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Abstract—Most direct volume renderings produced today employ one-dimensional transfer functions which assign color and opacity 
to the volume based solely on the single scalar quantity which comprises the data set. Though they have not received widespread 
attention, multidimensional transfer functions are a very effective way to extract materials and their boundaries for both scalar and 
multivariate data. However, identifying good transfer functions is difficult enough in one dimension, let alone two or three dimensions.
This paper demonstrates an important class of three-dimensional transfer functions for scalar data, and describes the application of 
multidimensional transfer functions to multivariate data. We present a set of direct manipulation widgets that make specifying such 
transfer functions intuitive and convenient. We also describe how to use modern graphics hardware to both interactively render with 
multidimensional transfer functions and to provide interactive shadows for volumes. The transfer functions, widgets, and hardware 
combine to form a powerful system for interactive volume exploration.
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Index Terms—Volume visualization, direct volume rendering, multidimensional transfer functions, direct manipulation widgets, 
graphics hardware.

1 In tr o d u c tio n

D irect volume rendering has proven to be an effective 
and flexible visualization method for three-dimen­

sional (3D) scalar fields. Transfer functions are fundamental 
to direct volume rendering because their role is essentially 
to make the data visible: By assigning optical properties like 
color and opacity to the voxel data, the volume can be 
rendered with traditional computer graphics methods. 
Good transfer functions reveal the important structures in 
the data without obscuring them with unimportant regions. 
To date, transfer functions have generally been limited to 
one-dimensional (ID) domains, meaning that the ID space 
of scalar data value has been the only variable to which 
opacity and color are assigned. One aspect of direct volume 
rendering which has received little attention is the use of 
multidimensional transfer functions.

Often, there are features of interest in volume data that 
are difficult to extract and visualize with ID transfer 
functions. Many medical data sets created from CT or 
MRI scans contain a complex combination of boundaries 
between multiple materials. This situation is problematic 
for ID transfer functions because of the potential for 
overlap between the data value intervals spanned by the 
different boundaries. When one data value is associated 
with multiple boundaries, a ID transfer function is unable 
to render them in isolation. Another benefit of higher 
dimensional transfer functions is their ability to portray
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subtle variations in properties of a single boundary, such as 
its thickness. When working with multivariate data, a 
similar difficulty arises with features that can be identified 
only by their unique combination of multiple data values. A 
ID transfer function is simply not capable of capturing this 
relationship.

Unfortunately, using multidimensional transfer func­
tions in volume rendering is complicated. Even when the 
transfer function is only ID, finding an appropriate transfer 
function is generally accomplished by trial and error. This is 
one of the main challenges in making direct volume 
rendering an effective visualization tool. Adding dimen­
sions to the transfer function domain only compounds the 
problem. While this is an ongoing research area, many of 
the proposed methods for transfer function generation and 
manipulation are not easily extended to higher dimensional 
transfer functions. In addition, fast volume rendering 
algorithms that assume the transfer function can be 
implemented as a linear lookup table (LUT) can be difficult 
to adapt to multidimensional transfer functions due to the 
linear interpolation imposed on such LUTs.

A previous paper [19] demonstrated the importance and 
power of multidimensional transfer functions. This paper 
extends that work with a more detailed exposition of the 
multidimensional transfer function concept, a generaliza­
tion of multidimensional transfer functions for both scalar 
and multivariate data, as well as a novel technique for the 
interactive generation of volumetric shadows. To resolve 
the potential complexities in a user interface for multi­
dimensional transfer functions, we introduce a set of direct 
manipulation widgets which make finding and experiment­
ing with transfer functions an intuitive, efficient, and 
informative process. In order to make this process genu­
inely interactive, we exploit the fast rendering capabilities

1077-2626/02/S17.00 2002 IEEE
Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 23:20:03 UTC from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276284248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hansenl@cs.utah.edu
mailto:tvcg@computer.org


KNISS ET AL.: MULTIDIMENSIONAL TRANSFER FUNCTIONS FOR INTERACTIVE VOLUME RENDERING 271

of modern graphics hardware, especially 3D texture 
memory and pixel texturing operations. Together, the 
w idgets and the hardw are form the basis for new 
interaction modes which can guide users toward transfer 
function settings appropriate for their visualization and 
data exploration interests.

2 P r e v io u s  W o r k

2.1 Transfer Functions
Even though volume rendering as a visualization tool is 
more than 10  years old, only recently has research focused 
on making the space of transfer functions easier to explore. 
He et al. [12] generated transfer functions with genetic 
algorithms driven either by user selection of thumbnail 
renderings or some objective image fitness function. The 
Design Gallery [27] creates an intuitive interface to the 
entire space of all possible transfer functions based on 
automated analysis and layout of rendered images. A more 
data-centric approach is the Contour Spectrum [1], which 
visually summarizes the space of isosurfaces in terms of 
metrics like surface area and mean gradient magnitude, 
thereby guiding the choice of isovalue for isosurfacing and 
also providing information useful for transfer function 
generation. Another recent paper [21] presents a novel 
transfer function interface in which small thumbnail 
renderings are arranged according to their relationship 
with the spaces of data values, color, and opacity.

The application of these methods is limited to the 
generation of ID  transfer functions, even though 2D 
transfer functions were introduced by Levoy in 1988 [26]. 
Levoy introduced two styles of transfer functions, both two­
dimensional and both using gradient magnitude for the 
second dimension. One transfer function was intended for 
the display of interfaces between materials, the other for the 
display of isovalue contours in more smoothly varying data. 
The previous work most directly related to our approach for 
visualizing scalar data facilitates the semi-automatic gen­
eration of both ID and 2D transfer functions [17], [33]. 
Using principles of computer vision edge detection, the 
semi-automatic method strives to isolate those portions of 
the transfer function domain which most reliably correlate 
with the middle of material interface boundaries. Other 
work closely related to our approach for visualizing 
multivariate data uses a 2D transfer function to visualize 
data derived from multiple MRI pulse sequences [24].

Scalar volume rendering research that uses multidimen­
sional transfer functions is relatively scarce. One paper 
discusses the use of transfer functions similar to Levoy's as 
part of visualization in the context of wavelet volume 
representation [31]. More recently, the VolumePro graphics 
board uses a 12-bit ID  lookup table for the transfer function, 
but also allows opacity modulation by gradient magnitude, 
effectively implementing a separable 2D transfer function 
[32]. Other work involving multidimensional transfer 
functions uses various types of second derivatives in order 
to distinguish features in the volume according to their 
shape and curvature characteristics [15], [38].

Designing colormaps for displaying nonvolumetric data 
is a task similar to finding transfer functions. Previous work

has developed strategies and guidelines for colormap 
creation, based on visualization goals, types of data, 
perceptual considerations, and user studies [3], [36], [40].

2.2 Direct Manipulation Widgets
Direct manipulation widgets are geometric objects rendered 
with a visualization and are designed to provide the user 
with a 3D interface [5], [14], [35], [39], [42]. For example, a 
frame widget can be used to select a 2D plane within a 
volume. Widgets are typically rendered from basic geo­
metric primitives such as spheres, cylinders, and cones. 
Widget construction is often guided by a constraint system 
which binds elements of a widget to one another. Each 
subpart of a widget represents some functionality of the 
widget or a parameter to which the user has access.

