Matching Shapes Using The Current Distance

Sarang Joshi, Raj Varma Kommaraju, Jeff M. Philips, Suresh Venkatasubramanian

Introduction

Current Distance: It was introduced by Vaillant and Glaunès as a way of comparing shapes (point sets, curves, surfaces). This distance measure is defined by viewing a shape as a linear operator on a k-form field, and constructing a (dual) norm on the space of shapes.

Shape Matching: Given two shapes P, Q, a distance measure d on shapes, and a transformation group \mathcal{T}, the problem of shape matching is to determine a transformation T that minimizes $d(P, T \circ Q)$.

Current Norm: For a point set P, current norm is

$$
\left.\|P\|^{2}=\sum_{i} \sum_{j} K\left(p_{i}, p_{j}\right)\right) \eta(p) \mu(q)
$$

Current Distance: Distance between two point sets P and Q is

$$
\begin{aligned}
D^{2}(P, Q) & =\|P+(-1) Q\|^{2} \\
& \left.=\|P\|^{2}+\|Q\|^{2}-2 \sum_{i} \sum_{j} K\left(p_{i}, q_{j}\right)\right) \eta(p) \mu(q)
\end{aligned}
$$

It takes $O\left(n^{2}\right)$ time to compute the current distance between two shapes of size n. Also current distance between 2 surfaces or curves can be reduced to set of distance computations on appropriately weighted point sets.

Motivation

- Attractive properties of current distance
- Global in nature
- Can be expressed as a direct computation
- Defined in terms of norm which acts as signature of shape
- Can be generalized to higher dimensional structures

Contributions

We provide the first algorithmic analysis of the current distance. The main results of our work are

- a method for computing the current distance between two shapes in near-linear time
- a core-set construction that allows us to approximate the current norm of a point set using a constant-sized sample
- an FPTAS for minizing the current distance between two d dimensional point sets under translation and rotation

Approximate Current Distance

Approximate Feature Maps:

- Kernel Trick: For a reproducing kernel K, there exists a map ϕ $X \rightarrow H_{s}$ such that $K(x, y)=\langle\phi(x), \phi(y)\rangle$
- $D^{2}(P, Q)=\left\|C_{\phi(P)}-C_{\phi(Q)}\right\|^{2}$ where $C_{\phi(P)}$ is the centroid of $\phi(P)$

- We can approximate kernel function using a mapping $\tilde{\phi}: X \rightarrow \underline{\mathrm{R}}^{\rho}$ such that $K(x, y) \approx\langle\tilde{\phi}(x), \tilde{\phi}(y)\rangle$
- IFGT and Random Projections gives a mapping to feature space such that we can approximate the current distance.

Coreset for Current Norm

We can approximate the current norm by extracting a small subset (a coreset) from the input.

- By constructing a subset S of some size $k=$ $\left.O\left(1 / \epsilon^{3}\right) \log (n / \delta) \log ((1 / \epsilon \delta) \log n)\right)$ we guarantee $D^{2}(\mathrm{P},) \leq \epsilon W^{2}$, with probability at least $1-\delta$
- Now this subset acts as the signature of the shape

Translation and Rotation

- $T^{*}=\arg \min _{T \in \underline{\mathrm{R}}^{d}} D^{2}(P, Q \circ T)$, be the optimal translation
- We find a \hat{T} such that $D^{2}(P, Q \circ \hat{T})-D^{2}\left(P, Q \circ T^{*}\right) \leq \epsilon W^{2}$, for any parameter $\epsilon>0$

Algorithm for Translation:

- for each point $p \in P$

$$
\text { - for each point } q \in Q
$$

* for each $g \in$ grid around p

Apply translation $T_{p, q, g}$ such that $q+T_{p, q, g}=g$ if $D\left(P, Q+T_{p, q, g}\right)$ is minimum then $\hat{T}=T_{p, q, g}$

Translation-How It Works

- There exists some pair $p \in P$ and $q \in Q$ such that $\left\|p-\left(q+T^{*}\right)\right\| \leq \sqrt{\ln \left(n^{2}\right)}$
- Translating a point by some distance less than ϵ will only change K by at most ϵ

Results

(a)

(b)
(a)exact $(D(P, Q))$ vs approximate $(\tilde{D}(P, Q))$ time comparison (b) $\log _{10} \%$ error for approximate distance measure on 131072 points: $|D(P, Q)-\tilde{D}(P, Q)| / D(P, Q)$.

References

1. Sarang Joshi, Raj Varma Kommaraju, Jeff M. Philips, Suresh Sarang Joshi, Raj Varma Kommaraju, Jeff M. Philips, Suresh
Venkatasubramanian. Shape Matching Using The Current Distance. arXiv:1001.0591
2. Vaillant M. and Glaunes J. Surface matching via currents. In Proc. Information processing in medical imaging(January 2005), vol. 19 , pp. 381-92.
[^0]
[^0]: Similar algorithm works for Rotations

