonlinear sig­
nals x(n) =  [x(n) x 2(n) x 3(n) • • • x L(n)]T exhibits a large 
eigenvalue spread even when the input signal x(n)  is white. The 
problem for adaptation caused by this situation is avoided in 
our method. Furthermore, the adaptive IIR subsystem employs 
a step-size sequence that guarantees stability of the system. This
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Fig. 2. Orthogonalization of the nonlinear subsystem.

part of our work follows that of Carini et a l  [13], in which the 
authors employ a Lyapunov stability criterion to ensure stability 
of adaptive IIR filters.

The rest of the paper is organized as follows. The next sec­
tion details the derivation of the adaptive Hammerstein filter. 
Section II.D contains a theoretical proof of the stability of the 
derived algorithm. Results of experimental performance eval­
uation are described in Section III. A comparison of the per­
formance of our method with the algorithm described in [9] is 
also provided in Section III. Finally, the concluding remarks are 
given in Section IV.

II. A d a p t a t i o n  o f  t h e  H a m m e r s t e i n  S y s t e m  M o d e l

Let x{n )  and d(n)  represent the input signal and the de­
sired response signal, respectively, of the adaptive Hammerstein 
filter. Fig. 2 depicts the approach employed to orthogonalize the 
input signals to the adaptive polynomial subsystem. The objec­
tive of the Gram-Schmidt orthogonalizer is to create the signals 
v i (n), • • •, vL{n) such that

[v i(n)vj(n) } =  0, i ^ j

z ( n ) = T M n ) v i ( n ) .

some sense. Therefore, we seek a stochastic gradient adaptation 
algorithm that attempts to reduce

W!(n ) , .. , , w L(n)) =  [d(n) -  dap(n)]2 (6)

during each iteration, where the a priori estimate dap(n) is ob­
tained as

N  M

dapO ) =  - ^ a i ( n  -  1) • d(n -  *) +  X ^ ' ( n “  X) ' z ( n ~ j ) -

(7)
We also need to update the coefficients g i j ( n ) of the 
Gram-Schmidt orthogonalizer. The coefficient updates for 
ai(n), bj{n) and wi(n) are given by

~ ( ~ ( u  , , d (h id (n ) ~  d*.P{n )]2) ai{n) =  a,i{n -  1) -  fJLi{n)- z
ddi(n — 1) 

=  di(n -  1) +  fjLi(n) d(n) -  dap(n)
ddap(n)  ̂

d d i (n  — 1) ’

(4)

and the signals in the set {v i (n ) ; i =  1, 2, . . . ,  L}  span the space 
spanned by the signals in the set {x l (n), i =  1, 2, . . . ,  L} .  The 
goal is to update the coefficients gi j (n)  of the orthogonalizer 
such that (4) is approximately true in the steady state.

The output signals ^i(n), #2(^)5 • • • ? v l (ti) of the 
Gram-Schmidt orthogonalizer are used to obtain the inter­
mediate output z{n)  of the model as

bi (n ) =  b j ( n - l )  -  , 

=  bj{n -  1) +  ,

dbj(n — 1)

Hi(n) > 0 , 1 < i < N  (8)
d(±[d(n) -  dap(n)]2)

n )— ----- -̂------------------
dbj{n -  1)

sr+j(n) > 0, 0 < j < M  (9)

and

uii(n) =  w i ( n -  1) -  nN+M+i(n)
d(±[d(n) -  daP(n)}2)

(5)

Finally, the adaptive linear subsystem estimates the desired re­
sponse signal d(n) as in (1).

Our goal is to update the coefficients di (n) , bj (n) , and wi(n)  
in (1) so that d(n) is close to the desired response signal d(n) in

• r, * ; p( ; Miv+M+/(^) > 0 , i  <  I < L  (10) ow iyn  — 1)
respectively. In the above equations, the variables repre­
sent the step sizes employed by the adaptation algorithm and 
are small, positive sequences. To find explicit expressions for 
the updates, we evaluate the partial derivatives in (8)-(10). The
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partial derivative of dap(n) with respect to di(n — 1) is given 
by

9fkP{n) 3f  ̂ dd(n — s)=  ( i i )
dcii(n —

As is commonly done in the derivation of adaptive HR filters 
[14], [15], we assume that the adaptation is slow enough, such 
that

~ s ) -  s)
da,i(n — 1) da,i(n — s) ’