2.3 Hardware Volume Rendering
Many volume rendering techniques based on graphics 
hardware utilize texture memory to store a 3D data set. The 
data set is then sampled, classified, rendered to proxy 
geometry, and composited. Classification typically occurs in 
hardware as a ID  table lookup.

Two-dimensional texture-based techniques slice along 
the major axes of the data and take advantage of hardware 
bilinear interpolation within the slice [4], These methods 
require three copies of the volume to reside in texture 
memory, one per axis, and they often suffer from artifacts 
caused by undersampling along the slice axis. Trilinear 
interpolation can be attained using 2D textures with 
specialized hardware extensions available on some com­
modity graphics cards [6 ]. This technique allows inter­
mediate slices along the slice axis to be computed in 
hardware. These hardware extensions also permit diffuse 
shaded volumes to be rendered at interactive frame rates.

Three-dimensional texture-based techniques typically 
sample view-aligned slices through the volume, leveraging 
hardware trilinear interpolation [11]. Other proxy geome­
try, such as spherical shells, may be used with 3D texture 
methods to eliminate artifacts caused by perspective 
projection [25]. The pixel texture OpenGL extension has 
been used with 3D texture techniques to encode both data 
value and a diffuse illumination parameter which allows 
shading and classification to occur in the same look-up [29]. 
Engel et al. showed how to significantly reduce the number 
of slices needed to adequately sample a scalar volume while 
maintaining a high quality rendering, using a mathematical 
technique of preintegration and hardware extensions such 
as dependent textures [1 0].

Another form of volume rendering graphics hardware is 
the Cube-4 architecture [34] and the subsequent VolumePro 
PCI graphics board [32]. The VolumePro graphics board 
implements ray casting combined with the shear warp 
factorization for volume rendering [23]. It features trilinear 
interpolation with supersampling, gradient estimation, 
shaded volumes, and provides interactive frame rates for 
scalar volumes with sizes up to 512i.

3 M u l t id im e n s io n a l  T r a n s f e r  F u n c tio n s

Transfer function specification is arguably the most 
important task in volume visualization. While the transfer
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function's role is simply to assign optical properties such as 
opacity and color to the data being visualized, the value of 
the resulting visualization will be largely dependent on 
how well these optical properties capture features of 
interest. Specifying a good transfer function can be a 
difficult and tedious task for several reasons. First, it is 
difficult to uniquely identify features of interest in the 
transfer function domain. Even though a feature of interest 
may be easily identifiable in the spatial domain, the range of 
data values that characterize the feature may be difficult to 
isolate in the transfer function domain due to the fact that 
other, uninteresting, regions may contain the same range of 
data values. Second, transfer functions can have an 
enormous number of degrees of freedom. Even simple 
ID transfer functions using linear ramps require two 
degrees of freedom per control point. Third, typical user 
interfaces do not guide the user in setting these control 
points based on data set specific information. Without this 
type of information, the user must rely on trial and error. 
This kind of interaction can be especially frustrating since 
small changes to the transfer function can result in 
surprisingly large and unintuitive changes to the volume 
rendering.

Rather than classifying a sample based on a single scalar 
value, multidimensional transfer functions allow a sample 
to be classified based on a combination of values. Multiple 
data values tend to increase the probability that a feature 
can be uniquely isolated in the transfer function domain, 
effectively providing a larger vocabulary for expressing the 
differences between structures in the data set. These values 
are the axes of a multidimensional transfer function. 
Adding dimensions to the transfer function, however, 
greatly increases the degrees of freedom necessary for 
specifying a transfer function and the need for data set 
specific guidance.

In the following sections, we demonstrate the application 
of multidimensional transfer functions to two distinct 
classes of data: scalar data and multivariate data. The scalar 
data application is focused on locating surface boundaries 
in a scalar volume. We motivate and describe the axes of the 
multidimensional transfer function for this type data. We 
then describe the use of multidimensional transfer functions 
for multivariate data. We use two examples, color volumes 
and meteorological simulations, to demonstrate the effec­
tiveness of such transfer functions.

3.1 Scalar Data
For scalar data, the gradient is a first derivative measure. As 
a vector, it describes the direction of greatest change. The 
normalized gradient is often used as the normal for surface- 
based volume shading. The gradient magnitude is a scalar 
quantity which describes the local rate of change in the 
scalar field. For notational convenience, we will use / '  to 
indicate the magnitude of the gradient of / ,  where /  is the 
scalar function representing the data:

/ H i v / H .  (i)

This value is useful as an axis of the transfer function since 
it discriminates between homogeneous regions (low gra­
dient magnitudes) and regions of change (high gradient
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magnitudes). This effect can be seen in Fig. 1. Fig. la shows 
a ID histogram based on data value and identifies the three 
basic materials in the Chapel Hill CT Head; air (A), soft 
tissue (B), and bone (C). Fig. lb  shows a log-scale joint 
histogram of data value versus gradient magnitude. Since 
materials are relatively homogeneous, their gradient mag­
nitudes are low. They can be seen as the circular regions at 
the bottom of the histogram. The boundaries between the 
materials are shown as the arches; air and soft tissue 
boundary (D), soft tissue and bone boundary (E), and air 
and bone boundary (F). Each of these materials and 
boundaries can be isolated using a 2D transfer function 
based on data value and gradient magnitude. Fig. lc  shows 
a volume rendering with the corresponding features 
labeled. The air/bone boundary, (F) in Fig. 1 is a good 
example of a surface which cannot be isolated using a 
simple ID transfer function. This type of boundary appears 
in CT data sets as the sinuses and mastoid cells. Fig. 2 
compares attempts at emphasizing the frontal and max­
illary sinuses of the Visible Male CT using a ID transfer 
function and a 2D transfer function.

Often, the arches that define material boundaries in a 
2D transfer function overlap. In some cases this overlap 
prevents a material from being properly isolated in the 
transfer function. This effect can be seen in the circled 
region of the 2D data value/gradient magnitude joint 
histogram of the human tooth CT in Fig. 3a. The back­
ground/ dentin boundary (F) shares the same ranges of data 
value and gradient magnitude as portions of the p u lp / 
dentin (E) and the background/enamel (H) boundaries. 
When the background/dentin boundary (F) is emphasized 
in a 2D transfer function, the boundaries (E) and (H) are 
erroneously colored in the volume rendering, as seen in Fig. 
3c. A second derivative measure enables a more precise 
disambiguation of complex boundary configurations such 
as this. Some edge detection algorithms (such as Marr- 
Hildreth [28]) locate the middle of an edge by detecting a 
zero-crossing in a second derivative measure, such as the 
Laplacian. We compute a more accurate but computation­
ally expensive measure, the second directional derivative, 
along the gradient direction, which involves the Hessian 
(H), a matrix of second partial derivatives. We will use /"  to 
indicate this second derivative.

