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Simple renormalizable flavor symmetry for neutrino oscillations
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The recent measurement of a nonzero neutrino mixing angle 6,3 requires a modification of the
tri-bimaximal mixing pattern that predicts a zero value for it. We propose a new neutrino mixing pattern
based on a spontaneously broken A, flavor symmetry and a type-I seesaw mechanism. Our model allows
for approximate tri-bimaximal mixing and nonzero 6,3, and contains a natural way to implement low- and
high-energy CP violations in neutrino oscillations, and leptogenesis with a renormalizable Lagrangian.
Both normal and inverted mass hierarchies are permitted within 30 experimental bounds, with the
prediction of small (large) deviations from maximality in the atmospheric mixing angle for the normal
(inverted) case. Interestingly, we show that the inverted case is excluded by the global analysis in 1o
experimental bounds, while the most recent MINOS data seem to favor the inverted case. Our model make
predictions for the Dirac CP phase in the normal and inverted hierarchies, which can be tested in near-
future neutrino oscillation experiments. Our model also predicts the effective mass |m,,| measurable in
neutrinoless double beta decay to be in the range 0.04 < |m,,| < 0.15 eV for the normal hierarchy and
0.06 < |m,,| = 0.11 eV for the inverted hierarchy, both of which are within the sensitivity of the next

generation experiments.

DOI: 10.1103/PhysRevD.86.053004

INTRODUCTION

The large values of the solar (6, = 35°) and atmospheric
(03 = 45°) [1] neutrino mixing angles may be telling us
about new symmetries in the lepton sector not present in the
quark sector, and may provide us with a clue to the nature
of the quark-lepton physics beyond the standard model.
Theoretically, a great deal of effort has been put into con-
structing flavor models with high predictive power, especially
those giving the tri-bimaximal (TBM) mixing angles [2]:
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However, the Daya Bay and RENO collaborations [3,4] have

reported the first measurements of a nonzero value for the

mixing angle 65:

sin?26; = 0.092 = 0.016(stat) = 0.005(syst),  (2)
and
§in220,; = 0.113 = 0.013(stat) = 0.019(syst),  (3)

respectively, corresponding to an angle 6,3 = 9°. These
results are in good agreement with the previous data from
the T2K, MINOS and Double Chooz collaborations [5]. A
nonzero value of 65 indicates that the TBM pattern for
neutrino mixing should be modified. In addition, at the
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Neutrino 2012 conference in Kyoto, the MINOS
Collaboration has announced a nonmaximal value for the
atmospheric mixing angle 6,5 [6],

§in220,; = 0.947004 + 0.04, )

with maximal mixing disfavored at the 88% C.L. This result,
which was not included the global analysis in Ref. [7], comes
from the analysis of v, disappearance in the MINOS accel-
erator beam, and points to one of two possible values for 6,3,
namely 6,3 = 38° or 6,3 = 52°. If it holds, this result also
calls for a deviation from the TBM mixing pattern.
Furthermore, the presence of CP violation in the lepton
sector is still unknown. Experimentally, CP violation may
become observable in a future generation of neutrino oscil-
lation experiments (T2K, NO»A) [8]. Theoretically, a flavor
symmetry that describes and explains the large reactor
mixing angle 6,3 =9° while keeping the TBM values
6,3 = 45° and 6, = 35° may originate in two ways: (i) a
large 6,3 = Ac/+/2, with A the Cabbibo angle, mainly
governed by higher-order corrections in the charged lepton
sector [9], where the TBM pattern is a good zero-order
approximation to reality, or (ii) a large 65 from the neutrino
sector itself through a new flavor symmetry without resorting
to higher-order corrections in the charged lepton sector [10].
In this paper, we propose a new and simple model for the
lepton sector with A4 flavor symmetry in the framework of a
type-I seesaw mechanism. It is different from previous works
using A, flavor symmetries [11-14]" in that the Dirac neu-
trino Yukawa coupling constants do not all have the same

'Ma and Rajasekaran [15] have introduced for the first time
the A4 symmetry to avoid the mass degeneracy of u and 7 under
a u-7 symmetry [16].
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magnitude. Our model can naturally explain the TBM large
value of 6,5 and can also provide a possibility for low-energy
CP violation in neutrino oscillations with a renormalizable
Lagrangian and small Yukawa coupling parameters, i.e.,
neutrino masses. The seesaw mechanism, besides explaining
of smallness of the measured neutrino masses, has another
appealing feature: generating the observed baryon asymme-
try in our Universe by means of leptogenesis [17]. Since the
conventional A, models realized with type-I or -III seesaw
and a tree-level Lagrangian lead to an exact TBM and
vanishing leptonic CP-asymmetries responsible for lepto-
genesis (due to the proportionality of the Y, ! Y, combination
of the Dirac neutrino Yukawa matrix Y, to the unit matrix),
authors usually introduce soft-breaking terms or higher-
dimensional operators with many parameters, in order to
explain the nonzero 63 as well as the nonvanishing
CP-asymmetries.

Our model is based on a renormalizable SU(2); X
U(1)y X A, Lagrangian with minimal Yukawa couplings,
and gives rise to a nondegenerate Dirac neutrino Yukawa
matrix and a unique CP-violation pattern. This opens the
possibility of explaining the nonzero value of 65 = 9° still
maintaining TBM for the other two neutrino mixing angles
0,3 ~45° and 6, =~ 35°; furthermore, this allows an
economic way to achieve low-energy CP violation in
neutrino oscillations as well as high-energy CP violation
for leptogenesis.

This paper is organized as follows. In the next section,
we lay down the particle content and the field representa-
tions under the A, flavor symmetry in our model, as well as
explain the characteristic points of our model phenome-
nology at low and high energy. In Sec. III, we present the
neutrino mixing angles, and how the low-energy CP vio-
lation could be generated in both normal and inverted mass
hierarchies, including our predictions for neutrinoless
double beta decay. We give our conclusions in Sec. 1V,
and in Appendix A we outline the minimization of the
scalar potential and the vacuum alignments.

II. FLAVOR A, SYMMETRY FOR NONZERO 6,3
AND LEPTOGENESIS

In the absence of flavor symmetries, particle masses and
mixings are generally undetermined in a gauge theory.
Here, to understand the present nonzero 6,3 and TBM
angles (65, 0,3) of the neutrino oscillation data and baryo-
genesis via leptogenesis, we propose a new discrete sym-
metry based on an A, flavor symmetry for leptons in a
renormalizable Lagrangian.