1 < i < N

and
ddap(n) (n)

d a , i ( n -  1) da,i(nY 

Substituting these approximations in (11) gives

dai(n) —d(n — i) — 5 3  ®s(rl — 1)

Using a similar procedure, we get

dbj(r
z ( n  — j )  — 5 3  0‘s (n  ~  I ) -

+  5 3  l>s(n -  1 )vi(n -  s)

n — 1) dwi(n — s)

ddap(n) t-)

and
(n — 1) dwi(n)

<j>(n) =  — 5 3  <is ( n  — 1 )  • <j>(n — s)

where

dd(n)  
d&i(n)

n )

daN (n) dbi(n)

(n)

(12)

(13)

and the information vector -i/>(n) is given by

y b j (n ) v 1(n - j ) . . . y b j (n )v L ( n - j )  . (22)

In the above equations, [ ■ ]T denotes the transposition opera­
tion. Let us further define the parameter vector

&i (ri) . . .  ajv(n) bi(n) .bM {n) wi  ( '« )... w L(n)

b0(n) =  1 (23)

ddi(n — s) ’

1 < i <  N.  (14)

and the data vector

H('«) =  [—d(n — 1) . . .  — d(n —
v 1( n ) . . . v L(n)]T . (24)

Then, the equations for adaptation of the parameters of the filter 
can be written in matrix form as

dbj(n — s)
0 < j  <  M.  (15)

Finally, the update equations for the polynomial subsystem are 
given by

and

where

e(n) =  d(n) -  H T {n)0{n -  1) (25)

9(n) =  0(n — 1) +  A(n)4>(n)e(n) (26)

HN+M+L(n)]- (27)

1 < I <  L. (16)

As before, we have assumed that the adaptation is slow and used 
the approximations

To improve the convergence behavior of the adaptive filter, we 
use a normalized version of the adaptive filter given by

(n) =  §(n — 1) +
5 +  H T(

e(n) (28)

(17)

(18)

(19)

to derive this result. Combining (14), (15), and (16), we can 
write a compact expression for the coefficient updates as

where 6 is a small positive constant included to prevent divi­
sion by very small values when H T (n)A(n)<f>(n) is small. It 
is not difficult to show that this choice of normalization with 
(5 =  0 results in zero a posteriori error. Furthermore, of the mul­
titude of update strategies that result in zero a posteriori error, 
the above choice results in the smallest perturbation of the co­
efficient vector [16]. Finally, we employ Newton’s method to 
improve the update strategy by scaling the coefficient increment 
vector by the inverse of R (n), the autocorrelation matrix of the 
information vector. The matrix R (n) is recursively computed as

(20)
R (n) =  AR(n -  1) +  (1 -  \ ) ^ {n ) ^ T (n) (29)

(21)

where 0 <C A < 1. Its inverse may be evaluated recursively 
using the matrix inversion lemma as

R - 1 ( «  +  1)

H  t ^  +  «AT (« )R - ' ( n m n ) ) '
(30)
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While implementing (30) care should be taken to ensure the 
symmetry of R -1 (n +  1) in (30). Incorporating (30) into (28) 
results in the update equation for our adaptive filter

A (n )R _1(n +
(n) =  6(n — 1) +

(n)

6-

g j , i(n  +  1) = 9 j , i ( n )  +
(n)

$o + o 2V] (n )

where S0 is a small positive constant and b 2v (n) is computed as

0 < Xg <  1.

=  Xo

and

where r), p, and 7 are finite positive constants. The condition that 
there exists a positive constant r/ such that 77I < Q(r?,) for all n 
is equivalent by definition to existence of a positive q such that 

x.,; for all n and all N  x 1 vectors x I(, whereV x„
e(n). (31)

■ H T(n)A (n)^(n)

It might appear that the orthogonalization of the input to the 
polynomial subsystem in addition to the orthogonalization pro­
vided by Newton’s update strategy is redundant. However, it is 
shown in Section III that the orthogonalization for the polyno­
mial subsystem improves the overall performance of the algo­
rithm for even modestly large orders of the nonlinearity.

