
Direct Equivalence Testing
Rohit Pagariya, John Regehr

School of Computing, University of Utah

{pagariya, regehr}@cs.utah.edu

• Testing embedded software is

difficult.

• Further complicated by presence of

memory and type safety errors in

software.

• Compiler contain various known

bugs. Developers are skeptical to

upgrade the compilers.

• Is your embedded software affected

by memory safety and compilation

errors?

Introduction Methodology

The memory traces generated by a computation indicate the input and output

machine state of the computation. The first read reference to a memory location is

part of the input state. The last write reference to a memory location is part of the

output state.

Research Contributions

• Embedded systems and software are

becoming an integral part of our lives

in the 21st century.

• Needless to say, bugs in embedded

software could potentially be fatal.

Our solution

Direct Equivalence Testing:

Equivalence testing is checking for

violation of equivalence in the given

equivalent programs.

Why care?

• Solving the problems of interrupt

driven concurrency, compiler

optimizations and memory mapped

IO by applying the technique of

equivalence testing to real world

embedded software.

Program

under

test

-O0

-O3

-O1

-Os

Equivalence

Checking

SimulatorCompiler

Compiler

Compiler

Compiler Simulator

Simulator

Simulator

Figure 1. Direct Equivalence Testing

Op Address Value

Read 0x15 1

Read 0x30 7

Write 0x30 2

Read 0x15 1

Read 0x2B 2

Write 0x15 4

Write 0x30 5

Memory traces from a

computation Input State

0x15 1,

0x30 7,

0x2B 2

0x15 4,

0x30 5

Output State

Figure 2. Extrapolating the machine states from memory traces

Equivalent input machine states of a computation imply output machine states

must be equivalent. Checking is performed at known equivalent points in a program.

Sample Bugs

• Direct Equivalence Testing

can detect any error – compiler

or application – that results in

different values being stored to

memory (RAM).

• Types of errors detected are:

• Compiler Errors:

 Correctness errors

 Volatile qualifier related

errors

• Programming errors:

 Out of bounds accesses

 Stack overflow

 Use of uninitialized

variables

• Portability errors

Results

• Correctness error in msp430-gcc:
int64_t foo = 0;

int64_t bar = 123456789123456;

foo = (bar >> 40) ;

The expected value was 112 but garbage

value was returned.

• Correctness error in llvm-msp430:
int32_t foo = 0, bar = 1;

return ((!foo & 0x00) != bar);

The expected value was 1 but 0 was returned.

• Programming error (out of bounds access) in

MultihopOscilloscope application of TinyOS:
int readings[5];

readings[5] = 1;

• Portability error in msp430-gcc:

ADC related memory in msp430

microcontrollers is only word addressable. Byte

accesses to this memory give unpredictable

results. The C standard doesn’t specify if it is

the compiler writer or compiler user who is

responsible for ensuring compliance in such

situations.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276282145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

