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The recent measurement of a nonzero neutrino mixing angle �13 requires a modification of the

tri-bimaximal mixing pattern that predicts a zero value for it. We propose a new neutrino mixing pattern

based on a spontaneously broken A4 flavor symmetry and a type-I seesaw mechanism. Our model allows

for approximate tri-bimaximal mixing and nonzero �13, and contains a natural way to implement low- and

high-energy CP violations in neutrino oscillations, and leptogenesis with a renormalizable Lagrangian.

Both normal and inverted mass hierarchies are permitted within 3� experimental bounds, with the

prediction of small (large) deviations from maximality in the atmospheric mixing angle for the normal

(inverted) case. Interestingly, we show that the inverted case is excluded by the global analysis in 1�

experimental bounds, while the most recent MINOS data seem to favor the inverted case. Our model make

predictions for the Dirac CP phase in the normal and inverted hierarchies, which can be tested in near-

future neutrino oscillation experiments. Our model also predicts the effective mass jmeej measurable in

neutrinoless double beta decay to be in the range 0:04 & jmeej & 0:15 eV for the normal hierarchy and

0:06 & jmeej & 0:11 eV for the inverted hierarchy, both of which are within the sensitivity of the next

generation experiments.
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INTRODUCTION

The large values of the solar (�12 ’ 35�) and atmospheric
(�23 ’ 45�Þ [1] neutrino mixing angles may be telling us
about new symmetries in the lepton sector not present in the
quark sector, and may provide us with a clue to the nature
of the quark-lepton physics beyond the standard model.
Theoretically, a great deal of effort has been put into con-
structing flavormodels with high predictive power, especially
those giving the tri-bimaximal (TBM) mixing angles [2]:

�13 ¼ 0; �23 ¼ �

4
¼ 45�;

�12 ¼ sin�1

�
1ffiffiffi
3

p
�
’ 35:3

�
:

(1)

However, the Daya Bay and RENO collaborations [3,4] have
reported the first measurements of a nonzero value for the
mixing angle �13:

sin22�13 ¼ 0:092� 0:016ðstatÞ � 0:005ðsystÞ; (2)

and

sin22�13 ¼ 0:113� 0:013ðstatÞ � 0:019ðsystÞ; (3)

respectively, corresponding to an angle �13 � 9�. These
results are in good agreement with the previous data from
the T2K, MINOS and Double Chooz collaborations [5]. A
nonzero value of �13 indicates that the TBM pattern for
neutrino mixing should be modified. In addition, at the

Neutrino 2012 conference in Kyoto, the MINOS
Collaboration has announced a nonmaximal value for the
atmospheric mixing angle �23 [6],

sin 22�23 ¼ 0:94þ0:04
�0:05 � 0:04; (4)

with maximal mixing disfavored at the 88%C.L. This result,
whichwas not included the global analysis inRef. [7], comes
from the analysis of �� disappearance in the MINOS accel-

erator beam, and points to one of two possible values for �23,
namely �23 ¼ 38� or �23 ¼ 52�. If it holds, this result also
calls for a deviation from the TBM mixing pattern.
Furthermore, the presence of CP violation in the lepton

sector is still unknown. Experimentally, CP violation may
become observable in a future generation of neutrino oscil-
lation experiments (T2K,NO�A) [8]. Theoretically, a flavor
symmetry that describes and explains the large reactor
mixing angle �13 ’ 9� while keeping the TBM values
�23 ’ 45� and �12 ’ 35� may originate in two ways: (i) a

large �13 ¼ �C=
ffiffiffi
2

p
, with �C the Cabbibo angle, mainly

governed by higher-order corrections in the charged lepton
sector [9], where the TBM pattern is a good zero-order
approximation to reality, or (ii) a large �13 from the neutrino
sector itself through a newflavor symmetrywithout resorting
to higher-order corrections in the charged lepton sector [10].
In this paper, we propose a new and simple model for the

lepton sector with A4 flavor symmetry in the framework of a
type-I seesawmechanism. It is different frompreviousworks
using A4 flavor symmetries [11–14]1 in that the Dirac neu-
trino Yukawa coupling constants do not all have the same
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1Ma and Rajasekaran [15] have introduced for the first time
the A4 symmetry to avoid the mass degeneracy of � and � under
a �-� symmetry [16].
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magnitude. Our model can naturally explain the TBM large
value of�13 and can also provide a possibility for low-energy
CP violation in neutrino oscillations with a renormalizable
Lagrangian and small Yukawa coupling parameters, i.e.,
neutrinomasses. The seesawmechanism, besides explaining
of smallness of the measured neutrino masses, has another
appealing feature: generating the observed baryon asymme-
try in our Universe by means of leptogenesis [17]. Since the
conventional A4 models realized with type-I or -III seesaw
and a tree-level Lagrangian lead to an exact TBM and
vanishing leptonic CP-asymmetries responsible for lepto-

genesis (due to the proportionality of the Yy
�Y� combination

of the Dirac neutrino Yukawa matrix Y� to the unit matrix),
authors usually introduce soft-breaking terms or higher-
dimensional operators with many parameters, in order to
explain the nonzero �13 as well as the nonvanishing
CP-asymmetries.

Our model is based on a renormalizable SUð2ÞL �
Uð1ÞY � A4 Lagrangian with minimal Yukawa couplings,
and gives rise to a nondegenerate Dirac neutrino Yukawa
matrix and a unique CP-violation pattern. This opens the
possibility of explaining the nonzero value of �13 ’ 9� still
maintaining TBM for the other two neutrino mixing angles
�23 ’ 45� and �12 ’ 35�; furthermore, this allows an
economic way to achieve low-energy CP violation in
neutrino oscillations as well as high-energy CP violation
for leptogenesis.

This paper is organized as follows. In the next section,
we lay down the particle content and the field representa-
tions under the A4 flavor symmetry in our model, as well as
explain the characteristic points of our model phenome-
nology at low and high energy. In Sec. III, we present the
neutrino mixing angles, and how the low-energy CP vio-
lation could be generated in both normal and inverted mass
hierarchies, including our predictions for neutrinoless
double beta decay. We give our conclusions in Sec. IV,
and in Appendix A we outline the minimization of the
scalar potential and the vacuum alignments.

II. FLAVOR A4 SYMMETRY FOR NONZERO �13

AND LEPTOGENESIS

In the absence of flavor symmetries, particle masses and
mixings are generally undetermined in a gauge theory.
Here, to understand the present nonzero �13 and TBM
angles ð�12; �23Þ of the neutrino oscillation data and baryo-
genesis via leptogenesis, we propose a new discrete sym-
metry based on an A4 flavor symmetry for leptons in a
renormalizable Lagrangian.2

The group A4 is the symmetry group of the tetrahedron,
isomorphic to the finite group of the even permutations of
four objects. The group A4 has two generators, denoted S
and T, satisfying the relations S2 ¼ T3 ¼ ðSTÞ3 ¼ 1.