A. Orthogonalization of  the Input to the Polynomial Subsystem

Fig. 2 shows the procedure for orthogonalizing the input to 
the static nonlinearity in the model. It is evident that

v\ (n)  =  x(n).  (32)

The rest of the orthogonalized signals vi (n) are computed as 
i - i

vi (ri) =  x l (ri) -  9j,i in Yuj in ) , I =  2 , . . . .  L. (33)

Since the optimal minimum mean-square error is orthogonal to 
the input signals, an adaptation strategy that attempts to reduce 
e |;,(n) given by

j
e:ji(n) =  x \ n )  -  ^  (™) ■ vs(n),

l =  2 , . . . , L ,  j  =  (34)

will accomplish the orthogonalization procedure. Therefore, the 
coefficient update strategy for the Gram-Schmidt processor can 
be written as

These are the so-called Lyapunov conditions. Since our adap­
tation algorithm is of the form

(40)

where 
j tH r  (n)A(n)<f>(n)), we can transform the direct-form rep­

resentation of the IIR filter to the state space representation and 
use Theorem 1. The Hammerstein model can be written in the 
state-space form as

x s(rc +  1) =  A ( n ) x s(n) +  B ( n ) u s (n) 

y s(n) =  C  (n)xs (n) +  D (n )u a(n)

where

u s(rt) =  [z(n — 1) z(n — 2)

&i(n) - a 2(n)
1 0 
0 1l) =

0

n)-Vj (n) ,  

. . , 1 - 1  (35)

(36)

B (n) =

and

D (n) =

. 0

b\(n) b2(n) 
0 0

v L (n)]T

-a jv - i(n )
0
0

1

bM (n) w i(n) 
0

(41)
(42)

(43)

(44)
(45)

- a N (n)
0
0

0

0 0

(46)
w L (n)

0

— a\ (n) —a2(n)  
0 0

h ( n )  b2{n) ■■■ 
0 0

0

—ajy(n)
0

bm (n) wi(n)  
0 wi(n)

0
(47)

(48)

w L ( n ) 
w L(n) 

(49)
/>’. Step-Size Selection

We follow the work in [13] to derive a step-size sequence that 
guarantees stable operation of the IIR subsystem. The basis for 
the step-size derivation is the following theorem [17].

Theorem 1: The linear state equation

(37)

is uniformly exponentially stable if and only if there exists an 
N  x N  matrix sequence Q(n) that is symmetric for all n and 
such that

r/I < Q(n) < pi  (38)

A T(n)Q (n +  l)A (n ) — Q(ra) < —7I (39)

Using the results of [17] and the ideas employed in [13], we 
can show that the coefficients at times rt and rt +  1 must satisfy 
the inequality

||vec[Q(n +  1)] -  vec[Q(n)]|| < 1 (50)

where

v ec [Q (rt+ 1)] =  — [AT(n) ® A T (n) — I Jv2]_ 1vec[IJv]. (51)

In the above expressions, vec[ • ] denotes an operation where the 
columns of a matrix are stacked together to form a (column) 
vector, and ® denotes the Kronecker product. During the oper­
ation of the adaptive filter, the step sizes are selected such that it 
is the smaller of a pre-selected maximum or the maximum value
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that maintains the inequality in (50). Selection of the step size is 
done in the following manner. For a given step size during any 
iteration, we calculate the new parameter values di , construct 
vec[Q(n +  1)] using (51) and verify if the updated coefficients 
meet the condition in (50). This algorithm ensures that all the 
instantaneous poles of the system are inside the unit circle, and 
therefore it is not necessary to separately check for the location 
of the poles.

In addition, we reduce the step sizes in A(n) so that —6(3<  
H T(n)A(n)<^(n), where 6 is a small positive constant and 0 < 
(3 <  1. This guarantees preservation of the sign for the gradient 
vector, i.e., ensures that 8 +  H T(n)A (n)0(n) > 0, and that 
(A (n )R -1 (n +  1 )</>(n))/(6 +  H T (n)A(n)<j)(n))e(n) moves 
the coefficients in the correct direction, toward values that re­
duce the instantaneous squared estimation error during each it­
eration as intended by the derivations of the algorithm. For pos­
itive values of /? that is strictly less than one, it is possible to 
show convergence of the algorithm to the global minimum of 
the error surface. We now have all the equations necessary to 
implement the adaptive filter. The complete algorithm is given 
in Table I.

C. Computational Complexity

For simplifying our discussion, we assume that N , the 
number of feedback coefficients of the linear subsystem, is 
larger than or equal to M ,  the number of feedforward coef­
ficients and L, the number of coefficients of the polynomial 
subsystem. The algorithm of Table I can be implemented using 
Q(7V2-25 +  L 2N ) arithmetical operations per iteration.