The group A, is the symmetry group of the tetrahedron,
isomorphic to the finite group of the even permutations of
four objects. The group A, has two generators, denoted S
and T, satisfying the relations S> = T3 = (ST)® = 1.

?To include the quark sector, the symmetry could be promoted
to the binary tetrahedral group 77 [18].
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In the three-dimensional real representation, S and 7" are
given by

010
S=10 -1 0}, T=|0 0 1} (5
1 00
A, has four irreducible representations: one triplet 3 and
three singlets 1, 1, 1”. An A, triplet (a,, a,, a3) transforms

in the unitary representation by multiplication with the S
and 7 matrices in Eq. (5) above,

a; a ay a)
S a, = —as |, T ar = as |. (6)
as —as as ay

An A, singlet a is invariant under the action of S (Sa = a),
while the action of T produces Ta = a for 1, Ta = wa for
1, and Ta = w?a for 1/, where w = ¢27/3 is a complex
cubic root of unity. Products of two A, representations de-
compose into irreducible representations according to the
following multiplication rules: 3®3 =3, 03, ¢101' @
17,1791"=1,19®1 =1"and 1" ® 1" = 1’. Explicitly,
if (a,, ay, a3) and (b, b,, bs) denote two A, triplets,

(a ® b)3. = (arb3 + asby, asby + aybs, a\by + ayby),

(a ® b)3, = (aybs3 — aszby, asby — a\bs, ayby — ayby),
(a®b); = ab, + ayb, + azb;,

(a®b)y = ayb, + wayb, + w’asbs,

(a ® b)y = ab; + w?ayb, + wasbs. 7

To make the presentation of our model physically more
transparent, we define the T-flavor quantum number 7',
through the eigenvalues of the operator 7, for which
T3 = 1. In detail, we say that a field f has T-flavor
Tf =0, +1, or —1 when it is an eigenfield of the T
operator with eigenvalue 1, w, w2, respectively (in short,
with eigenvalue s for T-flavor T, considering the cy-
clical properties of the cubic root of unity w). The T-flavor
is an additive quantum number modulo 3. We also define
the S-flavor-parity through the eigenvalues of the operator
S, which are +1 and —1 since S? = 1, and we speak of
S-flavor-even and S-flavor-odd fields. For Aj-singlets,
which are all S-flavor-even, the 1 representation has no
T-flavor (T;=0), the 1’ representation has T-flavor
Ty = +1, and the 1”7 representation has 7-flavor
T; = —1. Since for Ay-triplets, the operators S and 7' do
not commute, A-triplet fields cannot simultaneously have
a definite T-flavor and a definite S-flavor-parity. While the
real representation of A, in Egs. (5), in which § is diagonal,
is useful in writing the Lagrangian, the physical meaning
of our model is more apparent in the T-flavor representa-
tion in which 7 is diagonal. This representation is obtained
through the unitary transformation

053004-2



SIMPLE RENORMALIZABLE FLAVOR SYMMETRY FOR ...

)

where A is any A4 matrix in the real representation and

A— A =U,AU],

U,=—=|1 0? o | 9
3
1 o o2
We have
. -1 2 1 0 O
S’=§ -1 , T"=]10 o 0
2 2 -1 0 0 w?

(10)

Despite the physical advantages of the S’, T’ representa-
tion, for clarity of exposition and to avoid confusion and
complications, in this paper we use the real representation
S, T almost exclusively. For reference, an A, triplet field
with components (a;, a,, as) in the real representation can
be expressed in terms of T-flavor eigenfields (a,, a,, a,)
(the notation comes from our lepton assignments below) as

_ae+a#+a7

ay = \/§ ’
_ae+w2aﬂ+wa7 (11)
a2 - \/§ »
g = a, t wa, + a)zaT
;=
) V3
Inversely,
a = aj + ar + as
e \/§ >
_a tway t+ w’a, (12)

12 \/3 4
_apt w’a, + wa;

aT
V3

We extend the standard model (SM) by the inclusion of
an Ay-triplet of right-handed SU(2);-singlet Majorana
neutrinos Np, and the introduction of two types of scalar
Higgs fields besides the usual SM SU(2), -doublet Higgs
bosons @, which we take to be an A,-singlet with no
T-flavor (1 representation): a second SU(2);-doublet of
Higgs bosons 7, which is distinguished from ® by being
an Ay-triplet, and an SU(2); -singlet A,-triplet real scalar
field y:

PHYSICAL REVIEW D 86, 053004 (2012)

n; .
= o | Xj» j=1273.
j

(13)

o
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s 6
o+
~——
3
|

We assign each flavor of leptons to one of the three
A, singlet representations: the electron flavor to the 1
(T-flavor 0), the muon flavor to the 1/ (T-flavor +1), and
the tau flavor to the 1” (T-flavor —1). (Note in this respect
that our A, flavor group is not a symmetry under exchange
of any two lepton flavors, like e and u, for example. Our A4
flavor group is implemented as a global symmetry of the
Lagrangian, later spontaneously broken, but some fields
are not invariant under A, transformations, much in the
same way as the implementation of SU(2); X U(1)y in the
SM, where left-handed and right-handed fermions are as-
signed to different representations of the gauge group.)
Then we take the usual Higgs boson doublet ® to be
invariant under A4, that is to be a flavor-singlet 1 with no
T-flavor. The other Higgs doublet 7, the Higgs singlet y,
and the singlet neutrinos Ny are assumed to be triplets
under A4, and can so be used to introduce lepton-flavor
violation in an A4 symmetric Lagrangian.

The field content of our model and the field assignments
to SU(2); X U(1)y X A, representations are summarized
in Table I. These representation assignments and the re-
quirement that the Lagrangian be renormalizable and
Ay-symmetry forbid the presence of tree-level leptonic
flavor-changing charged currents.

The renormalizable Yukawa interactions in the neutrino
and charged lepton sectors invariant under SU(2); X
U(l)y X A, are (including a Majorana mass term for the
right-handed neutrinos)

= Lyy = YL (INg)1 + y5L,(ANg)y + Y5L,(ANg)1r
1 _ 1 _ _
+ EM(N;QNR)I + EyE(NfeNRhSX + y.L . Peg

+y,L, Pug +y,L . Prp + He, (14)

where % = im,n* and 7, is a Pauli matrix. In this
Lagrangian, each flavor of neutrinos and each flavor of
charged leptons has its own independent Yukawa term, since
they belong to different singlet representations 1, 1/, and 1
of Ay: the neutrino Yukawa terms involve the A-triplets 0
and Np, which combine into the appropriate singlet repre-
sentation; the charged-lepton Yukawa terms involve the
Ay-singlet @ and the Ay-singlet right-handed charged-
leptons eg, wg, and 7. The right-handed neutrinos have
an additional Yukawa term that involves the A,-triplet

TABLE I. Representations of the fields under A4 and SU(2); X U(1)y.
Field L,,L,,L, €rs MR TR Ng X ) n
Ay 1,1,17 1,1,1” 3 3 1 3
SU@2), X U(1)y 2 -9 (1, -1 (1, 0) (1, 0) 2.9 2.9
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SM-singlet Higgs y. The mass term §M(N§Ng); for the
right-handed neutrinos is necessary to implement the seesaw
mechanism by making the right-handed neutrino mass
parameter M large.