In the three-dimensional real representation, S and T are
given by

S ¼
1 0 0

0 �1 0

0 0 �1

0
BB@

1
CCA; T ¼

0 1 0

0 0 1

1 0 0

0
BB@

1
CCA: (5)

A4 has four irreducible representations: one triplet 3 and
three singlets 1, 10, 100. An A4 triplet ða1; a2; a3Þ transforms
in the unitary representation by multiplication with the S
and T matrices in Eq. (5) above,

S

a1

a2

a3

0
BB@

1
CCA ¼

a1

�a2

�a3

0
BB@

1
CCA; T

a1

a2

a3

0
BB@

1
CCA ¼

a2

a3

a1

0
BB@

1
CCA: (6)

An A4 singlet a is invariant under the action of S (Sa ¼ a),
while the action of T produces Ta ¼ a for 1, Ta ¼ !a for

10, and Ta ¼ !2a for 100, where ! ¼ ei2�=3 is a complex
cubic root of unity. Products of two A4 representations de-
compose into irreducible representations according to the
following multiplication rules: 3 � 3 ¼ 3s � 3a � 1 � 10 �
100, 10 � 100 ¼ 1, 10 � 10 ¼ 100 and 100 � 100 ¼ 10. Explicitly,
if ða1; a2; a3Þ and ðb1; b2; b3Þ denote two A4 triplets,

ða � bÞ3s ¼ ða2b3 þ a3b2; a3b1 þ a1b3; a1b2 þ a2b1Þ;
ða � bÞ3a ¼ ða2b3 � a3b2; a3b1 � a1b3; a1b2 � a2b1Þ;
ða � bÞ1 ¼ a1b1 þ a2b2 þ a3b3;

ða � bÞ10 ¼ a1b1 þ!a2b2 þ!2a3b3;

ða � bÞ100 ¼ a1b1 þ!2a2b2 þ!a3b3: (7)

To make the presentation of our model physically more
transparent, we define the T-flavor quantum number Tf

through the eigenvalues of the operator T, for which
T3 ¼ 1. In detail, we say that a field f has T-flavor
Tf ¼ 0, þ1, or �1 when it is an eigenfield of the T

operator with eigenvalue 1, !, !2, respectively (in short,
with eigenvalue !Tf for T-flavor Tf, considering the cy-

clical properties of the cubic root of unity!). The T-flavor
is an additive quantum number modulo 3. We also define
the S-flavor-parity through the eigenvalues of the operator
S, which are þ1 and �1 since S2 ¼ 1, and we speak of
S-flavor-even and S-flavor-odd fields. For A4-singlets,
which are all S-flavor-even, the 1 representation has no
T-flavor (Tf¼0), the 10 representation has T-flavor

Tf ¼ þ1, and the 100 representation has T-flavor

Tf ¼ �1. Since for A4-triplets, the operators S and T do

not commute, A4-triplet fields cannot simultaneously have
a definite T-flavor and a definite S-flavor-parity. While the
real representation of A4 in Eqs. (5), in which S is diagonal,
is useful in writing the Lagrangian, the physical meaning
of our model is more apparent in the T-flavor representa-
tion in which T is diagonal. This representation is obtained
through the unitary transformation

2To include the quark sector, the symmetry could be promoted
to the binary tetrahedral group T0 [18].
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A ! A0 ¼ U!AU
y
!; (8)

where A is any A4 matrix in the real representation and

U! ¼ 1ffiffiffi
3

p
1 1 1

1 !2 !

1 ! !2

0
BB@

1
CCA: (9)

We have

S0 ¼ 1

3

�1 2 2

2 �1 2

2 2 �1

0
BB@

1
CCA; T0 ¼

1 0 0

0 ! 0

0 0 !2

0
BB@

1
CCA:
(10)

Despite the physical advantages of the S0, T0 representa-
tion, for clarity of exposition and to avoid confusion and
complications, in this paper we use the real representation
S, T almost exclusively. For reference, an A4 triplet field
with components ða1; a2; a3Þ in the real representation can
be expressed in terms of T-flavor eigenfields ðae; a�; a�Þ
(the notation comes from our lepton assignments below) as

a1 ¼
ae þ a� þ a�ffiffiffi

3
p ;

a2 ¼
ae þ!2a� þ!a�ffiffiffi

3
p ;

a3 ¼
ae þ!a� þ!2a�ffiffiffi

3
p :

(11)

Inversely,

ae ¼ a1 þ a2 þ a3ffiffiffi
3

p ;

a� ¼ a1 þ!a2 þ!2a3ffiffiffi
3

p ;

a� ¼ a1 þ!2a2 þ!a3ffiffiffi
3

p :

(12)

We extend the standard model (SM) by the inclusion of
an A4-triplet of right-handed SUð2ÞL-singlet Majorana
neutrinos NR, and the introduction of two types of scalar
Higgs fields besides the usual SM SUð2ÞL-doublet Higgs
bosons �, which we take to be an A4-singlet with no
T-flavor (1 representation): a second SUð2ÞL-doublet of
Higgs bosons �, which is distinguished from � by being
an A4-triplet, and an SUð2ÞL-singlet A4-triplet real scalar
field 	:

� ¼ ’þ

’0

 !
; �j ¼

�þ
j

�0
j

0
@

1
A; 	j; j ¼ 1; 2; 3:

(13)

We assign each flavor of leptons to one of the three
A4 singlet representations: the electron flavor to the 1
(T-flavor 0), the muon flavor to the 10 (T-flavor þ1), and
the tau flavor to the 100 (T-flavor�1). (Note in this respect
that our A4 flavor group is not a symmetry under exchange
of any two lepton flavors, like e and�, for example. Our A4

flavor group is implemented as a global symmetry of the
Lagrangian, later spontaneously broken, but some fields
are not invariant under A4 transformations, much in the
same way as the implementation of SUð2ÞL �Uð1ÞY in the
SM, where left-handed and right-handed fermions are as-
signed to different representations of the gauge group.)
Then we take the usual Higgs boson doublet � to be
invariant under A4, that is to be a flavor-singlet 1 with no
T-flavor. The other Higgs doublet �, the Higgs singlet 	,
and the singlet neutrinos NR are assumed to be triplets
under A4, and can so be used to introduce lepton-flavor
violation in an A4 symmetric Lagrangian.
The field content of our model and the field assignments

to SUð2ÞL �Uð1ÞY � A4 representations are summarized
in Table I. These representation assignments and the re-
quirement that the Lagrangian be renormalizable and
A4-symmetry forbid the presence of tree-level leptonic
flavor-changing charged currents.
The renormalizable Yukawa interactions in the neutrino

and charged lepton sectors invariant under SUð2ÞL �
Uð1ÞY � A4 are (including a Majorana mass term for the
right-handed neutrinos)

�LYuk ¼ y�1
�Leð~�NRÞ1 þ y�2

�L�ð~�NRÞ10 þ y�3
�L�ð~�NRÞ100

þ 1

2
Mð �Nc

RNRÞ1 þ 1

2
y�Rð �Nc

RNRÞ3s	þ ye �Le�eR

þ y� �L���R þ y� �L���R þ H:c:; (14)

where ~� � i�2�
	 and �2 is a Pauli matrix. In this

Lagrangian, each flavor of neutrinos and each flavor of
charged leptons has its own independent Yukawa term, since
they belong to different singlet representations 1, 10, and 100
of A4: the neutrino Yukawa terms involve the A4-triplets �
and NR, which combine into the appropriate singlet repre-
sentation; the charged-lepton Yukawa terms involve the
A4-singlet � and the A4-singlet right-handed charged-
leptons eR, �R, and �R. The right-handed neutrinos have
an additional Yukawa term that involves the A4-triplet

TABLE I. Representations of the fields under A4 and SUð2ÞL �Uð1ÞY .
Field Le, L�, L� eR, �R, �R NR 	 � �

A4 1, 10, 100 1, 10, 100 3 3 1 3
SUð2ÞL �Uð1ÞY ð2;� 1

2Þ ð1;�1Þ (1, 0) (1, 0) ð2; 12Þ ð2; 12Þ
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SM-singlet Higgs 	. The mass term 1
2Mð �Nc

RNRÞ1 for the

right-handed neutrinos is necessary to implement the seesaw
mechanism by making the right-handed neutrino mass
parameter M large.