/"  =  ^ - t(V /)TH ./V /. (2)

More details on these measurements can be found in 
previous work on semi-automatic transfer function genera­
tion [16], [17], Fig. 3b shows a joint histogram of data value 
verses this second directional derivative. Notice that the 
boundaries (E), (F), and (G) no longer overlap. By reducing 
the opacity assigned to nonzero second derivative values, 
we can render the background/dentin boundary in isola­
tion, as seen in Fig. 3d. The relationship between data value, 
gradient magnitude, and the second directional derivative 
is made clear in Fig. 4. Fig. 4a shows the behavior of these 
values along a line through an idealized boundary between 
two homogeneous materials (inset). Notice that, at the 
center of the boundary, the gradient magnitude is high and 
the second derivative is zero. Fig. 4b shows the behavior of
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Fig. 1. Material and boundary identification of the Chapel Hill CT Head 
with data value alone (a) versus data value and gradient magnitude (/'), 
seen in (b). The basic materials captured by CT, air (A), soft tissue (B), 
and bone (C) can be identified using a 1D transfer function as seen in 
(a). One-dimensional transfer functions, however, cannot capture the 
complex combinations of material boundaries; air and soft tissue 
boundary (D), soft tissue and bone boundary (E), and air and bone 
boundary (F) as seen in (b) and (c). (a) A 1D histogram. The black 
region represents the number of data value occurrences on a linear 
scale, the gray is on a log scale. The colored regions (A, B, C) identify 
basic materials, (b) A log-scale 2D joint histogram. The lower image 
shows the location of materials (A, B, C), and material boundaries (D, E, 
F). (c) A volume rendering showing all of the materials and boundaries 
identified above, except air (A), using a 2D transfer function.
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(a) (b)

Fig. 2. The frontal and maxillary sinuses of the Visible Male CT. While a 
1D transfer function can show the sinuses along with the skin, it cannot 
capture them in isolation. Only a higher dimensional transfer function, in 
this case, a 2D transfer function using data value and gradient 
magnitude, can uniquely classify them, (a) 1D transfer function, (b) 2D 
transfer function.

the gradient magnitude and second derivative as a function 
of data value. This shows the curves as they appear in a 
joint histogram or a transfer function.

3.2 M ultivariate Data
Multivariate data contains, at each sample point, multiple 
scalar values that represent different simulated or measured 
quantities. Multivariate data can come from numerical 
simulations which calculate a list of quantities at each 
timestep or from medical scanning modalities such as MRI, 
which can measure a variety of tissue characteristics or 
from a combination of different scanning modalities, such 
as MRI, CT, and PET. Multidimensional transfer functions 
are an obvious choice for volume visualization of multi­
variate data since we can assign different data values to the 
different axes of the transfer function. It is often the case 
that a feature of interest in these data sets cannot be 
properly classified using any single variable by itself. In 
addition, we can compute a kind of first derivative in the 
multivariate data in order to create more information about 
local structure. As with scalar data, the use of a first 
derivative measure as one axis of the multidimensional 
transfer function can increase the specificity with which we 
can isolate and visualize different features in the data.

One example of data that benefits from multidimen­
sional transfer functions is volumetric color data. A number 
of volumetric color data sets are available, such as the 
Visible Human Project's RGB data. The process of acquiring 
color data by cryosection is becoming common for the 
investigation of anatomy and histology. In these data sets, 
the differences in materials are expressed by their unique 
spectral signature. A multidimensional transfer function is a
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Fig. 3. Material and boundary identification of the human tooth CT with 
data value and gradient magnitude (/'), seen in (a), and data value and 
second derivative (/"), seen in (b). The background/dentin boundary (F) 
cannot be adequately captured with data value and gradient magnitude 
alone, (c) shows the results of a 2D transfer function designed to show 
only the background/detin (F) and dentin/enamel boundaries (G). The 
background/enamel (H) and dentin/pulp (E) boundaries are erroneously 
colored. Adding the second derivative as a third axis to the transfer 
function disambiguates the boundaries, (d) shows the results of a 3D 
transfer function that gives lower opacity to nonzero second derivative 
values.

natural choice for visualizing this type of data. Opacity can 
be assigned to different positions in the 3D RGB color space. 
Fig. 5a shows a joint histogram of the RGB color data for the 
Visible Male; regions of this space that correspond to 
different tissues are identified. Regions (A) and (B) 
correspond to the fatty tissues of the brain, white and gray 
matter, as seen in Fig. 5b. In this visualization, the transition 
between white and gray matter is intentionally left out to 
better emphasize these materials and to demonstrate the 
expressivity of the multidimensional transfer function. 
Fig. 5c shows a visualization of the color values that 
represent the muscle structure and connective tissues (C) of 
the head and neck with the skin surface (D) given a small

Fig. 4. The behavior of primary data value (./), gradient magnitude (/'), 
and the second directional derivative (./") as a function of position (a) 
and as a function of data value (b).

amount of opacity for context. In both of these figures, a 
slice of the original data is mapped to the surface of the 
clipping plane for reference. Fig. 6 shows a visualization of 
the kidney from the Visible Male RGB data.

Our choice of RGB for the transfer function axes is rather 
arbitrary; it is simply the most direct use of the color data. 
Other natural choices for color representation are the HSV 
or HLS spaces, or a CIE colorimetric space, if calibration 
data is available. Any color space is fine as long as it is 
possible to convert to RGB for display. It is important to 
note, however, that materials which are indistinguishable in 
the RGB color space will also be indistinguishable in any 
other color space. The choice of color space representation 
for the transfer function should be made on the basis of ease 
of use. Some color spaces, such as HSV, are better geared for 
human navigation. Our experience, however, has shown  
that tissue colors in cryosection are sometimes not what we 
expect. This can be seen in Fig. 6, where the color in the 
renal vein (E) is essentially black, rather than red as we 
might expect blood to be. For this reason, our exploration of 
this data set has been largely guided by probing and dual­
domain interaction, which are described in the next section. 
We have also found it impractical to manipulate the transfer 
function in the full 3D space that it defines. Instead, we only 
manipulate the transfer function using two axes at a time. 
The placement of classified regions is very similar to that 
shown in Fig. 5a, where each classified region is repre­
sented as a projection onto two of the transfer function axes.

The kind of first derivative that we compute in multi­
variate data is based on previous work in color image 
segmentation [8], [37], [7], While the gradient magnitude in 
scalar data represents the magnitude of local change at a 
point, an analogous first derivative measure in multivariate 
data captures the total amount of local change, across all the 
data components. This derivative has proven useful in color 
image segmentation because it allows a generalization of 
gradient-based edge detection. In our system, we use this 
first derivative measure as one axis in the multidimensional 
transfer function in order to isolate and visualize different 
regions of a multivariate volume according to the amount of 
local change, analogous to our use of gradient magnitude 
for scalar data.

If we represent the data set as a multivariate function 
f (x,y, z)  : IR3 IR'" so that

f  (x, % z ) =  (/, (;r, i/, z) , f 2 (x, % fm(x,y,  z)),
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Fig. 6. A kidney from the Visible Male RGB data set. The renal vein is 
labeled (E). A clipping plane reveals internal structure (right).

then the derivative D f is a matrix of first partial derivatives:

■

D f

<2h <2h ilh
dx ‘dy dz
i  I  i
()x By dz

<1L,
dx dy

UL,ik .

By multiplying D f with its transpose, we can form a 
3 x 3 tensor G which captures the directional dependence 
of total change:

(D f ) rDf. (3)

In the context of color edge detection [8], [37], [7], this 
matrix (specifically, its two-dimensional analog) is used as 
the basis of a quadratic function of direction n, which Cumani 
et al. [7] term the squared local contrast in direction n:

S(n) n Gn.