The Higgs potential of our model contains many terms
and is listed in Appendix A, Eqs. (A1)—(A7).® We sponta-
neously break the A, flavor symmetry by giving nonzero
vacuum expectation values to some components of the
Ay-triplets y and 7). As seen in Appendix A, the minimi-
zation of our scalar potential gives the following vacuum
expectation values (VEVs), all real:

(= % #0, () =(nd) =Y = % # 0,
i) =v, #0, (xX2) = {x3) = 0. (15)

The SM VEV v = (+2G) /2 = 246 GeV results from

the combination v = 4/v}, + 3v2. The nonzero expecta-

tion value (¢°) = vg/+/2 does not break the A, symmetry,
because the standard model Higgs is A4-flavorless. The
nonzero expectation value (n) = (v, v,, v,)/ /2 breaks
the S-flavor-parity (ny, 72, 13) = (11, =12, —7m3) but
leaves the vacuum T-flavor T = 0. In other words, after
7 acquires a nonzero VEV, the T-flavor is still conserved
but the S-flavor-parity is not. Since 7 appears only in the
Higgs sector and in interactions with the light leptons, we
say that the light neutrino sector has a residual Z; symme-
try expressed by the subgroup {1, T, T?} that leads to the
conservation of T-flavor in terms involving mixing with
the light neutrinos or interactions with the charged leptons.
The nonzero expectation value (y) = (v +» 0, 0) maintains
the S-flavor-parity of the vacuum (it is S-flavor-even) but
gives the vacuum the symmetric combination of 7-flavors
(ap + a.y + a_;)/+/3. That is, after y acquires a nonzero
VEV, the S-flavor-parity is conserved but the T-flavor is
not. Since y appears only in the Higgs sector and in
interactions with the heavy Majorana neutrinos, we say
that the heavy neutrino sector has a residual Z, symmetry
expressed by the subgroup {1, S} leading to the conserva-
tion of S-flavor-parity in terms involving mixing or inter-
actions with the heavy Majorana neutrinos.

When a non-Abelian discrete symmetry like our A4 is
considered, it is crucial to check the stability of the vacuum.
In the presence of two Ay-triplet Higgs scalars y and 7,
Higgs potential terms involving both y and 1, which would
be written as V(y7) in Egs. (A1)-(A7), would be problem-
atic for vacuum stability. Such stability problems can be
naturally solved, for instance, in the presence of extra
dimensions or in supersymmetric dynamical completions

*We note that at TeV-scale the higher-dimensional operators
(d = 5) driven by y and 7 fields are suppressed by a cutoff scale
A which we assume is a very high energy scale, i.e., GUT or
Planck scale. And in this paper we neglect the effects of higher-
dimensional operators.
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[13,19]. In these cases, V(yn) is not allowed or highly
suppressed.

The physical Higgs fields are obtained in the usual way.
In the Higgs sector we have four Higgs doublets ®, 1, 1,
and 73, and three Higgs singlets x;, x», and 3. They
contain in total 16 degrees of freedom: six charged Higgs
fields i, 3, with ;" = (n;)", seven neutral Higgs scalars
h, hy,s, )((1)’2’3, and three Higgs pseudoscalars A; ;3. We
can write, after electroweak- and A,-symmetry breaking
and minimization of the potential,

§D+
q):< 1 . ))
%(Uq) +h+ le)

X1 =V, t X(l)’
— 30 —(
X2 XZ’ X3 X3:

nt

J .

n;, = X , J = 1,2,3.
J (%(Un'khj'i_lAj))

The action of the residual Z, generator S on the physical
fields is

(16)

(N1, Nra» Ng3) = (Ngy, —=Ngy, —Ng3), (17)

O a2 X9 = O = x5 —x3), (18)
(hy, ha, h3) = (hy, —hy, —h3), (19)
(A}, Ay, A3) = (A}, —Ay, —A3), (20)
(i, m3) = (i, =), —n3), 21

all other fields are invariant. The action of the residual Z5
generator T on the physical fields is [the triplet fields ay,
ay, and aj and the triplet fields a,, a,, and a, are linear
combinations of each other, see Eqgs. (11) and (12)]

(e, u, 7) — (e, 0, 0?7), (22)
Ve Vo v7) = (v, 0V, 071,), (23)

(NRe’ NR/.U NRT) - (NRe’ wNR,u,r wZNRT)’ (24)

0 X% XD = (X2 @)Y, @2x9), (25)
(he, by, hy) = (he, @hy,, ©*h,), (26)
(Ao A Ar) = (A, 0A,, ©%A,), 27)
(s mh i) — (), wnl, 0?n)), (28)

all other fields are invariant.
After electroweak and A, symmetry breaking, the neu-
tral Higgs fields acquire vacuum expectation values and
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give masses to the charged leptons and neutrinos: the Higgs
doublet gives Dirac masses to the charged leptons, the
Higgs doublet 1 gives Dirac masses to the three SM
neutrinos, and the Higgs singlet y gives a Majorana mass
to the right-handed neutrino Ng.

The charged lepton mass matrix is automatically di-
agonal due to the A,-singlet nature of the charged lepton
and SM-Higgs fields. The right-handed neutrino mass has

Uy

<
LS4

_£m =

=

+

PHYSICAL REVIEW D 86, 053004 (2012)

the (large) Majorana mass contribution M and a contri-
bution induced by the electroweak-singlet A,-triplet
Higgs boson y when the A;-symmetry is spontaneously
broken.

After the breaking of the flavor and electroweak sym-
metries, with the VEV alignments as in Eq. (15), the
charged lepton, Dirac neutrino and right-handed neutrino
mass terms from the Lagrangian (14) result in

(yeELeR + y,u,/‘_LLMR + nyLTR) + 7{(})1,}176 + ygﬁ,u + ygﬂT)NRl + (yllllje + yéjwﬁu + yngﬂT)NRZ
V2

Y, + ¥ B, + ¥ 0P Ngs) + (N5 Nay + NogNis + NisNgs) + 2K (M) Ny + NosNgo) + H
ViVe T Y07V, T Y30V )INp3 7 WRIVRI R2IVR2 R3IVR3 2 R2IVR3 R3IVR2 -C.