There are three parts of the algorithm that require more than 
linear complexity Q ( N  +  M  +  L) for implementation. The 
Gram-Schmidt orthogonalizer requires C){L2) operations per 
iteration. The search for a step size that guarantees the stability 
of the algorithm requires the computation of the inverse matrix 
[AT(n) (8) A T (n) — 1N2 ]_1. Since this is a sparse matrix with 
no more than five nonzero entries per row, efficient algorithms 
to invert the matrix with a computational complexity that cor­
responds to O ( N 2-25) arithmetical operations are available in 
the literature when N  is sufficiently large [18]. The third con­
tribution to the computational complexity comes from the com­
putation of R ' 1(n) and updating the coefficients using the re­
sult. Fast algorithms for inversion of the autocorrelation matrix 
requiring Q ( L 2N ) arithmetical operations per iteration can be 
derived [19]. Updating the coefficients as in (31) requires an ad­
ditional O ( (N +  M  +  L) 2) operations. Under our assumption 
L < N  and M  < N,  this complexity can be compactly rep­
resented as that of 0 ( ^ 2) arithmetical operations. Our imple­
mentations entailed somewhat higher complexity since we did 
not make use of the simplifications possible for the two matrix 
inversions.

D. Stability of  the Adaptive Hammerstein Filter

We guarantee the bounded-input bounded-output (BIBO) sta­
bility of the system with the help of the following lemma [17].

Lemma 1: If the linear state equation (37) is uniformly expo­
nentially stable, and there exist finite constants eg, cc,  and cp  
such that

TABLE I
Adaptive Hammerstein Filter W ith Gram-S chmidt 
Orthogonalization of the Polynomial Subsystem 
and Variable Step Size for the Linear Subsystem

Definitions

n  ... tim e instant
Ag ... positive constant, 0 <  \ g <  1
S ... small positive constant
So ... small positive constant

... small positive constant such that 0 <  <  1 

... step size for gj?i(n)
A(n) =  d iag[ in {n )  / / jv + m + lM  ]
0{n) = [ ai(n) • • -ajv(n) b\(n) • • • 6m(n) w\(n) • -  w l {u) ] 
^  b0(n) = 1
H(n) = [ — d(n — 1) - - • — d(n — N) z(n — 1) • ■ ■ z(n — M)

v i ( n ) - - - v L (n) ]T  
x (n ) = [  x(n ) x 2(n) x 3 (n) . . .  x L (n) ]T 
v (n ) = [  v i(n )  V2(n) v${n) ••• v l( u )  ]T
Ain^q-1) = 1 + ai(n)g_1 H------h aN {n)q~N

q-1 ) -  1 +Si(n)g“ 1 H------b bM(n)q~M
(n) = [  w \(n )  W2 (n) . . .  w L (n) ]T

~ 1 0 0 . . .  0 
91 M n ) 1 0 . . .  o
91 M n ) ?2,3(n) 1 . . .  0GT (n) =

C  (n)

A  (n)

9i,L (n ) 92,l (u ) 93,l (u )

= G -1(n)

-oil (n) 
1

0

-a2(n)
0

0

-a N (n)
0

1 N x N

Initialization

rf(0), 0(0), 4(0), R _ 1(0) =  <5*1,

Main Loop

v(n)

e ji(n )

(*0
gjtl(n  + l)

e(n)
ip(n)

=  C T (n) ■ x (n)
j

= x l (n) -  ^ 2 g sj ( n )  -V s(n ) , 1 =  2 , . . . ,L ,  j  =  -  1

= (n -  1) + (1 -  Ag) v?(n)
ft.il (n)z 9j,l(n) -

 ̂ l  j  = 1, -  1 
=  d(n) — H T (n) • $(n  — 1)
— [ — d(n  — ! ) • • •  — d(n — N ) z{n  — !)■■• z (n  — M )

Y y > j( n )v i( n  - } ) ■ ■ •  Y 2 b j(n )v L (n  -  j )  ]T
j  =0 j  =0 

N

— ip(n) — (n — 1) - 4>{n — s)

- l (n  +  1} =  I  ( R - i (n )  _
A V T=x+<f> J

Verify that (A(n)} is such th a t \\vec [Q(n +  1)] — vec  [Q(n)] || <  1,
where vec[Q (n  +  1)] =  — [A T (n) ® A T (n) — 1^ ]  1 t?ec[Ijv].
Reduce elements of A (n) if H T (n )A (n )4>(n) < —Sfi.