The Higgs potential of our model contains many terms
and is listed in Appendix A, Eqs. (A1)–(A7).3 We sponta-
neously break the A4 flavor symmetry by giving nonzero
vacuum expectation values to some components of the
A4-triplets 	 and �. As seen in Appendix A, the minimi-
zation of our scalar potential gives the following vacuum
expectation values (VEVs), all real:

h’0i ¼ v�ffiffiffi
2

p � 0; h�0
1i ¼ h�0

2i ¼ h�0
3i �

v�ffiffiffi
2

p � 0;

h	1i � v	 � 0; h	2i ¼ h	3i ¼ 0: (15)

The SM VEV v ¼ ð ffiffiffi
2

p
GFÞ�1=2 ¼ 246 GeV results from

the combination v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
� þ 3v2

�

q
. The nonzero expecta-

tion value h’0i ¼ v�=
ffiffiffi
2

p
does not break the A4 symmetry,

because the standard model Higgs is A4-flavorless. The

nonzero expectation value h�i ¼ ðv�; v�; v�Þ=
ffiffiffi
2

p
breaks

the S-flavor-parity ð�1; �2; �3Þ ! ð�1;��2;��3Þ but
leaves the vacuum T-flavor Tf ¼ 0. In other words, after

� acquires a nonzero VEV, the T-flavor is still conserved
but the S-flavor-parity is not. Since � appears only in the
Higgs sector and in interactions with the light leptons, we
say that the light neutrino sector has a residual Z3 symme-
try expressed by the subgroup f1; T; T2g that leads to the
conservation of T-flavor in terms involving mixing with
the light neutrinos or interactions with the charged leptons.
The nonzero expectation value h	i ¼ ðv	; 0; 0Þ maintains

the S-flavor-parity of the vacuum (it is S-flavor-even) but
gives the vacuum the symmetric combination of T-flavors

ða0 þ aþ1 þ a�1Þ=
ffiffiffi
3

p
. That is, after 	 acquires a nonzero

VEV, the S-flavor-parity is conserved but the T-flavor is
not. Since 	 appears only in the Higgs sector and in
interactions with the heavy Majorana neutrinos, we say
that the heavy neutrino sector has a residual Z2 symmetry
expressed by the subgroup f1; Sg leading to the conserva-
tion of S-flavor-parity in terms involving mixing or inter-
actions with the heavy Majorana neutrinos.

When a non-Abelian discrete symmetry like our A4 is
considered, it is crucial to check the stability of the vacuum.
In the presence of two A4-triplet Higgs scalars 	 and �,
Higgs potential terms involving both 	 and �, which would
be written as Vð	�Þ in Eqs. (A1)–(A7), would be problem-
atic for vacuum stability. Such stability problems can be
naturally solved, for instance, in the presence of extra
dimensions or in supersymmetric dynamical completions

[13,19]. In these cases, Vð	�Þ is not allowed or highly
suppressed.
The physical Higgs fields are obtained in the usual way.

In the Higgs sector we have four Higgs doublets�, �1, �2

and �3, and three Higgs singlets 	1, 	2, and 	3. They
contain in total 16 degrees of freedom: six charged Higgs
fields ��

1;2;3, with �
þ
j � ð��

j Þ	, seven neutral Higgs scalars
h, h1;2;3, 	

0
1;2;3, and three Higgs pseudoscalars A1;2;3. We

can write, after electroweak- and A4-symmetry breaking
and minimization of the potential,

� ¼ ’þ
1ffiffi
2

p ðv� þ hþ iA0Þ
 !

;

	1 ¼ v	 þ 	0
1;

	2 ¼ 	0
2; 	3 ¼ 	0

3;

�j ¼
�þ
j

1ffiffi
2

p ðv� þ hj þ iAjÞ

0
@

1
A; j ¼ 1; 2; 3:

(16)

The action of the residual Z2 generator S on the physical
fields is

ðNR1; NR2; NR3Þ ! ðNR1;�NR2;�NR3Þ; (17)

ð	0
1; 	

0
2; 	

0
3Þ ! ð	0

1;�	0
2;�	0

3Þ; (18)

ðh1; h2; h3Þ ! ðh1;�h2;�h3Þ; (19)

ðA1; A2; A3Þ ! ðA1;�A2;�A3Þ; (20)

ð�þ
1 ; �

þ
2 ; �

þ
3 Þ ! ð�þ

1 ;��þ
2 ;��þ

3 Þ; (21)

all other fields are invariant. The action of the residual Z3

generator T on the physical fields is [the triplet fields a1,
a2, and a3 and the triplet fields ae, a�, and a� are linear

combinations of each other, see Eqs. (11) and (12)]

ðe;�; �Þ ! ðe;!�;!2�Þ; (22)

ð�e; ��; ��Þ ! ð�e;!��;!
2��Þ; (23)

ðNRe; NR�; NR�Þ ! ðNRe;!NR�;!
2NR�Þ; (24)

ð	0
e; 	

0
�; 	

0
�Þ ! ð	0

e; !	0
�;!

2	0
�Þ; (25)

ðhe; h�; h�Þ ! ðhe;!h�;!
2h�Þ; (26)

ðAe; A�; A�Þ ! ðAe;!A�;!
2A�Þ; (27)

ð�þ
e ; �

þ
�; �

þ
� Þ ! ð�þ

e ; !�þ
�;!

2�þ
� Þ; (28)

all other fields are invariant.
After electroweak and A4 symmetry breaking, the neu-

tral Higgs fields acquire vacuum expectation values and

3We note that at TeV-scale the higher-dimensional operators
ðd 
 5Þ driven by 	 and � fields are suppressed by a cutoff scale
� which we assume is a very high energy scale, i.e., GUT or
Planck scale. And in this paper we neglect the effects of higher-
dimensional operators.
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give masses to the charged leptons and neutrinos: the Higgs
doublet gives Dirac masses to the charged leptons, the
Higgs doublet � gives Dirac masses to the three SM
neutrinos, and the Higgs singlet 	 gives a Majorana mass
to the right-handed neutrino NR.

The charged lepton mass matrix is automatically di-
agonal due to the A4-singlet nature of the charged lepton
and SM-Higgs fields. The right-handed neutrino mass has

the (large) Majorana mass contribution M and a contri-
bution induced by the electroweak-singlet A4-triplet
Higgs boson 	 when the A4-symmetry is spontaneously
broken.
After the breaking of the flavor and electroweak sym-

metries, with the VEV alignments as in Eq. (15), the
charged lepton, Dirac neutrino and right-handed neutrino
mass terms from the Lagrangian (14) result in

�Lm ¼ v�ffiffiffi
2

p ðye �eLeR þ y� ��L�R þ y� ��L�RÞ þ
v�ffiffiffi
2

p fðy�1 ��e þ y�2 ��� þ y�3 ���ÞNR1 þ ðy�1 ��e þ y�2! ��� þ y�3!
2 ���ÞNR2

þ ðy�1 ��e þ y�2!
2 ��� þ y�3! ���ÞNR3g þM

2
ð �Nc

R1NR1 þ �Nc
R2NR2 þ �Nc

R3NR3Þ þ
y�Rv	

2
ð �Nc

R2NR3 þ �Nc
R3NR2Þ þH:c:

(29)

This form shows clearly that the terms in v� break the S-flavor-parity symmetry (17)–(21), while the other mass terms
preserve it. Passing to the T-flavor eigenfields

NRe ¼ NR1 þ NR2 þ NR3ffiffiffi
3

p ; (30)

NR� ¼ NR1 þ!NR2 þ!2NR3ffiffiffi
3

p ; (31)

NR� ¼ NR1 þ!2NR2 þ!NR3ffiffiffi
3

p ; (32)

with respective T-flavor Tf ¼ 0, þ1, �1, the lepton mass Lagrangian reads

�Lm ¼ v�ffiffiffi
2

p ðye �eLeR þ y� ��L�R þ y� ��L�RÞ þ v�

ffiffiffi
3

2

s
ðy�1 ��eNRe þ y�2 ���NR� þ y�3 ���NR�Þ

þM

2
ð �Nc

ReNRe þ �Nc
R�NR� þ �Nc

R�NR�Þ þ
y�Rv	

2
½ �Nc

ReNRe þ �Nc
R�NR� þ �Nc

R�NR�

� 1

3
ð �Nc

Re þ �Nc
R� þ �Nc

R�ÞðNRe þ NR� þ NR�Þ� þ H:c: (33)

This form shows clearly that the terms in v	 break the
T-flavor symmetry (22)–(28), while the other mass terms
preserve it.