(29)

This form shows clearly that the terms in v, break the S-flavor-parity symmetry (17)—(21), while the other mass terms

preserve it. Passing to the T-flavor eigenfields

_ Ngi + Ngy + Ngs

N, 7 , (30)
Ngi + ©Ng, + 0N,
N, = == 2, 3D
Ngi + @?Ngy + oN
Ng, = R1L T @ \/gz w R3 (32)
with respective T-flavor Ty = 0, +1, —1, the lepton mass Lagrangian reads
Vo > o = 3 vV Vs, Vs,
_'[:m = ﬁ(yeeLeR + y/LMLMR + yTTLTR) + UT) E(yl VeNRe + y2 V/ANR/A + y3 VTNRT)
M \/ C \/ C \/ C y%v/\/ \/C \/ C \/C
+ T(NReNRe + NguNer + N%,Ng,) + T[NReNRe + NguNru + Ng:Ng;
1, _ _ _
- g(Nfee + N, + N%,)(Ng, + Ng,, + Ng,)] + H.c. (33)
f
This form shows clearly that the terms in v, break the I 1 VS MoNo + 7 No+ Tt
T-flavor symmetry (22)—(28), while the other mass terms mW = 5 RVIRIVR vpmpiNg LMmetg
preserve it. g -
Inspection of the mass terms in Eq. (33) indicates + EW# try*v, + He. (34
that, with the VEV alignments in Eq. (15), the A,
symmetry is spontaneously broken to a residual Z,
symmetry in the heavy Majorana neutrino sector (con- 1 0 m e
servation of S-flavor-parity in terms not involving v,, or =—(v, N%) P L)+ 2, mpt
n VL R Ty N LMmetp
hi,3) and a residual Z; symmetry in the Dirac neutrino Mp R R
sector (%onservatlon of T-flavor in terms not involving + iw;f Ly*vy + Hec. 35)
v, or Xi)- \/5

The mass terms in Eq. (29) and the charged gauge
interactions in the weak eigenstate basis can be written in
(block) matrix form as, using N4mpv§ = v, ml Ng,

Here € = (6, s T)’ V= (Vw V,u’ DT)’ NR:(NR],NRQ,NR3),
and
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vy 0 0
me="210 y, 0] (36)
V2 0 0 vy
o ooyroon
mp =2y, =Ly @yt @ 37)
ATE )
Y3 @W7y; wy3
M 0 0
Mrg=|0 M yrv, | (38)
0 yrv, M

To find the neutrino masses and mixing matrix we are to
diagonalize the 6 X 6 matrix

0 mp
(o 2) *

We start by diagonalizing My. For this purpose, we per-
form a basis rotation N = U,EN »» so that the right-handed
Majorana mass matrix M becomes a diagonal matrix Mp

with real and positive mass eigenvalues M; =aM, M,=M
and M5 = bM,

1 0 0
Mg =UMyUpy = MUL[ 0 1 ke |Ug
0 ke 1
aM O 0
=l 0o M 0 | (40)
0 0 bM

where k = |ygv, /M| and ¢ = arg(ygv,/M). We find a =

V1 + k> + 2k cosé, b = 41 + k> — 2k cosé, and a diago-
nalizing matrix

(0 V20 \/e? 0 0
Ur=—%|1 0 -1 0 1 0 | @D
R \/5 s
1 0 1 0 0 e72
with phases
C13C12
Upmns = | —c23812 = spzcppszeider

_ is
§23812 — Cp3C1p813€°<F

where Q, = Diag(e ##1/2, ¢=1#2/2 1), and s;; = sinf;; and
Cij = COSHij.

It is important to notice that the phase matrix P, can
be rotated away by choosing the matrix P, = P, i.e.,
by an appropriate redefinition of the left-handed

PHYSICAL REVIEW D 86, 053004 (2012)

_ _q —ksiné )
Y1 = tan (1 + K cosé and
Kk siné )

1 — kcosé (42)

Y, = tan_l(

As the magnitude of « defined in Eq. (40) decreases, the
phases |, go to 0 or 7r. At this point,

1 _ 2, 0 ﬁ’lD VZ -
—£mW_§(VL NR)(]/T/[%; MR>(N )+€Lm€€R

R

g s
+—=W_{, y*v; + Hc, 43)
\/5 " LY L
Wlth ﬁ’lD = mDUR.
Now we take the limit of large M (seesaw mechanism)
and focus on the mass matrix of the light neutrinos M,

1_ -~ 8 ,_5
_‘EmW = EVLMVVE + €Lm€€R + \/—§WM‘€L')/MVL
+ H.c. + terms in N, (44)
with
M, = —impMg'mlb. (45)

We perform basis rotations from weak to mass eigenstates
in the leptonic sector,

é\L = Psz, éR = PzeR) i)L = UlPT/VL’ (46)

where P, and P, are phase matrices and U, is a unitary
matrix chosen so as the matrix

i, = ULPM,PLU;
= —US P mpUpMz (USPEmpUR)T  (47)

is diagonal. Then from the charged current term in Eq. (43)
we obtain the lepton mixing matrix Upyns as

Upmns = PyP, U, (48)

The matrix Upyng can be written in terms of three mixing
angles and three C P-odd phases (one for the Dirac neutrinos
and two for the Majorana neutrinos) as [1]

C13512 s13e”ocr
_ i5
€23C1p — $23812813€'°¢P spici3 |OQ (49)
_ _ i5
§23C12 — €23812813€ 7" €23C3

charged lepton fields, which is always possible. This
is an important point because the phase matrix P,
accompanies the Dirac-neutrino mass matrix i, and
ultimately the neutrino Yukawa matrix Y, in Eq. (37).
This means that complex phases in Y, can always be
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rotated away by appropriately choosing the phases of
left-handed charged lepton fields. Hence without loss of
generality the eigenvalues y}, y5, and y5 of Y, can be
real and positive. The Yukawa matrix Y, can then be
written as

PHYSICAL REVIEW D 86, 053004 (2012)

where y; = |y}/y3l, y2 = ly3/y¥3l, and U, is given in
Eq. (9).