Fig. 5. The Visible Male RGB (color) data. The opacity is set using a 3D 
transfer function, color is taken directly from the data. The histogram (a) 
is visualized as projections on the primary planes of the RGB color 
space, (a) Histograms of the Visible Male RGB data set. (b) The white 
(A) and gray (B) matter of the brain, (c) The muscle and connective 
tissues (C) of the head and neck, showing skin (D) for reference.

5(n) can be analyzed by finding the principal eigenvector 
(and associated eigenvalue) of G to determine the direction 
n of greatest local contrast, or fastest change, and the 
magnitude of that change. Our experience, however, has 
been that, in the context of multidimensional transfer 
functions, it is sufficient (and perhaps preferable) to simply 
take the L2 norm of G, ||G||, which is the square root of the 
sum of the squares of the individual matrix components. As 
the L2 norm is invariant with respect to rotation, this is the 
same as the L2 norm of the three eigenvalues of G, 
motivating our use of ||G|| as a directionally independent 
(and rotationally invariant) measure of local change. Other 
work on volume rendering of color data has used a 
nonrotationally invariant measure of G [9]. Since it is 
sometimes the case that the dynamic range of the individual 
channels (/,) differ, we normalize the ranges of each 
channel's data value to be between zero and one. This 
allows each channel to have an equal contribution in the 
derivative calculation.

Meteorological simulations are a good example of data 
sets with features that can only be identified using a 
combination of data values [18], and which additionally 
benefit from using ||G|| as an axis in the multidimensional 
transfer function. Air masses, for instance, are a phenom­
enon described primarily by differences in both tempera­
ture and humidity. The interfaces of these air masses, or

Authorized licensed use limited to: The University of Utah. Downloaded on June 30,2010 at 23:20:03 UTC from IEEE Xplore. Restrictions apply.



276 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 8, NO. 3, JULY-SEPTEMBER 2002

fronts, are responsible for the formation of mid-latitude 
storms. In particular, cold fronts can produce severe weather 
including showers, thunderstorms, hail, high winds, and 
tornados. Naturally, the precise identification of these fronts 
are of interest to meteorologists. Fig. 7 contains the results 
from a numerical meteorological simulation that uses a 
forcing function from measured data. Fig. 7a is a surface map 
of the simulation domain for reference. Fig. 7b shows the 
results of an expert frontal analysis using a technique which 
overlays slices through different scalar values, ( f  \, ./•>, etc.), of 
the data set, similar to those shown in Fig. 7c and Fig. 7d. This 
type of analysis is difficult because the expert must create a 
mental image of frontal behavior based on these scalar 
visualizations. The task is greatly simplified by visualizing 
the data based on its unique combination of data values, in 
thiscase,temperatureand humidity. The frontal regions were 
identified byprobingin thespatial domain, seen as the dotted 
line in Fig. 7f and visualizing the data values in the transfer 
function domain, seen in Fig. 7e. While the frontal region is 
identified as (A) in Fig. 7e, the visualization is clearer when 
we show the regions which correspond to the air masses that 
meet at these fronts, identified as (B) and (C) in Fig. 7e and 
Fig. 7f. The rendering on the left in Fig. 7f shows the air 
masses; the image on the right uses a similar transfer function, 
but excludes regions with low ||G|| values. Notice that the 
interfaces, or frontal regions, of these air masses are 
emphasized.

4 In te r a c t io n  a n d  T o o ls

While adding dimensions to the transfer function enhances 
our ability to isolate features of interest in a data set, it tends 
to make the already unintuitive space of the transfer 
function even more difficult to navigate. This difficulty 
can be considered in terms of a conceptual gap between the 
spatial and transfer function domains. The spatial domain is 
the familiar 3D space for geometry and the volume data 
being rendered. The transfer function domain, however, is 
more abstract. Its dimensions are not spatial (i.e., the ranges 
of data values) and the quantities at each location are not 
scalar (i.e., opacity and three colors). It can be very difficult 
to determine the regions of the transfer function that 
correspond to features of interest, especially when a region 
is very small. Thus, to close this conceptual gap, we 
developed new interaction techniques, which permit inter­
action in both domains simultaneously and a suite of direct 
manipulation widgets which provide the tools for such 
interactions. Fig. 8  shows the various direct manipulation 
widgets as they appear in the system.

In a typical session with our system, the user creates a 
transfer function using a natural process of exploration, 
specification, and refinement. Initially, the user is presented 
with a volume rendering using a predetermined transfer 
function that is likely to bring out some features of interest. 
This can originate with an automated transfer function 
generation tool [16] or it could be the default transfer 
function described later in Section 6 . The user would then 
begin exploring the data set.

Exploration is the process by which a user familiarizes him 
or herself with the data set. A clipping plane can be moved 
through the volume to reveal internal structures. A slice of the

Fig. 7. Frontal zones of a numerical weather simulation, (a) shows a 
reference map of the simulation domain, (b) shows the results of an 
expert analysis using scalar data visualizations similar to (c) and (d). (c) 
temperature and (d) humidity are slices through the data set with a 
spectral color map. (e) shows a 2D log-scale joint histogram of 
temperature versus humidity. Region (A) shows the ranges of these 
data values that represent a mid-latitude front, (B) identifies the warm air 
mass, (C) identifies the cold air mass, (f) shows a volume rendering 
using a 3D transfer function which emphasizes regions (B) and (C). ||G|| 
from (3) is used as the third axis of the transfer function for the rendering 
on the right to emphasize the portions of the warm (red) and cold (blue) 
air masses near the front. The dotted line shows a path through the data 
set, the values along this line are shown in (e).

original data can be mapped to the clipping plane, permitting 
a close inspection of the entire range of data values. Sample 
positions are probed in the spatial domain and their values,
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Fig. 8. The direct manipulation widgets.

along with values in a neighborhood around that point, are 
visualized in the transfer function domain. This feedback 
allows the user to identify the regions of the transfer 
function that correspond to potential features of interest, 
made visible by the default transfer function or the sliced 
data. Once these regions have been identified, the user can 
then begin specifying a custom transfer function.

During the specification stage, the user creates a rough 
draft of the desired transfer function. While this can be 
accomplished by manually adding regions to the transfer 
function, a simpler method adds opacity to the regions in 
the transfer function at and around locations queried in the 
spatial domain. That is, the system can track, with a small 
region of opacity in the transfer function domain, the data 
values at the user-selected locations while continually 
updating the volume rendering. This visualizes, in the 
spatial domain, all other voxels with similar transfer 
function values. If the user decides that an important 
feature is captured by the current transfer function, he or 
she can add that region into the transfer function and 
continue querying and investigating the volume.

Once these regions have been identified, the user can 
refine them by manipulating control points in the transfer 
function domain to better visualize features of interest. An 
important feature of our system is the ability to manipulate 
portions of the transfer function as discrete entities. This 
permits the modification of regions corresponding to a 
particular feature without affecting other classified regions.

Finally, this is an iterative process. A user continues the 
exploration, specification, and refinement steps until they 
are satisfied that all features of interest are made visible. In

the remainder of this section, we will introduce the 
interaction modalities used in the exploration and specifica­
tion stages and briefly describe the individual direct 
manipulation widgets.

4.1 Probing and Dual-Domain Interaction
The concept of probing is simple: The user points at a 
location in the spatial domain and visualizes the values at 
that point in transfer function domain. We have found this 
feedback to be essential for making the connection between 
features seen in the spatial domain and the ranges of values 
that identify them in the transfer function domain. Creating 
the best transfer function for visualizing a feature of interest 
is only possible with an understanding of the behavior of 
data values at and around that feature. This is especially 
true for multidimensional transfer functions where a 
feature is described by a complex combination of data 
values. The value of this data set-specific guidance can be 
further enhanced by automatically setting the transfer 
function based on these queried values.