Inspection of the mass terms in Eq. (33) indicates
that, with the VEV alignments in Eq. (15), the A4

symmetry is spontaneously broken to a residual Z2

symmetry in the heavy Majorana neutrino sector (con-
servation of S-flavor-parity in terms not involving v� or

h1;2;3) and a residual Z3 symmetry in the Dirac neutrino

sector (conservation of T-flavor in terms not involving
v	 or 	0

1).

The mass terms in Eq. (29) and the charged gauge
interactions in the weak eigenstate basis can be written in
(block) matrix form as, using �Nc

RmD�
c
L ¼ ��Lm

T
DNR,

�LmW ¼ 1

2
�Nc
RMRNR þ ��LmDNR þ �‘Lm‘‘R

þ gffiffiffi
2

p W�
�
�‘L


��L þ H:c: (34)

¼ 1

2
��L

�Nc
R

� � 0 mD

mT
D MR

 !
�c
L

NR

 !
þ �‘Lm‘‘R

þ gffiffiffi
2

p W�
�
�‘L


��L þ H:c: (35)

Here ‘ ¼ ðe;�; �Þ, � ¼ ð�e; ��; ��Þ, NR¼ðNR1;NR2;NR3Þ,
and
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m‘ ¼ v�ffiffiffi
2

p
ye 0 0

0 y� 0

0 0 y�

0
BB@

1
CCA; (36)

mD ¼ v�ffiffiffi
2

p Y� ¼ v�ffiffiffi
2

p
y�1 y�1 y�1

y�2 !y�2 !2y�2

y�3 !2y�3 !y�3

0
BB@

1
CCA; (37)

MR ¼
M 0 0

0 M y�Rv	

0 y�Rv	 M

0
BB@

1
CCA: (38)

To find the neutrino masses and mixing matrix we are to
diagonalize the 6� 6 matrix

0 mD

mT
D MR

 !
: (39)

We start by diagonalizing MR. For this purpose, we per-

form a basis rotation N̂R ¼ Uy
RNR, so that the right-handed

Majorana mass matrix MR becomes a diagonal matrix M̂R

with real and positive mass eigenvalues M1¼aM, M2¼M
andM3 ¼ bM,

M̂R ¼ UT
RMRUR ¼ MUT

R

1 0 0

0 1 �ei�

0 �ei� 1

0
BB@

1
CCAUR

¼
aM 0 0

0 M 0

0 0 bM

0
BB@

1
CCA; (40)

where � ¼ jy�Rv	=Mj and � ¼ argðy�Rv	=MÞ. We find a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2 þ 2� cos�

p
, b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2 � 2� cos�
p

, and a diago-
nalizing matrix

UR ¼ 1ffiffiffi
2

p
0

ffiffiffi
2

p
0

1 0 �1

1 0 1

0
BB@

1
CCA

ei
c 1
2 0 0

0 1 0

0 0 ei
c 2
2

0
BB@

1
CCA; (41)

with phases

c 1 ¼ tan�1

� �� sin�

1þ � cos�

�
and

c 2 ¼ tan�1

�
� sin�

1� � cos�

�
: (42)

As the magnitude of � defined in Eq. (40) decreases, the
phases c 1;2 go to 0 or �. At this point,

�LmW ¼ 1

2
��L

�̂N
c
R

� � 0 ~mD

~mT
D M̂R

 !
�c
L

N̂R

 !
þ �‘Lm‘‘R

þ gffiffiffi
2

p W�
�
�‘L


��L þ H:c:; (43)

with ~mD ¼ mDUR.
Now we take the limit of large M (seesaw mechanism)

and focus on the mass matrix of the light neutrinos M�,

�LmW ¼ 1

2
��LM��

c
L þ �‘Lm‘‘R þ gffiffiffi

2
p W�

�
�‘L


��L

þ H:c:þ terms inNR; (44)

with

M� ¼ � ~mDM̂
�1
R ~mT

D: (45)

We perform basis rotations from weak to mass eigenstates
in the leptonic sector,

‘̂L ¼ P	
‘‘L; ‘̂R ¼ P	

‘‘R; �̂L ¼ Uy
�P	

��L; (46)

where P‘ and P� are phase matrices and U� is a unitary
matrix chosen so as the matrix

m̂� ¼ Uy
�P	

�M�P
	
�U

	
�

¼ �Uy
�P	

�mDURM̂
�1
R ðUy

�P	
�mDURÞT (47)

is diagonal. Then from the charged current term in Eq. (43)
we obtain the lepton mixing matrix UPMNS as

UPMNS ¼ P	
‘P�U�: (48)

The matrix UPMNS can be written in terms of three mixing
angles and threeCP-odd phases (one for the Dirac neutrinos
and two for the Majorana neutrinos) as [1]

UPMNS ¼
c13c12 c13s12 s13e

�iCP

�c23s12 � s23c12s13e
iCP c23c12 � s23s12s13e

iCP s23c13

s23s12 � c23c12s13e
iCP �s23c12 � c23s12s13e

iCP c23c13

0
BB@

1
CCAQ�; (49)

where Q� ¼ Diagðe�i’1=2; e�i’2=2; 1Þ, and sij � sin�ij and
cij � cos�ij.

It is important to notice that the phase matrix P� can
be rotated away by choosing the matrix P‘ ¼ P�, i.e.,
by an appropriate redefinition of the left-handed

charged lepton fields, which is always possible. This
is an important point because the phase matrix P�

accompanies the Dirac-neutrino mass matrix ~mD and
ultimately the neutrino Yukawa matrix Y� in Eq. (37).
This means that complex phases in Y� can always be
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rotated away by appropriately choosing the phases of
left-handed charged lepton fields. Hence without loss of
generality the eigenvalues y�1 , y

�
2 , and y�3 of Y� can be

real and positive. The Yukawa matrix Y� can then be
written as

Y� ¼ y�3
ffiffiffi
3

p y1 0 0
0 y2 0
0 0 1

0
@

1
AUy

!; (50)

where y1 ¼ jy�1=y�3 j; y2 ¼ jy�2=y�3 j, and U! is given in

Eq. (9).
Concerning CP violation, we notice that the CP phases

c 1, c 2 coming from MR only take part in low-energy CP
violation, as can be seen in Eqs. (40)–(50). Any
CP-violation relevant for leptogenesis is associated with
the neutrino Yukawa matrix ~Y� ¼ Y�UR and the combina-

tion of Dirac neutrino Yukawa matrices, H � ~Yy
�
~Y� ¼

Uy
RY

y
�Y�UR, which is

H ¼ 3jy�3 j2

1þ4y21þy22
2

e�i
c 1
2ffiffi
2

p ð2y21 � y22 � 1Þ i
ffiffi
3

p
e
i
c 21
2

2 ðy22 � 1Þ
ei

c 1
2ffiffi
2

p ð2y21 � y22 � 1Þ 1þ y21 þ y22 �i
ffiffi
3
2

q
ei

c 2
2 ðy22 � 1Þ

� i
ffiffi
3

p
e�i

c 21
2

2 ðy22 � 1Þ i
ffiffi
3
2

q
e�i

c 2
2 ðy22 � 1Þ 3

2 ð1þ y22Þ

0
BBBBBBB@

1
CCCCCCCA
; (51)

where c ij � c i � c j. As expected, in the limit jy�1 j ¼ jy�2 j ¼ jy�3 j , i.e., y1;2 ! 1, the off-diagonal entries of H
vanish, and there is no CP violation useful for leptogenesis. If the Dirac neutrino Yukawa couplings y�1 , y

�
2 , and

y�3 differ in magnitude, they can play a role in baryogenesis via leptogenesis and nonzero �13 ’ 9� with TBM
ð�23 ’ 45�; �12 ’ 35�Þ. Therefore, a low-energy CP violation in neutrino oscillation and/or a high-energy CP violation
in leptogenesis can be generated by the nondegeneracy of the Dirac neutrino Yukawa couplings and a nonzero phase �
coming from MR.