R

$(n)

z{ri)
d(n)

=  0 (n -  1) + A (n)R  (n +  l)<t>(n)
S + i l T (n)A(n)(f>(n) 

=  w T (n) • v (n )
=  H T (n) • 9(n)

e(n)

||B(n)|| < cB , (n)|| < cc , ||D (n)|| < cD (52)
for all n, the state equation (41)-(42) is also uniformly bounded- 
input, bounded-output stable.
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The selection of the step-size sequence ensures that the ho­
mogeneous system in (37) is uniformly exponentially stable. To 
satisfy condition (52), we limit the maximum values of the en­
tries of B (n), C (n), and D (n) to some large, but finite values. 
In the experiments described later, this bound was set to 100; 
however, the parameters never reached this value. The orthogo- 
nalized signals vi{n) are computed using (33). The input signal 
x{n)  is assumed to be bounded. The update in (35) is a classical 
adaptive FIR-type equation that is known to be stable, for suffi­
ciently small step sizes fiji{n). Consequently, all of the signals 
vi(n) are bounded. The intermediate output z{n)  is calculated 
as z(n)  =  wi(n)  -vi(n) +  W2(n) -V2(n) +  * * - +  - v ^ n ) .
Because wi(n)  are bounded by finite constants and vi(n) are fi­
nite, z{n)  is also finite.

For a linear state (41)-(42) that is uniformly BIBO stable, 
there exists a finite constant 77 such that for any fixed initial time 
no and any input signal u s (n) the corresponding zero-state (i.e., 
the initial state is fixed at zero) response satisfies the bound

sup ||ys(n)|| < 77 sup ||u s(n)
n>no n>no

(53)

The adjective “uniform” emphasizes the fact that the same 77 can 
be used for all values of no and for all input signals u s (n) . Uni­
form BIBO stability thus guarantees that the input-output be­
havior of the adaptive Hammerstein filter exhibits finite gain in 
terms of the input and output suprema. Consequently, the adap­
tive filter of Table I operates in a stable manner.

III. S i m u l a t i o n  R e s u l t s

In this section, we present the results of several simulation ex­
periments conducted to evaluate the performance capabilities of 
the adaptive filter derived in Section II. All simulations involved 
the identification of an unknown Hammerstein system. In our 
first experiment, the input-output relationship of the memory- 
less nonlinearity of the unknown system was

z(n)  =  0Ax(n) — 0.3 x 2(n) +  0.2 x 3(n)

and the transfer function of the linear component was

1 +  0.8 z - 1 
”  1 -  1.2z_1 +  0.5z-2 ’

(54)

(55)

H c(z ) =  1 +  0.952:-2 (56)

The histogram and the power spectral density (PSD) of this 
non-Gaussian input are shown in Fig. 3. The adaptive filter was 
implemented with the time-varying step size of the recursive 
part to be the maximum of fi =  1.5 • 10 _ 5 or the bound suggested

The desired response signal d(n) of the adaptive filter was ob­
tained by corrupting the output of the unknown system with ad­
ditive white noise with zero mean value and variance such that 
the output signal-to-noise ratio (SNR) was 20 dB. The input 
signal x(n)  of the adaptive filter was generated by filtering a 
uniform signal with zero mean value and 0.19 variance with the 
filter

Fig. 3. Histogram and PSD of the input signal.

by the condition in (50), and the step size for the feedforward 
coefficients of the linear subsystem and the coefficients of the 
polynomial subsystem was constant and equal to /i =  1.5 ■ 10-5 . 
The step sizes for the coefficients of the orthogonalizer were 
constant and equal to 5 • 10-4 . 80 was set to 10-5 , 8 to 10-3 , Xg 
to 0.99, P to 0.9, and A to 0.95. Initial value of R -1 was a diag­
onal matrix with the values Sr  =  1 on the diagonal entries. Ini­
tial values of a 2. (n ) were set to 10. The system was initialized 
with poles and zeros of the linear subsystem at the origin, and the 
initial values of polynomial coefficients at zero. The coefficient 
bo(n) was set to 1 and was not changed throughout the simu­
lation. This ensured the uniqueness of the solution. In order to 
ensure the BIBO stability of the orthogonalizer and the adaptive 
linear filter feedforward part, we also imposed an upper bound 
on the absolute value of orthogonalizer and feedforward coeffi­
cients. Two hundred independent experiments using 15 000 data 
samples each were conducted. The results presented are average 
values over these 200 experiments. The performance of the al­
gorithm was compared with the one described in [9]. The initial 
value of the error covariance matrix P (n ) in the Kalman filter 
based algorithm uses diagonal matrix with the value 0.001 on 
the diagonal. The parameters were chosen such that the excess 
mean-square errors after 15 000 iterations of the adaptive filter 
were approximately the same for both algorithms.
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Fig. 4. Excess MSE of the two adaptive filters in the first experiment.