In a traditional volume rendering system, setting the 
transfer function involves moving the control points (in a 
sequence of linear ramps defining color and opacity) and 
then observing the resulting rendered image. That is, 
interaction in the transfer function domain is guided by 
careful observation of changes in the spatial domain. We 
prefer a reversal of this process in which the transfer 
function is set by direct interaction in the spatial domain, 
with observation of the transfer function domain. Further­
more, by allowing interaction to happen in both domains 
simultaneously, the conceptual gap between them is 
significantly lessened, effectively simplifying the compli­
cated task of specifying a m ultidimensional transfer 
function to pointing at a feature of interest. We use the 
term "dual-domain interaction" to describe this approach to 
transfer function exploration and generation.

The top of Fig. 9 illustrates the specific steps of dual­
domain interaction. When a position inside the volume is 
queried by the user with the data probe widget (a), the 
values associated with that position (multivariate values or 
the data value, first and second derivative) are graphically 
represented in the transfer function widget (b). Then, a 
small region of high opacity (c) is temporarily added to the 
transfer function at the data values determined by the probe 
location. The user has now set a multidimensional transfer 
function simply by positioning a data probe within the 
volume. The resulting rendering (d) depicts (in the spatial 
domain) all the other locations in the volume which share 
values (in the transfer function domain) with those at the 
data probe tip. If the features rendered are of interest, the 
user can copy the temporary transfer function to the 
permanent one (e) by, for instance, tapping the keyboard 
space bar with the free hand. As features of interest are 
discovered, they can be added to the transfer function 
quickly and easily with this type of two-handed interaction. 
Alternately, the probe feedback can be used to manually set 
other types of classification widgets (f), which are described 
later. The outcome of dual-domain interaction is an effective 
multidimensional transfer function built up over the course 
of data exploration. The widget components which parti­
cipated in this process can be seen in the bottom of Fig. 9,
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Fig. 9. Dual-domain interaction.

which shows how dual-domain interaction can help volume 
render the CT tooth data set. The remainder of this section 
describes the individual widgets and provides additional 
details about dual-domain interaction.

4.2 Data Probe Widget
The data probe widget is responsible for reporting its tip's 
position in volume space and its slider subwidget's value. 
Its pencil-like shape is designed to give the user the ability 
to point at a feature in the volume being rendered. The 
other end of the widget orients the widget about its tip. 
When the volume rendering's position or orientation is 
modified, the data probe widget's tip tracks its point in 
volume space. A natural extension is to link the data probe 
w idget to a haptic  device, such as the SensAble 
PHANTOM, which can provide a direct 3D location and 
orientation [30].

4.3 Clipping Plane Widget
The clipping plane is responsible for reporting its orienta­
tion and position to the volume renderer, which handles the 
actual clipping when it draws the volume. In addition to 
clipping, the volume widget will also map a slice of the data 
to the arbitrary plane defined by the clip widget and blend 
it with the volume by a constant opacity value determined 
by the clip widget's slider. It is also responsible for 
reporting the spatial position of a mouse click on its 
clipping surface. This provides an additional means of 
querying positions within the volume, distinct from the 3D 
data probe. The balls at the corners of the clipping plane 
widget are used to modify its orientation and the bars on 
the edges are used to modify its position.

4.4 Transfer Function Widget
The main role of the transfer function widget is to present a 
graphical representation of the transfer function domain in 
which feedback from querying the volume (with the data 
probe or clipping plane) is displayed and in which the 
transfer function itself can be set and altered. The balls at 
the corners of the transfer function widget are used to resize 
it, as with a desktop window, and the bars on the edges are 
used to translate its position. The inner plane of the frame is 
a polygon texture-mapped with the lookup table containing 
the transfer function. A joint histogram of data, seen with 
the images in Section 3, can also be blended with the 
transfer function to provide valuable information about the 
behavior and relationship of data values in the transfer 
function domain.

The data values at the position queried in the volume 
(either via the data probe or clipping plane widgets) are 
represented with a small ball in the transfer function 
widget. In addition to the precise location queried, the eight 
data sample points at the corners of the voxel containing the 
query location are also represented by balls in the transfer 
function domain and are connected together with edges 
that reflect the connectivity of the voxel corners in the 
spatial domain. By "reprojecting" a voxel from the spatial 
domain to a simple graphical representation in the transfer 
function domain, the user can learn how the transfer 
function variables (data values at each sample point) are 
changing near the probe location. The values for the third, 
or unseen, axis are indicated by coloring the balls. For 
instance, with scalar data, second derivative values, which 
are negative, zero, or positive, are represented by blue, 
white, and yellow balls, respectively. When the projected 
points form an arc, with the color varying through these 
assigned colors, the probe is at a boundary in the volume as 
seen in Fig. 8 . When the reprojected data points are 
clustered together, the probe is in a homogeneous region. 
As the user gains experience with this representation, he or 
she can learn to "read" the reprojected voxel as an indicator 
of the volume characteristics at the probe location.

4.5 Classification Widgets
In addition to the process of dual-domain interaction 
described above, transfer functions can also be created in 
a more manual fashion by adding one or more classification 
widgets to the main transfer function window. Classifica­
tion widgets are designed to identify regions of the transfer 
function as discrete entities. Each widget type has control 
points which modify its position or size. Optical properties, 
such as opacity and color, are modified by selecting the 
widgets inner surface. The opacity and color contributions 
from each classification widget are blended together to form 
the transfer function. We have developed two types of 
classification widget: triangular and rectangular.

The triangular classification widget, shown in Figs. 2, 8 , 
9, and 11, is based on Levoy's "isovalue contour surface" 
opacity function [26]. The widget is an inverted triangle 
with a base point attached to the horizontal data value axis. 
The triangle's size and position are adjusted with control 
points. There are an upper and lower threshold for the 
gradient magnitude, as well as a shear. Color is constant 
across the widget; opacity is maximal along the center of the
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widget and it linearly ramps down to zero at the left and 
right edges.

The triangular classification widgets are particularly 
effective for visualizing surfaces in scalar data. More general 
transfer functions, for visualizing data which may not have 
clear boundaries, can be created with the rectangular 
classification widget. The rectangular region spanned by 
the widget defines the data values which receive opacity 
and color. Like the triangular widget, color is constant, but 
the opacity is more flexible. It can be constant or fall off in 
various ways: quadratically, as an ellipsoid with axes 
corresponding to the rectangle's aspect ratio, or linearly, 
as a ramp, tent, or pyramid.

As noted in the description of the transfer function 
widget, even when a transfer function has more than two 
dimensions, only two dimensions are shown at any one 
time. For 3D transfer functions, classification widgets are 
shown as their projections onto the visible axes. In this case, 
a rectangular classification widget becomes a box in the 
3D domain of the transfer function. Its appearance to the 
user, however, as 2D projections is identical to the 
rectangular widget. When the third axis of the transfer 
function plays a more simplified role, interactions along this 
axis are tied to sliders seen along the top bar of the transfer 
function. For instance, since our research on scalar data has 
focused on visualizing boundaries between material 
regions, we have consistently used the second derivative 
to emphasize the regions where the second derivative 
magnitude is small or zero. Specifically, maximal opacity is 
always given to zero second derivative and decreases 
linearly toward the second derivative extremal values. How 
much the opacity changes as a function of second derivative 
magnitude is controlled with a single slider, which we call 
the "boundary emphasis slider." With the slider in its 
leftmost position, zero opacity is given to extremal second 
derivatives; in the rightmost position, opacity is constant 
with respect to the second derivative. We have employed 
similar techniques for manipulating other types of third 
axis values using multiple sliders.