In the following section we investigate the low-energy phenomenology, namely the possible values of the light neutrino
mixing angles, how the low-energy CP violation could be generated in both normal and inverted mass hierarchies, and
neutrinoless double beta decay, which is a probe of lepton number violation at low energy.

III. PHENOMENOLOGY OF LIGHT NEUTRINOS

After seesawing, in a basis where charged lepton and heavy neutrino masses are real and diagonal, the light neutrino
mass matrix is given by

m� ¼ � ~mDM̂
�1
R ~mT

D ¼ �v2
�

2
Y�URM̂

�1
R UT

RY
T
� ¼ m0

�
1þ 2eic 1

a

�
y21

�
1� eic 1

a

�
y1y2

�
1� eic 1

a

�
y1�

1� eic 1

a

�
y1y2

�
1þ eic 1

2a � 3eic 2

2b

�
y22

�
1þ eic 1

2a þ 3eic 2

2b

�
y2�

1� eic 1

a

�
y1

�
1þ eic 1

2a þ 3eic 2

2b

�
y2

�
1þ eic 1

2a � 3eic 2

2b

�

0
BBBBB@

1
CCCCCA; (52)

where ~mD ¼ v�
~Y�=

ffiffiffi
2

p
and we have defined an overall

scale m0 ¼ v2
�jy�23 j=ð6MÞ for the light neutrino masses.

The mass matrix m� is diagonalized by the PMNS mixing
matrix UPMNS as described above,

m� ¼ UPMNSDiagðm1; m2; m3ÞUT
PMNS: (53)

Here mi (i ¼ 1, 2, 3) are the light neutrino masses.
As is well known, because of the observed hierarchy
j�m2

Atmj � jm2
3 �m2

1j � �m2
Sol � m2

2 �m2
1 > 0, and the

requirement of a Mikheyev-Smirnov-Wolfenstein reso-
nance for solar neutrinos, there are two possible neutrino
mass spectra: (i) the normal mass hierarchy (NMH)
m1 <m2 <m3, and (ii) the inverted mass hierarchy
(IMH) m3 <m1 <m2.

Interestingly, the combination Uy
!UR in Eq. (52) reflects

an exact TBM:

Uy
!UR ¼

ffiffi
2
3

q
1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p � 1ffiffi
2

p

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

0
BBB@

1
CCCA

ei
c 1
2 0 0
0 1 0
0 0 ei

c 2þ�

2

0
B@

1
CA: (54)

Therefore Eq. (52) directly indicates that there could be
deviations from the exact TBM if the Dirac neutrino
Yukawa couplings do not have the same magnitude. In
the limit jy�2 j ¼ jy�3 j (y2 ! 1), the mass matrix in

Eq. (52) acquires a �-� symmetry that leads to �13 ¼ 0
and �23 ¼ ��=4. Moreover, in the limit jy�1 j ¼ jy�2 j ¼
jy�3 j (y1; y2 ! 1), the mass matrix (52) gives the TBM

angles in Eq. (1) and the corresponding mass eigenvalues

m1 ¼ 3m0

a
; m2 ¼ 3m0; m3 ¼ 3m0

b
: (55)

These mass eigenvalues are disconnected from the mixing
angles. However, recent neutrino data, i.e., �13 � 0,
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require deviations of y1;2 from unity, leading to a possibil-

ity to search forCP violation in neutrino oscillation experi-
ments. These deviations generate relations between mixing
angles and mass eigenvalues.

Todiagonalize the abovemassmatrixEq. (52),we consider

the Hermitian matrix m�m
y
� ¼UPMNSDiagðm2

1;m
2
2;m

2
3Þ�

Uy
PMNS, from which we obtain the masses and mixing angles.

To see how the neutrino mass matrix given by Eq. (52) can
lead to deviations of neutrino mixing angles from their
TBM values, we first introduce three small quantities

�i, (i ¼ 1, 2, 3), which are responsible for the deviations of
the �jk from their TBM values:

�23 ¼ ��

4
þ �1; �13 ¼ �2;

�12 ¼ sin�1

�
1ffiffiffi
3

p
�
þ �3:

(56)

Then the PMNS mixing matrix up to order �i can be
written as

UPMNS ¼

ffiffi
2

p ��3ffiffi
3

p 1þ�3
ffiffi
2

pffiffi
3

p �2e
�iCP

� 1þ�1þ�3
ffiffi
2

pffiffi
6

p þ �2e
iCPffiffi
3

p
ffiffi
2

p þ�1
ffiffi
2

p ��3ffiffi
6

p þ �2e
iCPffiffi
6

p �1þ�1ffiffi
2

p

�1þ�1þ�3
ffiffi
2

pffiffi
6

p � �2ffiffi
3

p eiCP

ffiffi
2

p ��3�
ffiffi
2

p
�1ffiffi

6
p � �2ffiffi

6
p eiCP 1þ�1ffiffi

2
p

0
BBBBB@

1
CCCCCAQ� þOð�2i Þ: (57)

The small deviation �1 from the maximality of the atmospheric mixing angle �23 is expressed in terms of the parameters
in Eq. (B1) in Appendix B as

tan�1 ¼ Rð1þ y2Þ � Sðy2 � 1Þ
Rðy2 � 1Þ � Sð1þ y2Þ : (58)

In the limit of y1, y2 ! 1, �1 goes to zero (or equivalently �23 ! ��=4) due to R, S ! 0. The reactor angle �13 and the
Dirac-CP phase CP are expressed as

tan2�13 ¼ y1js23ð3Q� PÞy2 � c23ð3Qþ PÞ � 3ifs23ðR� SÞy2 þ c23ðRþ SÞgj
ðFþGþ 9K

4 þ 3D
2 Þðc223 þ y22s

2
23Þ þ y2ðFþG� 9K

4 Þ sin2�23 � y21
~A

;

tanCP ¼ 3
ðR� SÞ2 þ y22ðRþ SÞ2

ðPþQÞðR� SÞ � y22ðP�QÞðRþ SÞ ;
(59)

where the parameters P, Q, F, G, K, D and ~A are given in Eq. (B1) in Appendix B. In the limit of y1, y2 ! 1, the
parameters Q, R, S go to zero, which in turn leads to �13 ! 0 and CP ! 0 as expected. Finally, the solar mixing angle is
given by

tan2�12 ¼ 2y1
y2c23ð3Q� PÞ þ s23ð3Qþ PÞ

c13ð�2 ��1Þ : (60)

Since in the limit y1, y2 ! 1 the parameters in Eq. (60) behave as Q ! 0, P ! 6ð 1
a2
� 1Þ, �1 ! 3ð1þ 2

a2
Þ and �2 !

6ð1þ 1
2a2

Þ, it is clear that the mixing angle tan2�12 goes to 2
ffiffiffi
2

p
, that is, �12 ! sin�1ð1= ffiffiffi

3
p Þ.