Concerning CP violation, we notice that the CP phases
Y1, ¥, coming from My only take part in low-energy CP
violation, as can be seen in Egs. (40)-(50). Any

CP-violation relevant for leptogenesis is associated with

yi 0 0 ; the neutrino Yukawa matrix ¥, = Y, Uy and the combina-
Y, = y?\/g 0 y 0|V, (50)  tion of Dirac neutrino Yukawa matrices, H = Y1V, =
0 0 1 ULYLY,Upg, which is
|
1+4y?+y2 e*lﬂ et
+ )21"'}_ 22 (2)7% _ y% -1 tﬁ; 3 (y% —1)
i :
H = 3|y3|? 67;-(2y§ -y3-1) 1+3y2+3 —i\/get%(yg -1 | (51)

R
_lﬁez - ()’2 - 1)

2

where ¢, = ; —

iyBe (03 — 1)

;. As expected, in the limit |y{| = |y3| = [y] , i.e., y;, — 1, the off-diagonal entries of H

3(1+y3)

vanish, and there is no CP violation useful for leptogenesis. If the Dirac neutrino Yukawa couplings y{, y5, and
y4 differ in magnitude, they can play a role in baryogenesis via leptogenesis and nonzero 63 ~9° with TBM
(6,3 =~ 45°, 0, = 35°). Therefore, a low-energy CP violation in neutrino oscillation and/or a high-energy CP violation
in leptogenesis can be generated by the nondegeneracy of the Dirac neutrino Yukawa couplings and a nonzero phase &
coming from Mp.

In the following section we investigate the low-energy phenomenology, namely the possible values of the light neutrino
mixing angles, how the low-energy CP violation could be generated in both normal and inverted mass hierarchies, and
neutrinoless double beta decay, which is a probe of lepton number violation at low energy.

III. PHENOMENOLOGY OF LIGHT NEUTRINOS

After seesawing, in a basis where charged lepton and heavy neutrino masses are real and diagonal, the light neutrino

mass matrix is given by

2
m, = _mDMR D

(-

where mp = v Y,,/ V2 and we have defined an overall
scale my = v? |y32| /(6M) for the light neutrino masses.
The mass matrlx m,, is diagonalized by the PMNS mixing

v A
=S YU URY] = mq (1 -

(1+2p (12 (1=
vy (1+ 5 =303 (1++35 0 | 62)
i (g 250y, (149 -2
[
Vs 0\t 0 o
UbUr=|-% & —&|l 0o 1 o | &b
SRV

matrix Upyns as described above,
m,, = UpynsDiag(m,, my, m3)Ubyxs. (53)

Here m; (i =1, 2, 3) are the light neutrino masses.
As is well known, because of the observed hierarchy
[Am3,,,| = |m3 — m3}| > Ami , = m5 — m7 >0, and the
requirement of a Mikheyev-Smirnov-Wolfenstein reso-
nance for solar neutrinos, there are two possible neutrino
mass spectra: (i) the normal mass hierarchy (NMH)
m; <m, <ms, and (ii) the inverted mass hierarchy
(IMH) m; < m; < m,.

Interestingly, the combination U tu r in Eq. (52) reflects
an exact TBM:

Therefore Eq. (52) directly indicates that there could be
deviations from the exact TBM if the Dirac neutrino
Yukawa couplings do not have the same magnitude. In
the limit [y3| = [y4] (y,— 1), the mass matrix in
Eq. (52) acquires a w-7 symmetry that leads to ;5 =0
and 6,3 = —r/4. Moreover, in the limit |y}| = [y}| =
[y%| (yi,y, — 1), the mass matrix (52) gives the TBM
angles in Eq. (1) and the corresponding mass eigenvalues

m; = %, mp = 3m0, ms3 = % (55)

a b

These mass eigenvalues are disconnected from the mixing
angles. However, recent neutrino data, i.e., 63 # 0,
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require deviations of y; , from unity, leading to a possibil-
ity to search for CP violation in neutrino oscillation experi-
ments. These deviations generate relations between mixing
angles and mass eigenvalues.

To diagonalize the above mass matrix Eq. (52), we consider
the Hermitian matrix m,m} = UpynsDiag(m?, m3, m3)X
U;MNS, from which we obtain the masses and mixing angles.
To see how the neutrino mass matrix given by Eq. (52) can
lead to deviations of neutrino mixing angles from their
TBM values, we first introduce three small quantities

|

2—e;
3

PHYSICAL REVIEW D 86, 053004 (2012)

€;, (i =1, 2, 3), which are responsible for the deviations of
the 6, from their TBM values:

T
923:_2"'61, 013 = €,

_1(\%) + €.

Then the PMNS mixing matrix up to order €; can be
written as

(56)

_ 1+eten2 + e,elcP

Upmns = 7 5

—l+e+eV2 _ o idcp N
BET TR

6

l+e;\/§ 6267’.8”’
\/§+51\/5—53 e,eiocP —1+¢€ 2
+ e a0, + 0. (57)
€ ,id 1+¢;
RS

The small deviation €, from the maximality of the atmospheric mixing angle 6,5 is expressed in terms of the parameters

in Eq. (B1) in Appendix B as

_R(I+y,) =S, — 1)

tane; =

Ry, = 1) = S(1 +y,)°

(58)

In the limit of y;, y, — 1, €; goes to zero (or equivalently 6,3 — —/4) due to R, S — 0. The reactor angle 6,3 and the

Dirac-CP phase &.p are expressed as

~ 1152330 — P)yy — ¢23(30 + P) — 3i{sp3(R — S)y, + c23(R + )}

tan2013 =

(F+ G+ 2+ 32)(c3; + 3353, + yo(F + G — %) sin20,3 — y34
(R— 52+ y3(R+S)?