While the classification widgets are usually set by hand 
in the transfer function domain, based on feedback from 
probing and reprojected voxels, their placement can also be 
somewhat automated. This further reduces the difficulty of 
creating an effective higher dimensional transfer function. 
The classification widget's location and size in the transfer 
function domain can be tied to the distribution of the 
reprojected voxels determined by the data probe location. 
For instance, the rectangular classification widget can be 
centered at the transfer function values interpolated at the 
data probe's tip, with the size of the rectangle controlled by 
the data probe's slider. The triangular classification widget 
can be located horizontally at the data value queried by the 
probe, with the width and height determined by the 
horizontal and vertical variance in the reprojected voxel 
locations. This technique produced the changes in the 
transfer function for the sequence of renderings in Fig. 9.

4.6 Shading Widget
The shading widget is a collection of spheres which can be 
rendered in the scene to indicate and control the light 
direction and color. Fixing a few lights in view space is

generally effective for renderings, therefore changing the 
lighting is an infrequent operation.

4.7 Color Picker Widget
The color picker is an embedded widget which is based on 
the hue-lightness-saturation (HLS) color space. Interacting 
with this widget can be thought of as manipulating a sphere 
with hues mapped around the equator, gradually becoming 
black at the top and white at the bottom. To select a hue, the 
user moves the mouse horizontally, rotating the ball around 
its vertical axis. Vertical mouse motion tips the sphere 
toward or away from the user, shifting the color toward 
white or black. Saturation and opacity are selected 
independently, using different mouse buttons with vertical 
motion. While this color picker can be thought of as 
manipulating an HLS sphere, no geometry for this is 
rendered. Rather, the triangular and rectangular classifica­
tion widgets embed the color picker in the polygonal region 
which contributes opacity and color to the transfer function 
domain. The user specifies a color simply by clicking on 
that object, then moving the mouse horizontally and 
vertically until the desired hue and lightness are visible. 
In most cases, the desired color can be selected with a single 
mouse click and gesture.

5 R e n d er in g  a n d  Ha r d w a r e

While this paper is conceptually focused on the matter of 
setting and applying higher dimensional transfer functions, 
the quality of interaction and exploration described would 
not be possible without the use of modern graphics 
hardware. Our im plementation relies heavily on an 
OpenGL extension known as dependent texture reads. This 
extension can be used for both classification and shading. In 
this section, we describe our modifications to the classifica­
tion portion of the traditional 3D texture-based volume 
rendering pipeline. We also describe methods for adding 
interactive volumetric shading and shadows to the pipeline.

Our system supports volumes which are stored as 
3D textures with one, two, or four values per texel. This is 
is due to memory alignment restrictions of graphics 
hardware. Volumes with three values per sample utilize a 
four value texture, where the fourth value is simply 
ignored. Volumes with more than four values per sample 
could be constructed using multiple textures.

5.1 Dependent Texture Reads
Dependent texture reads are a hardware extension that is a 
similar but more efficient implementation of a previous 
extension known as pixel texture [10], [13], [29], [41]. 
Dependent texture reads and pixel texture are names for 
operations which use color fragments to generate texture 
coordinates and replace those color fragments with the 
corresponding entries from a texture. This operation 
essentially amounts to an arbitrary function evaluation 
with up to three variables via a lookup table. If we were to 
perform this operation on an RGB fragment, each channel 
value would be scaled between zero and one and these new 
values would then be used as texture coordinates of a 
3D texture. The color values produced by the 3D texture 
lookup replace the original RGB values. Nearest neighbor
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or linear interpolation can be used to generate the 
replacement values. The ability to scale and interpolate 
color channel values is a convenient feature of the hard­
ware. Ft allows the number of elements along a dimension 
of the texture containing the new color values to differ from 
the dynamic range of the component that generated the 
texture coordinate. Without this flexibility, the size of a 
3D dependent texture would be prohibitively large.

5.2 Classification
Dependent texture reads are used for the transfer function 
evaluation. Data values stored in the color components of a 
3D texture are interpolated across some proxy geometry, a 
plane for instance. These values are then converted to 
texture coordinates and used to acquire the color and alpha 
values in the transfer function texture per-pixel in screen 
space. For eight bit data, an ideal transfer function texture 
would have 256 color and alpha values along each axis. For 
3D transfer functions, however, the transfer function texture 
would then be 256:jl x 4 bytes. Besides the enormous 
memory requirements of such a texture, the size also affects 
how fast the classification widgets can be rasterized, thus 
affecting the interactivity of transfer function updates. We 
therefore limit the number of elements along an axis of a 
3D transfer function based on its importance. For instance, 
with scalar data, the primary data value is the most 
important, the gradient magnitude is secondary, and the 
second derivative serves an even more tertiary role. For this 
type of multidimensional transfer function, we commonly 
use a 3D transfer function texture with dimensions 256 x 
128 x 8 for data value, gradient magnitude, and second 
derivative, respectively. Three-dimensional transfer func­
tions can also be composed separably as a 2D and 
ID transfer function. This means that the total size of the 
transfer function is 2561’ +  256. The trade-off, however, is in 
expressivity. We can no longer specify a transfer function 
based on the unique combination of all three data values. 
Separable transfer functions are still quite powerful. 
Applying the second derivative as a separable ID portion 
of the transfer functions is quite effective for visualizing 
boundaries betw een m aterials. With the separable 
3D transfer function for scalar volumes, there is only one 
boundary emphasis slider which affects all classification 
widgets, as opposed to the general case where each 
classification widget has its own boundary emphasis slider. 
We have employed a similar approach for multivariate data 
visualization. The meteorological example used a separable 
3D transfer function. Temperature and humidity were 
classified using a 2D transfer function and the multi­
derivative of these values was classified using a ID  transfer 
function. Since our specific goal was to show only regions 
with high values of ||G||, we only needed two sliders to 
specify the beginning and ending points of a linear ramp 
along this axis of the transfer function.

5.3 Surface Shading
Shading is a fundamental component of volume rendering 
because it isa natural and efficient way to express information 
about the shape of structures in the volume. However, much 
previous work with texture-memory based volume render­
ing lacks shading. Many m odern graphics hardw are

platforms support multi texture and a number of user defined 
operations for blending these textures per-pixel. These 
operations, which we will refer to as fragment shading, can 
be leveraged to compute a surface shading model.