The squared-mass eigenvalues of the three light neutrinos result in

m2
1 ¼ m2

0

�
s212�1 þ c212�2 � y1

y2c23ð3Q� PÞ þ s23ð3Qþ PÞ
2c13

sin2�12

	
;

m2
2 ¼ m2

0

�
c212�1 þ s212�2 þ y1

y2c23ð3Q� PÞ þ s23ð3Qþ PÞ
2c13

sin2�12

	
;

m2
3 ¼ m2

0

�
�
FþGþ 9K

4
þ 3D

2

�
ðc223 þ y22s

2
23Þ þ y2

�
FþG� 9K

4

�
sin2�23

�
c213 þ y21

~As213

� y1 sin2�13
2

½c23ðð3Qþ PÞ cosCP � 3ðRþ SÞ sinCPÞ þ s23y2ðð3Q� PÞ cosCP þ 3ðR� SÞ sinCPÞ�
	
: (61)

We see from Eqs. (60) and (61) that the deviation �3 from tri-maximality of solar mixing angle �12 can be expressed as

2
ffiffiffi
2

p
cos2�3 þ sin2�3 ¼ 3y1m

2
0fy2c23ð3Q� PÞ þ s23ð3Qþ PÞg

c13�m
2
21

: (62)
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Now we perform a numerical analysis using the linear
algebra tools in Ref. [20]. The Daya Bay and RENO
experiments have accomplished the measurement of three
mixing angles �12, �23, and �13 from three kinds of neu-
trino oscillation experiments. A combined analysis of the
data from the T2K, MINOS, Double Chooz, Daya Bay and
RENO experiments shows [7] that, for the normal mass
hierarchy (NMH) and inverted mass hierarchy (IMH),
respectively,

sin2�13 ¼ 0:026þ0:003ðþ0:010Þ
�0:004ð�0:011ÞNMH;h

0:027þ0:003ðþ0:010Þ
�0:004ð�0:011ÞIMH

i
(63)

or equivalently

�13 ¼ 9:28�þ0:53�ðþ1:66�Þ
�0:75�ð�2:24�Þ NMH;h

9:46þ0:52�ðþ1:64�Þ
�0:73�ð�2:19�ÞIMH

i
(64)

at the 1�ð3�Þ level. The hypothesis �13 ¼ 0 is now rejected
at the 8� significance level. In addition to the measurement
of the mixing angle �13, the global fit of the neutrino mixing
angles and of the mass-squared differences at the 1� ð3�Þ
level is given by [7]

�12 ¼ 34:45�þ0:92�ðþ3:02�Þ
�1:05�ð�3:14�Þ ;

�23 ¼ 44:43�þ4:60�ðþ8:70�Þ
�2:87�ð�5:78�Þ NMH;

½46:72�þ2:89�ðþ6:41�Þ
�4:01�ð�8:07�Þ IMH�

�m2
Sol½10�5 eV2� ¼ 7:62þ0:19ðþ0:58Þ

�0:19ð�0:50Þ;

�m2
Atm½10�3 eV2� ¼

8><
>:
2:53þ0:08ðþ0:24Þ

�0:10ð�0:27Þ; NMH

2:40þ0:10ðþ0:28Þ
�0:07ð�0:25Þ; IMH

: (65)

The matrices mD and M̂R in Eq. (52) contain seven
parameters : y�3 , M, v�, y1, y2, �, �. The first three

(y�3 ,M, and v�) lead to the overall neutrino scale parameter

m0. The next four ðy1; y2; �; �Þ give rise to the deviations
from TBM as well as the CP phases and corrections to the
mass eigenvalues [see Eq. (55)].
In our numerical examples, we take M ¼ 10 TeV and

v� ¼ v� ¼ 123 GeV, for simplicity, as inputs. Since the

neutrino masses are sensitive to the combination m0 ¼
v2
�jy�23 j=ð6MÞ, other choices of M and v� give identical

results. Then the parameters m0, y1, y2, �, � can be
determined from the experimental results of three mixing
angles, �12, �13, �23, and the two mass-squared differences,
�m2

21, �m
2
31. In addition, the CP phases CP, ’1;2 can be

predicted after determining the model parameters. Using
the formulas for the neutrino mixing angles and masses and
our values of M, v�, v�, we obtain the following allowed

regions of the unknown model parameters: for the normal
mass hierarchy (NMH),4

0:17&�&0:90; 0:74&y1&1:0;

0:90&y2&1:11; 94�&�&119�

240�&�&265�; 1:8&m0�10�2½eV�&6:0; (66)

For the inverted mass hierarchy (IMH),

0:31&�&0:92; 0:84&y1&1:15;

0:65&y2&1:28; 90�&�&117�

245�&�&265�; 1:7&m0�10�2½eV�&4:5: (67)

Note that here we have used the 3� experimental bounds
on �12, �23, �m

2
21, �m

2
31 in Eq. (65), except for �13 < 12�

for which we use the values in Eqs. (66) and (67). For these

2
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FIG. 1 (color online). The reactor mixing angle �13 versus the ratio of first-to-second generation neutrino Yukawa couplings y�1=y
�
2

(left-hand plot) and the parameter � ¼ jy�Rv	=Mj (right-hand plot). The (red) crosses and (blue) dots represent the results for the

normal and the inverted mass hierarchy, respectively. The horizontal solid (dotted) lines in both plots indicate the upper and lower
bounds on �13 for inverted (normal) mass hierarchy given in Eq. (64) at the 3� level.

4When y2 ¼ 1 and around there, there exist other parameter
spaces giving very small values of �13. So, we have neglected
them in our numerical result for normal mass hierarchy.
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parameter regions, we investigate how a nonzero �13 can
be determined for the normal and inverted mass hierarchy.
In Figs. 1–5, the data points represented by (blue) dots and
(red) crosses indicate results for the inverted and normal
mass hierarchy, respectively. The left-hand plot in Fig. 1
shows how the mixing angle �13 depends on the ratio
y1=y2 ¼ y�1=y

�
2 of the first- and second-generation neutrino

Yukawa couplings; the right-hand plot shows how �13
depends on the parameter � ¼ jy�Rv	=Mj. We see that

the measured value of �13 from the Daya Bay and RENO
experiments can be achieved at 3�’s for 0:75< y1=y2 < 1
(NMH), 1:1< y1=y2 < 1:3 and y1=y2  0:9 (IMH),
0:17 & � & 0:82 (NMH) and 0:3< � & 0:74 (IMH).
Figure 2 shows the atmospheric mixing angle �23 as a
function of the phase � of y�Rv	=M.

To see how the parameters are correlated with
low-energy CP violation observables measurable through
neutrino oscillations, we consider the leptonic CP viola-
tion parameter defined by the Jarlskog invariant [21]

JCP � Im½Ue1U�2U
	
e2U

	
�1�

¼ 1

8
sin2�12 sin2�23 sin2�13 cos�13 sinCP: (68)

The Jarlskog invariant JCP can be expressed in terms of

the elements of the matrix h ¼ m�m
y
� [22]:

JCP ¼ � Imfh12h23h31g
�m2

21�m
2
31�m

2
32

: (69)

The behavior of JCP as a function of �13 is plotted on the
left-hand plot of Fig. 3. We see that the value of jJCPj lies in
the range 0–0.04 (NMH) and 0.02–0.04 (IMH) for the
measured value of �13 at 3�’s. Also, in our model we have

Imfh12h23h31g¼ 27m6
0

4a4b3
y21y

2
2ð1�y22Þsinc 2f. . . :g; (70)

in which f. . . ::g stands for a complicated lengthy function
of y1, y2, a, b, c 1 and c 2. Clearly, Eq. (70) indicates that in
the limit of y2 ! 1 or sinc 2 ! 0 the leptonic CP violation
JCP goes to zero. When y2 � 1, i.e., for the normal hier-
archy case, JCP could go to zero as sinc 2 of Eq. (70). In
the case of the inverted hierarchy, JCP has nonzero values
for the measured range of �13 while JCP goes to zero for
�13 ! 0, which corresponds to y2 ! 1. The right-hand plot
of Fig. 3 shows the behavior of the DiracCP phase CP as a
function of �23, where CP can have discrete values around
50�, 120�, 230�, and 310� for the inverted mass hierarchy
(for the normal mass hierarchy, CP can vary over a wide
range except near 90� and 270�). Future precise measure-
ments of �23, whether �23 > 45� or �23 < 45�, will provide
more information on CP.
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FIG. 3 (color online). The Jarlskog invariant JCP versus the reactor angle �13 (left-hand plot), and the Dirac CP phase CP versus �23
(right-hand plot). The (red) crosses and (blue) dots represent the results for the normal and inverted mass hierarchy, respectively. The
vertical solid (dashed) lines in both plots indicate the upper and lower bounds on �13 for the inverted (normal) mass hierarchy given in
Eq. (64) at the 3� level.
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FIG. 2 (color online). The atmospheric mixing angle �23
versus the phase � of the parameter combination y�Rv	=M.