(59)

tanBCP =

P OR-S) (P - QRTS)

where the parameters P, Q, F, G, K, D and A are given in Eq. (B1) in Appendix B. In the limit of y;, y, — 1, the
parameters Q, R, S go to zero, which in turn leads to 6,3 — 0 and §.p — 0 as expected. Finally, the solar mixing angle is
given by

2023(30 — P) + 55330 + P)‘

y
tan2012 = 2y1 c 3(\1/'2 —p )
1 1

(60)

Since in the limit y;, y, — 1 the parameters in Eq. (60) behave as Q — 0, P — 6(4 — 1), ¥, — 3(1 + uz—q) and ¥V, —
6(1 + 2—;2), it is clear that the mixing angle tan26,, goes to 2+/2, that is, 6, — sin_l?l/\/g).
The squared-mass eigenvalues of the three light neutrinos result in

¥2633Q = P) + 55330 + P) .
m} = m%{s%z‘lfl + LW, —y 22 2 ES sin261,},
¥2¢23(30 — P) + 55530 + P) .
ms = m%{C%Z\h + 53, W, + oy B 2.5 2 sm2012},
9K 3D 9K -
m} = m%{[(F +G+ T + 7)(c%3 + y3s3;) + yz(F + G — T) sin26’23i|c%3 + y2Ask,

_ Y1 Sil’l2013

2 [C23((3Q + P) COSSCP - 3(R + S) Sinacp) + S23y2((3Q - P) COS5CP + 3(R - S) Sinacp)]}. (61)

We see from Egs. (60) and (61) that the deviation €5 from tri-maximality of solar mixing angle 6, can be expressed as

3y mi{y,¢23(30 — P) + 553(30 + P)}
013Am%1

242 cos2e; + sin2e; = (62)
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FIG. 1 (color online).
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The reactor mixing angle 6,3 versus the ratio of first-to-second generation neutrino Yukawa couplings y!/y}

(left-hand plot) and the parameter « = |y4v x/ M| (right-hand plot). The (red) crosses and (blue) dots represent the results for the
normal and the inverted mass hierarchy, respectively. The horizontal solid (dotted) lines in both plots indicate the upper and lower
bounds on 6,3 for inverted (normal) mass hierarchy given in Eq. (64) at the 30 level.

Now we perform a numerical analysis using the linear
algebra tools in Ref. [20]. The Daya Bay and RENO
experiments have accomplished the measurement of three
mixing angles 6;,, 0,3, and 83 from three kinds of neu-
trino oscillation experiments. A combined analysis of the
data from the T2K, MINOS, Double Chooz, Daya Bay and
RENO experiments shows [7] that, for the normal mass
hierarchy (NMH) and inverted mass hierarchy (IMH),
respectively,

sin?f)3 = 0.02670 0030 01 NMH,

+0.003(+0.010)
[0.027_0_004(_0.011)IMH] ©9
or equivalently
B 0+0.53°(+1.66°)
03 = 9.28_0_750(_z.z4°) NMH,
+0.52°(+1.64°)
[9‘46—0.73°(—2.19°)IMH] (o9

at the 1a(30) level. The hypothesis 6,3 = 0 is now rejected
at the 8¢ significance level. In addition to the measurement
of the mixing angle 6,3, the global fit of the neutrino mixing
angles and of the mass-squared differences at the 1o (30)
level is given by [7]

- ©+0.92°(+3.02°)
010 = 3445 (50(=314%)

- 0 +4.60°(+8.70°)
b3 = 44.43_, 70 Z57g) NMH,

0+2.89°(+6.41°)
[46.72° 51 5 bov) IMH]

Amy[1075 eV2] = 76270100103

—0.19(—0.50)’
53 H008(+024) Ny
Am3, [107% eV?] = +2:2E+g§g . (65)
2402007~y IMH

The matrices mj, and My in Eq. (52) contain seven
parameters : yj, M, Ups V1> Y2, K, &. The first three

(y3> M, and v,)) lead to the overall neutrino scale parameter
mg. The next four (y;, y,, k, £) give rise to the deviations
from TBM as well as the CP phases and corrections to the
mass eigenvalues [see Eq. (55)].

In our numerical examples, we take M = 10 TeV and
v, = vg = 123 GeV, for simplicity, as inputs. Since the
neutrino masses are sensitive to the combination mg =
v3|y4?1/(6M), other choices of M and v, give identical
results. Then the parameters mg, y;, ¥,, k, & can be
determined from the experimental results of three mixing
angles, 61,, 613, 6,3, and the two mass-squared differences,
Am3,, Am3,. In addition, the CP phases S¢p, ¢, can be
predicted after determining the model parameters. Using
the formulas for the neutrino mixing angles and masses and
our values of M, v, , v, we obtain the following allowed
regions of the unknown model parameters: for the normal
mass hierarchy (NMH),*

0.17=k=090, 0.74=y,=1.0,

090=<y,<1.11, 94°=<¢=<119°

240° < £<265°, 1.8=myX102[eV]=<6.0; (66)
For the inverted mass hierarchy (IMH),

031=k=0.92, 0.84=<y,=1.15

0.65sy,<1.28, 90°=¢<117°

245° < £<265°, 1.7=myX10[eV]=45. (67)

Note that here we have used the 30 experimental bounds
on 65, 053, Am3,, Am?, in Eq. (65), except for ;3 < 12°
for which we use the values in Egs. (66) and (67). For these

*“When y, = 1 and around there, there exist other parameter
spaces giving very small values of 6,3. So, we have neglected
them in our numerical result for normal mass hierarchy.
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FIG. 2 (color online). The atmospheric mixing angle 6,3
versus the phase £ of the parameter combination ypv,/M.
The (red) crosses and (blue) dots represent the results for the
normal and inverted mass hierarchy, respectively.

parameter regions, we investigate how a nonzero 63 can
be determined for the normal and inverted mass hierarchy.
In Figs. 1-5, the data points represented by (blue) dots and
(red) crosses indicate results for the inverted and normal
mass hierarchy, respectively. The left-hand plot in Fig. 1
shows how the mixing angle 6;; depends on the ratio
v1/y2 = yt/y5 of the first- and second-generation neutrino
Yukawa couplings; the right-hand plot shows how 65
depends on the parameter x = |yzv,/M|. We see that
the measured value of 6,3 from the Daya Bay and RENO
experiments can be achieved at 307s for 0.75 < y;/y, <1
(NMH), 1.1<y;/y, <13 and y;/y,~0.9 (IMH),
0.17= k= 0.82 (NMH) and 0.3 <k =< 0.74 (IMH).
Figure 2 shows the atmospheric mixing angle 8,3 as a
function of the phase ¢ of yzv,/M.
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To see how the parameters are correlated with
low-energy CP violation observables measurable through
neutrino oscillations, we consider the leptonic CP viola-
tion parameter defined by the Jarlskog invariant [21]

Jep = Im[UelU,u2U:2U:Ll]
1
=3 sin261, sin26,3 sin263 cosf 3 sindcp.  (68)

The Jarlskog invariant Jop can be expressed in terms of
the elements of the matrix & = m,,mI [22]:
Im{hiphp3h3,}
Jop = ————"F"—5. 69

cr Am3, Am3, Am3, (69)
The behavior of J-p as a function of 6,5 is plotted on the
left-hand plot of Fig. 3. We see that the value of |Jp| lies in
the range 0-0.04 (NMH) and 0.02-0.04 (IMH) for the
measured value of 03 at 30”’s. Also, in our model we have