The technique originally proposed by Rezk-Salama et al.
[6 ] is an efficient way to compute the Blinn-Phong shading 
model on a per-pixel basis for volumes. This approach, 
however, can suffer from artifacts caused by denormaliza­
tion during interpolation. While future generations of 
graphics hardware should support the square root opera­
tion needed to renormalize on a per-pixel basis, we can 
utilize cube map dependent texture reads to evaluate the 
shading model. This type of dependent texture read allows 
an RGB color component to be treated as a vector and used 
as the texture coordinates for a cube map. Conceptually, a 
cube map can be thought of as a collection of six textures 
that make up the faces of a cube centered about the origin. 
Texels are accessed with a 3D texture coordinate (s, t, r) 
representing a direction vector. The accessed texel is the 
point corresponding to the intersection of a line through the 
origin in the direction of (s, t, r) and a cube face. The color 
values at this position represent incoming diffuse radiance 
if the vector (s, t, r) is a surface normal or specular radiance 
if (s, t, r) is a reflection vector. The advantages of using a 
cube map dependent texture read is that the vector (s, t, r) 
does not need to be normalized and the cube map can 
encode an arbitrary number of lights or a full environment 
map. This approach, however, comes at the cost of reduced 
performance. A per-pixel cube map evaluation can be as 
much as three times slower than evaluating the dot 
products for a limited number of light sources in the 
fragment shader stage.

Surface-based shading methods are well-suited for 
visualizing the boundaries between materials. However, 
since the surface normal is approximated by the normalized 
gradient of a scalar field, these methods are not robust for 
shading homogeneous regions, where the gradient magni­
tude is very low or zero and its measurement is sensitive to 
noise. Gradient-based surface shading is also unsuitable for 
shading volume renderings of multivariate fields. While we 
can assign the direction of greatest change for a point in a 
multivariate field to the eigenvector (ei) corresponding to 
the largest eigenvalue (A|) of the tensor G from (3), f| is 
only a valid representation of orientation, not the absolute 
direction. This means that the sign of f| can flip in 
neighboring regions, even though their orientations may 
not differ. Therefore, the vector ei does not interpolate, 
making it a poor choice of surface normal. Furthermore, this 
orientation may not even correspond to the surface normal 
of a classified region in a multivariate field.

5.4 Shadows
Shadows provide important visual queues relating to the 
depth and placement of objects in a scene. Since the 
computation of shadows does not depend on a surface 
normal, they provide a robust method for shading homo­
geneous regions and m ultivariate volum es. Adding 
shadows to the volume lighting model means that light 
gets attenuated through the volume before being reflected 
back to the eye.
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view. When the dot product of the light and view directions 
is positive, we slice along the vector halfway between the 
light and view directions, seen in Fig. 10c. In this case, the 
volume is rendered in front to back order with respect to the 
observer. When the dot product is negative, we slice along 
the vector halfway between the light and the inverted view 
directions, seen in Fig. lOd. In this case, the volume is 
rendered in back to front order with respect to the observer. 
In both cases, the volume is rendered in front to back order 
with respect to the light. Care must be taken to insure that 
the slice spacing along the view and light directions are 
maintained when the light or eye positions change. If the 
desired slice spacing along the view direction is d„ and the 
angle between v and / is 0, then the slice spacing along the 
slice direction is

4  =  cos(J)fi,„ (4)

Fig. 10. Modified slice axis for light transport.

Our approach differs from previous hardware shadow 
work [2] in two ways. First, rather than creating a 
volumetric shadow map, we utilize an off screen render 
buffer to accumulate the amount of light attenuated from 
the light's point of view. Second, we modify the slice axis to 
be the direction halfway between the view and light 
directions. This allows the same slice to be rendered from 
both the eye and light points of view. Consider the situation 
for computing shadows when the view and light directions 
are the same, as seen in Fig. 10a. Since the slices for both the 
eye and light have a one-to-one correspondence, it is not 
necessary to precompute a volumetric shadow map. The 
amount of light arriving at a particular slice is equal to one 
minus the accumulated opacity of the slices rendered before 
it. Naturally, if the projection matrices for the eye and light 
differ, we need to maintain a separate buffer for the 
attenuation from the light's point of view. When the eye 
and light directions differ, the volume would be sliced 
along each direction independently. The worst case scenario 
happens when the view and light directions are perpendi­
cular, as seen in Fig. 10b. In that case, it would seem 
necessary to save a full volumetric shadow map which can 
be resliced with the data volume from the eye's point of 
view providing shadows. This approach, however, suffers 
from an artifact referred to as attenuation leakage. The 
visual consequences of this are blurry shadows and surfaces 
which appear much darker than they should due to the 
image space high frequencies introduced by the transfer 
function. The attenuation at a given sample point is blurred 
when light intensity is stored at a coarse resolution and 
interpolated during the observer rendering phase. This use 
of a 2D shadow buffer is similar to a technique proposed for 
the shear warp method [22]. However, since the shear warp 
method requires slicing along a major axis of the volume, 
the maximum angle between the view and light directions 
is very limited. Our approach permits shadow computation 
for arbitrary view and light directions.

Rather than slice along the vector defined by the view 
direction or the light direction, we modify the slice axis to 
allow the same slice to be rendered from both points of

This is a multipass approach. Each slice is first rendered 
from the observer's point of view using the results of the 
previous pass from the light's point of view, which 
modulates the brightness of samples in the current slice. 
The same slice is then rendered from light's point of view to 
calculate the intensity of the light arriving at the next layer.

Since we must keep track of the am ount of light 
attenuated at each slice, we utilize an off screen render 
buffer, known as a pixel buffer. This buffer is initialized to 
I — light intensity. It can also be initialized using an 
arbitrary image to create effects such as spotlights. The 
projection matrix for the light's point of view need not be 
orthographic; a perspective projection matrix can be used 
for point light sources. However, the entire volume must fit 
in the light's view frustum. Light is attenuated by simply 
accumulating the opacity for each sample using the over 
operator. The results are then copied to a texture which is 
multiplied with the next slice from the eye's point of view 
before it is blended into the frame buffer. While this copy to 
texture operation has been highly optimized on the current 
generation of graphics hardware, we have achieved a 
dramatic increase in performance using a hardware exten­
sion known as render to texture. This extension allows us to 
directly bind a pixel buffer as a texture, avoiding the 
unnecessary copy operation.

This approach has a number of advantages over previous 
volume shadow methods. First, attenuation leakage is no 
longer a concern because the computation of the light 
transport (slicing density) is decoupled from the resolution 
of the data volume. Computing light attenuation in image 
space allows us to match the sampling frequency of the 
light transport with that of the final volume rendering. 
Second, this approach makes far more efficient use of 
memory resources than those which require a volumetric 
shadow map. Only a single additional 2D buffer is required, 
as opposed to a potentially large 3D volume. One 
disadvantage of this approach is that, due to the image 
space sampling, artifacts may appear at shadow boundaries 
when the opacity makes a sharp jump from low to high. 
This can be overcome by using a higher resolution for the 
light buffer than for the frame buffer. We have found that 30 
to 50 percent additional resolution is adequate.
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As noted at the end of the previous section, surface-based 
shading models are inappropriate for homogeneous regions 
in a volume. However, it is often useful to have both surface 
shaded and shadowed renderings, regardless of whether or 
not homogeneous regions are being visualized. To insure that 
homogeneous regions are not surface shaded, we simply 
interpolate between surface shaded and unshaded using the 
gradient magnitude. Naturally, regardless of whether or not a 
particular sample is surface shaded, it is still modulated by 
thelightattenuation providing shadows. In practice, we have 
found that interpolating based on 1 — (1 — ||V / | | ) 2 produces 
better results, since midrange gradient magnitudes can still 
be interpreted as surface features. Fig. 11 shows a rendering 
which combines surface shading and shadows in such a 
way. Fig. 1 shows a volume rendering using shadows with 
the light buffer initialized to simulate a spotlight. Figs. 2 
and 3 show volume renderings using only surface based 
shading. Figs. 5, 6 , and 7 only use shadows for illumination.