The (red) crosses and (blue) dots represent the results for the
normal and inverted mass hierarchy, respectively.
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Figure 4 shows how the values of �13 depend on the
mixing angles �23 and �12. As can be seen in the left-hand
plot of Fig. 4, the behavior of �23 in terms of the measured
values of �13 at 3�’s for the normal hierarchy is different
than for the inverted hierarchy. For the normal hierarchy
we see that the measured values of �13 can be achieved for
43� < �23 < 47� and �23 � 45�, with small deviations
from maximality, while for the inverted hierarchy 50� &
�23 & 53:1� and 38:6� & �23 & 40�, which are excluded
at 1� by the experimental bounds as can be seen in
Eq. (65).5 From the right-hand plot of Fig. 4, we see that
the predictions for �13 do not strongly depend on �12 in the
allowed region.

Moreover, we can straightforwardly obtain the effective
neutrino mass jmeej that characterizes the amplitude for
neutrinoless double beta decay:

jmeej �
��������
X
i

ðUPMNSÞ2eimi

��������; (71)

where UPMNS is given in Eq. (57). The left-hand and
right-hand plots in Fig. 5 show the behavior of the effec-
tive neutrino mass jmeej in terms of �13 and the lightest
neutrino mass, respectively. In the left-hand plot of Fig. 5,
for the measured values of �13 at 3�’s, the effective
neutrino mass jmeej can be in the range 0:04 &
jmeej½eV�< 0:15 (NMH) or 0:06 & jmeej½eV� & 0:11
(IMH). The right-hand plot of Fig. 5 shows jmeej as a
function of mlightest, where mlightest ¼ m1 for the normal

mass hierarchy and mlightest ¼ m3 for the inverted mass

hierarchy. Our model predicts that the effective mass
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5Interestingly, the most recent data of MINOS seem to disfavor
the maximal mixing in the atmospheric mixing angle, Eq. (4),
indicating that the inverted mass hierarchy may be favored.
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jmeej is within the sensitivity of planned neutrinoless
double-beta decay experiments.

IV. CONCLUSIONS

We have suggested a novel and simple scenario to gen-
erate neutrino masses and mixings with a discrete A4

symmetry that is spontaneously broken. In particular our
model can accommodate in a renormalizable Lagrangian
a large value of the mixing angle, �13, consistent with
the recent reactor neutrino experiments Daya Bay and
RENO, as well as high-energy CP violation interesting
for leptogenesis.

In our model we have introduced a right-handed
neutrino NR, a real gauge-singlet scalar 	, and an
SUð2ÞL-doublet scalar �, all of which are A4 triplets. The
light neutrino masses are generated by a seesaw mechanism
in which we have assumed the right-handed neutrino masses
are at the TeV scale (to evade the introduction of higher-
dimensional operators). Getting VEVs along the direction
h	i ¼ v	ð1; 0; 0Þ and h�0i ¼ v�ð1; 1; 1Þ, which break the

A4 symmetry down to a Z2 (S-flavor-parity) and a Z3

(T-flavor) symmetry, respectively, one obtains bimaximal
mixing at the right-handed neutrino sector and trimaximal
mixing at the light Dirac neutrino sector with nondegenerate
Yukawa couplings that deform the exact TBM pattern. The
resulting light neutrino mixing matrix is in the form of a
deviated TBM generated through unequal neutrino Yukawa
couplings, as can be seen in Fig. 1. In the limiting case of
equal active-neutrino Yukawa couplings, the mixing matrix
recovers the exact TBM. In addition, we have shown that
unequal neutrino Yukawa couplings can provide a source of
high-energy CP violation, perhaps strong enough to be
responsible for leptogenesis. The stability of the vacuum
alignments we assume are guaranteed, for example, by
embedding our model in an extra dimension.

We showed that deviations from the TBM of about 20%
are enough to explain �13  9�. We predicted that the CP
violating Dirac phase CP may have discrete values (see
Fig. 3). Therefore the measurement of the phase CP in the
next-generation neutrino experiments can rule out or sup-
port our model. We have also shown that the inverted mass
hierarchy may be excluded by a global analysis using 1�
experimental bounds, while the most recent MINOS data
seem to favor it. We also predicted an effective neutrino
mass in neutrinoless double-beta decay in the range,
0:04 & jmeej½eV�< 0:15 (for the normal hierarchy) and
0:06 & jmeej½eV� & 0:11 (for the inverted hierarchy),
both ranges within reach of near-future neutrinoless double
beta decay experiments.
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APPENDIX A: THE HIGGS POTENTIAL

In this appendix we present our Higgs potential and its
minimization, as well as our prescription for effecting the
stability of the vacuum alignment. We solve the vacuum
alignment problem by extending the model into a spatial
extra dimension y [12]. We assume that each field lives on a
4D brane either at y ¼ 0 or at y ¼ L, as shown in Fig. 6.
The heavy neutrino masses arise from local operators at
y ¼ 0, while the charged fermion masses and the neutrino
Yukawa interactions are realized by nonlocal effects in-
volving both branes, a rigorous explanation of this possi-
bility is beyond the scope of this paper.
The most general renormalizable scalar potential for

the Higgs fields �, � and 	, invariant under SUð2ÞL �
Uð1ÞY � A4 and obeying the conditions in the previous
paragraph, is then given by

V ¼ Vy¼0 þ Vy¼L; (A1)

where

Vy¼0 ¼ Vð�Þ þ Vð�Þ þ Vð��Þ; (A2)

Vy¼L ¼ Vð	Þ; (A3)

and

Vð�Þ¼�2
�ð�y�Þ1þ��

1 ð�y�Þ1ð�y�Þ1þ��
2 ð�y�Þ10 ð�y�Þ100

þ�
�
3 ð�y�Þ3sð�y�Þ3sþ�

�
4 ð�y�Þ3að�y�Þ3a

þf��
5 ð�y�Þ3sð�y�Þ3aþH:c:g; (A4)

Vð�Þ¼�2
�ð�y�Þþ��ð�y�Þ2;

Vð	Þ¼�2
	ð		Þ1þ�

	
1 ð		Þ1ð		Þ1þ�

	
2 ð		Þ10 ð		Þ100

þ�	
3 ð		Þ3sð		Þ3sþ�	

4 ð		Þ3að		Þ3a
þ�	

5 ð		Þ3sð		Þ3aþ�	
1	ð		Þ3sþ�	

2	ð		Þ3a ;
(A5)

FIG. 6. Fifth dimension y and locations of scalar and fermion
fields on the brane at y ¼ 0 and y ¼ L.
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Vð��Þ ¼ �
��
1 ð�y�Þ1ð�y�Þ þ �

��
2 ½ð�y�Þð�y�Þ�1

þ f���
3 ½ð�y�Þð�y�Þ�1 þ H:c:g (A6)

þ f���
4 ð�y�Þ3sð�y�Þ þ H:c:g

þ f���
5 ð�y�Þ3að�y�Þ þ H:c:g: (A7)

Here ��, ��, �	, �	
1 and �	

2 have mass

dimension-1, while ��
1;...;5, ��, �	

1;...;5 and ���
1;...;5 are

dimensionless. In Vð��Þ the usual mixing term
�y� is forbidden by the A4 symmetry. In the scalar
potential (A1)–(A7) we have for simplicity assumed that

CP is conserved, and the couplings �
��
3 , �

��
4 and �

�
5

are real.
The vacuum configuration is obtained by the vanishing

of the derivative of V with respect to each component of
the scalar fields �, �i, 	iði ¼ 1; 2; 3Þ. The vacuum align-
ment of the field � is determined by

ffiffiffi
2

p @V

@�0
1

��������h�0
i i¼v�i

¼ v�1

2
f2v2

�1
ð��

1 þ ��
2 Þ þ 2�2

� þ ðv2
�2

þ v2
�3
Þð2��

1 � ��
2 þ 4��

3 Þ þ v2
�ð���

1 þ ���
2 þ 2���

3 Þg

þ 3v�2
v�3

v��
��
4 ¼ 0;ffiffiffi

2
p @V

@�0
2

��������h�0
i i¼v�i

¼ v�2

2
f2v2

�2
ð��

1 þ ��
2 Þ þ 2�2

� þ ðv2
�1

þ v2
�3
Þð2��

1 � ��
2 þ 4��

3 Þ þ v2
�ð���

1 þ ���
2 þ 2���

3 Þg

þ 3v�1
v�3

v��
��
4 ¼ 0;ffiffiffi

2
p @V

@�0
3

��������h�0
i i¼v�i

¼ v�3

2
f2v2

�3
ð��

1 þ ��
2 Þ þ 2�2

� þ ðv2
�1

þ v2
�2
Þð2��

1 � ��
2 þ 4��

3 Þ þ v2
�ð���

1 þ ���
2 þ 2���

3 Þg

þ 3v�1
v�2

v��
��
4 ¼ 0: (A8)

From this set of three equations, we obtain the solution

h�0
1i ¼ h�0

2i ¼ h�0
3i � v� ¼ �3v��

��
4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9v2

��
��2
4 � 2ð3��

1 þ 4�
�
3 Þð2�2

� þ v2
�ð���

1 þ �
��
2 þ 2�

��
3 ÞÞ

q
2ð3��

1 þ 4�
�
3 Þ

� 0: (A9)

This VEV breaks A4 down to a residual Z3.
The vanishing of the derivative of V with respect to � reads

ffiffiffi
2

p @V

@�0

��������h�0i¼v�

¼ v�

�
v2
��

� þ�2
� þ 1

2
ð���

1 þ �
��
2 þ 2�

��
3 Þðv2

�1 þ v2
�2 þ v2

�3Þ
	
þ 3v�1

v�2
v�3

�
��
4 ¼ 0: (A10)

The real-valued solution of Eq. (A10), for real-valued parameters, is

v� ¼ �ð23Þ1=3 ~b
f�9~a2~cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4~a3 ~b3 þ 27~a4~c2Þ

q
g1=3

þ f�9~a2~cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4~a3 ~b3 þ 27~a4~c2Þ

q
g1=3

~að18Þ1=3 ; (A11)

where ~a ¼ ��, ~b ¼ �2
� þ 3

2v
2
�ð���

1 þ �
��
2 þ 2�

��
3 Þ and ~c ¼ 3v3

��
��
4 .

Finally, the minimization equations for the vacuum configuration of 	 are given by

@V

@	1

��������h	ii¼v	i

¼ 2v	1
ð�2

	 þ ð2�	
1 � �

	
2 þ 4�

	
3 Þðv2

	2
þ v2

	3
Þ þ 2ð�	

1 þ �
	
2 Þv2

	1
Þ þ 6�

	
1v	2

v	3
¼ 0;

@V

@	2

��������h	ii¼v	i

¼ 2v	2
ð�2

	 þ ð2�	
1 � �

	
2 þ 4�

	
3 Þðv2

	1
þ v2

	3
Þ þ 2ð�	

1 þ �
	
2 Þv2

	2
Þ þ 6�

	
1v	1

v	3
¼ 0;

@V

@	3

��������h	ii¼v	i

¼ 2v	3
ð�2

	 þ ð2�	
1 � �	

2 þ 4�	
3 Þðv2

	1
þ v2

	2
Þ þ 2ð�	

1 þ �	
2 Þv2

	3
Þ þ 6�	

1v	1
v	2

¼ 0:

(A12)

From these equations, we obtain the solution6

6There exists another nontrivial solution h	i ¼ v	ð1; 1; 1Þ with v	 ¼ �3�
	
1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9�

	2
1
�8�2

	ð3�	
1
þ4�

	
3
Þ

p
4ð3�	

1
þ4�	

3
Þ . But this solution is not of interest for

our purposes.
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h	1i � v	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��2
	

2ð�	
1 þ �	

2 Þ

vuut � 0; h	2i ¼ h	3i ¼ 0: (A13)

APPENDIX B: PARAMETRIZATION OF THE NEUTRINO MASS MATRIX

We parametrize the Hermitian matrix m�m
y
� as follows:

m�m
y
� ¼ m2

0

~Ay21 y1y2
�
3Q�P

2 � i 3ðR�SÞ
2

�
y1
�
� 3QþP

2 � i 3ðRþSÞ
2

�
y1y2

�
3Q�P

2 þ i 3ðR�SÞ
2

�
y22

�
FþGþ 9K

4 þ 3D
2

�
y2
�
FþG� 9K

4 � i 3Z2

�
y1
�
� 3QþP

2 þ i 3ðRþSÞ
2

�
y2
�
FþG� 9K

4 þ i 3Z2

�
FþGþ 9K

4 þ 3D
2

0
BBBBB@

1
CCCCCA:

All parameters appearing here are real, and equal to

~A ¼ 1þ y21 þ y22 þ
1þ 4y21 þ y22

a2
� 2ð1� 2y21 þ y22Þ cosc 1

a
; K ¼ 1þ y22

b2
; F¼ 1þ y21 þ y22 þ 1þ4y2

1
þy2

2

4a2
;

G ¼ ð1� 2y21 þ y22Þ cosc 1

a
; D ¼ ð1� y22Þ

cosc 12 þ 2a cosc 2

ab
; Z ¼ ð1� y22Þ

sinc 12 � 2a sinc 2

ab
;

P ¼ 1þ 4y21 þ y22
a2

� 2ð1þ y21 þ y22Þ þ
ð1� 2y21 þ y22Þ cosc 1

a
; Q ¼ ð1� y22Þ

cosc 12 � a cosc 2

ab
;

S ¼ ð1� y22Þ
sinc 12 þ a sinc 2

ab
; R ¼ ð1� 2y21 þ y22Þ sinc 1

a
: (B1)

In Eq. (60) the parameters �1, �2 are defined by

�1 ¼ c213y
2
1
~Aþ s213

��
FþGþ 9K

4
þ 3D

2

�
ðc223 þ y22s

2
23Þ þ y2

�
FþG� 9K

4

�
sin2�23

	
� y1

2
sin2�13f3c23ðRþ SÞ sinCP

� ð3Qþ PÞ cosCP þ y2s23ð3ðR� SÞ sinCP þ ð3Q� PÞ cosCPÞ
	

�2 ¼
�
FþGþ 9K

4
þ 3D

2

�
ðs223 þ y22c

2
23Þ � y2

�
FþG� 9K

4

�
sin2�23: (B2)
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