TABLE II
Comparison of the Performance of the Two Adaptive 

Filters in the First Experiment

Algorithm of this paper Kalman based [9]
Coeff. True Mean Var. [10-4 ] Mean Var. [10-4 ]

-1.2 -1.2018 0.6931 -1.2362 0.4406
<22 0.5 0.5012 0.3920 0.5260 0.2277
bo 1 - - - -

bi 0.8 0.7952 2.4026 0.6577 6.9609
Pi 0.4 0.4006 0.2428 0.4175 0.1804
P2 -0.3 -0.2998 0.6038 -0.3149 0.0768
PS 0.2 0.1977 0.9330 0.2063 0.0681

10

10

10

vJtjUWjhlf jCjMgHM U dud

vllr 1 !
Kalman f. based

! Wrl jW I ■ 11 ' j

: \ | Algorithm of this paper

/• noise level
5 10

NUMBER OF ITERATIONS
15

x 10

Fig. 5. Evolution of the mean-square estimation error of the two adaptive 
filters in the second experiment.

In the next set of simulations, the adaptive filter was used in 
a system identification problem where the linear component of 
the unknown system satisfied the input-output relationship

_  1 -  1.33342:“ 1 +  l .6667z~2 -  2.665z~3 +  1.9666
“  1 -  2.6z - 1 +  2.78z~2 -  1.48z~3 +  0.34z~4 '

(57)

Fig. 4 shows the evolution of the excess mean-square error 
(MSE) of both the algorithms. The results show that the algo­
rithm of this paper converged faster than the Kalman filter-based 
algorithm. Table II tabulates the statistics associated with the 
coefficients of our algorithm and the algorithm based on ex­
tended Kalman filter. Coefficients of the polynomial subsystem 
pi were obtained by conversion of the coefficients wi to the di­
rect form. Detailed derivations of the conversion equations are 
omitted here. However, we note that the relationship between 
the coefficients of the direct form filter and the orthogonal sig­
nals is linear, and therefore the transformation from one set to 
the other is straightforward [16]. The mean values of the coef­
ficients in the Table II for our algorithm were calculated as the 
mean values of the last 500 samples of the coefficients over all 
the runs. Variances of the coefficients were calculated in a sim­
ilar way. Our algorithm operates in a stable manner as predicted 
by the theoretical derivations. It also converged to the global 
minimum in all 200 runs. We can see from these results that 
both algorithms work reasonably well in this set of experiments. 
However, we will see in the next example that the algorithm of 
this paper outperforms the Kalman filter-based method when the 
underlying system is more complex. We evaluated the capabil­
ities of the algorithm at several noise levels. We have observed 
that the system performs well even in situations when SNR =
0 dB. For the parameter values that we employed in these exper­
iments, our experience is that the behavior of the adaptive filter 
is less reliable at SNRs below 0 dB.

The poles of this system are located at z \^  =  0.8 ±  j0 .2 ,z3?4 =
0.5 ±  j 0.5. The input-output relationship of the memoryless 
nonlinearity was again given by (54). The simulation condi­
tions were similar to those described for the previous simula­
tion experiment except that the input was a colored Gaussian 
signal obtained by processing a white Gaussian signal with zero 
mean value and unit variance with the linear system Hk(z)  =
1 +  0 .5z 1. Because of the larger dynamics of the linear sub­
system, this is a more difficult overall system for the adaptive 
filters to converge to. Fig. 5 shows the evolution of the MSE of 
our algorithm and the Kalman filter based algorithm [9] using
a semi-log graph. As before, the results are plotted after pro­
cessing the ensemble average of the squared error over the 200 
runs. The coefficients of the unknown system, mean values of 
the adaptive filter coefficients, and their variances after conver­
gence are shown in Table III. Again, our algorithm operated in 
a stable manner as predicted by the theoretical derivations. The 
experiments resulted in convergence to the global minimum in 
all 200 runs for our algorithm, whereas the extended Kalman 
filter based algorithm never converged within 150 000 iterations. 
This may be because of slow adaptation of the extended Kalman 
based filter. The evolution of the mean values of the step size 
for the denominator coefficients over the 200 runs is shown in 
Fig. 6. The evolution of the coefficients of the linear subsystem, 
as well as the evolution of the coefficients of the nonlinear sub­
system are shown in Fig. 7. We can observe that the coeffi­
cients b j ( n )  and w i ( n )  converge at about the same rate, whereas
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TABLE III
Statistics of The Coefficients of the Adaptive Filter in the 