_2Tm§ , , 2 o

Im{h 2 hp3h3} = W%)’z(l —yy)singof....}, (70)
in which {.....} stands for a complicated lengthy function
of y1,¥2,a, b, Y| and ¢,. Clearly, Eq. (70) indicates that in
the limit of y, — 1 or sin¢, — 0 the leptonic CP violation
Jcp goes to zero. When y, # 1, i.e., for the normal hier-
archy case, Jcp could go to zero as sinis, of Eq. (70). In
the case of the inverted hierarchy, J-p has nonzero values
for the measured range of 6,3 while J-p goes to zero for
613 — 0, which corresponds to y, — 1. The right-hand plot
of Fig. 3 shows the behavior of the Dirac CP phase §.p as a
function of #,3, where 6 p can have discrete values around
50°, 120°, 230°, and 310° for the inverted mass hierarchy
(for the normal mass hierarchy, 6.p can vary over a wide
range except near 90° and 270°). Future precise measure-
ments of 6,3, whether 0,3 > 45° or 0,3 < 45°, will provide
more information on §.p.

00 oo o 00 A.o ;“

Lo b b a1y

46 48 50 52
(-)23 [Deg.]

The Jarlskog invariant J-p versus the reactor angle 6,5 (left-hand plot), and the Dirac CP phase §p versus 6,3

(right-hand plot). The (red) crosses and (blue) dots represent the results for the normal and inverted mass hierarchy, respectively. The
vertical solid (dashed) lines in both plots indicate the upper and lower bounds on 6,5 for the inverted (normal) mass hierarchy given in

Eq. (64) at the 30 level.
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The behaviors of 6,3 and 6, in terms of 65. The (red) crosses and the (blue) dots represent results for the

normal mass hierarchy and the inverted mass hierarchy, respectively. The solid (dashed) vertical lines represent the experimental
bounds of Eq. (65) at 30°’s for the inverted (normal) mass hierarchy. The horizontal dotted lines indicate the 1o experimental bounds in

Eq. (65).
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Figure 4 shows how the values of 6,3 depend on the
mixing angles 0,3 and 6,. As can be seen in the left-hand
plot of Fig. 4, the behavior of 8,3 in terms of the measured
values of 65 at 3¢’s for the normal hierarchy is different
than for the inverted hierarchy. For the normal hierarchy
we see that the measured values of 6,5 can be achieved for
43° < 0,3 <47° and 6,3 # 45°, with small deviations
from maximality, while for the inverted hierarchy 50° =
6,3 = 53.1° and 38.6° =< 6,3 < 40°, which are excluded
at 1o by the experimental bounds as can be seen in
Eq. (65).° From the right-hand plot of Fig. 4, we see that
the predictions for 85 do not strongly depend on 6, in the
allowed region.

5 Interestingly, the most recent data of MINOS seem to disfavor
the maximal mixing in the atmospheric mixing angle, Eq. (4),
indicating that the inverted mass hierarchy may be favored.

Moreover, we can straightforwardly obtain the effective
neutrino mass |m,,| that characterizes the amplitude for
neutrinoless double beta decay:

lm.| = |Z(UPMNS)§imi | (71)
where Upyns 1S given in Eq. (57). The left-hand and
right-hand plots in Fig. 5 show the behavior of the effec-
tive neutrino mass |m,,| in terms of 65 and the lightest
neutrino mass, respectively. In the left-hand plot of Fig. 5,
for the measured values of 6,3 at 30’s, the effective
neutrino mass |m,| can be in the range 0.04 <
|m,.|[eV]<0.15 (NMH) or 0.06 < |m,|[eV]=0.11
(IMH). The right-hand plot of Fig. 5 shows |m,,| as a
function of myjgpes;, Where myjgpeq = m; for the normal
mass hierarchy and mjjgper = ms3 for the inverted mass
hierarchy. Our model predicts that the effective mass
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|m,,| is within the sensitivity of planned neutrinoless
double-beta decay experiments.

IV. CONCLUSIONS

We have suggested a novel and simple scenario to gen-
erate neutrino masses and mixings with a discrete Ay
symmetry that is spontaneously broken. In particular our
model can accommodate in a renormalizable Lagrangian
a large value of the mixing angle, 6,3, consistent with
the recent reactor neutrino experiments Daya Bay and
RENO, as well as high-energy CP violation interesting
for leptogenesis.

In our model we have introduced a right-handed
neutrino Ny, a real gauge-singlet scalar y, and an
SU(2);-doublet scalar 7, all of which are A, triplets. The
light neutrino masses are generated by a seesaw mechanism
in which we have assumed the right-handed neutrino masses
are at the TeV scale (to evade the introduction of higher-
dimensional operators). Getting VEVs along the direction
(x) = v,(1,0,0) and (n°) = v,(1, 1, 1), which break the
A, symmetry down to a Z, (S-flavor-parity) and a Z;
(T-flavor) symmetry, respectively, one obtains bimaximal
mixing at the right-handed neutrino sector and trimaximal
mixing at the light Dirac neutrino sector with nondegenerate
Yukawa couplings that deform the exact TBM pattern. The
resulting light neutrino mixing matrix is in the form of a
deviated TBM generated through unequal neutrino Yukawa
couplings, as can be seen in Fig. 1. In the limiting case of
equal active-neutrino Yukawa couplings, the mixing matrix
recovers the exact TBM. In addition, we have shown that
unequal neutrino Yukawa couplings can provide a source of
high-energy CP violation, perhaps strong enough to be
responsible for leptogenesis. The stability of the vacuum
alignments we assume are guaranteed, for example, by
embedding our model in an extra dimension.

We showed that deviations from the TBM of about 20%
are enough to explain 6,3 ~ 9°. We predicted that the CP
violating Dirac phase d.-p may have discrete values (see
Fig. 3). Therefore the measurement of the phase Jp in the
next-generation neutrino experiments can rule out or sup-
port our model. We have also shown that the inverted mass
hierarchy may be excluded by a global analysis using 1o
experimental bounds, while the most recent MINOS data
seem to favor it. We also predicted an effective neutrino
mass in neutrinoless double-beta decay in the range,
0.04 < |m,,|[eV] <0.15 (for the normal hierarchy) and
0.06 < |m,,|[eV] = 0.11 (for the inverted hierarchy),
both ranges within reach of near-future neutrinoless double
beta decay experiments.
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APPENDIX A: THE HIGGS POTENTIAL

In this appendix we present our Higgs potential and its
minimization, as well as our prescription for effecting the
stability of the vacuum alignment. We solve the vacuum
alignment problem by extending the model into a spatial
extra dimension y [12]. We assume that each field lives on a
4D brane either at y = 0 or at y = L, as shown in Fig. 6.
The heavy neutrino masses arise from local operators at
y = 0, while the charged fermion masses and the neutrino
Yukawa interactions are realized by nonlocal effects in-
volving both branes, a rigorous explanation of this possi-
bility is beyond the scope of this paper.

