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• Testing embedded software is

difficult.

• Further complicated by presence of

memory and type safety errors in

software.

• Compiler contain various known

bugs. Developers are skeptical to

upgrade the compilers.

• Is your embedded software affected

by memory safety and compilation

errors?

Introduction Methodology 

The memory traces generated by a computation indicate the input and output

machine state of the computation. The first read reference to a memory location is

part of the input state. The last write reference to a memory location is part of the

output state.

Research Contributions

• Embedded systems and software are

becoming an integral part of our lives

in the 21st century.

• Needless to say, bugs in embedded

software could potentially be fatal.

Our solution

Direct Equivalence Testing:

Equivalence testing is checking for

violation of equivalence in the given

equivalent programs.

Why care?

• Solving the problems of interrupt

driven concurrency, compiler

optimizations and memory mapped

IO by applying the technique of

equivalence testing to real world

embedded software.
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Figure 1. Direct Equivalence Testing 

Op        Address    Value

Read            0x15           1

Read            0x30           7

Write           0x30           2

Read            0x15           1

Read            0x2B           2

Write           0x15           4

Write           0x30           5
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Figure 2. Extrapolating the machine states from memory traces

Equivalent input machine states of a computation imply output machine states

must be equivalent. Checking is performed at known equivalent points in a program.

Sample Bugs

• Direct Equivalence Testing

can detect any error – compiler

or application – that results in

different values being stored to

memory (RAM).

• Types of errors detected are:

• Compiler Errors:

 Correctness errors

 Volatile qualifier related

errors

• Programming errors:

 Out of bounds accesses

 Stack overflow

 Use of uninitialized

variables

• Portability errors

Results

• Correctness error in msp430-gcc:
int64_t foo = 0;

int64_t bar = 123456789123456;

foo = (bar >> 40) ;

The expected value was 112 but garbage

value was returned.

• Correctness error in llvm-msp430:
int32_t foo = 0, bar = 1;

return ((!foo & 0x00) != bar);

The expected value was 1 but 0 was returned.

• Programming error (out of bounds access) in

MultihopOscilloscope application of TinyOS:
int readings[5];

readings[5] = 1;

• Portability error in msp430-gcc:

ADC related memory in msp430

microcontrollers is only word addressable. Byte

accesses to this memory give unpredictable

results. The C standard doesn’t specify if it is

the compiler writer or compiler user who is

responsible for ensuring compliance in such

situations.
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