6 D is c u ssio n

Using multidimensional transfer functions heightens the 
importance of densely sampling the voxel data in render­
ing. With each new axis in the transfer function, there is 
another dimension along which neighboring voxels can 
differ. It becomes increasingly likely that the data sample 
points at the corners of a voxel straddle an important region 
of the transfer function (such as a region of high opacity) 
instead of falling within it. Thus, in order for the boundaries 
to be rendered smoothly, the distance between view- 
aligned sampling planes through the volume must be very 
small. Most of the figures in this paper were generated with 
sampling rates of about three to six samples per voxel. At 
this sample rate, frame updates can take nearly a second for 
a moderately sized (256 x 256 x 128) shaded and shadowed 
volume. For this reason, we lower the sample rate during 
interaction and rerender at the higher sample rate once an 
action is completed. During interaction, the volume 
rendered surface will appear coarser, but the surface size 
and location are usually readily apparent. Thus, even with 
lower volume sampling rates during interaction, the 
rendered images are effective feedback for guiding the user 
in transfer function exploration.

While the triangular classification widget is based on 
Levoy's iso-contour classification function, we have found it 
necessary to have additional degrees of freedom, such as a 
shear. Shearing the triangle classification along the data value 
axis so that higher values are emphasized at higher gradients 
allows us to follow the center of some boundaries more 
accurately. This is a subtle but basic characteristic of 
boundaries between a material with a narrow distribution 
of data values and another material with a wide value 
distribution. This pattern can be observed in the boundary 
between soft tissue (with a narrow value distribution) and 
bone (wide value distribution) of the Visible MaleCT, seen in 
Fig. 12. Thresholding the minimum gradient magnitude 
allows better feature discrimination, as can be seen in Fig. 2b.

A benefit of using multidimensional transfer functions is 
the ability to use a "default" transfer function which is 
produced without any user interaction. Given our interest 
in visualizing the boundaries between materials, this was

Fig. 11. Volume renderings of the Visible Male CT (frozen) demonstrat­
ing combined surface shading and shadows.

achieved by assigning opacity to high gradient magnitudes 
and, in the case of scalar data, low-magnitude second 
derivatives, regardless of data value, while varying hue 
along the data value. This default transfer function is 
intended only as a starting point for further modification 
with the widgets, but often it succeeds in depicting the main 
structures of the volume, as seen in Fig. 13. Other 
application areas for volume rendering may need different
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Fig. 12. The soft tissue/bone boundary of the Visible Male CT. It is 
necessary to shear the triangular classification widget to follow the 
center of this boundary.

variables for multidimensional transfer functions, with their 
own properties governing the choices for default settings.

While multidimensional transfer functions are quite 
effective for visualizing material boundaries, we have also 
found them to be useful for visualizing the materials 
themselves. For instance, if we attempt to visualize the 
dentin of the Human Tooth CT using a ID transfer function, 
we erroneously color the background/enamel boundary, 
seen in Fig. 14a. The reason for this can be seen in Fig. 3a, 
where the range of data values which define the back­
ground/enamel boundary overlap with the dentin's data 
values. We can easily correct this erroneous coloring with a 
2D transfer function that only gives opacity to lower 
gradient magnitudes. This can be seen in Fig. 14b.

A further benefit of dual-domain interaction is the ability 
to create feature-specific multidimensional transfer func­
tions which would be extremely difficult to produce by 
manual placement of classification widgets. Ff a feature can 
be visualized in isolation with only a very small and 
accurately placed classification widget, the best way to

Fig. 14. The dentin of the Human Tooth CT. (a) shows that a 1D transfer 
function, simulated by assigning opacity to data values regardless of 
gradient magnitude, will erroneously color the background/enamel 
boundary. A 2D transfer function, shown in (b), can avoid assigning 
opacity to the range of gradient magnitudes that define this boundary.

place the widget is via dual-domain interaction. This is the 
case for visualizing different soft tissues in CT data, such as 
the white matter of the brain in the Visible Male CT, shown 
in Fig. 15.

Dual-domain interaction has utility beyond setting 
multidimensional transfer functions. Dual-domain interac­
tion also helps answer other questions about the limits of 
direct volume rendering for displaying specific features in 
the data. For example, the feedback in the transfer function 
domain can show the user whether a certain feature of

Fig. 13. A default transfer function for scalar data applied to the Chapel 
Hill CT. Hue varies along the data value axis and opacity varies along 
the gradient magnitude axis. A clipping plane reveals internal structure 
(right).

Fig. 15. The brain of the Visible Male CT. The transfer functions were 
created using dual-domain interaction. A detail region shows how small 
the region that identifies this subtle feature is in the transfer function 
domain.
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interest detected during spatial domain interaction is well- 
localized in the transfer function domain. If reprojected 
voxels from different positions, in the same feature, map to 
widely divergent locations in the transfer function domain, 
then the feature is not well-localized and it may be hard to 
create a transfer function which clearly visualizes it. 
Similarly, if probing inside two distinct features indicates 
that the reprojected voxels from both features map to the 
same location in the transfer function domain, then it may 
be difficult to selectively visualize one or the other feature.

7 F u tu r e  W o r k

One unavoidable drawback to using multidimensional 
transfer functions is the increased memory consumption 
needed to store all the transfer function variables at each 
voxel sample point. Future work can expand the data set 
size by using parallel hardware rendering methods [2 0 ]. 
Surface-based shading also has a dramatic impact on the 
data set size since we must store precomputed normals; this 
requires an additional 4 bytes per-sample.

Using shadows for illumination is advantageous since it 
does not require a surface normal, thus eliminating the need 
for a normal volume. New shading models based on this 
approach might have the potential to create even more 
realistic and informative imagery. As future generations of 
graphics hardware provide even richer feature sets, it 
should soon be possible to create and implement better 
approximations of light transport through volumetric 
media at interactive frame rates.

Another area of future research would be to explore 
methods of surface normal generation using on-the-fly 
postclassification gradient estimation. This is a nontrivial 
problem since the transfer function can introduce very high 
frequencies or discontinuities, which can be problematic for 
creating normals that produce smooth shading. Such a 
method would have the potential to provide robust normals 
for surface shading multivariate volume visualizations.

Direct manipulation widgets and spatial interaction 
techniques lend themselves well to immersive environ­
ments. We would like to experiment with dual-domain 
interaction in a stereo, tracked environment. We speculate 
that an immersive environment could make interacting 
with a 3D transfer function more natural and intuitive. We 
would also like to perform usability studies on our direct 
manipulation widgets and dual-domain interaction techni­
que, as well as perceptual studies on 2D and 3D transfer 
functions for volume rendering.

8 S u m m a r y

This paper demonstrates the importance of multidimen­
sional transfer functions for direct volume rendering 
applications. We present several examples for both scalar 
and more general multivariate data sets. We also identify 
the importance of interactive techniques. We introduce new 
interaction modalities and tools to make the process of 
specifying a high quality transfer function efficient and 
effective. These tools guide the user based on data set 
specific information. We also present a number of methods

for volume shading, including a novel technique for 
generating volumetric shadows.
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