The most general renormalizable scalar potential for
the Higgs fields ®, 5 and y, invariant under SU(2); X
U(l)y X A, and obeying the conditions in the previous
paragraph, is then given by

V= Vv=0 + VyZL: (Al)
where
Vg = V(@) + V() + V(n®),  (A)
V,_ = V(x), (A3)
and

Vin)=wu2(nT )+ AT (nTn)i(ntn) + AT (0T )y (ntn)y
+ A (s (s + A (mTn)s (nTn);,

+{A(mTn)s (ntn)s, +Hel, (A4)

V(®) = 3, (BT D) + AP (DT D)2,
V) =ui )1+ A 0001 e + A3 oor (o
+ A ()3, (s, + AL (s, (xx)s,

M3, (s,  E X3, +Ex(xx)s,
(AS)

U SM fermions, Np X
)

0 Y L

FIG. 6. Fifth dimension y and locations of scalar and fermion
fields on the brane at y =0 and y = L.
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V(n®) = AT (10 (®TD) + ATV[(nT ®) (@1 7)),

+ {ATP[(pt @) (nt®)]; + He) (A6)

+{AT% (nt )3, (1 D) + He}

+{A7%(ntn)s, (nt®) + Hel. (A7)
Here w,, pe. My, €& and &) have mass

n

dimension-1, while A;

..........

PHYSICAL REVIEW D 86, 053004 (2012)

dimensionless. In V(n®) the wusual mixing term
®ty is forbidden by the A, symmetry. In the scalar
potential (A1)—(A7) we have for simplicity assumed that
CP is conserved, and the couplings )\;7(1), )\Z‘D and AJ
are real.

The vacuum configuration is obtained by the vanishing
of the derivative of V with respect to each component of
the scalar fields @, 5;, x;(i = 1, 2, 3). The vacuum align-
ment of the field 7 is determined by

% v
23_17? o 203 (A + A9) + 20, + (7, + 03)@A] — A +4a]) + VR AT+ A7T 4+ 227}
i/~ Vn;
+ 3v,72v,73vq)/\f(p =0,
av v
200 o S0, (A + AY) 20 + (0], + 03)@A] — A +4a]) + VLAY + A%+ 2277}
i1~ Vn;
@
+ 31)7711),,31)43/\2‘7 =0,
A% v
ﬁa_ng o S0 AT+ AY) 20 + 0, + 03)@A] — AT +449) + ui (AT + AT + 2477}
E i’ Uy
+ 30, Uy, v AT” = 0. (A8)
From this set of three equations, we obtain the solution
—3ug Al = 9u3 AT = 2(3A7 + 4AD)2ud + VR (AT + A7 + 2A7%))
) =) =P =v, = — £0.  (A9)
: 23] +4A7)
This VEV breaks A, down to a residual Z;.
The vanishing of the derivative of V with respect to ® reads
Nl —upluaa® + u2 L A )2 402 02l 43 AP =0 (Al10
900 | oy, VHLION T R0 F AT 2AT v )] 3 v AT 0. (AL
The real-valued solution of Eq. (A10), for real-valued parameters, is
o ~®'3% | (oae+ V@B + 278t/ AL
¢ — - 1/3 »
[(~9a%¢ +\3@a*5 + 278 a(18)
where @ = A%, b = pd + 327" + A% +2A7%) and & = 303 A7
Finally, the minimization equations for the vacuum configuration of y are given by
oV - 2 X X X\(1,2 2 X X),,2 X -
" e =2v,, (uy + QA — A) +425)(vy, + vy,) + 2(Af + X)vy) + 6&{v,,v,, =0,
i7=Vy;
1%
Frodl PR 2v,,(u3 + (22 =AY +4AN)(v3, + v3) +2(A) + AD)v3) + 6&{v, v,, =0, (A12)
i1=Vy
A%
3—/\/3 Orv=v = 211)(3(/.13( + (2/\?/ - Aé( + 4)@/)(1}%1 + U%{z) + Z(Af + Ag)viz) + 65{1}){1 UXz = 0.
i Pxi

From these equations, we obtain the solution®

SThere exists another nontrivial solution {y) = v (1, 1, 1) with v, =

our purposes.

38X 0 [0 82 (3AX +4NX . .. .
4 4(2‘)\)( +f/\§() L +4x) . But this solution is not of interest for
| 3
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_Mi

207 + A5 #0,  (x2)={(x3) =0 (A13)
1 2

<X1>EUX=V

APPENDIX B: PARAMETRIZATION OF THE NEUTRINO MASS MATRIX
We parametrize the Hermitian matrix m,m} as follows:

A 30—P _ :3(R-S 30+P :3(R+S
Ay} R e e I e

2

y(—%ﬂ'@) yz(FJrG—%KJri%Z) F+G+%+3

All parameters appearing here are real, and equal to

. L+4yt+y3 2(1 -2yt +y3 1+ y3
A=l+y%+y%+ Yé Y2 ( V1 yz)COS'ﬂ]’ K = bzyz’ _1+yl+y2+1+4v +)2,
a a
1=2 2_|_ 2 +2 2asi
G = ( Y1 )’2)005%, D=(- y%)COSl/flz acosz,bz’ — (- )smtplz asml,bz’
a ab ab
1+ 4y? + y3 (1 —2y2 + y3) cosifs Costfy — acosiy
=———2 -2l +y+y)+ =2 Lo 0=0-})—/= 2,
a a ab
S—(1- )smlplz +ba s1ntp2y R_ (1 —2y2+y3) sinzﬁl‘ B
a a

In Eq. (60) the parameters ¥, ¥, are defined by

~ 9K 3D 9K
\Ifl = C%3y%A + S%3{<F + G+ T + )(ng + yzszg) + yz(F + G — 4 )Sin2023} - y—zl Sin2013{3023(R + S) Sinacp

— (30 + P)cosbcp + y2553(3(R — §)sind¢p + (30 — P) COSBCP)}

v, = (F + G+ ¥ + 3D)(s23 + yzczg) y2<F +G — %TK) sin26,5. (B2)
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