Second Experiment With Ideal Coefficients

Coefficient True value Mean Variance [10 4]
ai -2.6 -2.6005 0.0716
a 2 2.78 2.7810 0.4109
as -1.48 -1.4807 0.3301
CL4 0.34 0.3402 0.0363
bo 1 - -
bi -1.3334 -1.3333 1.7014
b2 1.6667 1.6643 5.9578
bs -2.6665 -2.6626 5.8153
b4 1.9666 1.9646 2.1292
Pi 0.4 0.3994 0.3344
P2 -0.3 -0.2998 0.1632
P3 0.2 0.1999 0.0210

Fig. 7. Evolution of the mean values of the coefficients of the adaptive filter 
in the second experiment.

Fig. 6 . Evolution of the mean values of the step size for the adaptation of the 
denominator coefficients of the adaptive filter in the second experiment.

the coefficients di(n) converged somewhat faster in this exper­
iment. These results indicate that step-size selection using the 
condition in (50) results in stable operation of the linear HR sec­
tion of the adaptive filter. The initial values of step sizes are (usu­
ally) small since the initial estimation error is large. Combined 
with the large error, the initial values of the step size produced 
the largest changes possible that still maintained the exponential 
stability of the (linear) subsystem.

The differences between the adaptive filter with orthogonal- 
ization of the input signal to the polynomial subsystem is accen­
tuated in situations where the polynomial subsystem requires 
larger model orders. This is because the eigenvalue spread of 
the autocorrelation matrix of the input vector to the polynomial 
subsystem is extremely high for large model orders. To demon­
strate the differences between adaptive filters with and without 
the orthogonalizer, we consider a plant composed of a polyno­
mial

z(n) =  1A (n) +  0.7 x 2(n) +  1.2 x 3(n)
+  0.9x4(n) +  1.2x5(n) (58)

Fig. 8. MSE comparing the orthogonalization case with the case where 
orthogonalization was not performed.

and a linear component whose transfer function is given by (55). 
Fig. 8 shows the evolution of the sliding window averaged ex­
cess MSE of the two filters with a window length of 50 samples. 
The time averaging was done to reduce the variability of the two 
curves so that the differences in performance can be better ob­
served. Comparing the results of the orthogonal case with the 
nonorthogonal case, we can see that the convergence speed of 
the two methods is comparable in this example. However, the al­
gorithm without orthogonalization exhibits higher excess MSE 
indicating that the algorithm equipped with the orthogonalizer 
performs better than the algorithm that is not so equipped. Both 
algorithms converged to the global minimum in all 200 experi­
ments.

We have evaluated the algorithm of this paper in a large 
number of synthetic scenarios, including in situations that 
involve model mismatch, random (but stable) initial values of 
the adaptive filter and time-varying operating environments. 
The method provided good performance in terms of stable 
operation and global convergence in each case.
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This work presented the derivation and performance evalua­
tion of an adaptive nonlinear filter employing the Hammerstein 
system model. The model, consisting of a static nonlinearity 
followed by a recursive linear system, is useful in many appli­
cations including in the modeling of communications systems, 
biological systems, and chemical and biological detectors. Our 
system employs a step-size sequence that guarantees stable op­
eration of the adaptive filter.

The convergence behavior of this algorithm is studied in a sto­
chastic framework and in a nonstationary environment in [20]. 
Using the martingale limit theorem, it is shown there, that under 
the conditions of the analysis the long-term time average of the 
squared estimation error of the adaptive filter can be made arbi­
trarily close to its minimum possible value when the underlying 
system is time-invariant. The ability to converge to the the global 
minimum as well as its stability properties make the adaptive 
filter presented in this paper an attractive candidate in applica­
tions in which Hammerstein models are appropriate.
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